Properties

Label 399.2.cb.a.320.1
Level $399$
Weight $2$
Character 399.320
Analytic conductor $3.186$
Analytic rank $0$
Dimension $6$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [399,2,Mod(5,399)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(399, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([9, 15, 16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("399.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 399 = 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 399.cb (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18603104065\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{18}]$

Embedding invariants

Embedding label 320.1
Root \(-0.766044 - 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 399.320
Dual form 399.2.cb.a.101.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.11334 + 1.32683i) q^{3} +(1.53209 - 1.28558i) q^{4} +(-1.28699 - 2.31164i) q^{7} +(-0.520945 - 2.95442i) q^{9} +3.46410i q^{12} +(1.99273 - 5.47497i) q^{13} +(0.694593 - 3.93923i) q^{16} +(-0.500000 + 4.33013i) q^{19} +(4.50000 + 0.866025i) q^{21} +(-0.868241 - 4.92404i) q^{25} +(4.50000 + 2.59808i) q^{27} +(-4.94356 - 1.88711i) q^{28} +(7.27244 + 4.19875i) q^{31} +(-4.59627 - 3.85673i) q^{36} +(2.54323 - 4.40501i) q^{37} +(5.04576 + 8.73951i) q^{39} +(1.53596 - 8.71086i) q^{43} +(4.45336 + 5.30731i) q^{48} +(-3.68732 + 5.95010i) q^{49} +(-3.98545 - 10.9499i) q^{52} +(-5.18866 - 5.48432i) q^{57} +(-4.30406 + 11.8253i) q^{61} +(-6.15910 + 5.00654i) q^{63} +(-4.00000 - 6.92820i) q^{64} +(-0.594922 - 0.216534i) q^{67} +(-10.5680 + 12.5945i) q^{73} +(7.50000 + 4.33013i) q^{75} +(4.80066 + 7.27693i) q^{76} +(-2.46538 + 13.9819i) q^{79} +(-8.45723 + 3.07818i) q^{81} +(8.00774 - 4.45826i) q^{84} +(-15.2208 + 2.43977i) q^{91} +(-13.6677 + 4.97464i) q^{93} +(12.2467 - 14.5951i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{13} - 3 q^{19} + 27 q^{21} + 27 q^{27} - 24 q^{43} + 12 q^{52} - 39 q^{61} - 24 q^{64} + 15 q^{67} - 21 q^{73} + 45 q^{75} - 39 q^{79} - 51 q^{91} - 54 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/399\mathbb{Z}\right)^\times\).

\(n\) \(115\) \(134\) \(211\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{2}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(3\) −1.11334 + 1.32683i −0.642788 + 0.766044i
\(4\) 1.53209 1.28558i 0.766044 0.642788i
\(5\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(6\) 0 0
\(7\) −1.28699 2.31164i −0.486436 0.873716i
\(8\) 0 0
\(9\) −0.520945 2.95442i −0.173648 0.984808i
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 3.46410i 1.00000i
\(13\) 1.99273 5.47497i 0.552683 1.51848i −0.277350 0.960769i \(-0.589456\pi\)
0.830033 0.557714i \(-0.188322\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0.694593 3.93923i 0.173648 0.984808i
\(17\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(18\) 0 0
\(19\) −0.500000 + 4.33013i −0.114708 + 0.993399i
\(20\) 0 0
\(21\) 4.50000 + 0.866025i 0.981981 + 0.188982i
\(22\) 0 0
\(23\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(24\) 0 0
\(25\) −0.868241 4.92404i −0.173648 0.984808i
\(26\) 0 0
\(27\) 4.50000 + 2.59808i 0.866025 + 0.500000i
\(28\) −4.94356 1.88711i −0.934246 0.356630i
\(29\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(30\) 0 0
\(31\) 7.27244 + 4.19875i 1.30617 + 0.754117i 0.981455 0.191695i \(-0.0613985\pi\)
0.324714 + 0.945812i \(0.394732\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −4.59627 3.85673i −0.766044 0.642788i
\(37\) 2.54323 4.40501i 0.418105 0.724179i −0.577644 0.816289i \(-0.696028\pi\)
0.995749 + 0.0921098i \(0.0293611\pi\)
\(38\) 0 0
\(39\) 5.04576 + 8.73951i 0.807968 + 1.39944i
\(40\) 0 0
\(41\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(42\) 0 0
