Properties

Label 399.2.a.d.1.1
Level 399399
Weight 22
Character 399.1
Self dual yes
Analytic conductor 3.1863.186
Analytic rank 00
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [399,2,Mod(1,399)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(399, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("399.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 399=3719 399 = 3 \cdot 7 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 399.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,1,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 3.186031040653.18603104065
Analytic rank: 00
Dimension: 33
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x3x23x+1 x^{3} - x^{2} - 3x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 1.48119-1.48119 of defining polynomial
Character χ\chi == 399.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q1.48119q21.00000q3+0.193937q4+1.19394q5+1.48119q61.00000q7+2.67513q8+1.00000q91.76845q103.35026q110.193937q121.35026q13+1.48119q141.19394q154.35026q16+2.80606q171.48119q18+1.00000q19+0.231548q20+1.00000q21+4.96239q22+9.27504q232.67513q243.57452q25+2.00000q261.00000q270.193937q28+10.1563q29+1.76845q30+5.73813q31+1.09332q32+3.35026q334.15633q341.19394q35+0.193937q36+3.92478q371.48119q38+1.35026q39+3.19394q40+8.57452q411.48119q425.73813q430.649738q44+1.19394q4513.7381q460.932071q47+4.35026q48+1.00000q49+5.29455q502.80606q510.261865q52+4.54420q53+1.48119q544.00000q552.67513q561.00000q5715.0435q58+4.00000q590.231548q60+11.9248q618.49929q621.00000q63+7.08110q641.61213q654.96239q668.31265q67+0.544198q689.27504q69+1.76845q705.89446q71+2.67513q723.61213q735.81336q74+3.57452q75+0.193937q76+3.35026q772.00000q78+8.62530q795.19394q80+1.00000q8112.7005q8215.6932q83+0.193937q84+3.35026q85+8.49929q8610.1563q878.96239q88+8.57452q891.76845q90+1.35026q91+1.79877q925.73813q93+1.38058q94+1.19394q951.09332q96+11.1490q971.48119q983.35026q99+O(q100)q-1.48119 q^{2} -1.00000 q^{3} +0.193937 q^{4} +1.19394 q^{5} +1.48119 q^{6} -1.00000 q^{7} +2.67513 q^{8} +1.00000 q^{9} -1.76845 q^{10} -3.35026 q^{11} -0.193937 q^{12} -1.35026 q^{13} +1.48119 q^{14} -1.19394 q^{15} -4.35026 q^{16} +2.80606 q^{17} -1.48119 q^{18} +1.00000 q^{19} +0.231548 q^{20} +1.00000 q^{21} +4.96239 q^{22} +9.27504 q^{23} -2.67513 q^{24} -3.57452 q^{25} +2.00000 q^{26} -1.00000 q^{27} -0.193937 q^{28} +10.1563 q^{29} +1.76845 q^{30} +5.73813 q^{31} +1.09332 q^{32} +3.35026 q^{33} -4.15633 q^{34} -1.19394 q^{35} +0.193937 q^{36} +3.92478 q^{37} -1.48119 q^{38} +1.35026 q^{39} +3.19394 q^{40} +8.57452 q^{41} -1.48119 q^{42} -5.73813 q^{43} -0.649738 q^{44} +1.19394 q^{45} -13.7381 q^{46} -0.932071 q^{47} +4.35026 q^{48} +1.00000 q^{49} +5.29455 q^{50} -2.80606 q^{51} -0.261865 q^{52} +4.54420 q^{53} +1.48119 q^{54} -4.00000 q^{55} -2.67513 q^{56} -1.00000 q^{57} -15.0435 q^{58} +4.00000 q^{59} -0.231548 q^{60} +11.9248 q^{61} -8.49929 q^{62} -1.00000 q^{63} +7.08110 q^{64} -1.61213 q^{65} -4.96239 q^{66} -8.31265 q^{67} +0.544198 q^{68} -9.27504 q^{69} +1.76845 q^{70} -5.89446 q^{71} +2.67513 q^{72} -3.61213 q^{73} -5.81336 q^{74} +3.57452 q^{75} +0.193937 q^{76} +3.35026 q^{77} -2.00000 q^{78} +8.62530 q^{79} -5.19394 q^{80} +1.00000 q^{81} -12.7005 q^{82} -15.6932 q^{83} +0.193937 q^{84} +3.35026 q^{85} +8.49929 q^{86} -10.1563 q^{87} -8.96239 q^{88} +8.57452 q^{89} -1.76845 q^{90} +1.35026 q^{91} +1.79877 q^{92} -5.73813 q^{93} +1.38058 q^{94} +1.19394 q^{95} -1.09332 q^{96} +11.1490 q^{97} -1.48119 q^{98} -3.35026 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q+q23q3+q4+4q5q63q7+3q8+3q9+6q10q12+6q13q144q153q16+8q17+q18+3q19+12q20+3q21+4q22++q98+O(q100) 3 q + q^{2} - 3 q^{3} + q^{4} + 4 q^{5} - q^{6} - 3 q^{7} + 3 q^{8} + 3 q^{9} + 6 q^{10} - q^{12} + 6 q^{13} - q^{14} - 4 q^{15} - 3 q^{16} + 8 q^{17} + q^{18} + 3 q^{19} + 12 q^{20} + 3 q^{21} + 4 q^{22}+ \cdots + q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.48119 −1.04736 −0.523681 0.851914i 0.675442π-0.675442\pi
−0.523681 + 0.851914i 0.675442π0.675442\pi
33 −1.00000 −0.577350
44 0.193937 0.0969683
55 1.19394 0.533945 0.266972 0.963704i 0.413977π-0.413977\pi
0.266972 + 0.963704i 0.413977π0.413977\pi
66 1.48119 0.604695
77 −1.00000 −0.377964
88 2.67513 0.945802
99 1.00000 0.333333
1010 −1.76845 −0.559234
1111 −3.35026 −1.01014 −0.505071 0.863078i 0.668534π-0.668534\pi
−0.505071 + 0.863078i 0.668534π0.668534\pi
1212 −0.193937 −0.0559847
1313 −1.35026 −0.374495 −0.187248 0.982313i 0.559957π-0.559957\pi
−0.187248 + 0.982313i 0.559957π0.559957\pi
1414 1.48119 0.395866
1515 −1.19394 −0.308273
1616 −4.35026 −1.08757
1717 2.80606 0.680570 0.340285 0.940322i 0.389476π-0.389476\pi
0.340285 + 0.940322i 0.389476π0.389476\pi
1818 −1.48119 −0.349121
1919 1.00000 0.229416
2020 0.231548 0.0517757
2121 1.00000 0.218218
2222 4.96239 1.05798
2323 9.27504 1.93398 0.966990 0.254816i 0.0820148π-0.0820148\pi
0.966990 + 0.254816i 0.0820148π0.0820148\pi
2424 −2.67513 −0.546059
2525 −3.57452 −0.714903
2626 2.00000 0.392232
2727 −1.00000 −0.192450
2828 −0.193937 −0.0366506
2929 10.1563 1.88598 0.942991 0.332818i 0.107999π-0.107999\pi
0.942991 + 0.332818i 0.107999π0.107999\pi
3030 1.76845 0.322874
3131 5.73813 1.03060 0.515300 0.857010i 0.327681π-0.327681\pi
0.515300 + 0.857010i 0.327681π0.327681\pi
3232 1.09332 0.193274
3333 3.35026 0.583206
3434 −4.15633 −0.712804
3535 −1.19394 −0.201812
3636 0.193937 0.0323228
3737 3.92478 0.645229 0.322615 0.946530i 0.395438π-0.395438\pi
