Properties

Label 399.1.n.a.254.1
Level $399$
Weight $1$
Character 399.254
Analytic conductor $0.199$
Analytic rank $0$
Dimension $4$
Projective image $A_{4}$
CM/RM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [399,1,Mod(11,399)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(399, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 4, 4]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("399.11");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 399 = 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 399.n (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.199126940041\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(A_{4}\)
Projective field: Galois closure of 4.0.159201.1

Embedding invariants

Embedding label 254.1
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 399.254
Dual form 399.1.n.a.11.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +(0.866025 + 0.500000i) q^{3} -1.00000i q^{5} +(0.500000 - 0.866025i) q^{6} -1.00000 q^{7} -1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q-1.00000i q^{2} +(0.866025 + 0.500000i) q^{3} -1.00000i q^{5} +(0.500000 - 0.866025i) q^{6} -1.00000 q^{7} -1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} -1.00000 q^{10} +(-0.866025 + 0.500000i) q^{11} +(-0.500000 + 0.866025i) q^{13} +1.00000i q^{14} +(0.500000 - 0.866025i) q^{15} -1.00000 q^{16} +(0.866025 - 0.500000i) q^{18} +(0.500000 + 0.866025i) q^{19} +(-0.866025 - 0.500000i) q^{21} +(0.500000 + 0.866025i) q^{22} +(0.500000 - 0.866025i) q^{24} +(0.866025 + 0.500000i) q^{26} +1.00000i q^{27} +(0.866025 + 0.500000i) q^{29} +(-0.866025 - 0.500000i) q^{30} +(-0.500000 - 0.866025i) q^{31} -1.00000 q^{33} +1.00000i q^{35} +(0.500000 - 0.866025i) q^{37} +(0.866025 - 0.500000i) q^{38} +(-0.866025 + 0.500000i) q^{39} -1.00000 q^{40} +(-0.866025 + 0.500000i) q^{41} +(-0.500000 + 0.866025i) q^{42} +(-0.500000 - 0.866025i) q^{43} +(0.866025 - 0.500000i) q^{45} +(-1.73205 + 1.00000i) q^{47} +(-0.866025 - 0.500000i) q^{48} +1.00000 q^{49} -1.00000i q^{53} +1.00000 q^{54} +(0.500000 + 0.866025i) q^{55} +1.00000i q^{56} +1.00000i q^{57} +(0.500000 - 0.866025i) q^{58} +(-0.866025 + 0.500000i) q^{62} +(-0.500000 - 0.866025i) q^{63} -1.00000 q^{64} +(0.866025 + 0.500000i) q^{65} +1.00000i q^{66} +1.00000 q^{67} +1.00000 q^{70} +(0.866025 - 0.500000i) q^{71} +(0.866025 - 0.500000i) q^{72} +(-0.866025 - 0.500000i) q^{74} +(0.866025 - 0.500000i) q^{77} +(0.500000 + 0.866025i) q^{78} -1.00000 q^{79} +1.00000i q^{80} +(-0.500000 + 0.866025i) q^{81} +(0.500000 + 0.866025i) q^{82} +(-0.866025 + 0.500000i) q^{86} +(0.500000 + 0.866025i) q^{87} +(0.500000 + 0.866025i) q^{88} +(-0.500000 - 0.866025i) q^{90} +(0.500000 - 0.866025i) q^{91} -1.00000i q^{93} +(1.00000 + 1.73205i) q^{94} +(0.866025 - 0.500000i) q^{95} +(-0.500000 - 0.866025i) q^{97} -1.00000i q^{98} +(-0.866025 - 0.500000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{6} - 4 q^{7} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{6} - 4 q^{7} + 2 q^{9} - 4 q^{10} - 2 q^{13} + 2 q^{15} - 4 q^{16} + 2 q^{19} + 2 q^{22} + 2 q^{24} - 2 q^{31} - 4 q^{33} + 2 q^{37} - 4 q^{40} - 2 q^{42} - 2 q^{43} + 4 q^{49} + 4 q^{54} + 2 q^{55} + 2 q^{58} - 2 q^{63} - 4 q^{64} + 4 q^{67} + 4 q^{70} + 2 q^{78} - 4 q^{79} - 2 q^{81} + 2 q^{82} + 2 q^{87} + 2 q^{88} - 2 q^{90} + 2 q^{91} + 4 q^{94} - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/399\mathbb{Z}\right)^\times\).

