Properties

Label 2793.1.bf.c.638.1
Level 27932793
Weight 11
Character 2793.638
Analytic conductor 1.3941.394
Analytic rank 00
Dimension 44
Projective image A4A_{4}
CM/RM no
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2793,1,Mod(197,2793)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2793, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2793.197");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 2793=37219 2793 = 3 \cdot 7^{2} \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2793.bf (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.393888580281.39388858028
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 399)
Projective image: A4A_{4}
Projective field: Galois closure of 4.0.159201.1

Embedding invariants

Embedding label 638.1
Root 0.8660250.500000i0.866025 - 0.500000i of defining polynomial
Character χ\chi == 2793.638
Dual form 2793.1.bf.c.197.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.8660250.500000i)q2+(0.8660250.500000i)q3+(0.8660250.500000i)q5+(0.500000+0.866025i)q6+1.00000iq8+(0.500000+0.866025i)q9+(0.500000+0.866025i)q10+1.00000iq11+(0.5000000.866025i)q13+(0.500000+0.866025i)q15+(0.5000000.866025i)q161.00000iq18+(0.500000+0.866025i)q19+(0.5000000.866025i)q22+(0.5000000.866025i)q24+1.00000iq261.00000iq27+(0.8660250.500000i)q291.00000iq30+1.00000q31+(0.5000000.866025i)q331.00000q371.00000iq38+1.00000iq39+(0.5000000.866025i)q40+(0.8660250.500000i)q41+(0.500000+0.866025i)q431.00000iq45+(1.732051.00000i)q47+(0.866025+0.500000i)q48+(0.8660250.500000i)q53+(0.500000+0.866025i)q54+(0.5000000.866025i)q551.00000iq571.00000q58+(0.8660250.500000i)q621.00000q64+1.00000iq65+(0.866025+0.500000i)q66+(0.5000000.866025i)q67+(0.866025+0.500000i)q71+(0.866025+0.500000i)q72+(0.866025+0.500000i)q74+(0.5000000.866025i)q78+(0.5000000.866025i)q79+(0.866025+0.500000i)q80+(0.500000+0.866025i)q81+(0.500000+0.866025i)q82+(0.8660250.500000i)q861.00000q871.00000q88+(0.500000+0.866025i)q90+(0.8660250.500000i)q932.00000q941.00000iq95+(0.500000+0.866025i)q97+(0.866025+0.500000i)q99+O(q100)q+(-0.866025 - 0.500000i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(-0.866025 - 0.500000i) q^{5} +(0.500000 + 0.866025i) q^{6} +1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +(0.500000 + 0.866025i) q^{10} +1.00000i q^{11} +(-0.500000 - 0.866025i) q^{13} +(0.500000 + 0.866025i) q^{15} +(0.500000 - 0.866025i) q^{16} -1.00000i q^{18} +(0.500000 + 0.866025i) q^{19} +(0.500000 - 0.866025i) q^{22} +(0.500000 - 0.866025i) q^{24} +1.00000i q^{26} -1.00000i q^{27} +(0.866025 - 0.500000i) q^{29} -1.00000i q^{30} +1.00000 q^{31} +(0.500000 - 0.866025i) q^{33} -1.00000 q^{37} -1.00000i q^{38} +1.00000i q^{39} +(0.500000 - 0.866025i) q^{40} +(-0.866025 - 0.500000i) q^{41} +(-0.500000 + 0.866025i) q^{43} -1.00000i q^{45} +(1.73205 - 1.00000i) q^{47} +(-0.866025 + 0.500000i) q^{48} +(0.866025 - 0.500000i) q^{53} +(-0.500000 + 0.866025i) q^{54} +(0.500000 - 0.866025i) q^{55} -1.00000i q^{57} -1.00000 q^{58} +(-0.866025 - 0.500000i) q^{62} -1.00000 q^{64} +1.00000i q^{65} +(-0.866025 + 0.500000i) q^{66} +(-0.500000 - 0.866025i) q^{67} +(0.866025 + 0.500000i) q^{71} +(-0.866025 + 0.500000i) q^{72} +(0.866025 + 0.500000i) q^{74} +(0.500000 - 0.866025i) q^{78} +(0.500000 - 0.866025i) q^{79} +(-0.866025 + 0.500000i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(0.500000 + 0.866025i) q^{82} +(0.866025 - 0.500000i) q^{86} -1.00000 q^{87} -1.00000 q^{88} +(-0.500000 + 0.866025i) q^{90} +(-0.866025 - 0.500000i) q^{93} -2.00000 q^{94} -1.00000i q^{95} +(-0.500000 + 0.866025i) q^{97} +(-0.866025 + 0.500000i) q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q6+2q9+2q102q13+2q15+2q16+2q19+2q22+2q24+4q31+2q334q37+2q402q432q54+2q554q584q642q67+2q97+O(q100) 4 q + 2 q^{6} + 2 q^{9} + 2 q^{10} - 2 q^{13} + 2 q^{15} + 2 q^{16} + 2 q^{19} + 2 q^{22} + 2 q^{24} + 4 q^{31} + 2 q^{33} - 4 q^{37} + 2 q^{40} - 2 q^{43} - 2 q^{54} + 2 q^{55} - 4 q^{58} - 4 q^{64} - 2 q^{67}+ \cdots - 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2793Z)×\left(\mathbb{Z}/2793\mathbb{Z}\right)^\times.