0.322615 + 0.946530i 0.395438π0.395438\pi
3838 −1.48119 −0.240281
3939 1.35026 0.216215
4040 3.19394 0.505006
4141 8.57452 1.33911 0.669557 0.742761i 0.266484π-0.266484\pi
0.669557 + 0.742761i 0.266484π0.266484\pi
4242 −1.48119 −0.228553
4343 −5.73813 −0.875057 −0.437529 0.899204i 0.644146π-0.644146\pi
−0.437529 + 0.899204i 0.644146π0.644146\pi
4444 −0.649738 −0.0979517
4545 1.19394 0.177982
4646 −13.7381 −2.02558
4747 −0.932071 −0.135957 −0.0679783 0.997687i 0.521655π-0.521655\pi
−0.0679783 + 0.997687i 0.521655π0.521655\pi
4848 4.35026 0.627906
4949 1.00000 0.142857
5050 5.29455 0.748763
5151 −2.80606 −0.392927
5252 −0.261865 −0.0363142
5353 4.54420 0.624194 0.312097 0.950050i 0.398969π-0.398969\pi
0.312097 + 0.950050i 0.398969π0.398969\pi
5454 1.48119 0.201565
5555 −4.00000 −0.539360
5656 −2.67513 −0.357479
5757 −1.00000 −0.132453
5858 −15.0435 −1.97531
5959 4.00000 0.520756 0.260378 0.965507i 0.416153π-0.416153\pi
0.260378 + 0.965507i 0.416153π0.416153\pi
6060 −0.231548 −0.0298927
6161 11.9248 1.52681 0.763406 0.645919i 0.223526π-0.223526\pi
0.763406 + 0.645919i 0.223526π0.223526\pi
6262 −8.49929 −1.07941
6363 −1.00000 −0.125988
6464 7.08110 0.885138
6565 −1.61213 −0.199960
6666 −4.96239 −0.610828
6767 −8.31265 −1.01555 −0.507776 0.861489i 0.669532π-0.669532\pi
−0.507776 + 0.861489i 0.669532π0.669532\pi
6868 0.544198 0.0659937
6969 −9.27504 −1.11658
7070 1.76845 0.211370
7171 −5.89446 −0.699544 −0.349772 0.936835i 0.613741π-0.613741\pi
−0.349772 + 0.936835i 0.613741π0.613741\pi
7272 2.67513 0.315267
7373 −3.61213 −0.422767 −0.211384 0.977403i 0.567797π-0.567797\pi
−0.211384 + 0.977403i 0.567797π0.567797\pi
7474 −5.81336 −0.675789
7575 3.57452 0.412749
7676 0.193937 0.0222460
7777 3.35026 0.381798
7878 −2.00000 −0.226455
7979 8.62530 0.970422 0.485211 0.874397i 0.338743π-0.338743\pi
0.485211 + 0.874397i 0.338743π0.338743\pi
8080 −5.19394 −0.580700
8181 1.00000 0.111111
8282 −12.7005 −1.40254
8383 −15.6932 −1.72256 −0.861278 0.508134i 0.830335π-0.830335\pi
−0.861278 + 0.508134i 0.830335π0.830335\pi
8484 0.193937 0.0211602
8585 3.35026 0.363387
8686 8.49929 0.916502
8787 −10.1563 −1.08887
8888 −8.96239 −0.955394
8989 8.57452 0.908897 0.454448 0.890773i 0.349836π-0.349836\pi
0.454448 + 0.890773i 0.349836π0.349836\pi
9090 −1.76845 −0.186411
9191 1.35026 0.141546
9292 1.79877 0.187535
9393 −5.73813 −0.595017
9494 1.38058 0.142396
9595 1.19394 0.122495
9696 −1.09332 −0.111587
9797 11.1490 1.13201 0.566006 0.824401i 0.308488π-0.308488\pi
0.566006 + 0.824401i 0.308488π0.308488\pi
9898 −1.48119 −0.149623
9999 −3.35026 −0.336714
100100 −0.693229 −0.0693229
101101 −9.50659 −0.945941 −0.472970 0.881078i 0.656818π-0.656818\pi
−0.472970 + 0.881078i 0.656818π0.656818\pi
102102 4.15633 0.411538
103103 −5.14903 −0.507349 −0.253675 0.967290i 0.581639π-0.581639\pi
−0.253675 + 0.967290i 0.581639π0.581639\pi
104104 −3.61213 −0.354198
105105 1.19394 0.116516
106106 −6.73084 −0.653757
107107 −11.0435 −1.06761 −0.533807 0.845606i 0.679239π-0.679239\pi
−0.533807 + 0.845606i 0.679239π0.679239\pi
108108 −0.193937 −0.0186616
109109 −5.53690 −0.530339 −0.265170 0.964202i 0.585428π-0.585428\pi
−0.265170 + 0.964202i 0.585428π0.585428\pi
110110 5.92478 0.564905
111111 −3.92478 −0.372523
112112 4.35026 0.411061
113113 −5.69323 −0.535574 −0.267787 0.963478i 0.586292π-0.586292\pi
−0.267787 + 0.963478i 0.586292π0.586292\pi
114114 1.48119 0.138727
115115 11.0738 1.03264
116116 1.96968 0.182880
117117 −1.35026 −0.124832
118118 −5.92478 −0.545420
119119 −2.80606 −0.257231
120120 −3.19394 −0.291565
121121 0.224254 0.0203867
122122 −17.6629 −1.59912
123123 −8.57452 −0.773138
124124 1.11283 0.0999355
125125 −10.2374 −0.915663
126126 1.48119 0.131955
127127 12.9380 1.14806 0.574029 0.818835i 0.305380π-0.305380\pi
0.574029 + 0.818835i 0.305380π0.305380\pi
128128 −12.6751 −1.12033
129129 5.73813 0.505215
130130 2.38787 0.209430
131131 20.4690 1.78838 0.894191 0.447685i 0.147751π-0.147751\pi
0.894191 + 0.447685i 0.147751π0.147751\pi
132132 0.649738 0.0565525
133133 −1.00000 −0.0867110
134134 12.3127 1.06365
135135 −1.19394 −0.102758
136136 7.50659 0.643685
137137 13.4763 1.15136 0.575678 0.817677i 0.304738π-0.304738\pi
0.575678 + 0.817677i 0.304738π0.304738\pi
138138 13.7381 1.16947
139139 15.0132 1.27340 0.636700 0.771111i 0.280299π-0.280299\pi
0.636700 + 0.771111i 0.280299π0.280299\pi
140140 −0.231548 −0.0195694
141141 0.932071 0.0784946
142142 8.73084 0.732676
143143 4.52373 0.378293
144144 −4.35026 −0.362522
145145 12.1260 1.00701
146146 5.35026 0.442791
147147 −1.00000 −0.0824786
148148 0.761158 0.0625668
149149 −8.76116 −0.717742 −0.358871 0.933387i 0.616838π-0.616838\pi
−0.358871 + 0.933387i 0.616838π0.616838\pi
150150 −5.29455 −0.432298
151151 −10.2374 −0.833110 −0.416555 0.909111i 0.636763π-0.636763\pi
−0.416555 + 0.909111i 0.636763π0.636763\pi
152152 2.67513 0.216982
153153 2.80606 0.226857
154154 −4.96239 −0.399881
155155 6.85097 0.550283
156156 0.261865 0.0209660
157157 −11.4010 −0.909903 −0.454951 0.890516i 0.650343π-0.650343\pi
−0.454951 + 0.890516i 0.650343π0.650343\pi
158158 −12.7757 −1.01638
159159 −4.54420 −0.360378
160160 1.30536 0.103197
161161 −9.27504 −0.730975
162162 −1.48119 −0.116374
163163 −24.9624 −1.95521 −0.977603 0.210459i 0.932504π-0.932504\pi
−0.977603 + 0.210459i 0.932504π0.932504\pi
164164 1.66291 0.129852
165165 4.00000 0.311400
166166 23.2447 1.80414
167167 21.7137 1.68026 0.840128 0.542388i 0.182480π-0.182480\pi
