Properties

Label 399.2.a.d.1.1
Level $399$
Weight $2$
Character 399.1
Self dual yes
Analytic conductor $3.186$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [399,2,Mod(1,399)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(399, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("399.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 399 = 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 399.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.18603104065\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.48119\) of defining polynomial
Character \(\chi\) \(=\) 399.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.48119 q^{2} -1.00000 q^{3} +0.193937 q^{4} +1.19394 q^{5} +1.48119 q^{6} -1.00000 q^{7} +2.67513 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.48119 q^{2} -1.00000 q^{3} +0.193937 q^{4} +1.19394 q^{5} +1.48119 q^{6} -1.00000 q^{7} +2.67513 q^{8} +1.00000 q^{9} -1.76845 q^{10} -3.35026 q^{11} -0.193937 q^{12} -1.35026 q^{13} +1.48119 q^{14} -1.19394 q^{15} -4.35026 q^{16} +2.80606 q^{17} -1.48119 q^{18} +1.00000 q^{19} +0.231548 q^{20} +1.00000 q^{21} +4.96239 q^{22} +9.27504 q^{23} -2.67513 q^{24} -3.57452 q^{25} +2.00000 q^{26} -1.00000 q^{27} -0.193937 q^{28} +10.1563 q^{29} +1.76845 q^{30} +5.73813 q^{31} +1.09332 q^{32} +3.35026 q^{33} -4.15633 q^{34} -1.19394 q^{35} +0.193937 q^{36} +3.92478 q^{37} -1.48119 q^{38} +1.35026 q^{39} +3.19394 q^{40} +8.57452 q^{41} -1.48119 q^{42} -5.73813 q^{43} -0.649738 q^{44} +1.19394 q^{45} -13.7381 q^{46} -0.932071 q^{47} +4.35026 q^{48} +1.00000 q^{49} +5.29455 q^{50} -2.80606 q^{51} -0.261865 q^{52} +4.54420 q^{53} +1.48119 q^{54} -4.00000 q^{55} -2.67513 q^{56} -1.00000 q^{57} -15.0435 q^{58} +4.00000 q^{59} -0.231548 q^{60} +11.9248 q^{61} -8.49929 q^{62} -1.00000 q^{63} +7.08110 q^{64} -1.61213 q^{65} -4.96239 q^{66} -8.31265 q^{67} +0.544198 q^{68} -9.27504 q^{69} +1.76845 q^{70} -5.89446 q^{71} +2.67513 q^{72} -3.61213 q^{73} -5.81336 q^{74} +3.57452 q^{75} +0.193937 q^{76} +3.35026 q^{77} -2.00000 q^{78} +8.62530 q^{79} -5.19394 q^{80} +1.00000 q^{81} -12.7005 q^{82} -15.6932 q^{83} +0.193937 q^{84} +3.35026 q^{85} +8.49929 q^{86} -10.1563 q^{87} -8.96239 q^{88} +8.57452 q^{89} -1.76845 q^{90} +1.35026 q^{91} +1.79877 q^{92} -5.73813 q^{93} +1.38058 q^{94} +1.19394 q^{95} -1.09332 q^{96} +11.1490 q^{97} -1.48119 q^{98} -3.35026 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{2} - 3 q^{3} + q^{4} + 4 q^{5} - q^{6} - 3 q^{7} + 3 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + q^{2} - 3 q^{3} + q^{4} + 4 q^{5} - q^{6} - 3 q^{7} + 3 q^{8} + 3 q^{9} + 6 q^{10} - q^{12} + 6 q^{13} - q^{14} - 4 q^{15} - 3 q^{16} + 8 q^{17} + q^{18} + 3 q^{19} + 12 q^{20} + 3 q^{21} + 4 q^{22} - 4 q^{23} - 3 q^{24} + q^{25} + 6 q^{26} - 3 q^{27} - q^{28} + 20 q^{29} - 6 q^{30} + 8 q^{31} - 3 q^{32} - 2 q^{34} - 4 q^{35} + q^{36} - 10 q^{37} + q^{38} - 6 q^{39} + 10 q^{40} + 14 q^{41} + q^{42} - 8 q^{43} - 12 q^{44} + 4 q^{45} - 32 q^{46} + 6 q^{47} + 3 q^{48} + 3 q^{49} + 23 q^{50} - 8 q^{51} - 10 q^{52} + 4 q^{53} - q^{54} - 12 q^{55} - 3 q^{56} - 3 q^{57} - 2 q^{58} + 12 q^{59} - 12 q^{60} + 14 q^{61} + 8 q^{62} - 3 q^{63} - 11 q^{64} - 4 q^{65} - 4 q^{66} - 4 q^{67} - 8 q^{68} + 4 q^{69} - 6 q^{70} + 2 q^{71} + 3 q^{72} - 10 q^{73} - 30 q^{74} - q^{75} + q^{76} - 6 q^{78} - 16 q^{79} - 16 q^{80} + 3 q^{81} - 18 q^{82} - 14 q^{83} + q^{84} - 8 q^{86} - 20 q^{87} - 16 q^{88} + 14 q^{89} + 6 q^{90} - 6 q^{91} - 8 q^{92} - 8 q^{93} - 8 q^{94} + 4 q^{95} + 3 q^{96} + 10 q^{97} + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.48119 −1.04736 −0.523681 0.851914i \(-0.675442\pi\)
−0.523681 + 0.851914i \(0.675442\pi\)
\(3\) −1.00000 −0.577350
\(4\) 0.193937 0.0969683
\(5\) 1.19394 0.533945 0.266972 0.963704i \(-0.413977\pi\)
0.266972 + 0.963704i \(0.413977\pi\)
\(6\) 1.48119 0.604695
\(7\) −1.00000 −0.377964
\(8\) 2.67513 0.945802
\(9\) 1.00000 0.333333
\(10\) −1.76845 −0.559234
\(11\) −3.35026 −1.01014 −0.505071 0.863078i \(-0.668534\pi\)
−0.505071 + 0.863078i \(0.668534\pi\)
\(12\) −0.193937 −0.0559847
\(13\) −1.35026 −0.374495 −0.187248 0.982313i \(-0.559957\pi\)
−0.187248 + 0.982313i \(0.559957\pi\)
\(14\) 1.48119 0.395866
\(15\) −1.19394 −0.308273
\(16\) −4.35026 −1.08757
\(17\) 2.80606 0.680570 0.340285 0.940322i \(-0.389476\pi\)
0.340285 + 0.940322i \(0.389476\pi\)
\(18\) −1.48119 −0.349121
\(19\) 1.00000 0.229416
\(20\) 0.231548 0.0517757
\(21\) 1.00000 0.218218
\(22\) 4.96239 1.05798
\(23\) 9.27504 1.93398 0.966990 0.254816i \(-0.0820148\pi\)
0.966990 + 0.254816i \(0.0820148\pi\)
\(24\) −2.67513 −0.546059
\(25\) −3.57452 −0.714903
\(26\) 2.00000 0.392232
\(27\) −1.00000 −0.192450
\(28\) −0.193937 −0.0366506
\(29\) 10.1563 1.88598 0.942991 0.332818i \(-0.107999\pi\)
0.942991 + 0.332818i \(0.107999\pi\)
\(30\) 1.76845 0.322874
\(31\) 5.73813 1.03060 0.515300 0.857010i \(-0.327681\pi\)
0.515300 + 0.857010i \(0.327681\pi\)
\(32\) 1.09332 0.193274
\(33\) 3.35026 0.583206
\(34\) −4.15633 −0.712804
\(35\) −1.19394 −0.201812
\(36\) 0.193937 0.0323228
\(37\) 3.92478 0.645229 0.322615 0.946530i \(-0.395438\pi\)
0.322615 + 0.946530i \(0.395438\pi\)
\(38\) −1.48119 −0.240281
\(39\) 1.35026 0.216215
\(40\) 3.19394 0.505006
\(41\) 8.57452 1.33911 0.669557 0.742761i \(-0.266484\pi\)
0.669557 + 0.742761i \(0.266484\pi\)