\(43\) 1.53596 8.71086i 0.234232 1.32839i −0.609994 0.792406i \(-0.708828\pi\)
0.844226 0.535988i \(-0.180061\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(48\) 4.45336 + 5.30731i 0.642788 + 0.766044i
\(49\) −3.68732 + 5.95010i −0.526760 + 0.850014i
\(50\) 0 0
\(51\) 0 0
\(52\) −3.98545 10.9499i −0.552683 1.51848i
\(53\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −5.18866 5.48432i −0.687255 0.726416i
\(58\) 0 0
\(59\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(60\) 0 0
\(61\) −4.30406 + 11.8253i −0.551079 + 1.51408i 0.281161 + 0.959661i \(0.409281\pi\)
−0.832240 + 0.554416i \(0.812942\pi\)
\(62\) 0 0
\(63\) −6.15910 + 5.00654i −0.775974 + 0.630765i
\(64\) −4.00000 6.92820i −0.500000 0.866025i
\(65\) 0 0
\(66\) 0 0
\(67\) −0.594922 0.216534i −0.0726813 0.0264538i 0.305424 0.952217i \(-0.401202\pi\)
−0.378105 + 0.925763i \(0.623424\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(72\) 0 0
\(73\) −10.5680 + 12.5945i −1.23690 + 1.47408i −0.409644 + 0.912245i \(0.634347\pi\)
−0.827252 + 0.561830i \(0.810097\pi\)
\(74\) 0 0
\(75\) 7.50000 + 4.33013i 0.866025 + 0.500000i
\(76\) 4.80066 + 7.27693i 0.550673 + 0.834721i
\(77\) 0 0
\(78\) 0 0
\(79\) −2.46538 + 13.9819i −0.277377 + 1.57309i 0.453930 + 0.891038i \(0.350022\pi\)
−0.731307 + 0.682048i \(0.761089\pi\)
\(80\) 0 0
\(81\) −8.45723 + 3.07818i −0.939693 + 0.342020i
\(82\) 0 0
\(83\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(84\) 8.00774 4.45826i 0.873716 0.486436i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(90\) 0 0
\(91\) −15.2208 + 2.43977i −1.59557 + 0.255757i
\(92\) 0 0
\(93\) −13.6677 + 4.97464i −1.41728 + 0.515846i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 12.2467 14.5951i 1.24347 1.48191i 0.427284 0.904117i \(-0.359470\pi\)
0.816185 0.577791i \(-0.196085\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −7.66044 6.42788i −0.766044 0.642788i
\(101\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(102\) 0 0
\(103\) −13.4315 + 7.75470i −1.32345 + 0.764094i −0.984277 0.176631i \(-0.943480\pi\)
−0.339172 + 0.940724i \(0.610147\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 10.2344 1.80460i 0.984808 0.173648i
\(109\) 1.87939 0.684040i 0.180012 0.0655192i −0.250441 0.968132i \(-0.580576\pi\)
0.430454 + 0.902613i \(0.358354\pi\)
\(110\) 0 0
\(111\) 3.01320 + 8.27871i 0.286001 + 0.785780i
\(112\) −10.0000 + 3.46410i −0.944911 + 0.327327i
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −17.2135 3.03520i −1.59139 0.280604i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 16.5398 2.91642i 1.48532 0.261902i
\(125\) 0 0
\(126\) 0 0
\(127\) 17.8542 + 6.49838i 1.58430 + 0.576638i 0.976134 0.217171i \(-0.0696829\pi\)
0.608167 + 0.793809i \(0.291905\pi\)
\(128\) 0 0
\(129\) 9.84776 + 11.7361i 0.867047 + 1.03331i
\(130\) 0 0
\(131\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(132\) 0 0
\(133\) 10.6532 4.41701i 0.923747 0.383003i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(138\) 0 0
\(139\) 8.05556 22.1325i 0.683264 1.87725i 0.296866 0.954919i \(-0.404058\pi\)
0.386398 0.922332i \(-0.373719\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −12.0000 −1.00000
\(145\) 0 0
\(146\) 0 0
\(147\) −3.78952 11.5169i −0.312554 0.949900i
\(148\) −1.76651 10.0184i −0.145206 0.823506i
\(149\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(150\) 0 0
\(151\) 11.5000 + 19.9186i 0.935857 + 1.62095i 0.773099 + 0.634285i \(0.218706\pi\)
0.162758 + 0.986666i \(0.447961\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 18.9659 + 6.90301i 1.51848 + 0.552683i
\(157\) −5.04236 13.8538i −0.402424 1.10565i −0.961085 0.276254i \(-0.910907\pi\)
0.558661 0.829396i \(-0.311315\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 11.2456 + 19.4779i 0.880821 + 1.52563i 0.850430 + 0.526088i \(0.176342\pi\)