0.840128 + 0.542388i 0.182480π0.182480\pi
168168 2.67513 0.206391
169169 −11.1768 −0.859753
170170 −4.96239 −0.380598
171171 1.00000 0.0764719
172172 −1.11283 −0.0848528
173173 −7.27504 −0.553111 −0.276555 0.960998i 0.589193π-0.589193\pi
−0.276555 + 0.960998i 0.589193π0.589193\pi
174174 15.0435 1.14044
175175 3.57452 0.270208
176176 14.5745 1.09860
177177 −4.00000 −0.300658
178178 −12.7005 −0.951944
179179 15.8192 1.18239 0.591193 0.806530i 0.298657π-0.298657\pi
0.591193 + 0.806530i 0.298657π0.298657\pi
180180 0.231548 0.0172586
181181 24.7005 1.83598 0.917988 0.396609i 0.129813π-0.129813\pi
0.917988 + 0.396609i 0.129813π0.129813\pi
182182 −2.00000 −0.148250
183183 −11.9248 −0.881505
184184 24.8119 1.82916
185185 4.68594 0.344517
186186 8.49929 0.623198
187187 −9.40105 −0.687473
188188 −0.180763 −0.0131835
189189 1.00000 0.0727393
190190 −1.76845 −0.128297
191191 −15.9756 −1.15595 −0.577976 0.816054i 0.696157π-0.696157\pi
−0.577976 + 0.816054i 0.696157π0.696157\pi
192192 −7.08110 −0.511035
193193 −7.40105 −0.532739 −0.266370 0.963871i 0.585824π-0.585824\pi
−0.266370 + 0.963871i 0.585824π0.585824\pi
194194 −16.5139 −1.18563
195195 1.61213 0.115447
196196 0.193937 0.0138526
197197 13.3258 0.949426 0.474713 0.880141i 0.342552π-0.342552\pi
0.474713 + 0.880141i 0.342552π0.342552\pi
198198 4.96239 0.352662
199199 −2.91160 −0.206398 −0.103199 0.994661i 0.532908π-0.532908\pi
−0.103199 + 0.994661i 0.532908π0.532908\pi
200200 −9.56230 −0.676156
201201 8.31265 0.586329
202202 14.0811 0.990743
203203 −10.1563 −0.712834
204204 −0.544198 −0.0381015
205205 10.2374 0.715013
206206 7.62672 0.531378
207207 9.27504 0.644660
208208 5.87399 0.407288
209209 −3.35026 −0.231742
210210 −1.76845 −0.122035
211211 −5.14903 −0.354474 −0.177237 0.984168i 0.556716π-0.556716\pi
−0.177237 + 0.984168i 0.556716π0.556716\pi
212212 0.881286 0.0605270
213213 5.89446 0.403882
214214 16.3576 1.11818
215215 −6.85097 −0.467232
216216 −2.67513 −0.182020
217217 −5.73813 −0.389530
218218 8.20123 0.555457
219219 3.61213 0.244085
220220 −0.775746 −0.0523008
221221 −3.78892 −0.254870
222222 5.81336 0.390167
223223 −2.88717 −0.193339 −0.0966695 0.995317i 0.530819π-0.530819\pi
−0.0966695 + 0.995317i 0.530819π0.530819\pi
224224 −1.09332 −0.0730506
225225 −3.57452 −0.238301
226226 8.43278 0.560940
227227 15.7889 1.04795 0.523974 0.851734i 0.324449π-0.324449\pi
0.523974 + 0.851734i 0.324449π0.324449\pi
228228 −0.193937 −0.0128438
229229 21.3865 1.41326 0.706628 0.707585i 0.250215π-0.250215\pi
0.706628 + 0.707585i 0.250215π0.250215\pi
230230 −16.4025 −1.08155
231231 −3.35026 −0.220431
232232 27.1695 1.78376
233233 9.01317 0.590473 0.295236 0.955424i 0.404602π-0.404602\pi
0.295236 + 0.955424i 0.404602π0.404602\pi
234234 2.00000 0.130744
235235 −1.11283 −0.0725933
236236 0.775746 0.0504968
237237 −8.62530 −0.560273
238238 4.15633 0.269415
239239 −12.4387 −0.804590 −0.402295 0.915510i 0.631787π-0.631787\pi
−0.402295 + 0.915510i 0.631787π0.631787\pi
240240 5.19394 0.335267
241241 11.1490 0.718172 0.359086 0.933304i 0.383088π-0.383088\pi
0.359086 + 0.933304i 0.383088π0.383088\pi
242242 −0.332163 −0.0213523
243243 −1.00000 −0.0641500
244244 2.31265 0.148052
245245 1.19394 0.0762778
246246 12.7005 0.809756
247247 −1.35026 −0.0859151
248248 15.3503 0.974743
249249 15.6932 0.994518
250250 15.1636 0.959031
251251 −12.9321 −0.816265 −0.408133 0.912923i 0.633820π-0.633820\pi
−0.408133 + 0.912923i 0.633820π0.633820\pi
252252 −0.193937 −0.0122169
253253 −31.0738 −1.95359
254254 −19.1636 −1.20243
255255 −3.35026 −0.209802
256256 4.61213 0.288258
257257 5.03761 0.314238 0.157119 0.987580i 0.449779π-0.449779\pi
0.157119 + 0.987580i 0.449779π0.449779\pi
258258 −8.49929 −0.529143
259259 −3.92478 −0.243874
260260 −0.312650 −0.0193898
261261 10.1563 0.628661
262262 −30.3185 −1.87309
263263 10.2619 0.632774 0.316387 0.948630i 0.397530π-0.397530\pi
0.316387 + 0.948630i 0.397530π0.397530\pi
264264 8.96239 0.551597
265265 5.42548 0.333285
266266 1.48119 0.0908178
267267 −8.57452 −0.524752
268268 −1.61213 −0.0984763
269269 2.96239 0.180620 0.0903100 0.995914i 0.471214π-0.471214\pi
0.0903100 + 0.995914i 0.471214π0.471214\pi
270270 1.76845 0.107625
271271 −17.7743 −1.07971 −0.539857 0.841757i 0.681522π-0.681522\pi
−0.539857 + 0.841757i 0.681522π0.681522\pi
272272 −12.2071 −0.740165
273273 −1.35026 −0.0817216
274274 −19.9610 −1.20589
275275 11.9756 0.722154
276276 −1.79877 −0.108273
277277 −15.7988 −0.949256 −0.474628 0.880186i 0.657417π-0.657417\pi
−0.474628 + 0.880186i 0.657417π0.657417\pi
278278 −22.2374 −1.33371
279279 5.73813 0.343533
280280 −3.19394 −0.190874
281281 −1.31994 −0.0787413 −0.0393706 0.999225i 0.512535π-0.512535\pi
−0.0393706 + 0.999225i 0.512535π0.512535\pi
282282 −1.38058 −0.0822123
283283 6.23743 0.370777 0.185388 0.982665i 0.440646π-0.440646\pi
0.185388 + 0.982665i 0.440646π0.440646\pi
284284 −1.14315 −0.0678336
285285 −1.19394 −0.0707227
286286 −6.70052 −0.396210
287287 −8.57452 −0.506138
288288 1.09332 0.0644246
289289 −9.12601 −0.536824
290290 −17.9610 −1.05470
291291 −11.1490 −0.653568
292292 −0.700523 −0.0409950
293293 −11.4255 −0.667484 −0.333742 0.942664i 0.608311π-0.608311\pi
−0.333742 + 0.942664i 0.608311π0.608311\pi
294294 1.48119 0.0863850
295295 4.77575 0.278055
296296 10.4993 0.610259
297297 3.35026 0.194402
298298 12.9770 0.751736
299299 −12.5237 −0.724266
300300 0.693229 0.0400236
301301 5.73813 0.330741
302302 15.1636 0.872568