\(n\) \(115\) \(134\) \(211\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(3\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(4\) 0 0
\(5\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(6\) 0.500000 0.866025i 0.500000 0.866025i
\(7\) −1.00000 −1.00000
\(8\) 1.00000i 1.00000i
\(9\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(10\) −1.00000 −1.00000
\(11\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(14\) 1.00000i 1.00000i
\(15\) 0.500000 0.866025i 0.500000 0.866025i
\(16\) −1.00000 −1.00000
\(17\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(18\) 0.866025 0.500000i 0.866025 0.500000i
\(19\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(20\) 0 0
\(21\) −0.866025 0.500000i −0.866025 0.500000i
\(22\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(23\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(24\) 0.500000 0.866025i 0.500000 0.866025i
\(25\) 0 0
\(26\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(27\) 1.00000i 1.00000i
\(28\) 0 0
\(29\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(30\) −0.866025 0.500000i −0.866025 0.500000i
\(31\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) −1.00000 −1.00000
\(34\) 0 0
\(35\) 1.00000i 1.00000i
\(36\) 0 0
\(37\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(38\) 0.866025 0.500000i 0.866025 0.500000i
\(39\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(40\) −1.00000 −1.00000
\(41\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(42\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(43\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0.866025 0.500000i 0.866025 0.500000i
\(46\) 0 0
\(47\) −1.73205 + 1.00000i −1.73205 + 1.00000i −0.866025 + 0.500000i \(0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(48\) −0.866025 0.500000i −0.866025 0.500000i
\(49\) 1.00000 1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(54\) 1.00000 1.00000
\(55\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(56\) 1.00000i 1.00000i
\(57\) 1.00000i 1.00000i
\(58\) 0.500000 0.866025i 0.500000 0.866025i
\(59\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(60\) 0 0
\(61\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(62\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(63\) −0.500000 0.866025i −0.500000 0.866025i
\(64\) −1.00000 −1.00000
\(65\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(66\) 1.00000i 1.00000i
\(67\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 1.00000 1.00000
\(71\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(72\) 0.866025 0.500000i 0.866025 0.500000i
\(73\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(74\) −0.866025 0.500000i −0.866025 0.500000i
\(75\) 0 0
\(76\) 0 0
\(77\) 0.866025 0.500000i 0.866025 0.500000i
\(78\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(79\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(80\) 1.00000i 1.00000i
\(81\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(82\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(87\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(88\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(89\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(90\) −0.500000 0.866025i −0.500000 0.866025i
\(91\) 0.500000 0.866025i 0.500000 0.866025i
\(92\) 0 0
\(93\) 1.00000i 1.00000i
\(94\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(95\) 0.866025 0.500000i 0.866025 0.500000i
\(96\) 0 0
\(97\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(98\) 1.00000i 1.00000i
\(99\) −0.866025 0.500000i −0.866025 0.500000i
\(100\) 0 0
\(101\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(102\) 0 0
\(103\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(104\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(105\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(106\) −1.00000 −1.00000
\(107\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(108\) 0 0
\(109\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(110\) 0.866025 0.500000i 0.866025 0.500000i
\(111\) 0.866025 0.500000i 0.866025 0.500000i
\(112\) 1.00000 1.00000
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 1.00000 1.00000
\(115\) 0 0
\(116\) 0 0
\(117\) −1.00000 −1.00000
\(118\) 0 0
\(119\) 0 0
\(120\) −0.866025 0.500000i −0.866025 0.500000i
\(121\) 0 0
\(122\) 0 0
\(123\) −1.00000 −1.00000
\(124\) 0 0
\(125\) 1.00000i 1.00000i
\(126\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(127\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(128\) 1.00000i 1.00000i
\(129\) 1.00000i 1.00000i
\(130\) 0.500000 0.866025i 0.500000 0.866025i
\(131\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(132\) 0 0
\(133\) −0.500000 0.866025i −0.500000 0.866025i
\(134\) 1.00000i 1.00000i
\(135\) 1.00000 1.00000
\(136\) 0 0