\(42\) −1.48119 −0.228553
\(43\) −5.73813 −0.875057 −0.437529 0.899204i \(-0.644146\pi\)
−0.437529 + 0.899204i \(0.644146\pi\)
\(44\) −0.649738 −0.0979517
\(45\) 1.19394 0.177982
\(46\) −13.7381 −2.02558
\(47\) −0.932071 −0.135957 −0.0679783 0.997687i \(-0.521655\pi\)
−0.0679783 + 0.997687i \(0.521655\pi\)
\(48\) 4.35026 0.627906
\(49\) 1.00000 0.142857
\(50\) 5.29455 0.748763
\(51\) −2.80606 −0.392927
\(52\) −0.261865 −0.0363142
\(53\) 4.54420 0.624194 0.312097 0.950050i \(-0.398969\pi\)
0.312097 + 0.950050i \(0.398969\pi\)
\(54\) 1.48119 0.201565
\(55\) −4.00000 −0.539360
\(56\) −2.67513 −0.357479
\(57\) −1.00000 −0.132453
\(58\) −15.0435 −1.97531
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) −0.231548 −0.0298927
\(61\) 11.9248 1.52681 0.763406 0.645919i \(-0.223526\pi\)
0.763406 + 0.645919i \(0.223526\pi\)
\(62\) −8.49929 −1.07941
\(63\) −1.00000 −0.125988
\(64\) 7.08110 0.885138
\(65\) −1.61213 −0.199960
\(66\) −4.96239 −0.610828
\(67\) −8.31265 −1.01555 −0.507776 0.861489i \(-0.669532\pi\)
−0.507776 + 0.861489i \(0.669532\pi\)
\(68\) 0.544198 0.0659937
\(69\) −9.27504 −1.11658
\(70\) 1.76845 0.211370
\(71\) −5.89446 −0.699544 −0.349772 0.936835i \(-0.613741\pi\)
−0.349772 + 0.936835i \(0.613741\pi\)
\(72\) 2.67513 0.315267
\(73\) −3.61213 −0.422767 −0.211384 0.977403i \(-0.567797\pi\)
−0.211384 + 0.977403i \(0.567797\pi\)
\(74\) −5.81336 −0.675789
\(75\) 3.57452 0.412749
\(76\) 0.193937 0.0222460
\(77\) 3.35026 0.381798
\(78\) −2.00000 −0.226455
\(79\) 8.62530 0.970422 0.485211 0.874397i \(-0.338743\pi\)
0.485211 + 0.874397i \(0.338743\pi\)
\(80\) −5.19394 −0.580700
\(81\) 1.00000 0.111111
\(82\) −12.7005 −1.40254
\(83\) −15.6932 −1.72256 −0.861278 0.508134i \(-0.830335\pi\)
−0.861278 + 0.508134i \(0.830335\pi\)
\(84\) 0.193937 0.0211602
\(85\) 3.35026 0.363387
\(86\) 8.49929 0.916502
\(87\) −10.1563 −1.08887
\(88\) −8.96239 −0.955394
\(89\) 8.57452 0.908897 0.454448 0.890773i \(-0.349836\pi\)
0.454448 + 0.890773i \(0.349836\pi\)
\(90\) −1.76845 −0.186411
\(91\) 1.35026 0.141546
\(92\) 1.79877 0.187535
\(93\) −5.73813 −0.595017
\(94\) 1.38058 0.142396
\(95\) 1.19394 0.122495
\(96\) −1.09332 −0.111587
\(97\) 11.1490 1.13201 0.566006 0.824401i \(-0.308488\pi\)
0.566006 + 0.824401i \(0.308488\pi\)
\(98\) −1.48119 −0.149623
\(99\) −3.35026 −0.336714
\(100\) −0.693229 −0.0693229
\(101\) −9.50659 −0.945941 −0.472970 0.881078i \(-0.656818\pi\)
−0.472970 + 0.881078i \(0.656818\pi\)
\(102\) 4.15633 0.411538
\(103\) −5.14903 −0.507349 −0.253675 0.967290i \(-0.581639\pi\)
−0.253675 + 0.967290i \(0.581639\pi\)
\(104\) −3.61213 −0.354198
\(105\) 1.19394 0.116516
\(106\) −6.73084 −0.653757
\(107\) −11.0435 −1.06761 −0.533807 0.845606i \(-0.679239\pi\)
−0.533807 + 0.845606i \(0.679239\pi\)
\(108\) −0.193937 −0.0186616
\(109\) −5.53690 −0.530339 −0.265170 0.964202i \(-0.585428\pi\)
−0.265170 + 0.964202i \(0.585428\pi\)
\(110\) 5.92478 0.564905
\(111\) −3.92478 −0.372523
\(112\) 4.35026 0.411061
\(113\) −5.69323 −0.535574 −0.267787 0.963478i \(-0.586292\pi\)
−0.267787 + 0.963478i \(0.586292\pi\)
\(114\) 1.48119 0.138727
\(115\) 11.0738 1.03264
\(116\) 1.96968 0.182880
\(117\) −1.35026 −0.124832
\(118\) −5.92478 −0.545420
\(119\) −2.80606 −0.257231
\(120\) −3.19394 −0.291565
\(121\) 0.224254 0.0203867
\(122\) −17.6629 −1.59912
\(123\) −8.57452 −0.773138
\(124\) 1.11283 0.0999355
\(125\) −10.2374 −0.915663
\(126\) 1.48119 0.131955
\(127\) 12.9380 1.14806 0.574029 0.818835i \(-0.305380\pi\)
0.574029 + 0.818835i \(0.305380\pi\)
\(128\) −12.6751 −1.12033
\(129\) 5.73813 0.505215
\(130\) 2.38787 0.209430
\(131\) 20.4690 1.78838 0.894191 0.447685i \(-0.147751\pi\)
0.894191 + 0.447685i \(0.147751\pi\)
\(132\) 0.649738 0.0565525
\(133\) −1.00000 −0.0867110
\(134\) 12.3127 1.06365
\(135\) −1.19394 −0.102758
\(136\) 7.50659 0.643685
\(137\) 13.4763 1.15136 0.575678 0.817677i \(-0.304738\pi\)
0.575678 + 0.817677i \(0.304738\pi\)
\(138\) 13.7381 1.16947
\(139\) 15.0132 1.27340 0.636700 0.771111i \(-0.280299\pi\)
0.636700 + 0.771111i \(0.280299\pi\)
\(140\) −0.231548 −0.0195694
\(141\) 0.932071 0.0784946
\(142\) 8.73084 0.732676
\(143\) 4.52373 0.378293
\(144\) −4.35026 −0.362522
\(145\) 12.1260 1.00701
\(146\) 5.35026 0.442791
\(147\) −1.00000 −0.0824786
\(148\) 0.761158 0.0625668
\(149\) −8.76116 −0.717742 −0.358871 0.933387i \(-0.616838\pi\)
−0.358871 + 0.933387i \(0.616838\pi\)
\(150\) −5.29455 −0.432298
\(151\) −10.2374 −0.833110 −0.416555 0.909111i \(-0.636763\pi\)
−0.416555 + 0.909111i \(0.636763\pi\)
\(152\) 2.67513 0.216982
\(153\) 2.80606 0.226857
\(154\) −4.96239 −0.399881
\(155\) 6.85097 0.550283
\(156\) 0.261865 0.0209660
\(157\) −11.4010 −0.909903 −0.454951 0.890516i \(-0.650343\pi\)
−0.454951 + 0.890516i \(0.650343\pi\)
\(158\) −12.7757 −1.01638
\(159\) −4.54420 −0.360378
\(160\) 1.30536 0.103197
\(161\) −9.27504 −0.730975
\(162\) −1.48119 −0.116374
\(163\) −24.9624 −1.95521 −0.977603 0.210459i \(-0.932504\pi\)
−0.977603 + 0.210459i \(0.932504\pi\)
\(164\) 1.66291 0.129852
\(165\) 4.00000 0.311400
\(166\) 23.2447 1.80414
\(167\) 21.7137 1.68026 0.840128 0.542388i \(-0.182480\pi\)
0.840128 + 0.542388i \(0.182480\pi\)
\(168\) 2.67513 0.206391
\(169\) −11.1768 −0.859753
\(170\) −4.96239 −0.380598
\(171\) 1.00000 0.0764719
\(172\) −1.11283 −0.0848528