303303 9.50659 0.546139
304304 −4.35026 −0.249505
305305 14.2374 0.815233
306306 −4.15633 −0.237601
307307 3.41090 0.194670 0.0973351 0.995252i 0.468968π-0.468968\pi
0.0973351 + 0.995252i 0.468968π0.468968\pi
308308 0.649738 0.0370223
309309 5.14903 0.292918
310310 −10.1476 −0.576346
311311 −16.5296 −0.937308 −0.468654 0.883382i 0.655261π-0.655261\pi
−0.468654 + 0.883382i 0.655261π0.655261\pi
312312 3.61213 0.204496
313313 −18.6253 −1.05276 −0.526382 0.850248i 0.676452π-0.676452\pi
−0.526382 + 0.850248i 0.676452π0.676452\pi
314314 16.8872 0.952998
315315 −1.19394 −0.0672707
316316 1.67276 0.0941002
317317 −25.9452 −1.45723 −0.728615 0.684923i 0.759836π-0.759836\pi
−0.728615 + 0.684923i 0.759836π0.759836\pi
318318 6.73084 0.377447
319319 −34.0263 −1.90511
320320 8.45439 0.472615
321321 11.0435 0.616388
322322 13.7381 0.765596
323323 2.80606 0.156134
324324 0.193937 0.0107743
325325 4.82653 0.267728
326326 36.9741 2.04781
327327 5.53690 0.306191
328328 22.9380 1.26654
329329 0.932071 0.0513868
330330 −5.92478 −0.326148
331331 −32.7875 −1.80216 −0.901082 0.433648i 0.857226π-0.857226\pi
−0.901082 + 0.433648i 0.857226π0.857226\pi
332332 −3.04349 −0.167033
333333 3.92478 0.215076
334334 −32.1622 −1.75984
335335 −9.92478 −0.542249
336336 −4.35026 −0.237326
337337 −11.0884 −0.604023 −0.302012 0.953304i 0.597658π-0.597658\pi
−0.302012 + 0.953304i 0.597658π0.597658\pi
338338 16.5550 0.900473
339339 5.69323 0.309214
340340 0.649738 0.0352370
341341 −19.2243 −1.04105
342342 −1.48119 −0.0800938
343343 −1.00000 −0.0539949
344344 −15.3503 −0.827631
345345 −11.0738 −0.596194
346346 10.7757 0.579308
347347 −4.58910 −0.246356 −0.123178 0.992385i 0.539309π-0.539309\pi
−0.123178 + 0.992385i 0.539309π0.539309\pi
348348 −1.96968 −0.105586
349349 21.3258 1.14155 0.570773 0.821108i 0.306644π-0.306644\pi
0.570773 + 0.821108i 0.306644π0.306644\pi
350350 −5.29455 −0.283006
351351 1.35026 0.0720716
352352 −3.66291 −0.195234
353353 16.9829 0.903906 0.451953 0.892042i 0.350727π-0.350727\pi
0.451953 + 0.892042i 0.350727π0.350727\pi
354354 5.92478 0.314898
355355 −7.03761 −0.373518
356356 1.66291 0.0881342
357357 2.80606 0.148513
358358 −23.4314 −1.23839
359359 −9.02302 −0.476217 −0.238108 0.971239i 0.576527π-0.576527\pi
−0.238108 + 0.971239i 0.576527π0.576527\pi
360360 3.19394 0.168335
361361 1.00000 0.0526316
362362 −36.5863 −1.92293
363363 −0.224254 −0.0117703
364364 0.261865 0.0137255
365365 −4.31265 −0.225734
366366 17.6629 0.923255
367367 22.0870 1.15293 0.576466 0.817121i 0.304432π-0.304432\pi
0.576466 + 0.817121i 0.304432π0.304432\pi
368368 −40.3488 −2.10333
369369 8.57452 0.446371
370370 −6.94078 −0.360834
371371 −4.54420 −0.235923
372372 −1.11283 −0.0576978
373373 −3.55149 −0.183889 −0.0919447 0.995764i 0.529308π-0.529308\pi
−0.0919447 + 0.995764i 0.529308π0.529308\pi
374374 13.9248 0.720033
375375 10.2374 0.528658
376376 −2.49341 −0.128588
377377 −13.7137 −0.706291
378378 −1.48119 −0.0761844
379379 −2.38787 −0.122657 −0.0613284 0.998118i 0.519534π-0.519534\pi
−0.0613284 + 0.998118i 0.519534π0.519534\pi
380380 0.231548 0.0118782
381381 −12.9380 −0.662831
382382 23.6629 1.21070
383383 7.01317 0.358356 0.179178 0.983817i 0.442656π-0.442656\pi
0.179178 + 0.983817i 0.442656π0.442656\pi
384384 12.6751 0.646825
385385 4.00000 0.203859
386386 10.9624 0.557971
387387 −5.73813 −0.291686
388388 2.16220 0.109769
389389 1.16362 0.0589978 0.0294989 0.999565i 0.490609π-0.490609\pi
0.0294989 + 0.999565i 0.490609π0.490609\pi
390390 −2.38787 −0.120915
391391 26.0263 1.31621
392392 2.67513 0.135115
393393 −20.4690 −1.03252
394394 −19.7381 −0.994393
395395 10.2981 0.518152
396396 −0.649738 −0.0326506
397397 −3.67276 −0.184331 −0.0921653 0.995744i 0.529379π-0.529379\pi
−0.0921653 + 0.995744i 0.529379π0.529379\pi
398398 4.31265 0.216174
399399 1.00000 0.0500626
400400 15.5501 0.777504
401401 3.76845 0.188188 0.0940938 0.995563i 0.470005π-0.470005\pi
0.0940938 + 0.995563i 0.470005π0.470005\pi
402402 −12.3127 −0.614099
403403 −7.74798 −0.385955
404404 −1.84367 −0.0917263
405405 1.19394 0.0593272
406406 15.0435 0.746596
407407 −13.1490 −0.651773
408408 −7.50659 −0.371631
409409 −4.42407 −0.218756 −0.109378 0.994000i 0.534886π-0.534886\pi
−0.109378 + 0.994000i 0.534886π0.534886\pi
410410 −15.1636 −0.748878
411411 −13.4763 −0.664735
412412 −0.998585 −0.0491968
413413 −4.00000 −0.196827
414414 −13.7381 −0.675192
415415 −18.7367 −0.919749
416416 −1.47627 −0.0723801
417417 −15.0132 −0.735198
418418 4.96239 0.242718
419419 39.8554 1.94707 0.973533 0.228548i 0.0733977π-0.0733977\pi
0.973533 + 0.228548i 0.0733977π0.0733977\pi
420420 0.231548 0.0112984
421421 7.08840 0.345467 0.172734 0.984969i 0.444740π-0.444740\pi
0.172734 + 0.984969i 0.444740π0.444740\pi
422422 7.62672 0.371263
423423 −0.932071 −0.0453189
424424 12.1563 0.590363
425425 −10.0303 −0.486542
426426 −8.73084 −0.423011
427427 −11.9248 −0.577080
428428 −2.14174 −0.103525
429429 −4.52373 −0.218408
430430 10.1476 0.489362
431431 35.8799 1.72827 0.864136 0.503258i 0.167865π-0.167865\pi
0.864136 + 0.503258i 0.167865π0.167865\pi
432432 4.35026 0.209302
433433 −26.6253 −1.27953 −0.639765 0.768570i 0.720968π-0.720968\pi
−0.639765 + 0.768570i 0.720968π0.720968\pi
434434 8.49929 0.407979
435435 −12.1260 −0.581398
436436 −1.07381 −0.0514261
437437 9.27504 0.443685
438438 −5.35026 −0.255645
439439 −1.21440 −0.0579604 −0.0289802 0.999580i 0.509226π-0.509226\pi
−0.0289802 + 0.999580i 0.509226π0.509226\pi