0.0303908 + 0.999538i \(0.490325\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(168\) 0 0
\(169\) −16.0458 13.4640i −1.23429 1.03569i
\(170\) 0 0
\(171\) 13.0535 0.778544i 0.998226 0.0595368i
\(172\) −8.84524 15.3204i −0.674443 1.16817i
\(173\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(174\) 0 0
\(175\) −10.2652 + 8.34424i −0.775974 + 0.630765i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) −4.45336 5.30731i −0.331016 0.394489i 0.574707 0.818359i \(-0.305116\pi\)
−0.905723 + 0.423870i \(0.860671\pi\)
\(182\) 0 0
\(183\) −10.8983 18.8764i −0.805623 1.39538i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0.214355 13.7461i 0.0155920 0.999878i
\(190\) 0 0
\(191\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) 13.6459 + 2.40614i 0.984808 + 0.173648i
\(193\) −5.82114 4.88451i −0.419015 0.351595i 0.408773 0.912636i \(-0.365957\pi\)
−0.827788 + 0.561041i \(0.810401\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 2.00000 + 13.8564i 0.142857 + 0.989743i
\(197\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(198\) 0 0
\(199\) −5.24809 + 14.4190i −0.372027 + 1.02214i 0.602549 + 0.798082i \(0.294152\pi\)
−0.974576 + 0.224055i \(0.928070\pi\)
\(200\) 0 0
\(201\) 0.949655 0.548284i 0.0669835 0.0386729i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −20.1830 11.6527i −1.39944 0.807968i
\(209\) 0 0
\(210\) 0 0
\(211\) 21.3293 + 17.8974i 1.46837 + 1.23211i 0.917630 + 0.397436i \(0.130100\pi\)
0.550743 + 0.834675i \(0.314345\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0.346419 22.2150i 0.0235165 1.50805i
\(218\) 0 0
\(219\) −4.94491 28.0440i −0.334146 1.89504i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0.186137 + 0.0328209i 0.0124646 + 0.00219785i 0.179877 0.983689i \(-0.442430\pi\)
−0.167412 + 0.985887i \(0.553541\pi\)
\(224\) 0 0
\(225\) −14.0954 + 5.13030i −0.939693 + 0.342020i
\(226\) 0 0
\(227\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(228\) −15.0000 1.73205i −0.993399 0.114708i
\(229\) 10.3981 + 6.00335i 0.687126 + 0.396713i 0.802535 0.596606i \(-0.203484\pi\)
−0.115408 + 0.993318i \(0.536818\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −15.8068 18.8378i −1.02676 1.22364i
\(238\) 0 0
\(239\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(240\) 0 0
\(241\) 30.3614 5.35354i 1.95575 0.344852i 0.957309 0.289066i \(-0.0933448\pi\)
0.998443 0.0557856i \(-0.0177663\pi\)
\(242\) 0 0
\(243\) 5.33157 14.6484i 0.342020 0.939693i
\(244\) 8.60813 + 23.6506i 0.551079 + 1.51408i
\(245\) 0 0
\(246\) 0 0
\(247\) 22.7110 + 11.3662i 1.44506 + 0.723217i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(252\) −3.00000 + 15.5885i −0.188982 + 0.981981i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −15.0351 5.47232i −0.939693 0.342020i
\(257\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(258\) 0 0
\(259\) −13.4559 0.209830i −0.836108 0.0130382i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −1.18984 + 0.433068i −0.0726813 + 0.0264538i
\(269\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(270\) 0 0
\(271\) 10.0201 11.9415i 0.608676 0.725391i −0.370403 0.928871i \(-0.620781\pi\)
0.979079 + 0.203479i \(0.0652250\pi\)
\(272\) 0 0
\(273\) 13.7087 22.9116i 0.829690 1.38667i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 26.0000 1.56219 0.781094 0.624413i \(-0.214662\pi\)
0.781094 + 0.624413i \(0.214662\pi\)
\(278\) 0 0
\(279\) 8.61633 23.6732i 0.515846 1.41728i
\(280\) 0 0
\(281\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(282\) 0 0
\(283\) −32.4090 5.71458i −1.92652 0.339697i −0.927130 0.374741i \(-0.877732\pi\)
−0.999386 + 0.0350443i \(0.988843\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 15.9748 + 5.81434i 0.939693 + 0.342020i