\(173\) −7.27504 −0.553111 −0.276555 0.960998i \(-0.589193\pi\)
−0.276555 + 0.960998i \(0.589193\pi\)
\(174\) 15.0435 1.14044
\(175\) 3.57452 0.270208
\(176\) 14.5745 1.09860
\(177\) −4.00000 −0.300658
\(178\) −12.7005 −0.951944
\(179\) 15.8192 1.18239 0.591193 0.806530i \(-0.298657\pi\)
0.591193 + 0.806530i \(0.298657\pi\)
\(180\) 0.231548 0.0172586
\(181\) 24.7005 1.83598 0.917988 0.396609i \(-0.129813\pi\)
0.917988 + 0.396609i \(0.129813\pi\)
\(182\) −2.00000 −0.148250
\(183\) −11.9248 −0.881505
\(184\) 24.8119 1.82916
\(185\) 4.68594 0.344517
\(186\) 8.49929 0.623198
\(187\) −9.40105 −0.687473
\(188\) −0.180763 −0.0131835
\(189\) 1.00000 0.0727393
\(190\) −1.76845 −0.128297
\(191\) −15.9756 −1.15595 −0.577976 0.816054i \(-0.696157\pi\)
−0.577976 + 0.816054i \(0.696157\pi\)
\(192\) −7.08110 −0.511035
\(193\) −7.40105 −0.532739 −0.266370 0.963871i \(-0.585824\pi\)
−0.266370 + 0.963871i \(0.585824\pi\)
\(194\) −16.5139 −1.18563
\(195\) 1.61213 0.115447
\(196\) 0.193937 0.0138526
\(197\) 13.3258 0.949426 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(198\) 4.96239 0.352662
\(199\) −2.91160 −0.206398 −0.103199 0.994661i \(-0.532908\pi\)
−0.103199 + 0.994661i \(0.532908\pi\)
\(200\) −9.56230 −0.676156
\(201\) 8.31265 0.586329
\(202\) 14.0811 0.990743
\(203\) −10.1563 −0.712834
\(204\) −0.544198 −0.0381015
\(205\) 10.2374 0.715013
\(206\) 7.62672 0.531378
\(207\) 9.27504 0.644660
\(208\) 5.87399 0.407288
\(209\) −3.35026 −0.231742
\(210\) −1.76845 −0.122035
\(211\) −5.14903 −0.354474 −0.177237 0.984168i \(-0.556716\pi\)
−0.177237 + 0.984168i \(0.556716\pi\)
\(212\) 0.881286 0.0605270
\(213\) 5.89446 0.403882
\(214\) 16.3576 1.11818
\(215\) −6.85097 −0.467232
\(216\) −2.67513 −0.182020
\(217\) −5.73813 −0.389530
\(218\) 8.20123 0.555457
\(219\) 3.61213 0.244085
\(220\) −0.775746 −0.0523008
\(221\) −3.78892 −0.254870
\(222\) 5.81336 0.390167
\(223\) −2.88717 −0.193339 −0.0966695 0.995317i \(-0.530819\pi\)
−0.0966695 + 0.995317i \(0.530819\pi\)
\(224\) −1.09332 −0.0730506
\(225\) −3.57452 −0.238301
\(226\) 8.43278 0.560940
\(227\) 15.7889 1.04795 0.523974 0.851734i \(-0.324449\pi\)
0.523974 + 0.851734i \(0.324449\pi\)
\(228\) −0.193937 −0.0128438
\(229\) 21.3865 1.41326 0.706628 0.707585i \(-0.250215\pi\)
0.706628 + 0.707585i \(0.250215\pi\)
\(230\) −16.4025 −1.08155
\(231\) −3.35026 −0.220431
\(232\) 27.1695 1.78376
\(233\) 9.01317 0.590473 0.295236 0.955424i \(-0.404602\pi\)
0.295236 + 0.955424i \(0.404602\pi\)
\(234\) 2.00000 0.130744
\(235\) −1.11283 −0.0725933
\(236\) 0.775746 0.0504968
\(237\) −8.62530 −0.560273
\(238\) 4.15633 0.269415
\(239\) −12.4387 −0.804590 −0.402295 0.915510i \(-0.631787\pi\)
−0.402295 + 0.915510i \(0.631787\pi\)
\(240\) 5.19394 0.335267
\(241\) 11.1490 0.718172 0.359086 0.933304i \(-0.383088\pi\)
0.359086 + 0.933304i \(0.383088\pi\)
\(242\) −0.332163 −0.0213523
\(243\) −1.00000 −0.0641500
\(244\) 2.31265 0.148052
\(245\) 1.19394 0.0762778
\(246\) 12.7005 0.809756
\(247\) −1.35026 −0.0859151
\(248\) 15.3503 0.974743
\(249\) 15.6932 0.994518
\(250\) 15.1636 0.959031
\(251\) −12.9321 −0.816265 −0.408133 0.912923i \(-0.633820\pi\)
−0.408133 + 0.912923i \(0.633820\pi\)
\(252\) −0.193937 −0.0122169
\(253\) −31.0738 −1.95359
\(254\) −19.1636 −1.20243
\(255\) −3.35026 −0.209802
\(256\) 4.61213 0.288258
\(257\) 5.03761 0.314238 0.157119 0.987580i \(-0.449779\pi\)
0.157119 + 0.987580i \(0.449779\pi\)
\(258\) −8.49929 −0.529143
\(259\) −3.92478 −0.243874
\(260\) −0.312650 −0.0193898
\(261\) 10.1563 0.628661
\(262\) −30.3185 −1.87309
\(263\) 10.2619 0.632774 0.316387 0.948630i \(-0.397530\pi\)
0.316387 + 0.948630i \(0.397530\pi\)
\(264\) 8.96239 0.551597
\(265\) 5.42548 0.333285
\(266\) 1.48119 0.0908178
\(267\) −8.57452 −0.524752
\(268\) −1.61213 −0.0984763
\(269\) 2.96239 0.180620 0.0903100 0.995914i \(-0.471214\pi\)
0.0903100 + 0.995914i \(0.471214\pi\)
\(270\) 1.76845 0.107625
\(271\) −17.7743 −1.07971 −0.539857 0.841757i \(-0.681522\pi\)
−0.539857 + 0.841757i \(0.681522\pi\)
\(272\) −12.2071 −0.740165
\(273\) −1.35026 −0.0817216
\(274\) −19.9610 −1.20589
\(275\) 11.9756 0.722154
\(276\) −1.79877 −0.108273
\(277\) −15.7988 −0.949256 −0.474628 0.880186i \(-0.657417\pi\)
−0.474628 + 0.880186i \(0.657417\pi\)
\(278\) −22.2374 −1.33371
\(279\) 5.73813 0.343533
\(280\) −3.19394 −0.190874
\(281\) −1.31994 −0.0787413 −0.0393706 0.999225i \(-0.512535\pi\)
−0.0393706 + 0.999225i \(0.512535\pi\)
\(282\) −1.38058 −0.0822123
\(283\) 6.23743 0.370777 0.185388 0.982665i \(-0.440646\pi\)
0.185388 + 0.982665i \(0.440646\pi\)
\(284\) −1.14315 −0.0678336
\(285\) −1.19394 −0.0707227
\(286\) −6.70052 −0.396210
\(287\) −8.57452 −0.506138
\(288\) 1.09332 0.0644246
\(289\) −9.12601 −0.536824
\(290\) −17.9610 −1.05470
\(291\) −11.1490 −0.653568
\(292\) −0.700523 −0.0409950
\(293\) −11.4255 −0.667484 −0.333742 0.942664i \(-0.608311\pi\)
−0.333742 + 0.942664i \(0.608311\pi\)
\(294\) 1.48119 0.0863850
\(295\) 4.77575 0.278055
\(296\) 10.4993 0.610259
\(297\) 3.35026 0.194402
\(298\) 12.9770 0.751736
\(299\) −12.5237 −0.724266
\(300\) 0.693229 0.0400236
\(301\) 5.73813 0.330741
\(302\) 15.1636 0.872568
\(303\) 9.50659 0.546139
\(304\) −4.35026 −0.249505
\(305\) 14.2374 0.815233
\(306\) −4.15633 −0.237601
\(307\) 3.41090 0.194670 0.0973351 0.995252i \(-0.468968\pi\)
0.0973351 + 0.995252i \(0.468968\pi\)