nn 932932 21102110 22062206
χ(n)\chi(n) 1-1 11 e(23)e\left(\frac{2}{3}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
33 −0.866025 0.500000i −0.866025 0.500000i
44 0 0
55 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
66 0.500000 + 0.866025i 0.500000 + 0.866025i
77 0 0
88 1.00000i 1.00000i
99 0.500000 + 0.866025i 0.500000 + 0.866025i
1010 0.500000 + 0.866025i 0.500000 + 0.866025i
1111 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
1212 0 0
1313 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
1414 0 0
1515 0.500000 + 0.866025i 0.500000 + 0.866025i
1616 0.500000 0.866025i 0.500000 0.866025i
1717 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
1818 1.00000i 1.00000i
1919 0.500000 + 0.866025i 0.500000 + 0.866025i
2020 0 0
2121 0 0
2222 0.500000 0.866025i 0.500000 0.866025i
2323 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
2424 0.500000 0.866025i 0.500000 0.866025i
2525 0 0
2626 1.00000i 1.00000i
2727 1.00000i 1.00000i
2828 0 0
2929 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
3030 1.00000i 1.00000i
3131 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
3232 0 0
3333 0.500000 0.866025i 0.500000 0.866025i
3434 0 0
3535 0 0
3636 0 0
3737 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
3838 1.00000i 1.00000i
3939 1.00000i 1.00000i
4040 0.500000 0.866025i 0.500000 0.866025i
4141 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
4242 0 0
4343 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
4444 0 0
4545 1.00000i 1.00000i
4646 0 0
4747 1.73205 1.00000i 1.73205 1.00000i 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
4848 −0.866025 + 0.500000i −0.866025 + 0.500000i
4949 0 0
5050 0 0
5151 0 0
5252 0 0
5353 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
5454 −0.500000 + 0.866025i −0.500000 + 0.866025i
5555 0.500000 0.866025i 0.500000 0.866025i
5656 0 0
5757 1.00000i 1.00000i
5858 −1.00000 −1.00000
5959 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
6060 0 0
6161 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
6262 −0.866025 0.500000i −0.866025 0.500000i
6363 0 0
6464 −1.00000 −1.00000
6565 1.00000i 1.00000i
6666 −0.866025 + 0.500000i −0.866025 + 0.500000i
6767 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
6868 0 0
6969 0 0
7070 0 0
7171 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
7272 −0.866025 + 0.500000i −0.866025 + 0.500000i
7373 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
7474 0.866025 + 0.500000i 0.866025 + 0.500000i
7575 0 0
7676 0 0
7777 0 0
7878 0.500000 0.866025i 0.500000 0.866025i
7979 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
8080 −0.866025 + 0.500000i −0.866025 + 0.500000i
8181 −0.500000 + 0.866025i −0.500000 + 0.866025i
8282 0.500000 + 0.866025i 0.500000 + 0.866025i
8383 0 0 1.00000 00
−1.00000 π\pi
8484 0 0
8585 0 0
8686 0.866025 0.500000i 0.866025 0.500000i
8787 −1.00000 −1.00000
8888 −1.00000 −1.00000
8989 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
9090 −0.500000 + 0.866025i −0.500000 + 0.866025i
9191 0 0
9292 0 0
9393 −0.866025 0.500000i −0.866025 0.500000i
9494 −2.00000 −2.00000
9595 1.00000i 1.00000i
9696 0 0
9797 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
9898 0 0
9999 −0.866025 + 0.500000i −0.866025 + 0.500000i
100100 0 0
101101 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
102102 0 0
103103 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
104104 0.866025 0.500000i 0.866025 0.500000i
105105 0 0
106106 −1.00000 −1.00000
107107 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
108108 0 0
109109 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
110110 −0.866025 + 0.500000i −0.866025 + 0.500000i
111111 0.866025 + 0.500000i 0.866025 + 0.500000i
112112 0 0
113113 0 0 1.00000 00
−1.00000 π\pi
114114 −0.500000 + 0.866025i −0.500000 + 0.866025i
115115 0 0
116116 0 0
117117 0.500000 0.866025i 0.500000 0.866025i
118118 0 0
119119 0 0
120120 −0.866025 + 0.500000i −0.866025 + 0.500000i
121121 0 0
122122 0 0
123123 0.500000 + 0.866025i 0.500000 + 0.866025i
124124 0 0
125125 1.00000i 1.00000i
126126 0 0
127127 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
128128 0.866025 + 0.500000i 0.866025 + 0.500000i
129129 0.866025 0.500000i 0.866025 0.500000i
130130 0.500000 0.866025i 0.500000 0.866025i
131131 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
132132 0 0
133133 0 0
134134 1.00000i 1.00000i
135135 −0.500000 + 0.866025i −0.500000 + 0.866025i
136136 0 0
137137 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
138138 0 0