\(137\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(138\) 0 0
\(139\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) −2.00000 −2.00000
\(142\) −0.500000 0.866025i −0.500000 0.866025i
\(143\) 1.00000i 1.00000i
\(144\) −0.500000 0.866025i −0.500000 0.866025i
\(145\) 0.500000 0.866025i 0.500000 0.866025i
\(146\) 0 0
\(147\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(148\) 0 0
\(149\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(150\) 0 0
\(151\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(152\) 0.866025 0.500000i 0.866025 0.500000i
\(153\) 0 0
\(154\) −0.500000 0.866025i −0.500000 0.866025i
\(155\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(156\) 0 0
\(157\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(158\) 1.00000i 1.00000i
\(159\) 0.500000 0.866025i 0.500000 0.866025i
\(160\) 0 0
\(161\) 0 0
\(162\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(163\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 1.00000i 1.00000i
\(166\) 0 0
\(167\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(168\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(169\) 0 0
\(170\) 0 0
\(171\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(172\) 0 0
\(173\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(174\) 0.866025 0.500000i 0.866025 0.500000i
\(175\) 0 0
\(176\) 0.866025 0.500000i 0.866025 0.500000i
\(177\) 0 0
\(178\) 0 0
\(179\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(180\) 0 0
\(181\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(182\) −0.866025 0.500000i −0.866025 0.500000i
\(183\) 0 0
\(184\) 0 0
\(185\) −0.866025 0.500000i −0.866025 0.500000i
\(186\) −1.00000 −1.00000
\(187\) 0 0
\(188\) 0 0
\(189\) 1.00000i 1.00000i
\(190\) −0.500000 0.866025i −0.500000 0.866025i
\(191\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(192\) −0.866025 0.500000i −0.866025 0.500000i
\(193\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(194\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(195\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(199\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(200\) 0 0
\(201\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(202\) 1.00000 1.00000
\(203\) −0.866025 0.500000i −0.866025 0.500000i
\(204\) 0 0
\(205\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(206\) −0.866025 0.500000i −0.866025 0.500000i
\(207\) 0 0
\(208\) 0.500000 0.866025i 0.500000 0.866025i
\(209\) −0.866025 0.500000i −0.866025 0.500000i
\(210\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(211\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(212\) 0 0
\(213\) 1.00000 1.00000
\(214\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(215\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(216\) 1.00000 1.00000
\(217\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) −0.500000 0.866025i −0.500000 0.866025i
\(223\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(228\) 0 0
\(229\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 1.00000 1.00000
\(232\) 0.500000 0.866025i 0.500000 0.866025i
\(233\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(234\) 1.00000i 1.00000i
\(235\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(236\) 0 0
\(237\) −0.866025 0.500000i −0.866025 0.500000i
\(238\) 0 0
\(239\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(241\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(242\) 0 0
\(243\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(244\) 0 0
\(245\) 1.00000i 1.00000i
\(246\) 1.00000i 1.00000i
\(247\) −1.00000 −1.00000
\(248\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(249\) 0 0
\(250\) −1.00000 −1.00000
\(251\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(258\) −1.00000 −1.00000
\(259\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(260\) 0 0
\(261\) 1.00000i 1.00000i
\(262\) −1.00000 −1.00000
\(263\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(264\) 1.00000i 1.00000i
\(265\) −1.00000 −1.00000
\(266\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(270\) 1.00000i 1.00000i
\(271\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(272\) 0 0
\(273\) 0.866025 0.500000i 0.866025 0.500000i
\(274\) 1.00000 1.00000
\(275\) 0 0
\(276\) 0 0
\(277\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(278\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(279\) 0.500000 0.866025i 0.500000 0.866025i
\(280\) 1.00000 1.00000
\(281\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(282\) 2.00000i 2.00000i
\(283\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(284\) 0 0
\(285\) 1.00000 1.00000
\(286\) −1.00000 −1.00000
\(287\) 0.866025 0.500000i 0.866025 0.500000i
\(288\) 0 0
\(289\) −0.500000 0.866025i −0.500000 0.866025i
\(290\) −0.866025 0.500000i −0.866025 0.500000i