440440 −10.7005 −0.510127
441441 1.00000 0.0476190
442442 5.61213 0.266942
443443 −7.81336 −0.371224 −0.185612 0.982623i 0.559427π-0.559427\pi
−0.185612 + 0.982623i 0.559427π0.559427\pi
444444 −0.761158 −0.0361230
445445 10.2374 0.485301
446446 4.27645 0.202496
447447 8.76116 0.414389
448448 −7.08110 −0.334551
449449 12.1417 0.573004 0.286502 0.958080i 0.407507π-0.407507\pi
0.286502 + 0.958080i 0.407507π0.407507\pi
450450 5.29455 0.249588
451451 −28.7269 −1.35270
452452 −1.10413 −0.0519337
453453 10.2374 0.480996
454454 −23.3865 −1.09758
455455 1.61213 0.0755777
456456 −2.67513 −0.125274
457457 39.3766 1.84196 0.920980 0.389610i 0.127390π-0.127390\pi
0.920980 + 0.389610i 0.127390π0.127390\pi
458458 −31.6775 −1.48019
459459 −2.80606 −0.130976
460460 2.14762 0.100133
461461 0.670206 0.0312146 0.0156073 0.999878i 0.495032π-0.495032\pi
0.0156073 + 0.999878i 0.495032π0.495032\pi
462462 4.96239 0.230871
463463 22.0263 1.02365 0.511826 0.859089i 0.328969π-0.328969\pi
0.511826 + 0.859089i 0.328969π0.328969\pi
464464 −44.1827 −2.05113
465465 −6.85097 −0.317706
466466 −13.3503 −0.618439
467467 −3.90431 −0.180670 −0.0903349 0.995911i 0.528794π-0.528794\pi
−0.0903349 + 0.995911i 0.528794π0.528794\pi
468468 −0.261865 −0.0121047
469469 8.31265 0.383843
470470 1.64832 0.0760315
471471 11.4010 0.525333
472472 10.7005 0.492532
473473 19.2243 0.883932
474474 12.7757 0.586809
475475 −3.57452 −0.164010
476476 −0.544198 −0.0249433
477477 4.54420 0.208065
478478 18.4241 0.842697
479479 31.3806 1.43382 0.716908 0.697168i 0.245557π-0.245557\pi
0.716908 + 0.697168i 0.245557π0.245557\pi
480480 −1.30536 −0.0595811
481481 −5.29948 −0.241635
482482 −16.5139 −0.752187
483483 9.27504 0.422029
484484 0.0434910 0.00197686
485485 13.3112 0.604432
486486 1.48119 0.0671883
487487 −5.55149 −0.251562 −0.125781 0.992058i 0.540144π-0.540144\pi
−0.125781 + 0.992058i 0.540144π0.540144\pi
488488 31.9003 1.44406
489489 24.9624 1.12884
490490 −1.76845 −0.0798905
491491 14.5139 0.655002 0.327501 0.944851i 0.393793π-0.393793\pi
0.327501 + 0.944851i 0.393793π0.393793\pi
492492 −1.66291 −0.0749699
493493 28.4993 1.28354
494494 2.00000 0.0899843
495495 −4.00000 −0.179787
496496 −24.9624 −1.12084
497497 5.89446 0.264403
498498 −23.2447 −1.04162
499499 33.7743 1.51195 0.755973 0.654602i 0.227164π-0.227164\pi
0.755973 + 0.654602i 0.227164π0.227164\pi
500500 −1.98541 −0.0887903
501501 −21.7137 −0.970096
502502 19.1549 0.854925
503503 −7.23013 −0.322376 −0.161188 0.986924i 0.551533π-0.551533\pi
−0.161188 + 0.986924i 0.551533π0.551533\pi
504504 −2.67513 −0.119160
505505 −11.3503 −0.505080
506506 46.0263 2.04612
507507 11.1768 0.496379
508508 2.50914 0.111325
509509 −35.0640 −1.55418 −0.777091 0.629388i 0.783306π-0.783306\pi
−0.777091 + 0.629388i 0.783306π0.783306\pi
510510 4.96239 0.219738
511511 3.61213 0.159791
512512 18.5188 0.818423
513513 −1.00000 −0.0441511
514514 −7.46168 −0.329121
515515 −6.14762 −0.270896
516516 1.11283 0.0489898
517517 3.12268 0.137335
518518 5.81336 0.255424
519519 7.27504 0.319339
520520 −4.31265 −0.189122
521521 5.28963 0.231743 0.115871 0.993264i 0.463034π-0.463034\pi
0.115871 + 0.993264i 0.463034π0.463034\pi
522522 −15.0435 −0.658436
523523 −20.3371 −0.889279 −0.444639 0.895710i 0.646668π-0.646668\pi
−0.444639 + 0.895710i 0.646668π0.646668\pi
524524 3.96968 0.173416
525525 −3.57452 −0.156005
526526 −15.1998 −0.662743
527527 16.1016 0.701395
528528 −14.5745 −0.634274
529529 63.0263 2.74028
530530 −8.03620 −0.349070
531531 4.00000 0.173585
532532 −0.193937 −0.00840822
533533 −11.5778 −0.501492
534534 12.7005 0.549605
535535 −13.1852 −0.570047
536536 −22.2374 −0.960511
537537 −15.8192 −0.682650
538538 −4.38787 −0.189175
539539 −3.35026 −0.144306
540540 −0.231548 −0.00996424
541541 8.29806 0.356762 0.178381 0.983962i 0.442914π-0.442914\pi
0.178381 + 0.983962i 0.442914π0.442914\pi
542542 26.3272 1.13085
543543 −24.7005 −1.06000
544544 3.06793 0.131536
545545 −6.61071 −0.283172
546546 2.00000 0.0855921
547547 −10.4485 −0.446746 −0.223373 0.974733i 0.571707π-0.571707\pi
−0.223373 + 0.974733i 0.571707π0.571707\pi
548548 2.61354 0.111645
549549 11.9248 0.508937
550550 −17.7381 −0.756357
551551 10.1563 0.432674
552552 −24.8119 −1.05607
553553 −8.62530 −0.366785
554554 23.4010 0.994215
555555 −4.68594 −0.198907
556556 2.91160 0.123479
557557 23.3112 0.987729 0.493864 0.869539i 0.335584π-0.335584\pi
0.493864 + 0.869539i 0.335584π0.335584\pi
558558 −8.49929 −0.359804
559559 7.74798 0.327705
560560 5.19394 0.219484
561561 9.40105 0.396913
562562 1.95509 0.0824707
563563 24.4631 1.03100 0.515498 0.856891i 0.327607π-0.327607\pi
0.515498 + 0.856891i 0.327607π0.327607\pi
564564 0.180763 0.00761148
565565 −6.79735 −0.285967
566566 −9.23884 −0.388338
567567 −1.00000 −0.0419961
568568 −15.7685 −0.661630
569569 −31.3463 −1.31410 −0.657052 0.753845i 0.728197π-0.728197\pi
−0.657052 + 0.753845i 0.728197π0.728197\pi
570570 1.76845 0.0740723
571571 −12.2520 −0.512731 −0.256365 0.966580i 0.582525π-0.582525\pi
−0.256365 + 0.966580i 0.582525π0.582525\pi
572572 0.877317 0.0366825
573573 15.9756 0.667389
574574 12.7005 0.530110
575575 −33.1538 −1.38261
576576 7.08110 0.295046
577577 5.07381 0.211225 0.105613 0.994407i 0.466320π-0.466320\pi
0.105613 + 0.994407i 0.466320π0.466320\pi
578578 13.5174 0.562249
579579 7.40105 0.307577
580580 2.35168 0.0976480
581581 15.6932 0.651065
582582 16.5139 0.684522
583583 −15.2243 −0.630524
584584 −9.66291 −0.399854
