Properties

Label 3971.2.a.k.1.5
Level $3971$
Weight $2$
Character 3971.1
Self dual yes
Analytic conductor $31.709$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3971,2,Mod(1,3971)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3971, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3971.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3971 = 11 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3971.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.7085946427\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - x^{8} - 13x^{7} + 12x^{6} + 51x^{5} - 38x^{4} - 70x^{3} + 30x^{2} + 27x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 209)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-0.138860\) of defining polynomial
Character \(\chi\) \(=\) 3971.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.138860 q^{2} -1.49679 q^{3} -1.98072 q^{4} -3.51650 q^{5} -0.207844 q^{6} -1.46902 q^{7} -0.552764 q^{8} -0.759634 q^{9} -0.488302 q^{10} -1.00000 q^{11} +2.96471 q^{12} +2.39255 q^{13} -0.203989 q^{14} +5.26344 q^{15} +3.88468 q^{16} -3.24041 q^{17} -0.105483 q^{18} +6.96519 q^{20} +2.19881 q^{21} -0.138860 q^{22} -7.38177 q^{23} +0.827369 q^{24} +7.36576 q^{25} +0.332231 q^{26} +5.62736 q^{27} +2.90971 q^{28} +6.40954 q^{29} +0.730884 q^{30} +0.866600 q^{31} +1.64496 q^{32} +1.49679 q^{33} -0.449965 q^{34} +5.16581 q^{35} +1.50462 q^{36} -2.78244 q^{37} -3.58113 q^{39} +1.94379 q^{40} +9.85358 q^{41} +0.305327 q^{42} +7.30504 q^{43} +1.98072 q^{44} +2.67125 q^{45} -1.02504 q^{46} +3.35902 q^{47} -5.81453 q^{48} -4.84198 q^{49} +1.02281 q^{50} +4.85020 q^{51} -4.73897 q^{52} -3.78360 q^{53} +0.781418 q^{54} +3.51650 q^{55} +0.812022 q^{56} +0.890031 q^{58} +8.40207 q^{59} -10.4254 q^{60} -1.43767 q^{61} +0.120336 q^{62} +1.11592 q^{63} -7.54094 q^{64} -8.41340 q^{65} +0.207844 q^{66} +6.48612 q^{67} +6.41834 q^{68} +11.0489 q^{69} +0.717326 q^{70} -3.41568 q^{71} +0.419898 q^{72} +2.81088 q^{73} -0.386370 q^{74} -11.0250 q^{75} +1.46902 q^{77} -0.497278 q^{78} -17.7188 q^{79} -13.6605 q^{80} -6.14405 q^{81} +1.36827 q^{82} +17.7129 q^{83} -4.35522 q^{84} +11.3949 q^{85} +1.01438 q^{86} -9.59370 q^{87} +0.552764 q^{88} +12.8724 q^{89} +0.370931 q^{90} -3.51471 q^{91} +14.6212 q^{92} -1.29711 q^{93} +0.466435 q^{94} -2.46215 q^{96} -15.7259 q^{97} -0.672359 q^{98} +0.759634 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - q^{2} + 9 q^{4} + 3 q^{6} - 3 q^{7} + 11 q^{9} - 21 q^{10} - 9 q^{11} + 8 q^{12} - 11 q^{13} - q^{14} - 7 q^{15} + 13 q^{16} - 6 q^{17} - 4 q^{18} + 2 q^{20} - 24 q^{21} + q^{22} + q^{23} + 3 q^{24}+ \cdots - 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.138860 0.0981891 0.0490946 0.998794i \(-0.484366\pi\)
0.0490946 + 0.998794i \(0.484366\pi\)
\(3\) −1.49679 −0.864169 −0.432085 0.901833i \(-0.642222\pi\)
−0.432085 + 0.901833i \(0.642222\pi\)
\(4\) −1.98072 −0.990359
\(5\) −3.51650 −1.57263 −0.786313 0.617828i \(-0.788013\pi\)
−0.786313 + 0.617828i \(0.788013\pi\)
\(6\) −0.207844 −0.0848520
\(7\) −1.46902 −0.555237 −0.277619 0.960691i \(-0.589545\pi\)
−0.277619 + 0.960691i \(0.589545\pi\)
\(8\) −0.552764 −0.195432
\(9\) −0.759634 −0.253211
\(10\) −0.488302 −0.154415
\(11\) −1.00000 −0.301511
\(12\) 2.96471 0.855838
\(13\) 2.39255 0.663574 0.331787 0.943354i \(-0.392348\pi\)
0.331787 + 0.943354i \(0.392348\pi\)
\(14\) −0.203989 −0.0545183
\(15\) 5.26344 1.35902
\(16\) 3.88468 0.971170
\(17\) −3.24041 −0.785915 −0.392957 0.919557i \(-0.628548\pi\)
−0.392957 + 0.919557i \(0.628548\pi\)
\(18\) −0.105483 −0.0248626
\(19\) 0 0
\(20\) 6.96519 1.55746
\(21\) 2.19881 0.479819
\(22\) −0.138860 −0.0296051
\(23\) −7.38177 −1.53921 −0.769603 0.638523i \(-0.779546\pi\)
−0.769603 + 0.638523i \(0.779546\pi\)
\(24\) 0.827369 0.168886
\(25\) 7.36576 1.47315
\(26\) 0.332231 0.0651558
\(27\) 5.62736 1.08299
\(28\) 2.90971 0.549884
\(29\) 6.40954 1.19022 0.595111 0.803644i \(-0.297108\pi\)
0.595111 + 0.803644i \(0.297108\pi\)
\(30\) 0.730884 0.133441
\(31\) 0.866600 0.155646 0.0778230 0.996967i \(-0.475203\pi\)
0.0778230 + 0.996967i \(0.475203\pi\)
\(32\) 1.64496 0.290790
\(33\) 1.49679 0.260557
\(34\) −0.449965 −0.0771683
\(35\) 5.16581 0.873181
\(36\) 1.50462 0.250770
\(37\) −2.78244 −0.457430 −0.228715 0.973493i \(-0.573452\pi\)
−0.228715 + 0.973493i \(0.573452\pi\)
\(38\) 0 0
\(39\) −3.58113 −0.573440
\(40\) 1.94379 0.307341
\(41\) 9.85358 1.53887 0.769435 0.638725i \(-0.220538\pi\)
0.769435 + 0.638725i \(0.220538\pi\)
\(42\) 0.305327 0.0471130
\(43\) 7.30504 1.11401 0.557004 0.830510i \(-0.311951\pi\)
0.557004 + 0.830510i \(0.311951\pi\)
\(44\) 1.98072 0.298604
\(45\) 2.67125 0.398207
\(46\) −1.02504 −0.151133
\(47\) 3.35902 0.489964 0.244982 0.969528i \(-0.421218\pi\)
0.244982 + 0.969528i \(0.421218\pi\)
\(48\) −5.81453 −0.839255
\(49\) −4.84198 −0.691711
\(50\) 1.02281 0.144648
\(51\) 4.85020 0.679164
\(52\) −4.73897 −0.657177
\(53\) −3.78360 −0.519718 −0.259859 0.965647i \(-0.583676\pi\)
−0.259859 + 0.965647i \(0.583676\pi\)
\(54\) 0.781418 0.106338
\(55\) 3.51650 0.474165
\(56\) 0.812022 0.108511
\(57\) 0 0
\(58\) 0.890031 0.116867