\(291\) 1.00000i 1.00000i
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0.500000 0.866025i 0.500000 0.866025i
\(295\) 0 0
\(296\) −0.866025 0.500000i −0.866025 0.500000i
\(297\) −0.500000 0.866025i −0.500000 0.866025i
\(298\) −1.00000 −1.00000
\(299\) 0 0
\(300\) 0 0
\(301\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(302\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(303\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(304\) −0.500000 0.866025i −0.500000 0.866025i
\(305\) 0 0
\(306\) 0 0
\(307\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0.866025 0.500000i 0.866025 0.500000i
\(310\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(311\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(312\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(313\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(314\) 0 0
\(315\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(316\) 0 0
\(317\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(318\) −0.866025 0.500000i −0.866025 0.500000i
\(319\) −1.00000 −1.00000
\(320\) 1.00000i 1.00000i
\(321\) −0.500000 0.866025i −0.500000 0.866025i
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(327\) 0 0
\(328\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(329\) 1.73205 1.00000i 1.73205 1.00000i
\(330\) 1.00000 1.00000
\(331\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(332\) 0 0
\(333\) 1.00000 1.00000
\(334\) 0.500000 0.866025i 0.500000 0.866025i
\(335\) 1.00000i 1.00000i
\(336\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(337\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(342\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(343\) −1.00000 −1.00000
\(344\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(345\) 0 0
\(346\) −1.00000 −1.00000
\(347\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) −0.866025 0.500000i −0.866025 0.500000i
\(352\) 0 0
\(353\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(354\) 0 0
\(355\) −0.500000 0.866025i −0.500000 0.866025i
\(356\) 0 0
\(357\) 0 0
\(358\) −0.500000 0.866025i −0.500000 0.866025i
\(359\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(360\) −0.500000 0.866025i −0.500000 0.866025i
\(361\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(362\) −0.866025 0.500000i −0.866025 0.500000i
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(368\) 0 0
\(369\) −0.866025 0.500000i −0.866025 0.500000i
\(370\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(371\) 1.00000i 1.00000i
\(372\) 0 0
\(373\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(374\) 0 0
\(375\) 0.500000 0.866025i 0.500000 0.866025i
\(376\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(377\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(378\) −1.00000 −1.00000
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(382\) 0.500000 0.866025i 0.500000 0.866025i
\(383\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(384\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(385\) −0.500000 0.866025i −0.500000 0.866025i
\(386\) −1.73205 1.00000i −1.73205 1.00000i
\(387\) 0.500000 0.866025i 0.500000 0.866025i
\(388\) 0 0
\(389\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(390\) 0.866025 0.500000i 0.866025 0.500000i
\(391\) 0 0
\(392\) 1.00000i 1.00000i
\(393\) 0.500000 0.866025i 0.500000 0.866025i
\(394\) 0 0
\(395\) 1.00000i 1.00000i
\(396\) 0 0
\(397\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(398\) 1.00000i 1.00000i
\(399\) 1.00000i 1.00000i
\(400\) 0 0
\(401\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(402\) 0.500000 0.866025i 0.500000 0.866025i
\(403\) 1.00000 1.00000
\(404\) 0 0
\(405\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(406\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(407\) 1.00000i 1.00000i
\(408\) 0 0
\(409\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(410\) 0.866025 0.500000i 0.866025 0.500000i
\(411\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(418\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(422\) 0.866025 0.500000i 0.866025 0.500000i
\(423\) −1.73205 1.00000i −1.73205 1.00000i
\(424\) −1.00000 −1.00000
\(425\) 0 0
\(426\) 1.00000i 1.00000i
\(427\) 0 0
\(428\) 0 0
\(429\) 0.500000 0.866025i 0.500000 0.866025i
\(430\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(431\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(432\) 1.00000i 1.00000i
\(433\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(434\) 0.866025 0.500000i 0.866025 0.500000i
\(435\) 0.866025 0.500000i 0.866025 0.500000i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(440\) 0.866025 0.500000i 0.866025 0.500000i
\(441\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(442\) 0 0