585585 −1.61213 −0.0666532
586586 16.9234 0.699098
587587 −1.82909 −0.0754945 −0.0377472 0.999287i 0.512018π-0.512018\pi
−0.0377472 + 0.999287i 0.512018π0.512018\pi
588588 −0.193937 −0.00799781
589589 5.73813 0.236436
590590 −7.07381 −0.291224
591591 −13.3258 −0.548151
592592 −17.0738 −0.701729
593593 −16.5804 −0.680875 −0.340438 0.940267i 0.610575π-0.610575\pi
−0.340438 + 0.940267i 0.610575π0.610575\pi
594594 −4.96239 −0.203609
595595 −3.35026 −0.137347
596596 −1.69911 −0.0695982
597597 2.91160 0.119164
598598 18.5501 0.758569
599599 24.3430 0.994627 0.497313 0.867571i 0.334320π-0.334320\pi
0.497313 + 0.867571i 0.334320π0.334320\pi
600600 9.56230 0.390379
601601 20.9525 0.854672 0.427336 0.904093i 0.359452π-0.359452\pi
0.427336 + 0.904093i 0.359452π0.359452\pi
602602 −8.49929 −0.346405
603603 −8.31265 −0.338517
604604 −1.98541 −0.0807853
605605 0.267745 0.0108854
606606 −14.0811 −0.572006
607607 −2.85097 −0.115717 −0.0578586 0.998325i 0.518427π-0.518427\pi
−0.0578586 + 0.998325i 0.518427π0.518427\pi
608608 1.09332 0.0443400
609609 10.1563 0.411555
610610 −21.0884 −0.853844
611611 1.25854 0.0509151
612612 0.544198 0.0219979
613613 −15.7988 −0.638106 −0.319053 0.947737i 0.603365π-0.603365\pi
−0.319053 + 0.947737i 0.603365π0.603365\pi
614614 −5.05220 −0.203890
615615 −10.2374 −0.412813
616616 8.96239 0.361105
617617 −22.6253 −0.910860 −0.455430 0.890272i 0.650515π-0.650515\pi
−0.455430 + 0.890272i 0.650515π0.650515\pi
618618 −7.62672 −0.306791
619619 −35.4880 −1.42638 −0.713192 0.700969i 0.752751π-0.752751\pi
−0.713192 + 0.700969i 0.752751π0.752751\pi
620620 1.32865 0.0533600
621621 −9.27504 −0.372194
622622 24.4836 0.981701
623623 −8.57452 −0.343531
624624 −5.87399 −0.235148
625625 5.64974 0.225990
626626 27.5877 1.10263
627627 3.35026 0.133797
628628 −2.21108 −0.0882317
629629 11.0132 0.439124
630630 1.76845 0.0704568
631631 −3.03761 −0.120925 −0.0604627 0.998170i 0.519258π-0.519258\pi
−0.0604627 + 0.998170i 0.519258π0.519258\pi
632632 23.0738 0.917827
633633 5.14903 0.204656
634634 38.4299 1.52625
635635 15.4471 0.612999
636636 −0.881286 −0.0349453
637637 −1.35026 −0.0534993
638638 50.3996 1.99534
639639 −5.89446 −0.233181
640640 −15.1333 −0.598196
641641 −32.5560 −1.28588 −0.642942 0.765915i 0.722286π-0.722286\pi
−0.642942 + 0.765915i 0.722286π0.722286\pi
642642 −16.3576 −0.645581
643643 −30.8627 −1.21711 −0.608554 0.793513i 0.708250π-0.708250\pi
−0.608554 + 0.793513i 0.708250π0.708250\pi
644644 −1.79877 −0.0708814
645645 6.85097 0.269757
646646 −4.15633 −0.163528
647647 13.5164 0.531386 0.265693 0.964058i 0.414399π-0.414399\pi
0.265693 + 0.964058i 0.414399π0.414399\pi
648648 2.67513 0.105089
649649 −13.4010 −0.526037
650650 −7.14903 −0.280408
651651 5.73813 0.224895
652652 −4.84112 −0.189593
653653 6.00000 0.234798 0.117399 0.993085i 0.462544π-0.462544\pi
0.117399 + 0.993085i 0.462544π0.462544\pi
654654 −8.20123 −0.320694
655655 24.4387 0.954897
656656 −37.3014 −1.45637
657657 −3.61213 −0.140922
658658 −1.38058 −0.0538206
659659 −0.0303172 −0.00118099 −0.000590495 1.00000i 0.500188π-0.500188\pi
−0.000590495 1.00000i 0.500188π0.500188\pi
660660 0.775746 0.0301959
661661 −49.0494 −1.90780 −0.953900 0.300126i 0.902971π-0.902971\pi
−0.953900 + 0.300126i 0.902971π0.902971\pi
662662 48.5647 1.88752
663663 3.78892 0.147149
664664 −41.9814 −1.62920
665665 −1.19394 −0.0462989
666666 −5.81336 −0.225263
667667 94.2003 3.64745
668668 4.21108 0.162932
669669 2.88717 0.111624
670670 14.7005 0.567931
671671 −39.9511 −1.54230
672672 1.09332 0.0421758
673673 1.10299 0.0425169 0.0212585 0.999774i 0.493233π-0.493233\pi
0.0212585 + 0.999774i 0.493233π0.493233\pi
674674 16.4241 0.632632
675675 3.57452 0.137583
676676 −2.16759 −0.0833688
677677 −1.81336 −0.0696930 −0.0348465 0.999393i 0.511094π-0.511094\pi
−0.0348465 + 0.999393i 0.511094π0.511094\pi
678678 −8.43278 −0.323859
679679 −11.1490 −0.427861
680680 8.96239 0.343692
681681 −15.7889 −0.605033
682682 28.4749 1.09036
683683 −24.8061 −0.949178 −0.474589 0.880208i 0.657403π-0.657403\pi
−0.474589 + 0.880208i 0.657403π0.657403\pi
684684 0.193937 0.00741535
685685 16.0898 0.614760
686686 1.48119 0.0565523
687687 −21.3865 −0.815944
688688 24.9624 0.951682
689689 −6.13586 −0.233758
690690 16.4025 0.624431
691691 13.7743 0.524000 0.262000 0.965068i 0.415618π-0.415618\pi
0.262000 + 0.965068i 0.415618π0.415618\pi
692692 −1.41090 −0.0536342
693693 3.35026 0.127266
694694 6.79735 0.258024
695695 17.9248 0.679926
696696 −27.1695 −1.02986
697697 24.0606 0.911362
698698 −31.5877 −1.19561
699699 −9.01317 −0.340910
700700 0.693229 0.0262016
701701 32.5501 1.22940 0.614700 0.788761i 0.289277π-0.289277\pi
0.614700 + 0.788761i 0.289277π0.289277\pi
702702 −2.00000 −0.0754851
703703 3.92478 0.148026
704704 −23.7235 −0.894115
705705 1.11283 0.0419118
706706 −25.1549 −0.946718
707707 9.50659 0.357532
708708 −0.775746 −0.0291543
709709 −40.0508 −1.50414 −0.752069 0.659084i 0.770944π-0.770944\pi
−0.752069 + 0.659084i 0.770944π0.770944\pi
710710 10.4241 0.391208
711711 8.62530 0.323474
712712 22.9380 0.859636
713713 53.2214 1.99316
714714 −4.15633 −0.155547
715715 5.40105 0.201988
716716 3.06793 0.114654
717717 12.4387 0.464530
718718 13.3649 0.498772
719719 4.93207 0.183935 0.0919676 0.995762i 0.470684π-0.470684\pi
0.0919676 + 0.995762i 0.470684π0.470684\pi
720720 −5.19394 −0.193567
721721 5.14903 0.191760
722722 −1.48119 −0.0551243
723723 −11.1490 −0.414637
724724 4.79033 0.178031