\(59\) 8.40207 1.09386 0.546928 0.837180i \(-0.315797\pi\)
0.546928 + 0.837180i \(0.315797\pi\)
\(60\) −10.4254 −1.34591
\(61\) −1.43767 −0.184075 −0.0920375 0.995756i \(-0.529338\pi\)
−0.0920375 + 0.995756i \(0.529338\pi\)
\(62\) 0.120336 0.0152827
\(63\) 1.11592 0.140592
\(64\) −7.54094 −0.942617
\(65\) −8.41340 −1.04355
\(66\) 0.207844 0.0255839
\(67\) 6.48612 0.792406 0.396203 0.918163i \(-0.370328\pi\)
0.396203 + 0.918163i \(0.370328\pi\)
\(68\) 6.41834 0.778338
\(69\) 11.0489 1.33013
\(70\) 0.717326 0.0857369
\(71\) −3.41568 −0.405367 −0.202683 0.979244i \(-0.564966\pi\)
−0.202683 + 0.979244i \(0.564966\pi\)
\(72\) 0.419898 0.0494855
\(73\) 2.81088 0.328989 0.164495 0.986378i \(-0.447401\pi\)
0.164495 + 0.986378i \(0.447401\pi\)
\(74\) −0.386370 −0.0449146
\(75\) −11.0250 −1.27305
\(76\) 0 0
\(77\) 1.46902 0.167410
\(78\) −0.497278 −0.0563056
\(79\) −17.7188 −1.99353 −0.996763 0.0803939i \(-0.974382\pi\)
−0.996763 + 0.0803939i \(0.974382\pi\)
\(80\) −13.6605 −1.52729
\(81\) −6.14405 −0.682673
\(82\) 1.36827 0.151100
\(83\) 17.7129 1.94425 0.972124 0.234467i \(-0.0753345\pi\)
0.972124 + 0.234467i \(0.0753345\pi\)
\(84\) −4.35522 −0.475193
\(85\) 11.3949 1.23595
\(86\) 1.01438 0.109383
\(87\) −9.59370 −1.02855
\(88\) 0.552764 0.0589249
\(89\) 12.8724 1.36447 0.682236 0.731132i \(-0.261007\pi\)
0.682236 + 0.731132i \(0.261007\pi\)
\(90\) 0.370931 0.0390996
\(91\) −3.51471 −0.368441
\(92\) 14.6212 1.52437
\(93\) −1.29711 −0.134505
\(94\) 0.466435 0.0481091
\(95\) 0 0
\(96\) −2.46215 −0.251292
\(97\) −15.7259 −1.59673 −0.798364 0.602175i \(-0.794301\pi\)
−0.798364 + 0.602175i \(0.794301\pi\)
\(98\) −0.672359 −0.0679185
\(99\) 0.759634 0.0763461
\(100\) −14.5895 −1.45895
\(101\) −7.83751 −0.779861 −0.389931 0.920844i \(-0.627501\pi\)
−0.389931 + 0.920844i \(0.627501\pi\)
\(102\) 0.673501 0.0666865
\(103\) −7.27715 −0.717039 −0.358519 0.933522i \(-0.616718\pi\)
−0.358519 + 0.933522i \(0.616718\pi\)
\(104\) −1.32252 −0.129683
\(105\) −7.73211 −0.754576
\(106\) −0.525392 −0.0510306
\(107\) 6.23745 0.602997 0.301498 0.953467i \(-0.402513\pi\)
0.301498 + 0.953467i \(0.402513\pi\)
\(108\) −11.1462 −1.07255
\(109\) 2.71842 0.260377 0.130189 0.991489i \(-0.458442\pi\)
0.130189 + 0.991489i \(0.458442\pi\)
\(110\) 0.488302 0.0465578
\(111\) 4.16471 0.395297
\(112\) −5.70667 −0.539230
\(113\) 0.486637 0.0457789 0.0228895 0.999738i \(-0.492713\pi\)
0.0228895 + 0.999738i \(0.492713\pi\)
\(114\) 0 0
\(115\) 25.9580 2.42060
\(116\) −12.6955 −1.17875
\(117\) −1.81746 −0.168025
\(118\) 1.16671 0.107405
\(119\) 4.76023 0.436369
\(120\) −2.90944 −0.265595
\(121\) 1.00000 0.0909091
\(122\) −0.199636 −0.0180742
\(123\) −14.7487 −1.32984
\(124\) −1.71649 −0.154145
\(125\) −8.31921 −0.744093
\(126\) 0.154957 0.0138046
\(127\) 3.68254 0.326773 0.163386 0.986562i \(-0.447758\pi\)
0.163386 + 0.986562i \(0.447758\pi\)
\(128\) −4.33705 −0.383345
\(129\) −10.9341 −0.962691
\(130\) −1.16829 −0.102466
\(131\) 0.0541158 0.00472812 0.00236406 0.999997i \(-0.499247\pi\)
0.00236406 + 0.999997i \(0.499247\pi\)
\(132\) −2.96471 −0.258045
\(133\) 0 0
\(134\) 0.900665 0.0778056
\(135\) −19.7886 −1.70313
\(136\) 1.79118 0.153593
\(137\) 16.9727 1.45008 0.725038 0.688709i \(-0.241822\pi\)
0.725038 + 0.688709i \(0.241822\pi\)
\(138\) 1.53426 0.130605
\(139\) −18.0362 −1.52981 −0.764907 0.644141i \(-0.777215\pi\)
−0.764907 + 0.644141i \(0.777215\pi\)
\(140\) −10.2320 −0.864763
\(141\) −5.02773 −0.423412
\(142\) −0.474303 −0.0398026
\(143\) −2.39255 −0.200075
\(144\) −2.95093 −0.245911
\(145\) −22.5391 −1.87177
\(146\) 0.390320 0.0323031
\(147\) 7.24740 0.597756
\(148\) 5.51122 0.453020
\(149\) −5.30375 −0.434501 −0.217250 0.976116i \(-0.569709\pi\)
−0.217250 + 0.976116i \(0.569709\pi\)
\(150\) −1.53093 −0.125000
\(151\) −10.8143 −0.880057 −0.440029 0.897984i \(-0.645032\pi\)
−0.440029 + 0.897984i \(0.645032\pi\)
\(152\) 0 0
\(153\) 2.46153 0.199003
\(154\) 0.203989 0.0164379
\(155\) −3.04740 −0.244773
\(156\) 7.09322 0.567912
\(157\) 3.19528 0.255011 0.127506 0.991838i \(-0.459303\pi\)
0.127506 + 0.991838i \(0.459303\pi\)
\(158\) −2.46045 −0.195743
\(159\) 5.66324 0.449124
\(160\) −5.78449 −0.457304
\(161\) 10.8440 0.854625
\(162\) −0.853166 −0.0670310
\(163\) −14.3438 −1.12349 −0.561747 0.827309i \(-0.689871\pi\)
−0.561747 + 0.827309i \(0.689871\pi\)
\(164\) −19.5172 −1.52403
\(165\) −5.26344 −0.409759
\(166\) 2.45963 0.190904
\(167\) 15.2567 1.18060 0.590298 0.807186i \(-0.299010\pi\)
0.590298 + 0.807186i \(0.299010\pi\)
\(168\) −1.21542 −0.0937718
\(169\) −7.27570 −0.559669
\(170\) 1.58230 0.121357
\(171\) 0 0
\(172\) −14.4692 −1.10327
\(173\) −21.6749 −1.64791 −0.823954 0.566656i \(-0.808237\pi\)
−0.823954 + 0.566656i \(0.808237\pi\)
\(174\) −1.33219 −0.100993
\(175\) −10.8205 −0.817950
\(176\) −3.88468 −0.292819
\(177\) −12.5761 −0.945277
\(178\) 1.78747 0.133976
\(179\) 4.19425 0.313493 0.156746 0.987639i \(-0.449899\pi\)
0.156746 + 0.987639i \(0.449899\pi\)
\(180\) −5.29100 −0.394368
\(181\) −24.9278 −1.85287 −0.926436 0.376453i \(-0.877144\pi\)
−0.926436 + 0.376453i \(0.877144\pi\)
\(182\) −0.488053 −0.0361769
\(183\) 2.15189 0.159072
