Properties

Label 399.2.a.b
Level $399$
Weight $2$
Character orbit 399.a
Self dual yes
Analytic conductor $3.186$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [399,2,Mod(1,399)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(399, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("399.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 399 = 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 399.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.18603104065\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{2} + q^{3} - q^{4} + 4 q^{5} - q^{6} - q^{7} + 3 q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{2} + q^{3} - q^{4} + 4 q^{5} - q^{6} - q^{7} + 3 q^{8} + q^{9} - 4 q^{10} - 2 q^{11} - q^{12} + 4 q^{13} + q^{14} + 4 q^{15} - q^{16} - q^{18} - q^{19} - 4 q^{20} - q^{21} + 2 q^{22} - 6 q^{23} + 3 q^{24} + 11 q^{25} - 4 q^{26} + q^{27} + q^{28} + 10 q^{29} - 4 q^{30} - 5 q^{32} - 2 q^{33} - 4 q^{35} - q^{36} + 6 q^{37} + q^{38} + 4 q^{39} + 12 q^{40} - 10 q^{41} + q^{42} + 8 q^{43} + 2 q^{44} + 4 q^{45} + 6 q^{46} + 12 q^{47} - q^{48} + q^{49} - 11 q^{50} - 4 q^{52} - 6 q^{53} - q^{54} - 8 q^{55} - 3 q^{56} - q^{57} - 10 q^{58} - 12 q^{59} - 4 q^{60} - 2 q^{61} - q^{63} + 7 q^{64} + 16 q^{65} + 2 q^{66} - 2 q^{67} - 6 q^{69} + 4 q^{70} - 12 q^{71} + 3 q^{72} - 6 q^{73} - 6 q^{74} + 11 q^{75} + q^{76} + 2 q^{77} - 4 q^{78} + 2 q^{79} - 4 q^{80} + q^{81} + 10 q^{82} + q^{84} - 8 q^{86} + 10 q^{87} - 6 q^{88} - 2 q^{89} - 4 q^{90} - 4 q^{91} + 6 q^{92} - 12 q^{94} - 4 q^{95} - 5 q^{96} - 12 q^{97} - q^{98} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 1.00000 −1.00000 4.00000 −1.00000 −1.00000 3.00000 1.00000 −4.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( +1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 399.2.a.b 1
3.b odd 2 1 1197.2.a.c 1
4.b odd 2 1 6384.2.a.q 1
5.b even 2 1 9975.2.a.j 1
7.b odd 2 1 2793.2.a.c 1
19.b odd 2 1 7581.2.a.e 1
21.c even 2 1 8379.2.a.o 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
399.2.a.b 1 1.a even 1 1 trivial
1197.2.a.c 1 3.b odd 2 1
2793.2.a.c 1 7.b odd 2 1
6384.2.a.q 1 4.b odd 2 1
7581.2.a.e 1 19.b odd 2 1
8379.2.a.o 1 21.c even 2 1
9975.2.a.j 1 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(399))\):

\( T_{2} + 1 \) Copy content Toggle raw display
\( T_{5} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1 \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T - 4 \) Copy content Toggle raw display
$7$ \( T + 1 \) Copy content Toggle raw display
$11$ \( T + 2 \) Copy content Toggle raw display
$13$ \( T - 4 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T + 1 \) Copy content Toggle raw display
$23$ \( T + 6 \) Copy content Toggle raw display
$29$ \( T - 10 \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T - 6 \) Copy content Toggle raw display
$41$ \( T + 10 \) Copy content Toggle raw display
$43$ \( T - 8 \) Copy content Toggle raw display
$47$ \( T - 12 \) Copy content Toggle raw display
$53$ \( T + 6 \) Copy content Toggle raw display
$59$ \( T + 12 \) Copy content Toggle raw display
$61$ \( T + 2 \) Copy content Toggle raw display
$67$ \( T + 2 \) Copy content Toggle raw display
$71$ \( T + 12 \) Copy content Toggle raw display
$73$ \( T + 6 \) Copy content Toggle raw display
$79$ \( T - 2 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T + 2 \) Copy content Toggle raw display
$97$ \( T + 12 \) Copy content Toggle raw display
show more
show less