\(443\) 1.73205 1.00000i 1.73205 1.00000i 0.866025 0.500000i \(-0.166667\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0.866025 0.500000i 0.866025 0.500000i
\(447\) 0.500000 0.866025i 0.500000 0.866025i
\(448\) 1.00000 1.00000
\(449\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0.500000 0.866025i 0.500000 0.866025i
\(452\) 0 0
\(453\) 1.00000i 1.00000i
\(454\) −0.500000 0.866025i −0.500000 0.866025i
\(455\) −0.866025 0.500000i −0.866025 0.500000i
\(456\) 1.00000 1.00000
\(457\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(458\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(459\) 0 0
\(460\) 0 0
\(461\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(462\) 1.00000i 1.00000i
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) −0.866025 0.500000i −0.866025 0.500000i
\(465\) −1.00000 −1.00000
\(466\) 1.00000 1.00000
\(467\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(468\) 0 0
\(469\) −1.00000 −1.00000
\(470\) 1.73205 1.00000i 1.73205 1.00000i
\(471\) 0 0
\(472\) 0 0
\(473\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(474\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(475\) 0 0
\(476\) 0 0
\(477\) 0.866025 0.500000i 0.866025 0.500000i
\(478\) 2.00000 2.00000
\(479\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(480\) 0 0
\(481\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(482\) 1.00000i 1.00000i
\(483\) 0 0
\(484\) 0 0
\(485\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(486\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(487\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(488\) 0 0
\(489\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(490\) −1.00000 −1.00000
\(491\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 1.00000i 1.00000i
\(495\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(496\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(497\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(498\) 0 0
\(499\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(500\) 0 0
\(501\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(502\) 0.500000 0.866025i 0.500000 0.866025i
\(503\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(504\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(505\) 1.00000 1.00000
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 1.00000i
\(513\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(514\) 0 0
\(515\) −0.866025 0.500000i −0.866025 0.500000i
\(516\) 0 0
\(517\) 1.00000 1.73205i 1.00000 1.73205i
\(518\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(519\) 0.500000 0.866025i 0.500000 0.866025i
\(520\) 0.500000 0.866025i 0.500000 0.866025i
\(521\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(522\) 1.00000 1.00000
\(523\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 1.00000 1.00000
\(529\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(530\) 1.00000i 1.00000i
\(531\) 0 0
\(532\) 0 0
\(533\) 1.00000i 1.00000i
\(534\) 0 0
\(535\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(536\) 1.00000i 1.00000i
\(537\) 1.00000 1.00000
\(538\) 0 0
\(539\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(540\) 0 0
\(541\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(542\) 1.00000i 1.00000i
\(543\) 0.866025 0.500000i 0.866025 0.500000i
\(544\) 0 0
\(545\) 0 0
\(546\) −0.500000 0.866025i −0.500000 0.866025i
\(547\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.00000i 1.00000i
\(552\) 0 0
\(553\) 1.00000 1.00000
\(554\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(555\) −0.500000 0.866025i −0.500000 0.866025i
\(556\) 0 0
\(557\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(558\) −0.866025 0.500000i −0.866025 0.500000i
\(559\) 1.00000 1.00000
\(560\) 1.00000i 1.00000i
\(561\) 0 0
\(562\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(563\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0.500000 0.866025i 0.500000 0.866025i
\(568\) −0.500000 0.866025i −0.500000 0.866025i
\(569\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(570\) 1.00000i 1.00000i
\(571\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(574\) −0.500000 0.866025i −0.500000 0.866025i
\(575\) 0 0
\(576\) −0.500000 0.866025i −0.500000 0.866025i
\(577\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(578\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(579\) 1.73205 1.00000i 1.73205 1.00000i
\(580\) 0 0
\(581\) 0 0
\(582\) −1.00000 −1.00000
\(583\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(584\) 0 0
\(585\) 1.00000i 1.00000i
\(586\) 0 0
\(587\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(588\) 0 0
\(589\) 0.500000 0.866025i 0.500000 0.866025i
\(590\) 0 0
\(591\) 0 0
\(592\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(593\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(594\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(595\) 0 0