\(184\) 4.08038 0.300810
\(185\) 9.78444 0.719366
\(186\) −0.180118 −0.0132069
\(187\) 3.24041 0.236962
\(188\) −6.65327 −0.485240
\(189\) −8.26671 −0.601315
\(190\) 0 0
\(191\) −7.74450 −0.560372 −0.280186 0.959946i \(-0.590396\pi\)
−0.280186 + 0.959946i \(0.590396\pi\)
\(192\) 11.2872 0.814581
\(193\) 13.9096 1.00123 0.500617 0.865669i \(-0.333106\pi\)
0.500617 + 0.865669i \(0.333106\pi\)
\(194\) −2.18371 −0.156781
\(195\) 12.5931 0.901807
\(196\) 9.59059 0.685042
\(197\) 20.3595 1.45056 0.725279 0.688455i \(-0.241711\pi\)
0.725279 + 0.688455i \(0.241711\pi\)
\(198\) 0.105483 0.00749636
\(199\) 3.03426 0.215093 0.107546 0.994200i \(-0.465701\pi\)
0.107546 + 0.994200i \(0.465701\pi\)
\(200\) −4.07153 −0.287901
\(201\) −9.70833 −0.684773
\(202\) −1.08832 −0.0765739
\(203\) −9.41574 −0.660855
\(204\) −9.60687 −0.672616
\(205\) −34.6501 −2.42007
\(206\) −1.01051 −0.0704054
\(207\) 5.60745 0.389744
\(208\) 9.29429 0.644443
\(209\) 0 0
\(210\) −1.07368 −0.0740912
\(211\) 5.01758 0.345425 0.172712 0.984972i \(-0.444747\pi\)
0.172712 + 0.984972i \(0.444747\pi\)
\(212\) 7.49425 0.514707
\(213\) 5.11254 0.350305
\(214\) 0.866134 0.0592077
\(215\) −25.6882 −1.75192
\(216\) −3.11061 −0.211650
\(217\) −1.27305 −0.0864205
\(218\) 0.377481 0.0255662
\(219\) −4.20729 −0.284302
\(220\) −6.96519 −0.469593
\(221\) −7.75285 −0.521513
\(222\) 0.578313 0.0388139
\(223\) −11.8616 −0.794314 −0.397157 0.917751i \(-0.630003\pi\)
−0.397157 + 0.917751i \(0.630003\pi\)
\(224\) −2.41647 −0.161457
\(225\) −5.59529 −0.373019
\(226\) 0.0675746 0.00449499
\(227\) −1.40838 −0.0934777 −0.0467388 0.998907i \(-0.514883\pi\)
−0.0467388 + 0.998907i \(0.514883\pi\)
\(228\) 0 0
\(229\) 11.3642 0.750971 0.375485 0.926828i \(-0.377476\pi\)
0.375485 + 0.926828i \(0.377476\pi\)
\(230\) 3.60454 0.237676
\(231\) −2.19881 −0.144671
\(232\) −3.54296 −0.232607
\(233\) −12.8001 −0.838563 −0.419281 0.907856i \(-0.637718\pi\)
−0.419281 + 0.907856i \(0.637718\pi\)
\(234\) −0.252374 −0.0164982
\(235\) −11.8120 −0.770530
\(236\) −16.6421 −1.08331
\(237\) 26.5213 1.72274
\(238\) 0.661007 0.0428467
\(239\) −3.62977 −0.234790 −0.117395 0.993085i \(-0.537454\pi\)
−0.117395 + 0.993085i \(0.537454\pi\)
\(240\) 20.4468 1.31983
\(241\) 19.3216 1.24461 0.622306 0.782774i \(-0.286196\pi\)
0.622306 + 0.782774i \(0.286196\pi\)
\(242\) 0.138860 0.00892629
\(243\) −7.68576 −0.493042
\(244\) 2.84762 0.182300
\(245\) 17.0268 1.08780
\(246\) −2.04801 −0.130576
\(247\) 0 0
\(248\) −0.479026 −0.0304182
\(249\) −26.5125 −1.68016
\(250\) −1.15521 −0.0730618
\(251\) 18.1298 1.14434 0.572172 0.820133i \(-0.306101\pi\)
0.572172 + 0.820133i \(0.306101\pi\)
\(252\) −2.21032 −0.139237
\(253\) 7.38177 0.464088
\(254\) 0.511360 0.0320856
\(255\) −17.0557 −1.06807
\(256\) 14.4796 0.904977
\(257\) 1.55938 0.0972713 0.0486357 0.998817i \(-0.484513\pi\)
0.0486357 + 0.998817i \(0.484513\pi\)
\(258\) −1.51831 −0.0945258
\(259\) 4.08746 0.253982
\(260\) 16.6646 1.03349
\(261\) −4.86890 −0.301378
\(262\) 0.00751455 0.000464250 0
\(263\) 17.2721 1.06504 0.532522 0.846416i \(-0.321244\pi\)
0.532522 + 0.846416i \(0.321244\pi\)
\(264\) −0.827369 −0.0509211
\(265\) 13.3050 0.817321
\(266\) 0 0
\(267\) −19.2672 −1.17914
\(268\) −12.8472 −0.784766
\(269\) −13.9309 −0.849384 −0.424692 0.905338i \(-0.639618\pi\)
−0.424692 + 0.905338i \(0.639618\pi\)
\(270\) −2.74786 −0.167229
\(271\) 6.15305 0.373771 0.186886 0.982382i \(-0.440161\pi\)
0.186886 + 0.982382i \(0.440161\pi\)
\(272\) −12.5880 −0.763257
\(273\) 5.26076 0.318396
\(274\) 2.35684 0.142382
\(275\) −7.36576 −0.444172
\(276\) −21.8848 −1.31731
\(277\) −18.4147 −1.10643 −0.553215 0.833039i \(-0.686599\pi\)
−0.553215 + 0.833039i \(0.686599\pi\)
\(278\) −2.50452 −0.150211
\(279\) −0.658299 −0.0394113
\(280\) −2.85547 −0.170647
\(281\) 24.8330 1.48141 0.740706 0.671830i \(-0.234491\pi\)
0.740706 + 0.671830i \(0.234491\pi\)
\(282\) −0.698153 −0.0415744
\(283\) 17.1761 1.02101 0.510506 0.859874i \(-0.329458\pi\)
0.510506 + 0.859874i \(0.329458\pi\)
\(284\) 6.76550 0.401458
\(285\) 0 0
\(286\) −0.332231 −0.0196452
\(287\) −14.4751 −0.854438
\(288\) −1.24956 −0.0736313
\(289\) −6.49974 −0.382338
\(290\) −3.12979 −0.183788
\(291\) 23.5384 1.37984
\(292\) −5.56757 −0.325817
\(293\) 23.1770 1.35402 0.677008 0.735976i \(-0.263276\pi\)
0.677008 + 0.735976i \(0.263276\pi\)
\(294\) 1.00638 0.0586931
\(295\) −29.5459 −1.72023
\(296\) 1.53803 0.0893963
\(297\) −5.62736 −0.326533
\(298\) −0.736482 −0.0426632
\(299\) −17.6613 −1.02138
\(300\) 21.8373 1.26078
\(301\) −10.7312 −0.618539
\(302\) −1.50168 −0.0864121
\(303\) 11.7311 0.673932
\(304\) 0 0
\(305\) 5.05557 0.289481
\(306\) 0.341809 0.0195399
\(307\) 26.3151 1.50188 0.750940 0.660370i \(-0.229601\pi\)
0.750940 + 0.660370i \(0.229601\pi\)
\(308\) −2.90971 −0.165796
\(309\) 10.8923 0.619643
\(310\) −0.423163 −0.0240341
\(311\) 25.2900 1.43407 0.717033 0.697039i \(-0.245500\pi\)
0.717033 + 0.697039i \(0.245500\pi\)
\(312\) 1.97952 0.112068
\(313\) −27.6880 −1.56502 −0.782509 0.622640i \(-0.786060\pi\)
−0.782509 + 0.622640i \(0.786060\pi\)
\(314\) 0.443698 0.0250393
\(315\) −3.92412 −0.221099
\(316\) 35.0960 1.97431