139139 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
140140 0 0
141141 −2.00000 −2.00000
142142 −0.500000 0.866025i −0.500000 0.866025i
143143 0.866025 0.500000i 0.866025 0.500000i
144144 1.00000 1.00000
145145 −1.00000 −1.00000
146146 0 0
147147 0 0
148148 0 0
149149 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
150150 0 0
151151 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
152152 −0.866025 + 0.500000i −0.866025 + 0.500000i
153153 0 0
154154 0 0
155155 −0.866025 0.500000i −0.866025 0.500000i
156156 0 0
157157 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
158158 −0.866025 + 0.500000i −0.866025 + 0.500000i
159159 −1.00000 −1.00000
160160 0 0
161161 0 0
162162 0.866025 0.500000i 0.866025 0.500000i
163163 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
164164 0 0
165165 −0.866025 + 0.500000i −0.866025 + 0.500000i
166166 0 0
167167 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
168168 0 0
169169 0 0
170170 0 0
171171 −0.500000 + 0.866025i −0.500000 + 0.866025i
172172 0 0
173173 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
174174 0.866025 + 0.500000i 0.866025 + 0.500000i
175175 0 0
176176 0.866025 + 0.500000i 0.866025 + 0.500000i
177177 0 0
178178 0 0
179179 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
180180 0 0
181181 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
182182 0 0
183183 0 0
184184 0 0
185185 0.866025 + 0.500000i 0.866025 + 0.500000i
186186 0.500000 + 0.866025i 0.500000 + 0.866025i
187187 0 0
188188 0 0
189189 0 0
190190 −0.500000 + 0.866025i −0.500000 + 0.866025i
191191 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
192192 0.866025 + 0.500000i 0.866025 + 0.500000i
193193 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
194194 0.866025 0.500000i 0.866025 0.500000i
195195 0.500000 0.866025i 0.500000 0.866025i
196196 0 0
197197 0 0 1.00000 00
−1.00000 π\pi
198198 1.00000 1.00000
199199 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
200200 0 0
201201 1.00000i 1.00000i
202202 1.00000 1.00000
203203 0 0
204204 0 0
205205 0.500000 + 0.866025i 0.500000 + 0.866025i
206206 0.866025 + 0.500000i 0.866025 + 0.500000i
207207 0 0
208208 −1.00000 −1.00000
209209 −0.866025 + 0.500000i −0.866025 + 0.500000i
210210 0 0
211211 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
212212 0 0
213213 −0.500000 0.866025i −0.500000 0.866025i
214214 −0.500000 + 0.866025i −0.500000 + 0.866025i
215215 0.866025 0.500000i 0.866025 0.500000i
216216 1.00000 1.00000
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 −0.500000 0.866025i −0.500000 0.866025i
223223 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
224224 0 0
225225 0 0
226226 0 0
227227 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
228228 0 0
229229 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
230230 0 0
231231 0 0
232232 0.500000 + 0.866025i 0.500000 + 0.866025i
233233 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
234234 −0.866025 + 0.500000i −0.866025 + 0.500000i
235235 −2.00000 −2.00000
236236 0 0
237237 −0.866025 + 0.500000i −0.866025 + 0.500000i
238238 0 0
239239 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
240240 1.00000 1.00000
241241 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
242242 0 0
243243 0.866025 0.500000i 0.866025 0.500000i
244244 0 0
245245 0 0
246246 1.00000i 1.00000i
247247 0.500000 0.866025i 0.500000 0.866025i
248248 1.00000i 1.00000i
249249 0 0
250250 0.500000 0.866025i 0.500000 0.866025i
251251 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
252252 0 0
253253 0 0
254254 1.00000i 1.00000i
255255 0 0
256256 0 0
257257 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
258258 −1.00000 −1.00000
259259 0 0
260260 0 0
261261 0.866025 + 0.500000i 0.866025 + 0.500000i
262262 0.500000 + 0.866025i 0.500000 + 0.866025i
263263 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
264264 0.866025 + 0.500000i 0.866025 + 0.500000i
265265 −1.00000 −1.00000
266266 0 0
267267 0 0
268268 0 0
269269 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
270270 0.866025 0.500000i 0.866025 0.500000i
271271 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
272272 0 0
273273 0 0
274274 1.00000 1.00000
275275 0 0
276276 0 0
277277 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
278278 1.00000i 1.00000i
279279 0.500000 + 0.866025i 0.500000 + 0.866025i
280280 0 0
281281 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
282282 1.73205 + 1.00000i 1.73205 + 1.00000i
283283 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