\(596\) 0 0
\(597\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(598\) 0 0
\(599\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0.866025 0.500000i 0.866025 0.500000i
\(603\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(604\) 0 0
\(605\) 0 0
\(606\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(607\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) −0.500000 0.866025i −0.500000 0.866025i
\(610\) 0 0
\(611\) 2.00000i 2.00000i
\(612\) 0 0
\(613\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(614\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(615\) 1.00000i 1.00000i
\(616\) −0.500000 0.866025i −0.500000 0.866025i
\(617\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(618\) −0.500000 0.866025i −0.500000 0.866025i
\(619\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(623\) 0 0
\(624\) 0.866025 0.500000i 0.866025 0.500000i
\(625\) −1.00000 −1.00000
\(626\) 0 0
\(627\) −0.500000 0.866025i −0.500000 0.866025i
\(628\) 0 0
\(629\) 0 0
\(630\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(631\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(632\) 1.00000i 1.00000i
\(633\) 1.00000i 1.00000i
\(634\) 0 0
\(635\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(636\) 0 0
\(637\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(638\) 1.00000i 1.00000i
\(639\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(640\) 1.00000 1.00000
\(641\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(642\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(643\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) −1.00000 −1.00000
\(646\) 0 0
\(647\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(648\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(649\) 0 0
\(650\) 0 0
\(651\) 1.00000i 1.00000i
\(652\) 0 0
\(653\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(654\) 0 0
\(655\) −1.00000 −1.00000
\(656\) 0.866025 0.500000i 0.866025 0.500000i
\(657\) 0 0
\(658\) −1.00000 1.73205i −1.00000 1.73205i
\(659\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(660\) 0 0
\(661\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(662\) −0.866025 0.500000i −0.866025 0.500000i
\(663\) 0 0
\(664\) 0 0
\(665\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(666\) 1.00000i 1.00000i
\(667\) 0 0
\(668\) 0 0
\(669\) 1.00000i 1.00000i
\(670\) −1.00000 −1.00000
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) 0.866025 0.500000i 0.866025 0.500000i
\(675\) 0 0
\(676\) 0 0
\(677\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(678\) 0 0
\(679\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(680\) 0 0
\(681\) 1.00000 1.00000
\(682\) 0.500000 0.866025i 0.500000 0.866025i
\(683\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 1.00000 1.00000
\(686\) 1.00000i 1.00000i
\(687\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(688\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(689\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(690\) 0 0
\(691\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(692\) 0 0
\(693\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(694\) 0 0
\(695\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(696\) 0.866025 0.500000i 0.866025 0.500000i
\(697\) 0 0
\(698\) 0 0
\(699\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(700\) 0 0
\(701\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(702\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(703\) 1.00000 1.00000
\(704\) 0.866025 0.500000i 0.866025 0.500000i
\(705\) 2.00000i 2.00000i
\(706\) −0.500000 0.866025i −0.500000 0.866025i
\(707\) 1.00000i 1.00000i
\(708\) 0 0
\(709\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(710\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(711\) −0.500000 0.866025i −0.500000 0.866025i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −1.00000 −1.00000
\(716\) 0 0
\(717\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(718\) 1.00000 1.00000
\(719\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(720\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(721\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(722\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(723\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(728\) −0.866025 0.500000i −0.866025 0.500000i
\(729\) −1.00000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(734\) 1.00000i 1.00000i
\(735\) 0.500000 0.866025i 0.500000 0.866025i
\(736\) 0 0
\(737\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(738\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(739\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(740\) 0 0
\(741\) −0.866025 0.500000i −0.866025 0.500000i
\(742\) 1.00000 1.00000
\(743\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(744\) −1.00000 −1.00000