\(317\) 10.1236 0.568599 0.284299 0.958736i \(-0.408239\pi\)
0.284299 + 0.958736i \(0.408239\pi\)
\(318\) 0.786400 0.0440991
\(319\) −6.40954 −0.358865
\(320\) 26.5177 1.48238
\(321\) −9.33612 −0.521091
\(322\) 1.50580 0.0839149
\(323\) 0 0
\(324\) 12.1696 0.676091
\(325\) 17.6230 0.977546
\(326\) −1.99179 −0.110315
\(327\) −4.06889 −0.225010
\(328\) −5.44670 −0.300744
\(329\) −4.93447 −0.272046
\(330\) −0.730884 −0.0402338
\(331\) 8.45572 0.464769 0.232384 0.972624i \(-0.425347\pi\)
0.232384 + 0.972624i \(0.425347\pi\)
\(332\) −35.0843 −1.92550
\(333\) 2.11363 0.115826
\(334\) 2.11855 0.115922
\(335\) −22.8084 −1.24616
\(336\) 8.54166 0.465986
\(337\) 0.0173781 0.000946646 0 0.000473323 1.00000i \(-0.499849\pi\)
0.000473323 1.00000i \(0.499849\pi\)
\(338\) −1.01031 −0.0549534
\(339\) −0.728391 −0.0395608
\(340\) −22.5701 −1.22403
\(341\) −0.866600 −0.0469290
\(342\) 0 0
\(343\) 17.3961 0.939302
\(344\) −4.03796 −0.217712
\(345\) −38.8535 −2.09180
\(346\) −3.00978 −0.161807
\(347\) 8.63862 0.463746 0.231873 0.972746i \(-0.425515\pi\)
0.231873 + 0.972746i \(0.425515\pi\)
\(348\) 19.0024 1.01864
\(349\) −3.41607 −0.182858 −0.0914289 0.995812i \(-0.529143\pi\)
−0.0914289 + 0.995812i \(0.529143\pi\)
\(350\) −1.50253 −0.0803138
\(351\) 13.4638 0.718642
\(352\) −1.64496 −0.0876765
\(353\) −10.9807 −0.584443 −0.292221 0.956351i \(-0.594394\pi\)
−0.292221 + 0.956351i \(0.594394\pi\)
\(354\) −1.74632 −0.0928159
\(355\) 12.0112 0.637490
\(356\) −25.4966 −1.35132
\(357\) −7.12504 −0.377097
\(358\) 0.582415 0.0307816
\(359\) 7.56251 0.399134 0.199567 0.979884i \(-0.436046\pi\)
0.199567 + 0.979884i \(0.436046\pi\)
\(360\) −1.47657 −0.0778222
\(361\) 0 0
\(362\) −3.46149 −0.181932
\(363\) −1.49679 −0.0785609
\(364\) 6.96164 0.364889
\(365\) −9.88447 −0.517377
\(366\) 0.298812 0.0156191
\(367\) 2.97462 0.155274 0.0776369 0.996982i \(-0.475263\pi\)
0.0776369 + 0.996982i \(0.475263\pi\)
\(368\) −28.6758 −1.49483
\(369\) −7.48511 −0.389659
\(370\) 1.35867 0.0706339
\(371\) 5.55819 0.288567
\(372\) 2.56922 0.133208
\(373\) 29.9852 1.55258 0.776288 0.630378i \(-0.217100\pi\)
0.776288 + 0.630378i \(0.217100\pi\)
\(374\) 0.449965 0.0232671
\(375\) 12.4521 0.643022
\(376\) −1.85675 −0.0957544
\(377\) 15.3351 0.789800
\(378\) −1.14792 −0.0590426
\(379\) −30.6010 −1.57187 −0.785933 0.618312i \(-0.787817\pi\)
−0.785933 + 0.618312i \(0.787817\pi\)
\(380\) 0 0
\(381\) −5.51198 −0.282387
\(382\) −1.07540 −0.0550225
\(383\) −1.69358 −0.0865379 −0.0432690 0.999063i \(-0.513777\pi\)
−0.0432690 + 0.999063i \(0.513777\pi\)
\(384\) 6.49163 0.331275
\(385\) −5.16581 −0.263274
\(386\) 1.93149 0.0983104
\(387\) −5.54915 −0.282079
\(388\) 31.1487 1.58133
\(389\) −23.0617 −1.16928 −0.584638 0.811294i \(-0.698764\pi\)
−0.584638 + 0.811294i \(0.698764\pi\)
\(390\) 1.74868 0.0885477
\(391\) 23.9200 1.20969
\(392\) 2.67647 0.135182
\(393\) −0.0809998 −0.00408590
\(394\) 2.82713 0.142429
\(395\) 62.3083 3.13507
\(396\) −1.50462 −0.0756100
\(397\) −19.0356 −0.955369 −0.477685 0.878531i \(-0.658524\pi\)
−0.477685 + 0.878531i \(0.658524\pi\)
\(398\) 0.421338 0.0211198
\(399\) 0 0
\(400\) 28.6136 1.43068
\(401\) 27.9015 1.39334 0.696668 0.717394i \(-0.254665\pi\)
0.696668 + 0.717394i \(0.254665\pi\)
\(402\) −1.34810 −0.0672372
\(403\) 2.07339 0.103283
\(404\) 15.5239 0.772343
\(405\) 21.6056 1.07359
\(406\) −1.30747 −0.0648888
\(407\) 2.78244 0.137920
\(408\) −2.68102 −0.132730
\(409\) −7.32038 −0.361970 −0.180985 0.983486i \(-0.557928\pi\)
−0.180985 + 0.983486i \(0.557928\pi\)
\(410\) −4.81153 −0.237624
\(411\) −25.4045 −1.25311
\(412\) 14.4140 0.710126
\(413\) −12.3428 −0.607350
\(414\) 0.778652 0.0382687
\(415\) −62.2875 −3.05758
\(416\) 3.93564 0.192961
\(417\) 26.9964 1.32202
\(418\) 0 0
\(419\) −37.5029 −1.83214 −0.916069 0.401021i \(-0.868655\pi\)
−0.916069 + 0.401021i \(0.868655\pi\)
\(420\) 15.3151 0.747301
\(421\) 36.8529 1.79610 0.898050 0.439893i \(-0.144983\pi\)
0.898050 + 0.439893i \(0.144983\pi\)
\(422\) 0.696744 0.0339170
\(423\) −2.55163 −0.124064
\(424\) 2.09144 0.101569
\(425\) −23.8681 −1.15777
\(426\) 0.709929 0.0343962
\(427\) 2.11197 0.102205
\(428\) −12.3546 −0.597183
\(429\) 3.58113 0.172899
\(430\) −3.56707 −0.172019
\(431\) −25.7897 −1.24225 −0.621124 0.783712i \(-0.713324\pi\)
−0.621124 + 0.783712i \(0.713324\pi\)
\(432\) 21.8605 1.05176
\(433\) −31.0028 −1.48990 −0.744949 0.667121i \(-0.767526\pi\)
−0.744949 + 0.667121i \(0.767526\pi\)
\(434\) −0.176777 −0.00848556
\(435\) 33.7362 1.61753
\(436\) −5.38442 −0.257867
\(437\) 0 0
\(438\) −0.584226 −0.0279154
\(439\) 18.5779 0.886674 0.443337 0.896355i \(-0.353794\pi\)
0.443337 + 0.896355i \(0.353794\pi\)
\(440\) −1.94379 −0.0926668
\(441\) 3.67813 0.175149
\(442\) −1.07656 −0.0512069
\(443\) −26.6129 −1.26442 −0.632208 0.774799i \(-0.717851\pi\)
−0.632208 + 0.774799i \(0.717851\pi\)
\(444\) −8.24912 −0.391486
\(445\) −45.2658 −2.14581
\(446\) −1.64711 −0.0779930
\(447\) 7.93858 0.375482
\(448\) 11.0778 0.523376
\(449\) 7.83267 0.369647 0.184823 0.982772i \(-0.440829\pi\)
0.184823 + 0.982772i \(0.440829\pi\)
\(450\) −0.776964 −0.0366264
\(451\) −9.85358 −0.463987