284284 0 0
285285 −0.500000 + 0.866025i −0.500000 + 0.866025i
286286 −1.00000 −1.00000
287287 0 0
288288 0 0
289289 −0.500000 0.866025i −0.500000 0.866025i
290290 0.866025 + 0.500000i 0.866025 + 0.500000i
291291 0.866025 0.500000i 0.866025 0.500000i
292292 0 0
293293 0 0 1.00000 00
−1.00000 π\pi
294294 0 0
295295 0 0
296296 1.00000i 1.00000i
297297 1.00000 1.00000
298298 0.500000 + 0.866025i 0.500000 + 0.866025i
299299 0 0
300300 0 0
301301 0 0
302302 −0.866025 0.500000i −0.866025 0.500000i
303303 1.00000 1.00000
304304 1.00000 1.00000
305305 0 0
306306 0 0
307307 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
308308 0 0
309309 0.866025 + 0.500000i 0.866025 + 0.500000i
310310 0.500000 + 0.866025i 0.500000 + 0.866025i
311311 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
312312 −1.00000 −1.00000
313313 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
314314 0 0
315315 0 0
316316 0 0
317317 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
318318 0.866025 + 0.500000i 0.866025 + 0.500000i
319319 0.500000 + 0.866025i 0.500000 + 0.866025i
320320 0.866025 + 0.500000i 0.866025 + 0.500000i
321321 −0.500000 + 0.866025i −0.500000 + 0.866025i
322322 0 0
323323 0 0
324324 0 0
325325 0 0
326326 −0.866025 0.500000i −0.866025 0.500000i
327327 0 0
328328 0.500000 0.866025i 0.500000 0.866025i
329329 0 0
330330 1.00000 1.00000
331331 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
332332 0 0
333333 −0.500000 0.866025i −0.500000 0.866025i
334334 −1.00000 −1.00000
335335 1.00000i 1.00000i
336336 0 0
337337 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
338338 0 0
339339 0 0
340340 0 0
341341 1.00000i 1.00000i
342342 0.866025 0.500000i 0.866025 0.500000i
343343 0 0
344344 −0.866025 0.500000i −0.866025 0.500000i
345345 0 0
346346 0.500000 + 0.866025i 0.500000 + 0.866025i
347347 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
348348 0 0
349349 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
350350 0 0
351351 −0.866025 + 0.500000i −0.866025 + 0.500000i
352352 0 0
353353 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
354354 0 0
355355 −0.500000 0.866025i −0.500000 0.866025i
356356 0 0
357357 0 0
358358 −0.500000 + 0.866025i −0.500000 + 0.866025i
359359 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
360360 1.00000 1.00000
361361 −0.500000 + 0.866025i −0.500000 + 0.866025i
362362 1.00000i 1.00000i
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
368368 0 0
369369 1.00000i 1.00000i
370370 −0.500000 0.866025i −0.500000 0.866025i
371371 0 0
372372 0 0
373373 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
374374 0 0
375375 0.500000 0.866025i 0.500000 0.866025i
376376 1.00000 + 1.73205i 1.00000 + 1.73205i
377377 −0.866025 0.500000i −0.866025 0.500000i
378378 0 0
379379 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
380380 0 0
381381 1.00000i 1.00000i
382382 0.500000 0.866025i 0.500000 0.866025i
383383 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
384384 −0.500000 0.866025i −0.500000 0.866025i
385385 0 0
386386 −1.73205 + 1.00000i −1.73205 + 1.00000i
387387 −1.00000 −1.00000
388388 0 0
389389 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
390390 −0.866025 + 0.500000i −0.866025 + 0.500000i
391391 0 0
392392 0 0
393393 0.500000 + 0.866025i 0.500000 + 0.866025i
394394 0 0
395395 −0.866025 + 0.500000i −0.866025 + 0.500000i
396396 0 0
397397 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
398398 1.00000i 1.00000i
399399 0 0
400400 0 0
401401 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
402402 0.500000 0.866025i 0.500000 0.866025i
403403 −0.500000 0.866025i −0.500000 0.866025i
404404 0 0
405405 0.866025 0.500000i 0.866025 0.500000i
406406 0 0
407407 1.00000i 1.00000i
408408 0 0
409409 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
410410 1.00000i 1.00000i
411411 1.00000 1.00000
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 1.00000i 1.00000i
418418 1.00000 1.00000
419419 0 0 1.00000 00
−1.00000 π\pi
420420 0 0
421421 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
422422 −0.866025 + 0.500000i −0.866025 + 0.500000i
423423 1.73205 + 1.00000i 1.73205 + 1.00000i
424424 0.500000 + 0.866025i 0.500000 + 0.866025i
425425 0 0
426426 1.00000i 1.00000i
427427 0 0
428428 0 0
429429 −1.00000 −1.00000
430430 −1.00000 −1.00000
431431 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
432432 −0.866025 0.500000i −0.866025 0.500000i
433433 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
434434 0 0
435435 0.866025 + 0.500000i 0.866025 + 0.500000i