\(308\) 0.649738 0.0370223
\(309\) 5.14903 0.292918
\(310\) −10.1476 −0.576346
\(311\) −16.5296 −0.937308 −0.468654 0.883382i \(-0.655261\pi\)
−0.468654 + 0.883382i \(0.655261\pi\)
\(312\) 3.61213 0.204496
\(313\) −18.6253 −1.05276 −0.526382 0.850248i \(-0.676452\pi\)
−0.526382 + 0.850248i \(0.676452\pi\)
\(314\) 16.8872 0.952998
\(315\) −1.19394 −0.0672707
\(316\) 1.67276 0.0941002
\(317\) −25.9452 −1.45723 −0.728615 0.684923i \(-0.759836\pi\)
−0.728615 + 0.684923i \(0.759836\pi\)
\(318\) 6.73084 0.377447
\(319\) −34.0263 −1.90511
\(320\) 8.45439 0.472615
\(321\) 11.0435 0.616388
\(322\) 13.7381 0.765596
\(323\) 2.80606 0.156134
\(324\) 0.193937 0.0107743
\(325\) 4.82653 0.267728
\(326\) 36.9741 2.04781
\(327\) 5.53690 0.306191
\(328\) 22.9380 1.26654
\(329\) 0.932071 0.0513868
\(330\) −5.92478 −0.326148
\(331\) −32.7875 −1.80216 −0.901082 0.433648i \(-0.857226\pi\)
−0.901082 + 0.433648i \(0.857226\pi\)
\(332\) −3.04349 −0.167033
\(333\) 3.92478 0.215076
\(334\) −32.1622 −1.75984
\(335\) −9.92478 −0.542249
\(336\) −4.35026 −0.237326
\(337\) −11.0884 −0.604023 −0.302012 0.953304i \(-0.597658\pi\)
−0.302012 + 0.953304i \(0.597658\pi\)
\(338\) 16.5550 0.900473
\(339\) 5.69323 0.309214
\(340\) 0.649738 0.0352370
\(341\) −19.2243 −1.04105
\(342\) −1.48119 −0.0800938
\(343\) −1.00000 −0.0539949
\(344\) −15.3503 −0.827631
\(345\) −11.0738 −0.596194
\(346\) 10.7757 0.579308
\(347\) −4.58910 −0.246356 −0.123178 0.992385i \(-0.539309\pi\)
−0.123178 + 0.992385i \(0.539309\pi\)
\(348\) −1.96968 −0.105586
\(349\) 21.3258 1.14155 0.570773 0.821108i \(-0.306644\pi\)
0.570773 + 0.821108i \(0.306644\pi\)
\(350\) −5.29455 −0.283006
\(351\) 1.35026 0.0720716
\(352\) −3.66291 −0.195234
\(353\) 16.9829 0.903906 0.451953 0.892042i \(-0.350727\pi\)
0.451953 + 0.892042i \(0.350727\pi\)
\(354\) 5.92478 0.314898
\(355\) −7.03761 −0.373518
\(356\) 1.66291 0.0881342
\(357\) 2.80606 0.148513
\(358\) −23.4314 −1.23839
\(359\) −9.02302 −0.476217 −0.238108 0.971239i \(-0.576527\pi\)
−0.238108 + 0.971239i \(0.576527\pi\)
\(360\) 3.19394 0.168335
\(361\) 1.00000 0.0526316
\(362\) −36.5863 −1.92293
\(363\) −0.224254 −0.0117703
\(364\) 0.261865 0.0137255
\(365\) −4.31265 −0.225734
\(366\) 17.6629 0.923255
\(367\) 22.0870 1.15293 0.576466 0.817121i \(-0.304432\pi\)
0.576466 + 0.817121i \(0.304432\pi\)
\(368\) −40.3488 −2.10333
\(369\) 8.57452 0.446371
\(370\) −6.94078 −0.360834
\(371\) −4.54420 −0.235923
\(372\) −1.11283 −0.0576978
\(373\) −3.55149 −0.183889 −0.0919447 0.995764i \(-0.529308\pi\)
−0.0919447 + 0.995764i \(0.529308\pi\)
\(374\) 13.9248 0.720033
\(375\) 10.2374 0.528658
\(376\) −2.49341 −0.128588
\(377\) −13.7137 −0.706291
\(378\) −1.48119 −0.0761844
\(379\) −2.38787 −0.122657 −0.0613284 0.998118i \(-0.519534\pi\)
−0.0613284 + 0.998118i \(0.519534\pi\)
\(380\) 0.231548 0.0118782
\(381\) −12.9380 −0.662831
\(382\) 23.6629 1.21070
\(383\) 7.01317 0.358356 0.179178 0.983817i \(-0.442656\pi\)
0.179178 + 0.983817i \(0.442656\pi\)
\(384\) 12.6751 0.646825
\(385\) 4.00000 0.203859
\(386\) 10.9624 0.557971
\(387\) −5.73813 −0.291686
\(388\) 2.16220 0.109769
\(389\) 1.16362 0.0589978 0.0294989 0.999565i \(-0.490609\pi\)
0.0294989 + 0.999565i \(0.490609\pi\)
\(390\) −2.38787 −0.120915
\(391\) 26.0263 1.31621
\(392\) 2.67513 0.135115
\(393\) −20.4690 −1.03252
\(394\) −19.7381 −0.994393
\(395\) 10.2981 0.518152
\(396\) −0.649738 −0.0326506
\(397\) −3.67276 −0.184331 −0.0921653 0.995744i \(-0.529379\pi\)
−0.0921653 + 0.995744i \(0.529379\pi\)
\(398\) 4.31265 0.216174
\(399\) 1.00000 0.0500626
\(400\) 15.5501 0.777504
\(401\) 3.76845 0.188188 0.0940938 0.995563i \(-0.470005\pi\)
0.0940938 + 0.995563i \(0.470005\pi\)
\(402\) −12.3127 −0.614099
\(403\) −7.74798 −0.385955
\(404\) −1.84367 −0.0917263
\(405\) 1.19394 0.0593272
\(406\) 15.0435 0.746596
\(407\) −13.1490 −0.651773
\(408\) −7.50659 −0.371631
\(409\) −4.42407 −0.218756 −0.109378 0.994000i \(-0.534886\pi\)
−0.109378 + 0.994000i \(0.534886\pi\)
\(410\) −15.1636 −0.748878
\(411\) −13.4763 −0.664735
\(412\) −0.998585 −0.0491968
\(413\) −4.00000 −0.196827
\(414\) −13.7381 −0.675192
\(415\) −18.7367 −0.919749
\(416\) −1.47627 −0.0723801
\(417\) −15.0132 −0.735198
\(418\) 4.96239 0.242718
\(419\) 39.8554 1.94707 0.973533 0.228548i \(-0.0733977\pi\)
0.973533 + 0.228548i \(0.0733977\pi\)
\(420\) 0.231548 0.0112984
\(421\) 7.08840 0.345467 0.172734 0.984969i \(-0.444740\pi\)
0.172734 + 0.984969i \(0.444740\pi\)
\(422\) 7.62672 0.371263
\(423\) −0.932071 −0.0453189
\(424\) 12.1563 0.590363
\(425\) −10.0303 −0.486542
\(426\) −8.73084 −0.423011
\(427\) −11.9248 −0.577080
\(428\) −2.14174 −0.103525
\(429\) −4.52373 −0.218408
\(430\) 10.1476 0.489362
\(431\) 35.8799 1.72827 0.864136 0.503258i \(-0.167865\pi\)
0.864136 + 0.503258i \(0.167865\pi\)
\(432\) 4.35026 0.209302
\(433\) −26.6253 −1.27953 −0.639765 0.768570i \(-0.720968\pi\)
−0.639765 + 0.768570i \(0.720968\pi\)
\(434\) 8.49929 0.407979
\(435\) −12.1260 −0.581398
\(436\) −1.07381 −0.0514261
\(437\) 9.27504 0.443685
\(438\) −5.35026 −0.255645
\(439\) −1.21440 −0.0579604 −0.0289802 0.999580i \(-0.509226\pi\)
−0.0289802 + 0.999580i \(0.509226\pi\)
\(440\) −10.7005 −0.510127
\(441\) 1.00000 0.0476190
\(442\) 5.61213 0.266942
\(443\) −7.81336 −0.371224 −0.185612 0.982623i \(-0.559427\pi\)
−0.185612 + 0.982623i \(0.559427\pi\)