725725 −36.3039 −1.34829
726726 0.332163 0.0123277
727727 −16.7757 −0.622178 −0.311089 0.950381i 0.600694π-0.600694\pi
−0.311089 + 0.950381i 0.600694π0.600694\pi
728728 3.61213 0.133874
729729 1.00000 0.0370370
730730 6.38787 0.236426
731731 −16.1016 −0.595538
732732 −2.31265 −0.0854780
733733 −40.8627 −1.50930 −0.754650 0.656128i 0.772193π-0.772193\pi
−0.754650 + 0.656128i 0.772193π0.772193\pi
734734 −32.7151 −1.20754
735735 −1.19394 −0.0440390
736736 10.1406 0.373787
737737 27.8496 1.02585
738738 −12.7005 −0.467513
739739 −25.5877 −0.941258 −0.470629 0.882331i 0.655973π-0.655973\pi
−0.470629 + 0.882331i 0.655973π0.655973\pi
740740 0.908774 0.0334072
741741 1.35026 0.0496031
742742 6.73084 0.247097
743743 33.9062 1.24390 0.621949 0.783058i 0.286341π-0.286341\pi
0.621949 + 0.783058i 0.286341π0.286341\pi
744744 −15.3503 −0.562768
745745 −10.4603 −0.383235
746746 5.26045 0.192599
747747 −15.6932 −0.574185
748748 −1.82321 −0.0666630
749749 11.0435 0.403520
750750 −15.1636 −0.553697
751751 38.7123 1.41263 0.706316 0.707897i 0.250356π-0.250356\pi
0.706316 + 0.707897i 0.250356π0.250356\pi
752752 4.05475 0.147862
753753 12.9321 0.471271
754754 20.3127 0.739743
755755 −12.2228 −0.444835
756756 0.193937 0.00705340
757757 −4.59895 −0.167152 −0.0835759 0.996501i 0.526634π-0.526634\pi
−0.0835759 + 0.996501i 0.526634π0.526634\pi
758758 3.53690 0.128466
759759 31.0738 1.12791
760760 3.19394 0.115856
761761 47.0698 1.70628 0.853140 0.521682i 0.174695π-0.174695\pi
0.853140 + 0.521682i 0.174695π0.174695\pi
762762 19.1636 0.694225
763763 5.53690 0.200449
764764 −3.09825 −0.112091
765765 3.35026 0.121129
766766 −10.3879 −0.375329
767767 −5.40105 −0.195021
768768 −4.61213 −0.166426
769769 11.4010 0.411132 0.205566 0.978643i 0.434096π-0.434096\pi
0.205566 + 0.978643i 0.434096π0.434096\pi
770770 −5.92478 −0.213514
771771 −5.03761 −0.181425
772772 −1.43533 −0.0516588
773773 −30.6497 −1.10239 −0.551197 0.834375i 0.685829π-0.685829\pi
−0.551197 + 0.834375i 0.685829π0.685829\pi
774774 8.49929 0.305501
775775 −20.5111 −0.736779
776776 29.8251 1.07066
777777 3.92478 0.140801
778778 −1.72355 −0.0617921
779779 8.57452 0.307214
780780 0.312650 0.0111947
781781 19.7480 0.706638
782782 −38.5501 −1.37855
783783 −10.1563 −0.362957
784784 −4.35026 −0.155366
785785 −13.6121 −0.485838
786786 30.3185 1.08143
787787 31.1392 1.10999 0.554996 0.831853i 0.312720π-0.312720\pi
0.554996 + 0.831853i 0.312720π0.312720\pi
788788 2.58436 0.0920642
789789 −10.2619 −0.365332
790790 −15.2534 −0.542693
791791 5.69323 0.202428
792792 −8.96239 −0.318465
793793 −16.1016 −0.571784
794794 5.44007 0.193061
795795 −5.42548 −0.192422
796796 −0.564666 −0.0200141
797797 −19.7988 −0.701308 −0.350654 0.936505i 0.614041π-0.614041\pi
−0.350654 + 0.936505i 0.614041π0.614041\pi
798798 −1.48119 −0.0524337
799799 −2.61545 −0.0925280
800800 −3.90809 −0.138172
801801 8.57452 0.302966
802802 −5.58181 −0.197101
803803 12.1016 0.427055
804804 1.61213 0.0568553
805805 −11.0738 −0.390300
806806 11.4763 0.404234
807807 −2.96239 −0.104281
808808 −25.4314 −0.894672
809809 24.0752 0.846440 0.423220 0.906027i 0.360900π-0.360900\pi
0.423220 + 0.906027i 0.360900π0.360900\pi
810810 −1.76845 −0.0621371
811811 −39.4763 −1.38620 −0.693100 0.720842i 0.743755π-0.743755\pi
−0.693100 + 0.720842i 0.743755π0.743755\pi
812812 −1.96968 −0.0691223
813813 17.7743 0.623373
814814 19.4763 0.682643
815815 −29.8035 −1.04397
816816 12.2071 0.427334
817817 −5.73813 −0.200752
818818 6.55291 0.229117
819819 1.35026 0.0471820
820820 1.98541 0.0693336
821821 −35.9854 −1.25590 −0.627950 0.778254i 0.716106π-0.716106\pi
−0.627950 + 0.778254i 0.716106π0.716106\pi
822822 19.9610 0.696219
823823 −16.4387 −0.573016 −0.286508 0.958078i 0.592494π-0.592494\pi
−0.286508 + 0.958078i 0.592494π0.592494\pi
824824 −13.7743 −0.479852
825825 −11.9756 −0.416936
826826 5.92478 0.206149
827827 39.9814 1.39029 0.695145 0.718869i 0.255340π-0.255340\pi
0.695145 + 0.718869i 0.255340π0.255340\pi
828828 1.79877 0.0625116
829829 −43.3522 −1.50568 −0.752842 0.658202i 0.771317π-0.771317\pi
−0.752842 + 0.658202i 0.771317π0.771317\pi
830830 27.7527 0.963311
831831 15.7988 0.548053
832832 −9.56134 −0.331480
833833 2.80606 0.0972243
834834 22.2374 0.770019
835835 25.9248 0.897164
836836 −0.649738 −0.0224717
837837 −5.73813 −0.198339
838838 −59.0336 −2.03928
839839 −18.2981 −0.631719 −0.315860 0.948806i 0.602293π-0.602293\pi
−0.315860 + 0.948806i 0.602293π0.602293\pi
840840 3.19394 0.110201
841841 74.1509 2.55693
842842 −10.4993 −0.361830
843843 1.31994 0.0454613
844844 −0.998585 −0.0343727
845845 −13.3444 −0.459061
846846 1.38058 0.0474653
847847 −0.224254 −0.00770545
848848 −19.7685 −0.678851
849849 −6.23743 −0.214068
850850 14.8568 0.509586
851851 36.4025 1.24786
852852 1.14315 0.0391637
853853 −50.5764 −1.73170 −0.865852 0.500300i 0.833223π-0.833223\pi
−0.865852 + 0.500300i 0.833223π0.833223\pi
854854 17.6629 0.604412
855855 1.19394 0.0408318
856856 −29.5428 −1.00975
857857 −38.8726 −1.32786 −0.663931 0.747794i 0.731113π-0.731113\pi
−0.663931 + 0.747794i 0.731113π0.731113\pi
858858 6.70052 0.228752
859859 −53.5026 −1.82549 −0.912743 0.408535i 0.866040π-0.866040\pi
−0.912743 + 0.408535i 0.866040π0.866040\pi
860860 −1.32865 −0.0453067
861861 8.57452 0.292219
862862 −53.1451 −1.81013
863863 16.5950 0.564900 0.282450 0.959282i 0.408853π-0.408853\pi
0.282450 + 0.959282i 0.408853π0.408853\pi
864864 −1.09332 −0.0371955
865865 −8.68594 −0.295331