\(452\) −0.963890 −0.0453376
\(453\) 16.1867 0.760519
\(454\) −0.195569 −0.00917849
\(455\) 12.3595 0.579420
\(456\) 0 0
\(457\) 2.02478 0.0947150 0.0473575 0.998878i \(-0.484920\pi\)
0.0473575 + 0.998878i \(0.484920\pi\)
\(458\) 1.57804 0.0737372
\(459\) −18.2350 −0.851136
\(460\) −51.4155 −2.39726
\(461\) −38.1417 −1.77644 −0.888219 0.459421i \(-0.848057\pi\)
−0.888219 + 0.459421i \(0.848057\pi\)
\(462\) −0.305327 −0.0142051
\(463\) −27.6957 −1.28713 −0.643564 0.765393i \(-0.722545\pi\)
−0.643564 + 0.765393i \(0.722545\pi\)
\(464\) 24.8990 1.15591
\(465\) 4.56130 0.211525
\(466\) −1.77743 −0.0823378
\(467\) −3.91063 −0.180962 −0.0904811 0.995898i \(-0.528840\pi\)
−0.0904811 + 0.995898i \(0.528840\pi\)
\(468\) 3.59988 0.166405
\(469\) −9.52824 −0.439973
\(470\) −1.64022 −0.0756576
\(471\) −4.78265 −0.220373
\(472\) −4.64436 −0.213774
\(473\) −7.30504 −0.335886
\(474\) 3.68276 0.169155
\(475\) 0 0
\(476\) −9.42867 −0.432162
\(477\) 2.87415 0.131598
\(478\) −0.504032 −0.0230539
\(479\) 6.77505 0.309560 0.154780 0.987949i \(-0.450533\pi\)
0.154780 + 0.987949i \(0.450533\pi\)
\(480\) 8.65813 0.395188
\(481\) −6.65712 −0.303539
\(482\) 2.68300 0.122207
\(483\) −16.2311 −0.738541
\(484\) −1.98072 −0.0900326
\(485\) 55.3003 2.51106
\(486\) −1.06725 −0.0484114
\(487\) 15.8303 0.717340 0.358670 0.933464i \(-0.383230\pi\)
0.358670 + 0.933464i \(0.383230\pi\)
\(488\) 0.794694 0.0359741
\(489\) 21.4696 0.970889
\(490\) 2.36435 0.106810
\(491\) −2.66404 −0.120226 −0.0601132 0.998192i \(-0.519146\pi\)
−0.0601132 + 0.998192i \(0.519146\pi\)
\(492\) 29.2130 1.31702
\(493\) −20.7695 −0.935413
\(494\) 0 0
\(495\) −2.67125 −0.120064
\(496\) 3.36646 0.151159
\(497\) 5.01770 0.225075
\(498\) −3.68153 −0.164973
\(499\) 10.9165 0.488690 0.244345 0.969688i \(-0.421427\pi\)
0.244345 + 0.969688i \(0.421427\pi\)
\(500\) 16.4780 0.736919
\(501\) −22.8359 −1.02023
\(502\) 2.51752 0.112362
\(503\) 30.6519 1.36670 0.683350 0.730091i \(-0.260522\pi\)
0.683350 + 0.730091i \(0.260522\pi\)
\(504\) −0.616839 −0.0274762
\(505\) 27.5606 1.22643
\(506\) 1.02504 0.0455684
\(507\) 10.8902 0.483649
\(508\) −7.29408 −0.323622
\(509\) −6.69649 −0.296817 −0.148408 0.988926i \(-0.547415\pi\)
−0.148408 + 0.988926i \(0.547415\pi\)
\(510\) −2.36836 −0.104873
\(511\) −4.12924 −0.182667
\(512\) 10.6847 0.472204
\(513\) 0 0
\(514\) 0.216536 0.00955099
\(515\) 25.5901 1.12763
\(516\) 21.6573 0.953410
\(517\) −3.35902 −0.147730
\(518\) 0.567586 0.0249383
\(519\) 32.4426 1.42407
\(520\) 4.65063 0.203943
\(521\) −23.4833 −1.02882 −0.514412 0.857543i \(-0.671990\pi\)
−0.514412 + 0.857543i \(0.671990\pi\)
\(522\) −0.676098 −0.0295920
\(523\) 35.0640 1.53324 0.766622 0.642099i \(-0.221936\pi\)
0.766622 + 0.642099i \(0.221936\pi\)
\(524\) −0.107188 −0.00468254
\(525\) 16.1959 0.706847
\(526\) 2.39841 0.104576
\(527\) −2.80814 −0.122325
\(528\) 5.81453 0.253045
\(529\) 31.4906 1.36916
\(530\) 1.84754 0.0802521
\(531\) −6.38249 −0.276977
\(532\) 0 0
\(533\) 23.5752 1.02115
\(534\) −2.67546 −0.115778
\(535\) −21.9340 −0.948288
\(536\) −3.58529 −0.154861
\(537\) −6.27788 −0.270911
\(538\) −1.93445 −0.0834002
\(539\) 4.84198 0.208559
\(540\) 39.1957 1.68671
\(541\) 31.0702 1.33581 0.667906 0.744245i \(-0.267191\pi\)
0.667906 + 0.744245i \(0.267191\pi\)
\(542\) 0.854415 0.0367003
\(543\) 37.3116 1.60119
\(544\) −5.33033 −0.228536
\(545\) −9.55931 −0.409476
\(546\) 0.730511 0.0312630
\(547\) −19.1794 −0.820051 −0.410025 0.912074i \(-0.634480\pi\)
−0.410025 + 0.912074i \(0.634480\pi\)
\(548\) −33.6181 −1.43610
\(549\) 1.09210 0.0466099
\(550\) −1.02281 −0.0436129
\(551\) 0 0
\(552\) −6.10745 −0.259950
\(553\) 26.0293 1.10688
\(554\) −2.55707 −0.108639
\(555\) −14.6452 −0.621654
\(556\) 35.7247 1.51506
\(557\) −9.68999 −0.410578 −0.205289 0.978701i \(-0.565813\pi\)
−0.205289 + 0.978701i \(0.565813\pi\)
\(558\) −0.0914117 −0.00386977
\(559\) 17.4777 0.739227
\(560\) 20.0675 0.848007
\(561\) −4.85020 −0.204776
\(562\) 3.44832 0.145458
\(563\) −24.4092 −1.02873 −0.514363 0.857573i \(-0.671972\pi\)
−0.514363 + 0.857573i \(0.671972\pi\)
\(564\) 9.95852 0.419329
\(565\) −1.71126 −0.0719932
\(566\) 2.38508 0.100252
\(567\) 9.02574 0.379045
\(568\) 1.88807 0.0792214
\(569\) 34.3379 1.43952 0.719761 0.694222i \(-0.244251\pi\)
0.719761 + 0.694222i \(0.244251\pi\)
\(570\) 0 0
\(571\) 43.4564 1.81859 0.909296 0.416149i \(-0.136621\pi\)
0.909296 + 0.416149i \(0.136621\pi\)
\(572\) 4.73897 0.198146
\(573\) 11.5919 0.484257
\(574\) −2.01002 −0.0838966
\(575\) −54.3724 −2.26749
\(576\) 5.72835 0.238681
\(577\) 18.1629 0.756131 0.378066 0.925779i \(-0.376589\pi\)
0.378066 + 0.925779i \(0.376589\pi\)
\(578\) −0.902557 −0.0375414
\(579\) −20.8197 −0.865236
\(580\) 44.6437 1.85373
\(581\) −26.0207 −1.07952
\(582\) 3.26855 0.135486
\(583\) 3.78360 0.156701
\(584\) −1.55376 −0.0642949
\(585\) 6.39111 0.264240
\(586\) 3.21837 0.132950
\(587\) −11.5578 −0.477040 −0.238520 0.971138i \(-0.576662\pi\)
−0.238520 + 0.971138i \(0.576662\pi\)
\(588\) −14.3551 −0.591993
\(589\) 0 0
\(590\) −4.10275 −0.168908
\(591\) −30.4739 −1.25353
\(592\) −10.8089 −0.444242