436436 0 0
437437 0 0
438438 0 0
439439 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
440440 0.866025 + 0.500000i 0.866025 + 0.500000i
441441 0 0
442442 0 0
443443 −1.73205 + 1.00000i −1.73205 + 1.00000i −0.866025 + 0.500000i 0.833333π0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
444444 0 0
445445 0 0
446446 −0.866025 + 0.500000i −0.866025 + 0.500000i
447447 0.500000 + 0.866025i 0.500000 + 0.866025i
448448 0 0
449449 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
450450 0 0
451451 0.500000 0.866025i 0.500000 0.866025i
452452 0 0
453453 −0.866025 0.500000i −0.866025 0.500000i
454454 −0.500000 + 0.866025i −0.500000 + 0.866025i
455455 0 0
456456 1.00000 1.00000
457457 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
458458 −0.866025 0.500000i −0.866025 0.500000i
459459 0 0
460460 0 0
461461 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
462462 0 0
463463 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
464464 1.00000i 1.00000i
465465 0.500000 + 0.866025i 0.500000 + 0.866025i
466466 −0.500000 0.866025i −0.500000 0.866025i
467467 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
468468 0 0
469469 0 0
470470 1.73205 + 1.00000i 1.73205 + 1.00000i
471471 0 0
472472 0 0
473473 −0.866025 0.500000i −0.866025 0.500000i
474474 1.00000 1.00000
475475 0 0
476476 0 0
477477 0.866025 + 0.500000i 0.866025 + 0.500000i
478478 −1.00000 + 1.73205i −1.00000 + 1.73205i
479479 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
480480 0 0
481481 0.500000 + 0.866025i 0.500000 + 0.866025i
482482 1.00000i 1.00000i
483483 0 0
484484 0 0
485485 0.866025 0.500000i 0.866025 0.500000i
486486 −1.00000 −1.00000
487487 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
488488 0 0
489489 −0.866025 0.500000i −0.866025 0.500000i
490490 0 0
491491 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
492492 0 0
493493 0 0
494494 −0.866025 + 0.500000i −0.866025 + 0.500000i
495495 1.00000 1.00000
496496 0.500000 0.866025i 0.500000 0.866025i
497497 0 0
498498 0 0
499499 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
500500 0 0
501501 −1.00000 −1.00000
502502 −1.00000 −1.00000
503503 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
504504 0 0
505505 1.00000 1.00000
506506 0 0
507507 0 0
508508 0 0
509509 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
510510 0 0
511511 0 0
512512 1.00000i 1.00000i
513513 0.866025 0.500000i 0.866025 0.500000i
514514 0 0
515515 0.866025 + 0.500000i 0.866025 + 0.500000i
516516 0 0
517517 1.00000 + 1.73205i 1.00000 + 1.73205i
518518 0 0
519519 0.500000 + 0.866025i 0.500000 + 0.866025i
520520 −1.00000 −1.00000
521521 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
522522 −0.500000 0.866025i −0.500000 0.866025i
523523 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 −0.500000 0.866025i −0.500000 0.866025i
529529 −0.500000 + 0.866025i −0.500000 + 0.866025i
530530 0.866025 + 0.500000i 0.866025 + 0.500000i
531531 0 0
532532 0 0
533533 1.00000i 1.00000i
534534 0 0
535535 −0.500000 + 0.866025i −0.500000 + 0.866025i
536536 0.866025 0.500000i 0.866025 0.500000i
537537 −0.500000 + 0.866025i −0.500000 + 0.866025i
538538 0 0
539539 0 0
540540 0 0
541541 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
542542 0.866025 0.500000i 0.866025 0.500000i
543543 1.00000i 1.00000i
544544 0 0
545545 0 0
546546 0 0
547547 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
548548 0 0
549549 0 0
550550 0 0
551551 0.866025 + 0.500000i 0.866025 + 0.500000i
552552 0 0
553553 0 0
554554 −0.866025 0.500000i −0.866025 0.500000i
555555 −0.500000 0.866025i −0.500000 0.866025i
556556 0 0
557557 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
558558 1.00000i 1.00000i
559559 1.00000 1.00000
560560 0 0
561561 0 0
562562 1.00000 1.00000
563563 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 −0.500000 + 0.866025i −0.500000 + 0.866025i
569569 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
570570 0.866025 0.500000i 0.866025 0.500000i
571571 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
572572 0 0
573573 0.500000 0.866025i 0.500000 0.866025i
574574 0 0
575575 0 0
576576 −0.500000 0.866025i −0.500000 0.866025i
577577 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
578578 1.00000i 1.00000i
579579 −1.73205 + 1.00000i −1.73205 + 1.00000i
580580 0 0
581581 0 0
582582 −1.00000 −1.00000
583583 0.500000 + 0.866025i 0.500000 + 0.866025i
584584 0 0
585585 −0.866025 + 0.500000i −0.866025 + 0.500000i
586586 0 0