\(444\) −0.761158 −0.0361230
\(445\) 10.2374 0.485301
\(446\) 4.27645 0.202496
\(447\) 8.76116 0.414389
\(448\) −7.08110 −0.334551
\(449\) 12.1417 0.573004 0.286502 0.958080i \(-0.407507\pi\)
0.286502 + 0.958080i \(0.407507\pi\)
\(450\) 5.29455 0.249588
\(451\) −28.7269 −1.35270
\(452\) −1.10413 −0.0519337
\(453\) 10.2374 0.480996
\(454\) −23.3865 −1.09758
\(455\) 1.61213 0.0755777
\(456\) −2.67513 −0.125274
\(457\) 39.3766 1.84196 0.920980 0.389610i \(-0.127390\pi\)
0.920980 + 0.389610i \(0.127390\pi\)
\(458\) −31.6775 −1.48019
\(459\) −2.80606 −0.130976
\(460\) 2.14762 0.100133
\(461\) 0.670206 0.0312146 0.0156073 0.999878i \(-0.495032\pi\)
0.0156073 + 0.999878i \(0.495032\pi\)
\(462\) 4.96239 0.230871
\(463\) 22.0263 1.02365 0.511826 0.859089i \(-0.328969\pi\)
0.511826 + 0.859089i \(0.328969\pi\)
\(464\) −44.1827 −2.05113
\(465\) −6.85097 −0.317706
\(466\) −13.3503 −0.618439
\(467\) −3.90431 −0.180670 −0.0903349 0.995911i \(-0.528794\pi\)
−0.0903349 + 0.995911i \(0.528794\pi\)
\(468\) −0.261865 −0.0121047
\(469\) 8.31265 0.383843
\(470\) 1.64832 0.0760315
\(471\) 11.4010 0.525333
\(472\) 10.7005 0.492532
\(473\) 19.2243 0.883932
\(474\) 12.7757 0.586809
\(475\) −3.57452 −0.164010
\(476\) −0.544198 −0.0249433
\(477\) 4.54420 0.208065
\(478\) 18.4241 0.842697
\(479\) 31.3806 1.43382 0.716908 0.697168i \(-0.245557\pi\)
0.716908 + 0.697168i \(0.245557\pi\)
\(480\) −1.30536 −0.0595811
\(481\) −5.29948 −0.241635
\(482\) −16.5139 −0.752187
\(483\) 9.27504 0.422029
\(484\) 0.0434910 0.00197686
\(485\) 13.3112 0.604432
\(486\) 1.48119 0.0671883
\(487\) −5.55149 −0.251562 −0.125781 0.992058i \(-0.540144\pi\)
−0.125781 + 0.992058i \(0.540144\pi\)
\(488\) 31.9003 1.44406
\(489\) 24.9624 1.12884
\(490\) −1.76845 −0.0798905
\(491\) 14.5139 0.655002 0.327501 0.944851i \(-0.393793\pi\)
0.327501 + 0.944851i \(0.393793\pi\)
\(492\) −1.66291 −0.0749699
\(493\) 28.4993 1.28354
\(494\) 2.00000 0.0899843
\(495\) −4.00000 −0.179787
\(496\) −24.9624 −1.12084
\(497\) 5.89446 0.264403
\(498\) −23.2447 −1.04162
\(499\) 33.7743 1.51195 0.755973 0.654602i \(-0.227164\pi\)
0.755973 + 0.654602i \(0.227164\pi\)
\(500\) −1.98541 −0.0887903
\(501\) −21.7137 −0.970096
\(502\) 19.1549 0.854925
\(503\) −7.23013 −0.322376 −0.161188 0.986924i \(-0.551533\pi\)
−0.161188 + 0.986924i \(0.551533\pi\)
\(504\) −2.67513 −0.119160
\(505\) −11.3503 −0.505080
\(506\) 46.0263 2.04612
\(507\) 11.1768 0.496379
\(508\) 2.50914 0.111325
\(509\) −35.0640 −1.55418 −0.777091 0.629388i \(-0.783306\pi\)
−0.777091 + 0.629388i \(0.783306\pi\)
\(510\) 4.96239 0.219738
\(511\) 3.61213 0.159791
\(512\) 18.5188 0.818423
\(513\) −1.00000 −0.0441511
\(514\) −7.46168 −0.329121
\(515\) −6.14762 −0.270896
\(516\) 1.11283 0.0489898
\(517\) 3.12268 0.137335
\(518\) 5.81336 0.255424
\(519\) 7.27504 0.319339
\(520\) −4.31265 −0.189122
\(521\) 5.28963 0.231743 0.115871 0.993264i \(-0.463034\pi\)
0.115871 + 0.993264i \(0.463034\pi\)
\(522\) −15.0435 −0.658436
\(523\) −20.3371 −0.889279 −0.444639 0.895710i \(-0.646668\pi\)
−0.444639 + 0.895710i \(0.646668\pi\)
\(524\) 3.96968 0.173416
\(525\) −3.57452 −0.156005
\(526\) −15.1998 −0.662743
\(527\) 16.1016 0.701395
\(528\) −14.5745 −0.634274
\(529\) 63.0263 2.74028
\(530\) −8.03620 −0.349070
\(531\) 4.00000 0.173585
\(532\) −0.193937 −0.00840822
\(533\) −11.5778 −0.501492
\(534\) 12.7005 0.549605
\(535\) −13.1852 −0.570047
\(536\) −22.2374 −0.960511
\(537\) −15.8192 −0.682650
\(538\) −4.38787 −0.189175
\(539\) −3.35026 −0.144306
\(540\) −0.231548 −0.00996424
\(541\) 8.29806 0.356762 0.178381 0.983962i \(-0.442914\pi\)
0.178381 + 0.983962i \(0.442914\pi\)
\(542\) 26.3272 1.13085
\(543\) −24.7005 −1.06000
\(544\) 3.06793 0.131536
\(545\) −6.61071 −0.283172
\(546\) 2.00000 0.0855921
\(547\) −10.4485 −0.446746 −0.223373 0.974733i \(-0.571707\pi\)
−0.223373 + 0.974733i \(0.571707\pi\)
\(548\) 2.61354 0.111645
\(549\) 11.9248 0.508937
\(550\) −17.7381 −0.756357
\(551\) 10.1563 0.432674
\(552\) −24.8119 −1.05607
\(553\) −8.62530 −0.366785
\(554\) 23.4010 0.994215
\(555\) −4.68594 −0.198907
\(556\) 2.91160 0.123479
\(557\) 23.3112 0.987729 0.493864 0.869539i \(-0.335584\pi\)
0.493864 + 0.869539i \(0.335584\pi\)
\(558\) −8.49929 −0.359804
\(559\) 7.74798 0.327705
\(560\) 5.19394 0.219484
\(561\) 9.40105 0.396913
\(562\) 1.95509 0.0824707
\(563\) 24.4631 1.03100 0.515498 0.856891i \(-0.327607\pi\)
0.515498 + 0.856891i \(0.327607\pi\)
\(564\) 0.180763 0.00761148
\(565\) −6.79735 −0.285967
\(566\) −9.23884 −0.388338
\(567\) −1.00000 −0.0419961
\(568\) −15.7685 −0.661630
\(569\) −31.3463 −1.31410 −0.657052 0.753845i \(-0.728197\pi\)
−0.657052 + 0.753845i \(0.728197\pi\)
\(570\) 1.76845 0.0740723
\(571\) −12.2520 −0.512731 −0.256365 0.966580i \(-0.582525\pi\)
−0.256365 + 0.966580i \(0.582525\pi\)
\(572\) 0.877317 0.0366825
\(573\) 15.9756 0.667389
\(574\) 12.7005 0.530110
\(575\) −33.1538 −1.38261
\(576\) 7.08110 0.295046
\(577\) 5.07381 0.211225 0.105613 0.994407i \(-0.466320\pi\)
0.105613 + 0.994407i \(0.466320\pi\)
\(578\) 13.5174 0.562249
\(579\) 7.40105 0.307577
\(580\) 2.35168 0.0976480
\(581\) 15.6932 0.651065
\(582\) 16.5139 0.684522
\(583\) −15.2243 −0.630524
\(584\) −9.66291 −0.399854
\(585\) −1.61213 −0.0666532
\(586\) 16.9234 0.699098
\(587\) −1.82909 −0.0754945 −0.0377472 0.999287i \(-0.512018\pi\)
−0.0377472 + 0.999287i \(0.512018\pi\)