\(593\) 30.8182 1.26555 0.632776 0.774335i \(-0.281916\pi\)
0.632776 + 0.774335i \(0.281916\pi\)
\(594\) −0.781418 −0.0320620
\(595\) −16.7393 −0.686246
\(596\) 10.5052 0.430311
\(597\) −4.54163 −0.185877
\(598\) −2.45245 −0.100288
\(599\) −22.9029 −0.935788 −0.467894 0.883785i \(-0.654987\pi\)
−0.467894 + 0.883785i \(0.654987\pi\)
\(600\) 6.09421 0.248795
\(601\) −5.27555 −0.215194 −0.107597 0.994195i \(-0.534316\pi\)
−0.107597 + 0.994195i \(0.534316\pi\)
\(602\) −1.49015 −0.0607338
\(603\) −4.92708 −0.200646
\(604\) 21.4201 0.871573
\(605\) −3.51650 −0.142966
\(606\) 1.62898 0.0661728
\(607\) −22.3060 −0.905372 −0.452686 0.891670i \(-0.649534\pi\)
−0.452686 + 0.891670i \(0.649534\pi\)
\(608\) 0 0
\(609\) 14.0933 0.571091
\(610\) 0.702019 0.0284239
\(611\) 8.03663 0.325127
\(612\) −4.87559 −0.197084
\(613\) 37.7943 1.52650 0.763249 0.646104i \(-0.223603\pi\)
0.763249 + 0.646104i \(0.223603\pi\)
\(614\) 3.65412 0.147468
\(615\) 51.8637 2.09135
\(616\) −0.812022 −0.0327173
\(617\) 9.69316 0.390232 0.195116 0.980780i \(-0.437492\pi\)
0.195116 + 0.980780i \(0.437492\pi\)
\(618\) 1.51251 0.0608422
\(619\) −18.4686 −0.742314 −0.371157 0.928570i \(-0.621039\pi\)
−0.371157 + 0.928570i \(0.621039\pi\)
\(620\) 6.03604 0.242413
\(621\) −41.5399 −1.66694
\(622\) 3.51178 0.140810
\(623\) −18.9098 −0.757606
\(624\) −13.9116 −0.556908
\(625\) −7.57434 −0.302973
\(626\) −3.84476 −0.153668
\(627\) 0 0
\(628\) −6.32896 −0.252553
\(629\) 9.01624 0.359501
\(630\) −0.544905 −0.0217096
\(631\) 12.8342 0.510921 0.255460 0.966820i \(-0.417773\pi\)
0.255460 + 0.966820i \(0.417773\pi\)
\(632\) 9.79434 0.389598
\(633\) −7.51025 −0.298505
\(634\) 1.40577 0.0558302
\(635\) −12.9497 −0.513892
\(636\) −11.2173 −0.444794
\(637\) −11.5847 −0.459002
\(638\) −0.890031 −0.0352367
\(639\) 2.59467 0.102643
\(640\) 15.2512 0.602858
\(641\) 41.2232 1.62822 0.814110 0.580711i \(-0.197225\pi\)
0.814110 + 0.580711i \(0.197225\pi\)
\(642\) −1.29642 −0.0511655
\(643\) −15.6032 −0.615332 −0.307666 0.951494i \(-0.599548\pi\)
−0.307666 + 0.951494i \(0.599548\pi\)
\(644\) −21.4789 −0.846385
\(645\) 38.4497 1.51395
\(646\) 0 0
\(647\) −12.7748 −0.502228 −0.251114 0.967958i \(-0.580797\pi\)
−0.251114 + 0.967958i \(0.580797\pi\)
\(648\) 3.39621 0.133416
\(649\) −8.40207 −0.329810
\(650\) 2.44713 0.0959844
\(651\) 1.90549 0.0746820
\(652\) 28.4110 1.11266
\(653\) −5.05990 −0.198009 −0.0990045 0.995087i \(-0.531566\pi\)
−0.0990045 + 0.995087i \(0.531566\pi\)
\(654\) −0.565007 −0.0220935
\(655\) −0.190298 −0.00743557
\(656\) 38.2780 1.49450
\(657\) −2.13524 −0.0833037
\(658\) −0.685203 −0.0267120
\(659\) −29.3796 −1.14447 −0.572233 0.820091i \(-0.693923\pi\)
−0.572233 + 0.820091i \(0.693923\pi\)
\(660\) 10.4254 0.405808
\(661\) −32.5399 −1.26565 −0.632827 0.774293i \(-0.718106\pi\)
−0.632827 + 0.774293i \(0.718106\pi\)
\(662\) 1.17417 0.0456352
\(663\) 11.6043 0.450675
\(664\) −9.79108 −0.379968
\(665\) 0 0
\(666\) 0.293500 0.0113729
\(667\) −47.3138 −1.83200
\(668\) −30.2191 −1.16921
\(669\) 17.7543 0.686422
\(670\) −3.16719 −0.122359
\(671\) 1.43767 0.0555007
\(672\) 3.61694 0.139527
\(673\) −37.8116 −1.45753 −0.728765 0.684764i \(-0.759905\pi\)
−0.728765 + 0.684764i \(0.759905\pi\)
\(674\) 0.00241313 9.29504e−5 0
\(675\) 41.4498 1.59541
\(676\) 14.4111 0.554273
\(677\) −1.66524 −0.0640004 −0.0320002 0.999488i \(-0.510188\pi\)
−0.0320002 + 0.999488i \(0.510188\pi\)
\(678\) −0.101145 −0.00388444
\(679\) 23.1017 0.886563
\(680\) −6.29869 −0.241544
\(681\) 2.10805 0.0807805
\(682\) −0.120336 −0.00460792
\(683\) −22.3652 −0.855779 −0.427890 0.903831i \(-0.640743\pi\)
−0.427890 + 0.903831i \(0.640743\pi\)
\(684\) 0 0
\(685\) −59.6845 −2.28043
\(686\) 2.41563 0.0922292
\(687\) −17.0098 −0.648966
\(688\) 28.3777 1.08189
\(689\) −9.05246 −0.344871
\(690\) −5.39522 −0.205392
\(691\) 22.7083 0.863865 0.431932 0.901906i \(-0.357832\pi\)
0.431932 + 0.901906i \(0.357832\pi\)
\(692\) 42.9318 1.63202
\(693\) −1.11592 −0.0423902
\(694\) 1.19956 0.0455348
\(695\) 63.4244 2.40582
\(696\) 5.30305 0.201012
\(697\) −31.9296 −1.20942
\(698\) −0.474356 −0.0179547
\(699\) 19.1590 0.724660
\(700\) 21.4323 0.810064
\(701\) −27.0490 −1.02163 −0.510814 0.859691i \(-0.670656\pi\)
−0.510814 + 0.859691i \(0.670656\pi\)
\(702\) 1.86958 0.0705629
\(703\) 0 0
\(704\) 7.54094 0.284210
\(705\) 17.6800 0.665868
\(706\) −1.52478 −0.0573860
\(707\) 11.5135 0.433008
\(708\) 24.9097 0.936163
\(709\) −31.2772 −1.17464 −0.587320 0.809355i \(-0.699817\pi\)
−0.587320 + 0.809355i \(0.699817\pi\)
\(710\) 1.66788 0.0625946
\(711\) 13.4598 0.504783
\(712\) −7.11541 −0.266661
\(713\) −6.39705 −0.239571
\(714\) −0.989386 −0.0370268
\(715\) 8.41340 0.314643
\(716\) −8.30762 −0.310470
\(717\) 5.43299 0.202899
\(718\) 1.05013 0.0391906
\(719\) −10.4902 −0.391219 −0.195609 0.980682i \(-0.562668\pi\)
−0.195609 + 0.980682i \(0.562668\pi\)
\(720\) 10.3770 0.386726
\(721\) 10.6903 0.398127
\(722\) 0 0
\(723\) −28.9203 −1.07556
\(724\) 49.3750 1.83501
\(725\) 47.2111 1.75338
\(726\) −0.207844 −0.00771382
\(727\) −43.4181 −1.61029 −0.805145 0.593078i \(-0.797913\pi\)
−0.805145 + 0.593078i \(0.797913\pi\)
\(728\) 1.94280 0.0720051