\(745\) −1.00000 −1.00000
\(746\) −0.866025 0.500000i −0.866025 0.500000i
\(747\) 0 0
\(748\) 0 0
\(749\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(750\) −0.866025 0.500000i −0.866025 0.500000i
\(751\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(752\) 1.73205 1.00000i 1.73205 1.00000i
\(753\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(754\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(755\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(756\) 0 0
\(757\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) −0.500000 0.866025i −0.500000 0.866025i
\(761\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(762\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 1.00000 1.00000
\(767\) 0 0
\(768\) 0 0
\(769\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(770\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(771\) 0 0
\(772\) 0 0
\(773\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(774\) −0.866025 0.500000i −0.866025 0.500000i
\(775\) 0 0
\(776\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(777\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(778\) 1.00000 1.00000
\(779\) −0.866025 0.500000i −0.866025 0.500000i
\(780\) 0 0
\(781\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(782\) 0 0
\(783\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(784\) −1.00000 −1.00000
\(785\) 0 0
\(786\) −0.866025 0.500000i −0.866025 0.500000i
\(787\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 1.00000 1.00000
\(791\) 0 0
\(792\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(793\) 0 0
\(794\) 1.00000i 1.00000i
\(795\) −0.866025 0.500000i −0.866025 0.500000i
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) −1.00000 −1.00000
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 1.00000 1.00000
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 1.00000i 1.00000i
\(807\) 0 0
\(808\) 1.00000 1.00000
\(809\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(810\) 0.500000 0.866025i 0.500000 0.866025i
\(811\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(812\) 0 0
\(813\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(814\) 1.00000 1.00000
\(815\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(816\) 0 0
\(817\) 0.500000 0.866025i 0.500000 0.866025i
\(818\) 1.00000i 1.00000i
\(819\) 1.00000 1.00000
\(820\) 0 0
\(821\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(822\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(823\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(824\) −0.866025 0.500000i −0.866025 0.500000i
\(825\) 0 0
\(826\) 0 0
\(827\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(830\) 0 0
\(831\) 1.00000i 1.00000i
\(832\) 0.500000 0.866025i 0.500000 0.866025i
\(833\) 0 0
\(834\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(835\) 0.500000 0.866025i 0.500000 0.866025i
\(836\) 0 0
\(837\) 0.866025 0.500000i 0.866025 0.500000i
\(838\) 0 0
\(839\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(840\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(841\) 0 0
\(842\) 0.866025 0.500000i 0.866025 0.500000i
\(843\) −0.500000 0.866025i −0.500000 0.866025i
\(844\) 0 0
\(845\) 0 0
\(846\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(847\) 0 0
\(848\) 1.00000i 1.00000i
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(854\) 0 0
\(855\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(856\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(857\) 1.73205 + 1.00000i 1.73205 + 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(858\) −0.866025 0.500000i −0.866025 0.500000i
\(859\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(860\) 0 0
\(861\) 1.00000 1.00000
\(862\) −1.00000 −1.00000
\(863\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(864\) 0 0
\(865\) −1.00000 −1.00000
\(866\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(867\) 1.00000i 1.00000i
\(868\) 0 0
\(869\) 0.866025 0.500000i 0.866025 0.500000i
\(870\) −0.500000 0.866025i −0.500000 0.866025i
\(871\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(872\) 0 0
\(873\) 0.500000 0.866025i 0.500000 0.866025i
\(874\) 0 0
\(875\) 1.00000i 1.00000i
\(876\) 0 0
\(877\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(878\) 1.00000i 1.00000i
\(879\) 0 0
\(880\) −0.500000 0.866025i −0.500000 0.866025i
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0.866025 0.500000i 0.866025 0.500000i
\(883\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(884\) 0 0
\(885\) 0 0
\(886\) −1.00000 1.73205i −1.00000 1.73205i
\(887\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(888\) −0.500000 0.866025i −0.500000 0.866025i
\(889\) 0.500000 0.866025i 0.500000 0.866025i
\(890\) 0 0
\(891\) 1.00000i 1.00000i
\(892\) 0 0