\(588\) −0.193937 −0.00799781
\(589\) 5.73813 0.236436
\(590\) −7.07381 −0.291224
\(591\) −13.3258 −0.548151
\(592\) −17.0738 −0.701729
\(593\) −16.5804 −0.680875 −0.340438 0.940267i \(-0.610575\pi\)
−0.340438 + 0.940267i \(0.610575\pi\)
\(594\) −4.96239 −0.203609
\(595\) −3.35026 −0.137347
\(596\) −1.69911 −0.0695982
\(597\) 2.91160 0.119164
\(598\) 18.5501 0.758569
\(599\) 24.3430 0.994627 0.497313 0.867571i \(-0.334320\pi\)
0.497313 + 0.867571i \(0.334320\pi\)
\(600\) 9.56230 0.390379
\(601\) 20.9525 0.854672 0.427336 0.904093i \(-0.359452\pi\)
0.427336 + 0.904093i \(0.359452\pi\)
\(602\) −8.49929 −0.346405
\(603\) −8.31265 −0.338517
\(604\) −1.98541 −0.0807853
\(605\) 0.267745 0.0108854
\(606\) −14.0811 −0.572006
\(607\) −2.85097 −0.115717 −0.0578586 0.998325i \(-0.518427\pi\)
−0.0578586 + 0.998325i \(0.518427\pi\)
\(608\) 1.09332 0.0443400
\(609\) 10.1563 0.411555
\(610\) −21.0884 −0.853844
\(611\) 1.25854 0.0509151
\(612\) 0.544198 0.0219979
\(613\) −15.7988 −0.638106 −0.319053 0.947737i \(-0.603365\pi\)
−0.319053 + 0.947737i \(0.603365\pi\)
\(614\) −5.05220 −0.203890
\(615\) −10.2374 −0.412813
\(616\) 8.96239 0.361105
\(617\) −22.6253 −0.910860 −0.455430 0.890272i \(-0.650515\pi\)
−0.455430 + 0.890272i \(0.650515\pi\)
\(618\) −7.62672 −0.306791
\(619\) −35.4880 −1.42638 −0.713192 0.700969i \(-0.752751\pi\)
−0.713192 + 0.700969i \(0.752751\pi\)
\(620\) 1.32865 0.0533600
\(621\) −9.27504 −0.372194
\(622\) 24.4836 0.981701
\(623\) −8.57452 −0.343531
\(624\) −5.87399 −0.235148
\(625\) 5.64974 0.225990
\(626\) 27.5877 1.10263
\(627\) 3.35026 0.133797
\(628\) −2.21108 −0.0882317
\(629\) 11.0132 0.439124
\(630\) 1.76845 0.0704568
\(631\) −3.03761 −0.120925 −0.0604627 0.998170i \(-0.519258\pi\)
−0.0604627 + 0.998170i \(0.519258\pi\)
\(632\) 23.0738 0.917827
\(633\) 5.14903 0.204656
\(634\) 38.4299 1.52625
\(635\) 15.4471 0.612999
\(636\) −0.881286 −0.0349453
\(637\) −1.35026 −0.0534993
\(638\) 50.3996 1.99534
\(639\) −5.89446 −0.233181
\(640\) −15.1333 −0.598196
\(641\) −32.5560 −1.28588 −0.642942 0.765915i \(-0.722286\pi\)
−0.642942 + 0.765915i \(0.722286\pi\)
\(642\) −16.3576 −0.645581
\(643\) −30.8627 −1.21711 −0.608554 0.793513i \(-0.708250\pi\)
−0.608554 + 0.793513i \(0.708250\pi\)
\(644\) −1.79877 −0.0708814
\(645\) 6.85097 0.269757
\(646\) −4.15633 −0.163528
\(647\) 13.5164 0.531386 0.265693 0.964058i \(-0.414399\pi\)
0.265693 + 0.964058i \(0.414399\pi\)
\(648\) 2.67513 0.105089
\(649\) −13.4010 −0.526037
\(650\) −7.14903 −0.280408
\(651\) 5.73813 0.224895
\(652\) −4.84112 −0.189593
\(653\) 6.00000 0.234798 0.117399 0.993085i \(-0.462544\pi\)
0.117399 + 0.993085i \(0.462544\pi\)
\(654\) −8.20123 −0.320694
\(655\) 24.4387 0.954897
\(656\) −37.3014 −1.45637
\(657\) −3.61213 −0.140922
\(658\) −1.38058 −0.0538206
\(659\) −0.0303172 −0.00118099 −0.000590495 1.00000i \(-0.500188\pi\)
−0.000590495 1.00000i \(0.500188\pi\)
\(660\) 0.775746 0.0301959
\(661\) −49.0494 −1.90780 −0.953900 0.300126i \(-0.902971\pi\)
−0.953900 + 0.300126i \(0.902971\pi\)
\(662\) 48.5647 1.88752
\(663\) 3.78892 0.147149
\(664\) −41.9814 −1.62920
\(665\) −1.19394 −0.0462989
\(666\) −5.81336 −0.225263
\(667\) 94.2003 3.64745
\(668\) 4.21108 0.162932
\(669\) 2.88717 0.111624
\(670\) 14.7005 0.567931
\(671\) −39.9511 −1.54230
\(672\) 1.09332 0.0421758
\(673\) 1.10299 0.0425169 0.0212585 0.999774i \(-0.493233\pi\)
0.0212585 + 0.999774i \(0.493233\pi\)
\(674\) 16.4241 0.632632
\(675\) 3.57452 0.137583
\(676\) −2.16759 −0.0833688
\(677\) −1.81336 −0.0696930 −0.0348465 0.999393i \(-0.511094\pi\)
−0.0348465 + 0.999393i \(0.511094\pi\)
\(678\) −8.43278 −0.323859
\(679\) −11.1490 −0.427861
\(680\) 8.96239 0.343692
\(681\) −15.7889 −0.605033
\(682\) 28.4749 1.09036
\(683\) −24.8061 −0.949178 −0.474589 0.880208i \(-0.657403\pi\)
−0.474589 + 0.880208i \(0.657403\pi\)
\(684\) 0.193937 0.00741535
\(685\) 16.0898 0.614760
\(686\) 1.48119 0.0565523
\(687\) −21.3865 −0.815944
\(688\) 24.9624 0.951682
\(689\) −6.13586 −0.233758
\(690\) 16.4025 0.624431
\(691\) 13.7743 0.524000 0.262000 0.965068i \(-0.415618\pi\)
0.262000 + 0.965068i \(0.415618\pi\)
\(692\) −1.41090 −0.0536342
\(693\) 3.35026 0.127266
\(694\) 6.79735 0.258024
\(695\) 17.9248 0.679926
\(696\) −27.1695 −1.02986
\(697\) 24.0606 0.911362
\(698\) −31.5877 −1.19561
\(699\) −9.01317 −0.340910
\(700\) 0.693229 0.0262016
\(701\) 32.5501 1.22940 0.614700 0.788761i \(-0.289277\pi\)
0.614700 + 0.788761i \(0.289277\pi\)
\(702\) −2.00000 −0.0754851
\(703\) 3.92478 0.148026
\(704\) −23.7235 −0.894115
\(705\) 1.11283 0.0419118
\(706\) −25.1549 −0.946718
\(707\) 9.50659 0.357532
\(708\) −0.775746 −0.0291543
\(709\) −40.0508 −1.50414 −0.752069 0.659084i \(-0.770944\pi\)
−0.752069 + 0.659084i \(0.770944\pi\)
\(710\) 10.4241 0.391208
\(711\) 8.62530 0.323474
\(712\) 22.9380 0.859636
\(713\) 53.2214 1.99316
\(714\) −4.15633 −0.155547
\(715\) 5.40105 0.201988
\(716\) 3.06793 0.114654
\(717\) 12.4387 0.464530
\(718\) 13.3649 0.498772
\(719\) 4.93207 0.183935 0.0919676 0.995762i \(-0.470684\pi\)
0.0919676 + 0.995762i \(0.470684\pi\)
\(720\) −5.19394 −0.193567
\(721\) 5.14903 0.191760
\(722\) −1.48119 −0.0551243
\(723\) −11.1490 −0.414637
\(724\) 4.79033 0.178031
\(725\) −36.3039 −1.34829
\(726\) 0.332163 0.0123277
\(727\) −16.7757 −0.622178 −0.311089 0.950381i \(-0.600694\pi\)