\(729\) 29.9361 1.10874
\(730\) −1.37256 −0.0508008
\(731\) −23.6713 −0.875515
\(732\) −4.26228 −0.157538
\(733\) 37.7254 1.39342 0.696710 0.717353i \(-0.254646\pi\)
0.696710 + 0.717353i \(0.254646\pi\)
\(734\) 0.413057 0.0152462
\(735\) −25.4855 −0.940046
\(736\) −12.1427 −0.447586
\(737\) −6.48612 −0.238919
\(738\) −1.03939 −0.0382603
\(739\) 10.5904 0.389575 0.194788 0.980845i \(-0.437598\pi\)
0.194788 + 0.980845i \(0.437598\pi\)
\(740\) −19.3802 −0.712431
\(741\) 0 0
\(742\) 0.771812 0.0283341
\(743\) −2.32562 −0.0853187 −0.0426593 0.999090i \(-0.513583\pi\)
−0.0426593 + 0.999090i \(0.513583\pi\)
\(744\) 0.716998 0.0262864
\(745\) 18.6506 0.683307
\(746\) 4.16376 0.152446
\(747\) −13.4554 −0.492306
\(748\) −6.41834 −0.234678
\(749\) −9.16294 −0.334806
\(750\) 1.72910 0.0631378
\(751\) −7.37463 −0.269104 −0.134552 0.990907i \(-0.542960\pi\)
−0.134552 + 0.990907i \(0.542960\pi\)
\(752\) 13.0487 0.475838
\(753\) −27.1365 −0.988907
\(754\) 2.12944 0.0775498
\(755\) 38.0286 1.38400
\(756\) 16.3740 0.595518
\(757\) −36.2300 −1.31680 −0.658401 0.752667i \(-0.728767\pi\)
−0.658401 + 0.752667i \(0.728767\pi\)
\(758\) −4.24926 −0.154340
\(759\) −11.0489 −0.401051
\(760\) 0 0
\(761\) 8.48528 0.307591 0.153796 0.988103i \(-0.450850\pi\)
0.153796 + 0.988103i \(0.450850\pi\)
\(762\) −0.765395 −0.0277273
\(763\) −3.99341 −0.144571
\(764\) 15.3397 0.554970
\(765\) −8.65595 −0.312957
\(766\) −0.235171 −0.00849708
\(767\) 20.1024 0.725854
\(768\) −21.6729 −0.782053
\(769\) −8.18651 −0.295213 −0.147607 0.989046i \(-0.547157\pi\)
−0.147607 + 0.989046i \(0.547157\pi\)
\(770\) −0.717326 −0.0258506
\(771\) −2.33405 −0.0840589
\(772\) −27.5510 −0.991582
\(773\) −35.4306 −1.27435 −0.637175 0.770720i \(-0.719897\pi\)
−0.637175 + 0.770720i \(0.719897\pi\)
\(774\) −0.770558 −0.0276971
\(775\) 6.38317 0.229290
\(776\) 8.69274 0.312051
\(777\) −6.11804 −0.219484
\(778\) −3.20236 −0.114810
\(779\) 0 0
\(780\) −24.9433 −0.893113
\(781\) 3.41568 0.122223
\(782\) 3.32154 0.118778
\(783\) 36.0688 1.28899
\(784\) −18.8095 −0.671769
\(785\) −11.2362 −0.401038
\(786\) −0.0112477 −0.000401191 0
\(787\) −2.32432 −0.0828529 −0.0414264 0.999142i \(-0.513190\pi\)
−0.0414264 + 0.999142i \(0.513190\pi\)
\(788\) −40.3265 −1.43657
\(789\) −25.8526 −0.920378
\(790\) 8.65216 0.307830
\(791\) −0.714879 −0.0254182
\(792\) −0.419898 −0.0149204
\(793\) −3.43970 −0.122147
\(794\) −2.64329 −0.0938069
\(795\) −19.9148 −0.706304
\(796\) −6.01000 −0.213019
\(797\) 7.98937 0.282998 0.141499 0.989938i \(-0.454808\pi\)
0.141499 + 0.989938i \(0.454808\pi\)
\(798\) 0 0
\(799\) −10.8846 −0.385070
\(800\) 12.1164 0.428378
\(801\) −9.77832 −0.345500
\(802\) 3.87442 0.136810
\(803\) −2.81088 −0.0991939
\(804\) 19.2295 0.678171
\(805\) −38.1328 −1.34401
\(806\) 0.287911 0.0101412
\(807\) 20.8516 0.734011
\(808\) 4.33229 0.152410
\(809\) −3.66337 −0.128797 −0.0643987 0.997924i \(-0.520513\pi\)
−0.0643987 + 0.997924i \(0.520513\pi\)
\(810\) 3.00016 0.105415
\(811\) −38.8311 −1.36355 −0.681773 0.731564i \(-0.738791\pi\)
−0.681773 + 0.731564i \(0.738791\pi\)
\(812\) 18.6499 0.654484
\(813\) −9.20980 −0.323002
\(814\) 0.386370 0.0135423
\(815\) 50.4400 1.76684
\(816\) 18.8415 0.659583
\(817\) 0 0
\(818\) −1.01651 −0.0355415
\(819\) 2.66989 0.0932935
\(820\) 68.6320 2.39673
\(821\) −21.9475 −0.765975 −0.382987 0.923754i \(-0.625105\pi\)
−0.382987 + 0.923754i \(0.625105\pi\)
\(822\) −3.52768 −0.123042
\(823\) 8.08878 0.281957 0.140979 0.990013i \(-0.454975\pi\)
0.140979 + 0.990013i \(0.454975\pi\)
\(824\) 4.02255 0.140132
\(825\) 11.0250 0.383840
\(826\) −1.71393 −0.0596351
\(827\) 28.5117 0.991449 0.495724 0.868480i \(-0.334903\pi\)
0.495724 + 0.868480i \(0.334903\pi\)
\(828\) −11.1068 −0.385987
\(829\) −52.4728 −1.82246 −0.911228 0.411901i \(-0.864865\pi\)
−0.911228 + 0.411901i \(0.864865\pi\)
\(830\) −8.64927 −0.300221
\(831\) 27.5628 0.956143
\(832\) −18.0421 −0.625496
\(833\) 15.6900 0.543626
\(834\) 3.74873 0.129808
\(835\) −53.6500 −1.85664
\(836\) 0 0
\(837\) 4.87668 0.168563
\(838\) −5.20767 −0.179896
\(839\) 10.9975 0.379677 0.189839 0.981815i \(-0.439203\pi\)
0.189839 + 0.981815i \(0.439203\pi\)
\(840\) 4.27403 0.147468
\(841\) 12.0822 0.416627
\(842\) 5.11741 0.176358
\(843\) −37.1696 −1.28019
\(844\) −9.93842 −0.342094
\(845\) 25.5850 0.880151
\(846\) −0.354320 −0.0121818
\(847\) −1.46902 −0.0504761
\(848\) −14.6981 −0.504734
\(849\) −25.7089 −0.882327
\(850\) −3.31433 −0.113681
\(851\) 20.5393 0.704079
\(852\) −10.1265 −0.346928
\(853\) −34.0760 −1.16674 −0.583369 0.812207i \(-0.698266\pi\)
−0.583369 + 0.812207i \(0.698266\pi\)
\(854\) 0.293269 0.0100355
\(855\) 0 0
\(856\) −3.44784 −0.117845
\(857\) 19.4670 0.664981 0.332490 0.943107i \(-0.392111\pi\)
0.332490 + 0.943107i \(0.392111\pi\)
\(858\) 0.497278 0.0169768
\(859\) −41.7466 −1.42437 −0.712187 0.701990i \(-0.752295\pi\)
−0.712187 + 0.701990i \(0.752295\pi\)
\(860\) 50.8810 1.73503
\(861\) 21.6661 0.738379
\(862\) −3.58117 −0.121975
\(863\) 20.0106 0.681169 0.340584 0.940214i \(-0.389375\pi\)
0.340584 + 0.940214i \(0.389375\pi\)
\(864\) 9.25677 0.314922
\(865\) 76.2196 2.59154