587587 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
588588 0 0
589589 0.500000 + 0.866025i 0.500000 + 0.866025i
590590 0 0
591591 0 0
592592 −0.500000 + 0.866025i −0.500000 + 0.866025i
593593 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
594594 −0.866025 0.500000i −0.866025 0.500000i
595595 0 0
596596 0 0
597597 1.00000i 1.00000i
598598 0 0
599599 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
600600 0 0
601601 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
602602 0 0
603603 0.500000 0.866025i 0.500000 0.866025i
604604 0 0
605605 0 0
606606 −0.866025 0.500000i −0.866025 0.500000i
607607 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
608608 0 0
609609 0 0
610610 0 0
611611 −1.73205 1.00000i −1.73205 1.00000i
612612 0 0
613613 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
614614 0.866025 0.500000i 0.866025 0.500000i
615615 1.00000i 1.00000i
616616 0 0
617617 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
618618 −0.500000 0.866025i −0.500000 0.866025i
619619 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
620620 0 0
621621 0 0
622622 0.500000 0.866025i 0.500000 0.866025i
623623 0 0
624624 0.866025 + 0.500000i 0.866025 + 0.500000i
625625 0.500000 0.866025i 0.500000 0.866025i
626626 0 0
627627 1.00000 1.00000
628628 0 0
629629 0 0
630630 0 0
631631 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
632632 0.866025 + 0.500000i 0.866025 + 0.500000i
633633 −0.866025 + 0.500000i −0.866025 + 0.500000i
634634 0 0
635635 1.00000i 1.00000i
636636 0 0
637637 0 0
638638 1.00000i 1.00000i
639639 1.00000i 1.00000i
640640 −0.500000 0.866025i −0.500000 0.866025i
641641 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
642642 0.866025 0.500000i 0.866025 0.500000i
643643 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
644644 0 0
645645 −1.00000 −1.00000
646646 0 0
647647 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
648648 −0.866025 0.500000i −0.866025 0.500000i
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
654654 0 0
655655 0.500000 + 0.866025i 0.500000 + 0.866025i
656656 −0.866025 + 0.500000i −0.866025 + 0.500000i
657657 0 0
658658 0 0
659659 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
660660 0 0
661661 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
662662 0.866025 + 0.500000i 0.866025 + 0.500000i
663663 0 0
664664 0 0
665665 0 0
666666 1.00000i 1.00000i
667667 0 0
668668 0 0
669669 −0.866025 + 0.500000i −0.866025 + 0.500000i
670670 0.500000 0.866025i 0.500000 0.866025i
671671 0 0
672672 0 0
673673 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
674674 −0.866025 + 0.500000i −0.866025 + 0.500000i
675675 0 0
676676 0 0
677677 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
678678 0 0
679679 0 0
680680 0 0
681681 −0.500000 + 0.866025i −0.500000 + 0.866025i
682682 0.500000 0.866025i 0.500000 0.866025i
683683 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
684684 0 0
685685 1.00000 1.00000
686686 0 0
687687 −0.866025 0.500000i −0.866025 0.500000i
688688 0.500000 + 0.866025i 0.500000 + 0.866025i
689689 −0.866025 0.500000i −0.866025 0.500000i
690690 0 0
691691 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
692692 0 0
693693 0 0
694694 0 0
695695 1.00000i 1.00000i
696696 1.00000i 1.00000i
697697 0 0
698698 0 0
699699 −0.500000 0.866025i −0.500000 0.866025i
700700 0 0
701701 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
702702 1.00000 1.00000
703703 −0.500000 0.866025i −0.500000 0.866025i
704704 1.00000i 1.00000i
705705 1.73205 + 1.00000i 1.73205 + 1.00000i
706706 −0.500000 + 0.866025i −0.500000 + 0.866025i
707707 0 0
708708 0 0
709709 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
710710 1.00000i 1.00000i
711711 1.00000 1.00000
712712 0 0
713713 0 0
714714 0 0
715715 −1.00000 −1.00000
716716 0 0
717717 −1.00000 + 1.73205i −1.00000 + 1.73205i
718718 −0.500000 0.866025i −0.500000 0.866025i
719719 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
720720 −0.866025 0.500000i −0.866025 0.500000i
721721 0 0
722722 0.866025 0.500000i 0.866025 0.500000i
723723 1.00000i 1.00000i
724724 0 0
725725 0 0
726726 0 0
727727 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
728728 0 0
729729 −1.00000 −1.00000
730730 0 0
731731 0 0
732732 0 0
733733 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
734734 1.00000i 1.00000i
735735 0 0
736736 0 0
737737 0.866025 0.500000i 0.866025 0.500000i
738738 −0.500000 + 0.866025i −0.500000 + 0.866025i
739739 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
740740 0 0