−0.311089 + 0.950381i \(0.600694\pi\)
\(728\) 3.61213 0.133874
\(729\) 1.00000 0.0370370
\(730\) 6.38787 0.236426
\(731\) −16.1016 −0.595538
\(732\) −2.31265 −0.0854780
\(733\) −40.8627 −1.50930 −0.754650 0.656128i \(-0.772193\pi\)
−0.754650 + 0.656128i \(0.772193\pi\)
\(734\) −32.7151 −1.20754
\(735\) −1.19394 −0.0440390
\(736\) 10.1406 0.373787
\(737\) 27.8496 1.02585
\(738\) −12.7005 −0.467513
\(739\) −25.5877 −0.941258 −0.470629 0.882331i \(-0.655973\pi\)
−0.470629 + 0.882331i \(0.655973\pi\)
\(740\) 0.908774 0.0334072
\(741\) 1.35026 0.0496031
\(742\) 6.73084 0.247097
\(743\) 33.9062 1.24390 0.621949 0.783058i \(-0.286341\pi\)
0.621949 + 0.783058i \(0.286341\pi\)
\(744\) −15.3503 −0.562768
\(745\) −10.4603 −0.383235
\(746\) 5.26045 0.192599
\(747\) −15.6932 −0.574185
\(748\) −1.82321 −0.0666630
\(749\) 11.0435 0.403520
\(750\) −15.1636 −0.553697
\(751\) 38.7123 1.41263 0.706316 0.707897i \(-0.250356\pi\)
0.706316 + 0.707897i \(0.250356\pi\)
\(752\) 4.05475 0.147862
\(753\) 12.9321 0.471271
\(754\) 20.3127 0.739743
\(755\) −12.2228 −0.444835
\(756\) 0.193937 0.00705340
\(757\) −4.59895 −0.167152 −0.0835759 0.996501i \(-0.526634\pi\)
−0.0835759 + 0.996501i \(0.526634\pi\)
\(758\) 3.53690 0.128466
\(759\) 31.0738 1.12791
\(760\) 3.19394 0.115856
\(761\) 47.0698 1.70628 0.853140 0.521682i \(-0.174695\pi\)
0.853140 + 0.521682i \(0.174695\pi\)
\(762\) 19.1636 0.694225
\(763\) 5.53690 0.200449
\(764\) −3.09825 −0.112091
\(765\) 3.35026 0.121129
\(766\) −10.3879 −0.375329
\(767\) −5.40105 −0.195021
\(768\) −4.61213 −0.166426
\(769\) 11.4010 0.411132 0.205566 0.978643i \(-0.434096\pi\)
0.205566 + 0.978643i \(0.434096\pi\)
\(770\) −5.92478 −0.213514
\(771\) −5.03761 −0.181425
\(772\) −1.43533 −0.0516588
\(773\) −30.6497 −1.10239 −0.551197 0.834375i \(-0.685829\pi\)
−0.551197 + 0.834375i \(0.685829\pi\)
\(774\) 8.49929 0.305501
\(775\) −20.5111 −0.736779
\(776\) 29.8251 1.07066
\(777\) 3.92478 0.140801
\(778\) −1.72355 −0.0617921
\(779\) 8.57452 0.307214
\(780\) 0.312650 0.0111947
\(781\) 19.7480 0.706638
\(782\) −38.5501 −1.37855
\(783\) −10.1563 −0.362957
\(784\) −4.35026 −0.155366
\(785\) −13.6121 −0.485838
\(786\) 30.3185 1.08143
\(787\) 31.1392 1.10999 0.554996 0.831853i \(-0.312720\pi\)
0.554996 + 0.831853i \(0.312720\pi\)
\(788\) 2.58436 0.0920642
\(789\) −10.2619 −0.365332
\(790\) −15.2534 −0.542693
\(791\) 5.69323 0.202428
\(792\) −8.96239 −0.318465
\(793\) −16.1016 −0.571784
\(794\) 5.44007 0.193061
\(795\) −5.42548 −0.192422
\(796\) −0.564666 −0.0200141
\(797\) −19.7988 −0.701308 −0.350654 0.936505i \(-0.614041\pi\)
−0.350654 + 0.936505i \(0.614041\pi\)
\(798\) −1.48119 −0.0524337
\(799\) −2.61545 −0.0925280
\(800\) −3.90809 −0.138172
\(801\) 8.57452 0.302966
\(802\) −5.58181 −0.197101
\(803\) 12.1016 0.427055
\(804\) 1.61213 0.0568553
\(805\) −11.0738 −0.390300
\(806\) 11.4763 0.404234
\(807\) −2.96239 −0.104281
\(808\) −25.4314 −0.894672
\(809\) 24.0752 0.846440 0.423220 0.906027i \(-0.360900\pi\)
0.423220 + 0.906027i \(0.360900\pi\)
\(810\) −1.76845 −0.0621371
\(811\) −39.4763 −1.38620 −0.693100 0.720842i \(-0.743755\pi\)
−0.693100 + 0.720842i \(0.743755\pi\)
\(812\) −1.96968 −0.0691223
\(813\) 17.7743 0.623373
\(814\) 19.4763 0.682643
\(815\) −29.8035 −1.04397
\(816\) 12.2071 0.427334
\(817\) −5.73813 −0.200752
\(818\) 6.55291 0.229117
\(819\) 1.35026 0.0471820
\(820\) 1.98541 0.0693336
\(821\) −35.9854 −1.25590 −0.627950 0.778254i \(-0.716106\pi\)
−0.627950 + 0.778254i \(0.716106\pi\)
\(822\) 19.9610 0.696219
\(823\) −16.4387 −0.573016 −0.286508 0.958078i \(-0.592494\pi\)
−0.286508 + 0.958078i \(0.592494\pi\)
\(824\) −13.7743 −0.479852
\(825\) −11.9756 −0.416936
\(826\) 5.92478 0.206149
\(827\) 39.9814 1.39029 0.695145 0.718869i \(-0.255340\pi\)
0.695145 + 0.718869i \(0.255340\pi\)
\(828\) 1.79877 0.0625116
\(829\) −43.3522 −1.50568 −0.752842 0.658202i \(-0.771317\pi\)
−0.752842 + 0.658202i \(0.771317\pi\)
\(830\) 27.7527 0.963311
\(831\) 15.7988 0.548053
\(832\) −9.56134 −0.331480
\(833\) 2.80606 0.0972243
\(834\) 22.2374 0.770019
\(835\) 25.9248 0.897164
\(836\) −0.649738 −0.0224717
\(837\) −5.73813 −0.198339
\(838\) −59.0336 −2.03928
\(839\) −18.2981 −0.631719 −0.315860 0.948806i \(-0.602293\pi\)
−0.315860 + 0.948806i \(0.602293\pi\)
\(840\) 3.19394 0.110201
\(841\) 74.1509 2.55693
\(842\) −10.4993 −0.361830
\(843\) 1.31994 0.0454613
\(844\) −0.998585 −0.0343727
\(845\) −13.3444 −0.459061
\(846\) 1.38058 0.0474653
\(847\) −0.224254 −0.00770545
\(848\) −19.7685 −0.678851
\(849\) −6.23743 −0.214068
\(850\) 14.8568 0.509586
\(851\) 36.4025 1.24786
\(852\) 1.14315 0.0391637
\(853\) −50.5764 −1.73170 −0.865852 0.500300i \(-0.833223\pi\)
−0.865852 + 0.500300i \(0.833223\pi\)
\(854\) 17.6629 0.604412
\(855\) 1.19394 0.0408318
\(856\) −29.5428 −1.00975
\(857\) −38.8726 −1.32786 −0.663931 0.747794i \(-0.731113\pi\)
−0.663931 + 0.747794i \(0.731113\pi\)
\(858\) 6.70052 0.228752
\(859\) −53.5026 −1.82549 −0.912743 0.408535i \(-0.866040\pi\)
−0.912743 + 0.408535i \(0.866040\pi\)
\(860\) −1.32865 −0.0453067
\(861\) 8.57452 0.292219
\(862\) −53.1451 −1.81013
\(863\) 16.5950 0.564900 0.282450 0.959282i \(-0.408853\pi\)
0.282450 + 0.959282i \(0.408853\pi\)
\(864\) −1.09332 −0.0371955
\(865\) −8.68594 −0.295331
\(866\) 39.4372 1.34013
\(867\) 9.12601 0.309935
\(868\) −1.11283 −0.0377721