\(893\) −1.73205 1.00000i −1.73205 1.00000i
\(894\) −0.866025 0.500000i −0.866025 0.500000i
\(895\) −0.500000 0.866025i −0.500000 0.866025i
\(896\) 1.00000i 1.00000i
\(897\) 0 0
\(898\) 2.00000 2.00000
\(899\) 1.00000i 1.00000i
\(900\) 0 0
\(901\) 0 0
\(902\) −0.866025 0.500000i −0.866025 0.500000i
\(903\) 1.00000i 1.00000i
\(904\) 0 0
\(905\) −0.866025 0.500000i −0.866025 0.500000i
\(906\) −1.00000 −1.00000
\(907\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(908\) 0 0
\(909\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(910\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(911\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(912\) 1.00000i 1.00000i
\(913\) 0 0
\(914\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(915\) 0 0
\(916\) 0 0
\(917\) 1.00000i 1.00000i
\(918\) 0 0
\(919\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 1.00000i 1.00000i
\(922\) −0.500000 0.866025i −0.500000 0.866025i
\(923\) 1.00000i 1.00000i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 1.00000 1.00000
\(928\) 0 0
\(929\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(930\) 1.00000i 1.00000i
\(931\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(932\) 0 0
\(933\) −1.00000 −1.00000
\(934\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(935\) 0 0
\(936\) 1.00000i 1.00000i
\(937\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(938\) 1.00000i 1.00000i
\(939\) 0 0
\(940\) 0 0
\(941\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −1.00000 −1.00000
\(946\) 0.500000 0.866025i 0.500000 0.866025i
\(947\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(954\) −0.500000 0.866025i −0.500000 0.866025i
\(955\) 0.500000 0.866025i 0.500000 0.866025i
\(956\) 0 0
\(957\) −0.866025 0.500000i −0.866025 0.500000i
\(958\) −1.00000 −1.00000
\(959\) 1.00000i 1.00000i
\(960\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(961\) 0 0
\(962\) 0.866025 0.500000i 0.866025 0.500000i
\(963\) 1.00000i 1.00000i
\(964\) 0 0
\(965\) −1.73205 1.00000i −1.73205 1.00000i
\(966\) 0 0
\(967\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(971\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(972\) 0 0
\(973\) 0.500000 0.866025i 0.500000 0.866025i
\(974\) 0.866025 0.500000i 0.866025 0.500000i
\(975\) 0 0
\(976\) 0 0
\(977\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(978\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) −0.500000 0.866025i −0.500000 0.866025i
\(983\) −1.73205 1.00000i −1.73205 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 0.500000i \(-0.833333\pi\)
\(984\) 1.00000i 1.00000i
\(985\) 0 0
\(986\) 0 0
\(987\) 2.00000 2.00000
\(988\) 0 0
\(989\) 0 0
\(990\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(991\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(992\) 0 0
\(993\) 0.866025 0.500000i 0.866025 0.500000i
\(994\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(995\) 1.00000i 1.00000i
\(996\) 0 0
\(997\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(998\) 1.00000i 1.00000i
\(999\) 0.866025 + 0.500000i 0.866025 + 0.500000i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 399.1.n.a.254.1 yes 4
3.2 odd 2 inner 399.1.n.a.254.2 yes 4
7.2 even 3 2793.1.bf.c.197.1 4
7.3 odd 6 2793.1.bi.c.2762.2 4
7.4 even 3 399.1.bi.a.368.2 yes 4
7.5 odd 6 2793.1.bf.b.197.1 4
7.6 odd 2 2793.1.n.c.1451.1 4
19.11 even 3 399.1.bi.a.296.1 yes 4
21.2 odd 6 2793.1.bf.c.197.2 4
21.5 even 6 2793.1.bf.b.197.2 4
21.11 odd 6 399.1.bi.a.368.1 yes 4
21.17 even 6 2793.1.bi.c.2762.1 4
21.20 even 2 2793.1.n.c.1451.2 4
57.11 odd 6 399.1.bi.a.296.2 yes 4
133.11 even 3 inner 399.1.n.a.11.1 4
133.30 even 3 2793.1.bf.c.638.2 4
133.68 odd 6 2793.1.bf.b.638.2 4
133.87 odd 6 2793.1.n.c.410.1 4
133.125 odd 6 2793.1.bi.c.1892.1 4
399.11 odd 6 inner 399.1.n.a.11.2 yes 4
399.68 even 6 2793.1.bf.b.638.1 4
399.125 even 6 2793.1.bi.c.1892.2 4
399.296 odd 6 2793.1.bf.c.638.1 4
399.353 even 6 2793.1.n.c.410.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.1.n.a.11.1 4 133.11 even 3 inner
399.1.n.a.11.2 yes 4 399.11 odd 6 inner
399.1.n.a.254.1 yes 4 1.1 even 1 trivial
399.1.n.a.254.2 yes 4 3.2 odd 2 inner
399.1.bi.a.296.1 yes 4 19.11 even 3
399.1.bi.a.296.2 yes 4 57.11 odd 6
399.1.bi.a.368.1 yes 4 21.11 odd 6
399.1.bi.a.368.2 yes 4 7.4 even 3
2793.1.n.c.410.1 4 133.87 odd 6
2793.1.n.c.410.2 4 399.353 even 6
2793.1.n.c.1451.1 4 7.6 odd 2
2793.1.n.c.1451.2 4 21.20 even 2
2793.1.bf.b.197.1 4 7.5 odd 6
2793.1.bf.b.197.2 4 21.5 even 6
2793.1.bf.b.638.1 4 399.68 even 6
2793.1.bf.b.638.2 4 133.68 odd 6
2793.1.bf.c.197.1 4 7.2 even 3
2793.1.bf.c.197.2 4 21.2 odd 6
2793.1.bf.c.638.1 4 399.296 odd 6
2793.1.bf.c.638.2 4 133.30 even 3
2793.1.bi.c.1892.1 4 133.125 odd 6
2793.1.bi.c.1892.2 4 399.125 even 6
2793.1.bi.c.2762.1 4 21.17 even 6
2793.1.bi.c.2762.2 4 7.3 odd 6