741741 −0.866025 + 0.500000i −0.866025 + 0.500000i
742742 0 0
743743 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
744744 0.500000 0.866025i 0.500000 0.866025i
745745 0.500000 + 0.866025i 0.500000 + 0.866025i
746746 0.866025 + 0.500000i 0.866025 + 0.500000i
747747 0 0
748748 0 0
749749 0 0
750750 −0.866025 + 0.500000i −0.866025 + 0.500000i
751751 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
752752 2.00000i 2.00000i
753753 −1.00000 −1.00000
754754 0.500000 + 0.866025i 0.500000 + 0.866025i
755755 −0.866025 0.500000i −0.866025 0.500000i
756756 0 0
757757 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
758758 0 0
759759 0 0
760760 1.00000 1.00000
761761 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
762762 0.500000 0.866025i 0.500000 0.866025i
763763 0 0
764764 0 0
765765 0 0
766766 −0.500000 0.866025i −0.500000 0.866025i
767767 0 0
768768 0 0
769769 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
770770 0 0
771771 0 0
772772 0 0
773773 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
774774 0.866025 + 0.500000i 0.866025 + 0.500000i
775775 0 0
776776 −0.866025 0.500000i −0.866025 0.500000i
777777 0 0
778778 1.00000 1.00000
779779 1.00000i 1.00000i
780780 0 0
781781 −0.500000 + 0.866025i −0.500000 + 0.866025i
782782 0 0
783783 −0.500000 0.866025i −0.500000 0.866025i
784784 0 0
785785 0 0
786786 1.00000i 1.00000i
787787 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
788788 0 0
789789 0 0
790790 1.00000 1.00000
791791 0 0
792792 −0.500000 0.866025i −0.500000 0.866025i
793793 0 0
794794 −0.866025 + 0.500000i −0.866025 + 0.500000i
795795 0.866025 + 0.500000i 0.866025 + 0.500000i
796796 0 0
797797 0 0 1.00000 00
−1.00000 π\pi
798798 0 0
799799 0 0
800800 0 0
801801 0 0
802802 −0.500000 0.866025i −0.500000 0.866025i
803803 0 0
804804 0 0
805805 0 0
806806 1.00000i 1.00000i
807807 0 0
808808 −0.500000 0.866025i −0.500000 0.866025i
809809 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
810810 −1.00000 −1.00000
811811 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
812812 0 0
813813 0.866025 0.500000i 0.866025 0.500000i
814814 −0.500000 + 0.866025i −0.500000 + 0.866025i
815815 −0.866025 0.500000i −0.866025 0.500000i
816816 0 0
817817 −1.00000 −1.00000
818818 1.00000i 1.00000i
819819 0 0
820820 0 0
821821 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
822822 −0.866025 0.500000i −0.866025 0.500000i
823823 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
824824 1.00000i 1.00000i
825825 0 0
826826 0 0
827827 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
828828 0 0
829829 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
830830 0 0
831831 −0.866025 0.500000i −0.866025 0.500000i
832832 0.500000 + 0.866025i 0.500000 + 0.866025i
833833 0 0
834834 0.500000 0.866025i 0.500000 0.866025i
835835 −1.00000 −1.00000
836836 0 0
837837 1.00000i 1.00000i
838838 0 0
839839 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
840840 0 0
841841 0 0
842842 −0.866025 + 0.500000i −0.866025 + 0.500000i
843843 1.00000 1.00000
844844 0 0
845845 0 0
846846 −1.00000 1.73205i −1.00000 1.73205i
847847 0 0
848848 1.00000i 1.00000i
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
854854 0 0
855855 0.866025 0.500000i 0.866025 0.500000i
856856 1.00000 1.00000
857857 −1.73205 1.00000i −1.73205 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 0.500000i 0.833333π-0.833333\pi
858858 0.866025 + 0.500000i 0.866025 + 0.500000i
859859 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
860860 0 0
861861 0 0
862862 −1.00000 −1.00000
863863 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
864864 0 0
865865 0.500000 + 0.866025i 0.500000 + 0.866025i
866866 1.00000i 1.00000i
867867 1.00000i 1.00000i
868868 0 0
869869 0.866025 + 0.500000i 0.866025 + 0.500000i
870870 −0.500000 0.866025i −0.500000 0.866025i
871871 −0.500000 + 0.866025i −0.500000 + 0.866025i
872872 0 0
873873 −1.00000 −1.00000
874874 0 0
875875 0 0
876876 0 0
877877 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
878878 −0.866025 + 0.500000i −0.866025 + 0.500000i
879879 0 0
880880 −0.500000 0.866025i −0.500000 0.866025i
881881 0 0 1.00000 00
−1.00000 π\pi
882882 0 0
883883 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
884884 0 0
885885 0 0
886886 2.00000 2.00000
887887 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
888888 −0.500000 + 0.866025i −0.500000 + 0.866025i
889889 0 0
890890 0 0
891891 −0.866025 0.500000i −0.866025 0.500000i
892892 0 0
893893 1.73205 + 1.00000i 1.73205 + 1.00000i
894894 1.00000i 1.00000i