\(869\) −28.8970 −0.980264
\(870\) 17.9610 0.608934
\(871\) 11.2243 0.380319
\(872\) −14.8119 −0.501596
\(873\) 11.1490 0.377338
\(874\) −13.7381 −0.464699
\(875\) 10.2374 0.346088
\(876\) 0.700523 0.0236685
\(877\) −22.7757 −0.769082 −0.384541 0.923108i \(-0.625640\pi\)
−0.384541 + 0.923108i \(0.625640\pi\)
\(878\) 1.79877 0.0607055
\(879\) 11.4255 0.385372
\(880\) 17.4010 0.586589
\(881\) −13.3444 −0.449584 −0.224792 0.974407i \(-0.572170\pi\)
−0.224792 + 0.974407i \(0.572170\pi\)
\(882\) −1.48119 −0.0498744
\(883\) −19.4471 −0.654447 −0.327223 0.944947i \(-0.606113\pi\)
−0.327223 + 0.944947i \(0.606113\pi\)
\(884\) −0.734810 −0.0247143
\(885\) −4.77575 −0.160535
\(886\) 11.5731 0.388806
\(887\) −26.8627 −0.901962 −0.450981 0.892534i \(-0.648926\pi\)
−0.450981 + 0.892534i \(0.648926\pi\)
\(888\) −10.4993 −0.352333
\(889\) −12.9380 −0.433925
\(890\) −15.1636 −0.508286
\(891\) −3.35026 −0.112238
\(892\) −0.559927 −0.0187477
\(893\) −0.932071 −0.0311906
\(894\) −12.9770 −0.434015
\(895\) 18.8872 0.631328
\(896\) 12.6751 0.423446
\(897\) 12.5237 0.418155
\(898\) −17.9843 −0.600143
\(899\) 58.2784 1.94369
\(900\) −0.693229 −0.0231076
\(901\) 12.7513 0.424808
\(902\) 42.5501 1.41676
\(903\) −5.73813 −0.190953
\(904\) −15.2301 −0.506547
\(905\) 29.4909 0.980309
\(906\) −15.1636 −0.503778
\(907\) 33.8759 1.12483 0.562415 0.826855i \(-0.309872\pi\)
0.562415 + 0.826855i \(0.309872\pi\)
\(908\) 3.06205 0.101618
\(909\) −9.50659 −0.315314
\(910\) −2.38787 −0.0791572
\(911\) −23.2546 −0.770458 −0.385229 0.922821i \(-0.625878\pi\)
−0.385229 + 0.922821i \(0.625878\pi\)
\(912\) 4.35026 0.144052
\(913\) 52.5764 1.74003
\(914\) −58.3244 −1.92920
\(915\) −14.2374 −0.470675
\(916\) 4.14762 0.137041
\(917\) −20.4690 −0.675945
\(918\) 4.15633 0.137179
\(919\) 33.5515 1.10676 0.553381 0.832928i \(-0.313337\pi\)
0.553381 + 0.832928i \(0.313337\pi\)
\(920\) 29.6239 0.976671
\(921\) −3.41090 −0.112393
\(922\) −0.992706 −0.0326930
\(923\) 7.95906 0.261976
\(924\) −0.649738 −0.0213748
\(925\) −14.0292 −0.461276
\(926\) −32.6253 −1.07213
\(927\) −5.14903 −0.169116
\(928\) 11.1041 0.364511
\(929\) 26.2532 0.861338 0.430669 0.902510i \(-0.358278\pi\)
0.430669 + 0.902510i \(0.358278\pi\)
\(930\) 10.1476 0.332753
\(931\) 1.00000 0.0327737
\(932\) 1.74798 0.0572571
\(933\) 16.5296 0.541155
\(934\) 5.78304 0.189227
\(935\) −11.2243 −0.367072
\(936\) −3.61213 −0.118066
\(937\) 37.8496 1.23649 0.618246 0.785985i \(-0.287844\pi\)
0.618246 + 0.785985i \(0.287844\pi\)
\(938\) −12.3127 −0.402022
\(939\) 18.6253 0.607814
\(940\) −0.215819 −0.00703925
\(941\) −36.4847 −1.18937 −0.594684 0.803960i \(-0.702723\pi\)
−0.594684 + 0.803960i \(0.702723\pi\)
\(942\) −16.8872 −0.550214
\(943\) 79.5290 2.58982
\(944\) −17.4010 −0.566356
\(945\) 1.19394 0.0388388
\(946\) −28.4749 −0.925797
\(947\) −47.1509 −1.53220 −0.766100 0.642722i \(-0.777805\pi\)
−0.766100 + 0.642722i \(0.777805\pi\)
\(948\) −1.67276 −0.0543288
\(949\) 4.87732 0.158324
\(950\) 5.29455 0.171778
\(951\) 25.9452 0.841332
\(952\) −7.50659 −0.243290
\(953\) −19.6786 −0.637454 −0.318727 0.947847i \(-0.603255\pi\)
−0.318727 + 0.947847i \(0.603255\pi\)
\(954\) −6.73084 −0.217919
\(955\) −19.0738 −0.617214
\(956\) −2.41231 −0.0780197
\(957\) 34.0263 1.09992
\(958\) −46.4807 −1.50172
\(959\) −13.4763 −0.435171
\(960\) −8.45439 −0.272864
\(961\) 1.92619 0.0621352
\(962\) 7.84955 0.253080
\(963\) −11.0435 −0.355872
\(964\) 2.16220 0.0696399
\(965\) −8.83638 −0.284453
\(966\) −13.7381 −0.442017
\(967\) −53.1655 −1.70969 −0.854844 0.518885i \(-0.826347\pi\)
−0.854844 + 0.518885i \(0.826347\pi\)
\(968\) 0.599908 0.0192818
\(969\) −2.80606 −0.0901437
\(970\) −19.7165 −0.633060
\(971\) −16.7269 −0.536791 −0.268395 0.963309i \(-0.586493\pi\)
−0.268395 + 0.963309i \(0.586493\pi\)
\(972\) −0.193937 −0.00622052
\(973\) −15.0132 −0.481300
\(974\) 8.22284 0.263477
\(975\) −4.82653 −0.154573
\(976\) −51.8759 −1.66051
\(977\) −34.2579 −1.09601 −0.548004 0.836476i \(-0.684612\pi\)
−0.548004 + 0.836476i \(0.684612\pi\)
\(978\) −36.9741 −1.18230
\(979\) −28.7269 −0.918115
\(980\) 0.231548 0.00739653
\(981\) −5.53690 −0.176780
\(982\) −21.4979 −0.686025
\(983\) 26.2981 0.838778 0.419389 0.907807i \(-0.362244\pi\)
0.419389 + 0.907807i \(0.362244\pi\)
\(984\) −22.9380 −0.731235
\(985\) 15.9102 0.506941
\(986\) −42.2130 −1.34434
\(987\) −0.932071 −0.0296682
\(988\) −0.261865 −0.00833104
\(989\) −53.2214 −1.69234
\(990\) 5.92478 0.188302
\(991\) −32.7757 −1.04116 −0.520578 0.853814i \(-0.674283\pi\)
−0.520578 + 0.853814i \(0.674283\pi\)
\(992\) 6.27362 0.199188
\(993\) 32.7875 1.04048
\(994\) −8.73084 −0.276925
\(995\) −3.47627 −0.110205
\(996\) 3.04349 0.0964367
\(997\) −52.0263 −1.64769 −0.823845 0.566814i \(-0.808176\pi\)
−0.823845 + 0.566814i \(0.808176\pi\)
\(998\) −50.0263 −1.58356
\(999\) −3.92478 −0.124174
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 399.2.a.d.1.1 3
3.2 odd 2 1197.2.a.l.1.3 3
4.3 odd 2 6384.2.a.bx.1.2 3
5.4 even 2 9975.2.a.z.1.3 3
7.6 odd 2 2793.2.a.x.1.1 3
19.18 odd 2 7581.2.a.n.1.3 3
21.20 even 2 8379.2.a.bp.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.a.d.1.1 3 1.1 even 1 trivial
1197.2.a.l.1.3 3 3.2 odd 2
2793.2.a.x.1.1 3 7.6 odd 2
6384.2.a.bx.1.2 3 4.3 odd 2
7581.2.a.n.1.3 3 19.18 odd 2
8379.2.a.bp.1.3 3 21.20 even 2
9975.2.a.z.1.3 3 5.4 even 2