866866 39.4372 1.34013
867867 9.12601 0.309935
868868 −1.11283 −0.0377721
869869 −28.8970 −0.980264
870870 17.9610 0.608934
871871 11.2243 0.380319
872872 −14.8119 −0.501596
873873 11.1490 0.377338
874874 −13.7381 −0.464699
875875 10.2374 0.346088
876876 0.700523 0.0236685
877877 −22.7757 −0.769082 −0.384541 0.923108i 0.625640π-0.625640\pi
−0.384541 + 0.923108i 0.625640π0.625640\pi
878878 1.79877 0.0607055
879879 11.4255 0.385372
880880 17.4010 0.586589
881881 −13.3444 −0.449584 −0.224792 0.974407i 0.572170π-0.572170\pi
−0.224792 + 0.974407i 0.572170π0.572170\pi
882882 −1.48119 −0.0498744
883883 −19.4471 −0.654447 −0.327223 0.944947i 0.606113π-0.606113\pi
−0.327223 + 0.944947i 0.606113π0.606113\pi
884884 −0.734810 −0.0247143
885885 −4.77575 −0.160535
886886 11.5731 0.388806
887887 −26.8627 −0.901962 −0.450981 0.892534i 0.648926π-0.648926\pi
−0.450981 + 0.892534i 0.648926π0.648926\pi
888888 −10.4993 −0.352333
889889 −12.9380 −0.433925
890890 −15.1636 −0.508286
891891 −3.35026 −0.112238
892892 −0.559927 −0.0187477
893893 −0.932071 −0.0311906
894894 −12.9770 −0.434015
895895 18.8872 0.631328
896896 12.6751 0.423446
897897 12.5237 0.418155
898898 −17.9843 −0.600143
899899 58.2784 1.94369
900900 −0.693229 −0.0231076
901901 12.7513 0.424808
902902 42.5501 1.41676
903903 −5.73813 −0.190953
904904 −15.2301 −0.506547
905905 29.4909 0.980309
906906 −15.1636 −0.503778
907907 33.8759 1.12483 0.562415 0.826855i 0.309872π-0.309872\pi
0.562415 + 0.826855i 0.309872π0.309872\pi
908908 3.06205 0.101618
909909 −9.50659 −0.315314
910910 −2.38787 −0.0791572
911911 −23.2546 −0.770458 −0.385229 0.922821i 0.625878π-0.625878\pi
−0.385229 + 0.922821i 0.625878π0.625878\pi
912912 4.35026 0.144052
913913 52.5764 1.74003
914914 −58.3244 −1.92920
915915 −14.2374 −0.470675
916916 4.14762 0.137041
917917 −20.4690 −0.675945
918918 4.15633 0.137179
919919 33.5515 1.10676 0.553381 0.832928i 0.313337π-0.313337\pi
0.553381 + 0.832928i 0.313337π0.313337\pi
920920 29.6239 0.976671
921921 −3.41090 −0.112393
922922 −0.992706 −0.0326930
923923 7.95906 0.261976
924924 −0.649738 −0.0213748
925925 −14.0292 −0.461276
926926 −32.6253 −1.07213
927927 −5.14903 −0.169116
928928 11.1041 0.364511
929929 26.2532 0.861338 0.430669 0.902510i 0.358278π-0.358278\pi
0.430669 + 0.902510i 0.358278π0.358278\pi
930930 10.1476 0.332753
931931 1.00000 0.0327737
932932 1.74798 0.0572571
933933 16.5296 0.541155
934934 5.78304 0.189227
935935 −11.2243 −0.367072
936936 −3.61213 −0.118066
937937 37.8496 1.23649 0.618246 0.785985i 0.287844π-0.287844\pi
0.618246 + 0.785985i 0.287844π0.287844\pi
938938 −12.3127 −0.402022
939939 18.6253 0.607814
940940 −0.215819 −0.00703925
941941 −36.4847 −1.18937 −0.594684 0.803960i 0.702723π-0.702723\pi
−0.594684 + 0.803960i 0.702723π0.702723\pi
942942 −16.8872 −0.550214
943943 79.5290 2.58982
944944 −17.4010 −0.566356
945945 1.19394 0.0388388
946946 −28.4749 −0.925797
947947 −47.1509 −1.53220 −0.766100 0.642722i 0.777805π-0.777805\pi
−0.766100 + 0.642722i 0.777805π0.777805\pi
948948 −1.67276 −0.0543288
949949 4.87732 0.158324
950950 5.29455 0.171778
951951 25.9452 0.841332
952952 −7.50659 −0.243290
953953 −19.6786 −0.637454 −0.318727 0.947847i 0.603255π-0.603255\pi
−0.318727 + 0.947847i 0.603255π0.603255\pi
954954 −6.73084 −0.217919
955955 −19.0738 −0.617214
956956 −2.41231 −0.0780197
957957 34.0263 1.09992
958958 −46.4807 −1.50172
959959 −13.4763 −0.435171
960960 −8.45439 −0.272864
961961 1.92619 0.0621352
962962 7.84955 0.253080
963963 −11.0435 −0.355872
964964 2.16220 0.0696399
965965 −8.83638 −0.284453
966966 −13.7381 −0.442017
967967 −53.1655 −1.70969 −0.854844 0.518885i 0.826347π-0.826347\pi
−0.854844 + 0.518885i 0.826347π0.826347\pi
968968 0.599908 0.0192818
969969 −2.80606 −0.0901437
970970 −19.7165 −0.633060
971971 −16.7269 −0.536791 −0.268395 0.963309i 0.586493π-0.586493\pi
−0.268395 + 0.963309i 0.586493π0.586493\pi
972972 −0.193937 −0.00622052
973973 −15.0132 −0.481300
974974 8.22284 0.263477
975975 −4.82653 −0.154573
976976 −51.8759 −1.66051
977977 −34.2579 −1.09601 −0.548004 0.836476i 0.684612π-0.684612\pi
−0.548004 + 0.836476i 0.684612π0.684612\pi
978978 −36.9741 −1.18230
979979 −28.7269 −0.918115
980980 0.231548 0.00739653
981981 −5.53690 −0.176780
982982 −21.4979 −0.686025
983983 26.2981 0.838778 0.419389 0.907807i 0.362244π-0.362244\pi
0.419389 + 0.907807i 0.362244π0.362244\pi
984984 −22.9380 −0.731235
985985 15.9102 0.506941
986986 −42.2130 −1.34434
987987 −0.932071 −0.0296682
988988 −0.261865 −0.00833104
989989 −53.2214 −1.69234
990990 5.92478 0.188302
991991 −32.7757 −1.04116 −0.520578 0.853814i 0.674283π-0.674283\pi
−0.520578 + 0.853814i 0.674283π0.674283\pi
992992 6.27362 0.199188
993993 32.7875 1.04048
994994 −8.73084 −0.276925
995995 −3.47627 −0.110205
996996 3.04349 0.0964367
997997 −52.0263 −1.64769 −0.823845 0.566814i 0.808176π-0.808176\pi
−0.823845 + 0.566814i 0.808176π0.808176\pi
998998 −50.0263 −1.58356
999999 −3.92478 −0.124174
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 399.2.a.d.1.1 3
3.2 odd 2 1197.2.a.l.1.3 3
4.3 odd 2 6384.2.a.bx.1.2 3
5.4 even 2 9975.2.a.z.1.3 3
7.6 odd 2 2793.2.a.x.1.1 3
19.18 odd 2 7581.2.a.n.1.3 3
21.20 even 2 8379.2.a.bp.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.a.d.1.1 3 1.1 even 1 trivial
1197.2.a.l.1.3 3 3.2 odd 2
2793.2.a.x.1.1 3 7.6 odd 2
6384.2.a.bx.1.2 3 4.3 odd 2
7581.2.a.n.1.3 3 19.18 odd 2
8379.2.a.bp.1.3 3 21.20 even 2
9975.2.a.z.1.3 3 5.4 even 2