895895 −0.500000 + 0.866025i −0.500000 + 0.866025i
896896 0 0
897897 0 0
898898 −1.00000 + 1.73205i −1.00000 + 1.73205i
899899 0.866025 0.500000i 0.866025 0.500000i
900900 0 0
901901 0 0
902902 −0.866025 + 0.500000i −0.866025 + 0.500000i
903903 0 0
904904 0 0
905905 1.00000i 1.00000i
906906 0.500000 + 0.866025i 0.500000 + 0.866025i
907907 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
908908 0 0
909909 −0.866025 0.500000i −0.866025 0.500000i
910910 0 0
911911 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
912912 −0.866025 0.500000i −0.866025 0.500000i
913913 0 0
914914 −0.866025 0.500000i −0.866025 0.500000i
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
920920 0 0
921921 0.866025 0.500000i 0.866025 0.500000i
922922 −0.500000 0.866025i −0.500000 0.866025i
923923 1.00000i 1.00000i
924924 0 0
925925 0 0
926926 0 0
927927 −0.500000 0.866025i −0.500000 0.866025i
928928 0 0
929929 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
930930 1.00000i 1.00000i
931931 0 0
932932 0 0
933933 0.500000 0.866025i 0.500000 0.866025i
934934 −0.500000 + 0.866025i −0.500000 + 0.866025i
935935 0 0
936936 0.866025 + 0.500000i 0.866025 + 0.500000i
937937 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
938938 0 0
939939 0 0
940940 0 0
941941 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0.500000 + 0.866025i 0.500000 + 0.866025i
947947 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
954954 −0.500000 0.866025i −0.500000 0.866025i
955955 0.500000 0.866025i 0.500000 0.866025i
956956 0 0
957957 1.00000i 1.00000i
958958 −1.00000 −1.00000
959959 0 0
960960 −0.500000 0.866025i −0.500000 0.866025i
961961 0 0
962962 1.00000i 1.00000i
963963 0.866025 0.500000i 0.866025 0.500000i
964964 0 0
965965 −1.73205 + 1.00000i −1.73205 + 1.00000i
966966 0 0
967967 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
968968 0 0
969969 0 0
970970 −1.00000 −1.00000
971971 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
972972 0 0
973973 0 0
974974 0.866025 + 0.500000i 0.866025 + 0.500000i
975975 0 0
976976 0 0
977977 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
978978 0.500000 + 0.866025i 0.500000 + 0.866025i
979979 0 0
980980 0 0
981981 0 0
982982 −0.500000 0.866025i −0.500000 0.866025i
983983 1.73205 + 1.00000i 1.73205 + 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
984984 −0.866025 + 0.500000i −0.866025 + 0.500000i
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 −0.866025 0.500000i −0.866025 0.500000i
991991 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
992992 0 0
993993 0.866025 + 0.500000i 0.866025 + 0.500000i
994994 0 0
995995 1.00000i 1.00000i
996996 0 0
997997 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
998998 −0.866025 + 0.500000i −0.866025 + 0.500000i
999999 1.00000i 1.00000i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2793.1.bf.c.638.1 4
3.2 odd 2 inner 2793.1.bf.c.638.2 4
7.2 even 3 399.1.n.a.11.2 yes 4
7.3 odd 6 2793.1.bi.c.1892.2 4
7.4 even 3 399.1.bi.a.296.2 yes 4
7.5 odd 6 2793.1.n.c.410.2 4
7.6 odd 2 2793.1.bf.b.638.1 4
19.7 even 3 inner 2793.1.bf.c.197.2 4
21.2 odd 6 399.1.n.a.11.1 4
21.5 even 6 2793.1.n.c.410.1 4
21.11 odd 6 399.1.bi.a.296.1 yes 4
21.17 even 6 2793.1.bi.c.1892.1 4
21.20 even 2 2793.1.bf.b.638.2 4
57.26 odd 6 inner 2793.1.bf.c.197.1 4
133.26 odd 6 2793.1.bi.c.2762.1 4
133.45 odd 6 2793.1.n.c.1451.2 4
133.83 odd 6 2793.1.bf.b.197.2 4
133.102 even 3 399.1.n.a.254.2 yes 4
133.121 even 3 399.1.bi.a.368.1 yes 4
399.26 even 6 2793.1.bi.c.2762.2 4
399.83 even 6 2793.1.bf.b.197.1 4
399.254 odd 6 399.1.bi.a.368.2 yes 4
399.311 even 6 2793.1.n.c.1451.1 4
399.368 odd 6 399.1.n.a.254.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.1.n.a.11.1 4 21.2 odd 6
399.1.n.a.11.2 yes 4 7.2 even 3
399.1.n.a.254.1 yes 4 399.368 odd 6
399.1.n.a.254.2 yes 4 133.102 even 3
399.1.bi.a.296.1 yes 4 21.11 odd 6
399.1.bi.a.296.2 yes 4 7.4 even 3
399.1.bi.a.368.1 yes 4 133.121 even 3
399.1.bi.a.368.2 yes 4 399.254 odd 6
2793.1.n.c.410.1 4 21.5 even 6
2793.1.n.c.410.2 4 7.5 odd 6
2793.1.n.c.1451.1 4 399.311 even 6
2793.1.n.c.1451.2 4 133.45 odd 6
2793.1.bf.b.197.1 4 399.83 even 6
2793.1.bf.b.197.2 4 133.83 odd 6
2793.1.bf.b.638.1 4 7.6 odd 2
2793.1.bf.b.638.2 4 21.20 even 2
2793.1.bf.c.197.1 4 57.26 odd 6 inner
2793.1.bf.c.197.2 4 19.7 even 3 inner
2793.1.bf.c.638.1 4 1.1 even 1 trivial
2793.1.bf.c.638.2 4 3.2 odd 2 inner
2793.1.bi.c.1892.1 4 21.17 even 6
2793.1.bi.c.1892.2 4 7.3 odd 6
2793.1.bi.c.2762.1 4 133.26 odd 6
2793.1.bi.c.2762.2 4 399.26 even 6