\(866\) −4.30506 −0.146292
\(867\) 9.72871 0.330404
\(868\) 2.52156 0.0855873
\(869\) 17.7188 0.601071
\(870\) 4.68463 0.158824
\(871\) 15.5184 0.525820
\(872\) −1.50264 −0.0508859
\(873\) 11.9460 0.404310
\(874\) 0 0
\(875\) 12.2211 0.413148
\(876\) 8.33345 0.281561
\(877\) 14.6756 0.495560 0.247780 0.968816i \(-0.420299\pi\)
0.247780 + 0.968816i \(0.420299\pi\)
\(878\) 2.57973 0.0870618
\(879\) −34.6910 −1.17010
\(880\) 13.6605 0.460494
\(881\) 17.9508 0.604777 0.302388 0.953185i \(-0.402216\pi\)
0.302388 + 0.953185i \(0.402216\pi\)
\(882\) 0.510747 0.0171977
\(883\) 23.0794 0.776684 0.388342 0.921515i \(-0.373048\pi\)
0.388342 + 0.921515i \(0.373048\pi\)
\(884\) 15.3562 0.516485
\(885\) 44.2238 1.48657
\(886\) −3.69547 −0.124152
\(887\) 2.24450 0.0753629 0.0376814 0.999290i \(-0.488003\pi\)
0.0376814 + 0.999290i \(0.488003\pi\)
\(888\) −2.30210 −0.0772535
\(889\) −5.40973 −0.181437
\(890\) −6.28563 −0.210695
\(891\) 6.14405 0.205834
\(892\) 23.4945 0.786656
\(893\) 0 0
\(894\) 1.10235 0.0368683
\(895\) −14.7491 −0.493007
\(896\) 6.37121 0.212847
\(897\) 26.4351 0.882643
\(898\) 1.08765 0.0362953
\(899\) 5.55451 0.185253
\(900\) 11.0827 0.369423
\(901\) 12.2604 0.408454
\(902\) −1.36827 −0.0455585
\(903\) 16.0624 0.534522
\(904\) −0.268995 −0.00894665
\(905\) 87.6587 2.91387
\(906\) 2.24770 0.0746747
\(907\) −28.1759 −0.935565 −0.467783 0.883844i \(-0.654947\pi\)
−0.467783 + 0.883844i \(0.654947\pi\)
\(908\) 2.78961 0.0925764
\(909\) 5.95364 0.197470
\(910\) 1.71624 0.0568928
\(911\) −32.9161 −1.09056 −0.545280 0.838254i \(-0.683577\pi\)
−0.545280 + 0.838254i \(0.683577\pi\)
\(912\) 0 0
\(913\) −17.7129 −0.586213
\(914\) 0.281161 0.00929998
\(915\) −7.56711 −0.250161
\(916\) −22.5094 −0.743730
\(917\) −0.0794973 −0.00262523
\(918\) −2.53212 −0.0835723
\(919\) 54.3280 1.79211 0.896057 0.443938i \(-0.146419\pi\)
0.896057 + 0.443938i \(0.146419\pi\)
\(920\) −14.3486 −0.473061
\(921\) −39.3880 −1.29788
\(922\) −5.29638 −0.174427
\(923\) −8.17219 −0.268991
\(924\) 4.35522 0.143276
\(925\) −20.4948 −0.673864
\(926\) −3.84583 −0.126382
\(927\) 5.52797 0.181562
\(928\) 10.5434 0.346104
\(929\) −17.8175 −0.584574 −0.292287 0.956331i \(-0.594416\pi\)
−0.292287 + 0.956331i \(0.594416\pi\)
\(930\) 0.633384 0.0207695
\(931\) 0 0
\(932\) 25.3534 0.830478
\(933\) −37.8537 −1.23928
\(934\) −0.543031 −0.0177685
\(935\) −11.3949 −0.372653
\(936\) 1.00463 0.0328373
\(937\) −52.7066 −1.72185 −0.860925 0.508732i \(-0.830115\pi\)
−0.860925 + 0.508732i \(0.830115\pi\)
\(938\) −1.32310 −0.0432006
\(939\) 41.4430 1.35244
\(940\) 23.3962 0.763101
\(941\) −51.4855 −1.67838 −0.839189 0.543839i \(-0.816970\pi\)
−0.839189 + 0.543839i \(0.816970\pi\)
\(942\) −0.664121 −0.0216382
\(943\) −72.7369 −2.36864
\(944\) 32.6393 1.06232
\(945\) 29.0699 0.945643
\(946\) −1.01438 −0.0329804
\(947\) −26.4120 −0.858274 −0.429137 0.903239i \(-0.641182\pi\)
−0.429137 + 0.903239i \(0.641182\pi\)
\(948\) −52.5312 −1.70614
\(949\) 6.72518 0.218309
\(950\) 0 0
\(951\) −15.1529 −0.491366
\(952\) −2.63128 −0.0852804
\(953\) −25.4872 −0.825613 −0.412806 0.910819i \(-0.635451\pi\)
−0.412806 + 0.910819i \(0.635451\pi\)
\(954\) 0.399106 0.0129215
\(955\) 27.2335 0.881256
\(956\) 7.18955 0.232527
\(957\) 9.59370 0.310120
\(958\) 0.940787 0.0303954
\(959\) −24.9332 −0.805136
\(960\) −39.6913 −1.28103
\(961\) −30.2490 −0.975774
\(962\) −0.924411 −0.0298042
\(963\) −4.73818 −0.152686
\(964\) −38.2706 −1.23261
\(965\) −48.9131 −1.57457
\(966\) −2.25386 −0.0725167
\(967\) 18.1540 0.583793 0.291897 0.956450i \(-0.405714\pi\)
0.291897 + 0.956450i \(0.405714\pi\)
\(968\) −0.552764 −0.0177665
\(969\) 0 0
\(970\) 7.67902 0.246558
\(971\) −10.1058 −0.324311 −0.162156 0.986765i \(-0.551845\pi\)
−0.162156 + 0.986765i \(0.551845\pi\)
\(972\) 15.2233 0.488289
\(973\) 26.4956 0.849410
\(974\) 2.19820 0.0704350
\(975\) −26.3778 −0.844765
\(976\) −5.58490 −0.178768
\(977\) 36.3162 1.16186 0.580929 0.813954i \(-0.302689\pi\)
0.580929 + 0.813954i \(0.302689\pi\)
\(978\) 2.98128 0.0953308
\(979\) −12.8724 −0.411404
\(980\) −33.7253 −1.07732
\(981\) −2.06500 −0.0659304
\(982\) −0.369930 −0.0118049
\(983\) 7.72465 0.246378 0.123189 0.992383i \(-0.460688\pi\)
0.123189 + 0.992383i \(0.460688\pi\)
\(984\) 8.15254 0.259894
\(985\) −71.5943 −2.28118
\(986\) −2.88407 −0.0918474
\(987\) 7.38584 0.235094
\(988\) 0 0
\(989\) −53.9241 −1.71469
\(990\) −0.370931 −0.0117890
\(991\) 19.1661 0.608830 0.304415 0.952539i \(-0.401539\pi\)
0.304415 + 0.952539i \(0.401539\pi\)
\(992\) 1.42552 0.0452603
\(993\) −12.6564 −0.401639
\(994\) 0.696760 0.0220999
\(995\) −10.6700 −0.338260
\(996\) 52.5137 1.66396
\(997\) 27.2322 0.862454 0.431227 0.902244i \(-0.358081\pi\)
0.431227 + 0.902244i \(0.358081\pi\)
\(998\) 1.51587 0.0479840
\(999\) −15.6578 −0.495390
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3971.2.a.k.1.5 9
19.7 even 3 209.2.e.b.144.5 yes 18
19.11 even 3 209.2.e.b.45.5 18
19.18 odd 2 3971.2.a.l.1.5 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
209.2.e.b.45.5 18 19.11 even 3
209.2.e.b.144.5 yes 18 19.7 even 3
3971.2.a.k.1.5 9 1.1 even 1 trivial
3971.2.a.l.1.5 9 19.18 odd 2