\(290\) 0 0
\(291\) 5.73039 + 32.4987i 0.335921 + 1.90510i
\(292\) 32.8819i 1.92427i
\(293\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 17.0574 3.00767i 0.984808 0.173648i
\(301\) −22.1131 + 7.66020i −1.27458 + 0.441527i
\(302\) 0 0
\(303\) 0 0
\(304\) 16.7101 + 4.97729i 0.958388 + 0.285467i
\(305\) 0 0
\(306\) 0 0
\(307\) 10.6631 + 29.2967i 0.608577 + 1.67205i 0.733337 + 0.679865i \(0.237962\pi\)
−0.124760 + 0.992187i \(0.539816\pi\)
\(308\) 0 0
\(309\) 4.66473 26.4550i 0.265367 1.50497i
\(310\) 0 0
\(311\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(312\) 0 0
\(313\) 27.2918 4.81228i 1.54262 0.272006i 0.663345 0.748314i \(-0.269136\pi\)
0.879279 + 0.476308i \(0.158025\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 14.1976 + 24.5909i 0.798677 + 1.38335i
\(317\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −9.00000 + 15.5885i −0.500000 + 0.866025i
\(325\) −28.6891 5.05867i −1.59139 0.280604i
\(326\) 0 0
\(327\) −1.18479 + 3.25519i −0.0655192 + 0.180012i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −17.9971 31.1718i −0.989208 1.71336i −0.621492 0.783420i \(-0.713473\pi\)
−0.367716 0.929938i \(-0.619860\pi\)
\(332\) 0 0
\(333\) −14.3391 5.21902i −0.785780 0.286001i
\(334\) 0 0
\(335\) 0 0
\(336\) 6.53714 17.1250i 0.356630 0.934246i
\(337\) −4.72503 + 26.7970i −0.257389 + 1.45973i 0.532476 + 0.846445i \(0.321262\pi\)
−0.789865 + 0.613280i \(0.789850\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 18.5000 + 0.866025i 0.998906 + 0.0467610i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(348\) 0 0
\(349\) −15.1879 + 8.76877i −0.812992 + 0.469381i −0.847994 0.530006i \(-0.822190\pi\)
0.0350017 + 0.999387i \(0.488856\pi\)
\(350\) 0 0
\(351\) 23.1917 19.4601i 1.23788 1.03870i
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(360\) 0 0
\(361\) −18.5000 4.33013i −0.973684 0.227901i
\(362\) 0 0
\(363\) −12.2467 + 14.5951i −0.642788 + 0.766044i
\(364\) −20.1830 + 23.3054i −1.05788 + 1.22153i
\(365\) 0 0
\(366\) 0 0
\(367\) −36.6104 + 6.45540i −1.91105 + 0.336969i −0.997555 0.0698862i \(-0.977736\pi\)
−0.913493 + 0.406855i \(0.866625\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) −14.5449 + 25.1925i −0.754117 + 1.30617i
\(373\) −25.0000 −1.29445 −0.647225 0.762299i \(-0.724071\pi\)
−0.647225 + 0.762299i \(0.724071\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −30.6219 −1.57294 −0.786469 0.617629i \(-0.788093\pi\)
−0.786469 + 0.617629i \(0.788093\pi\)
\(380\) 0 0
\(381\) −28.5000 + 16.4545i −1.46010 + 0.842989i
\(382\) 0 0
\(383\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −26.5357 −1.34889
\(388\) 38.1051i 1.93449i
\(389\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 2.02915 + 5.57505i 0.101840 + 0.279804i 0.980140 0.198307i \(-0.0635442\pi\)
−0.878300 + 0.478110i \(0.841322\pi\)
\(398\) 0 0
\(399\) −6.00000 + 19.0526i −0.300376 + 0.953821i
\(400\) −20.0000 −1.00000
\(401\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(402\) 0 0
\(403\) 37.4800 31.4494i 1.86701 1.56661i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −8.88594 + 24.4139i −0.439382 + 1.20719i 0.500514 + 0.865729i \(0.333144\pi\)
−0.939895 + 0.341463i \(0.889078\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −10.6091 + 29.1482i −0.522671 + 1.43603i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 20.3974 + 35.3293i 0.998865 + 1.73008i
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 17.8542 6.49838i 0.870159 0.316712i 0.131927 0.991259i \(-0.457883\pi\)
0.738231 + 0.674548i \(0.235661\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 32.8751 5.26963i 1.59094 0.255015i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(432\) 13.3601 15.9219i 0.642788 0.766044i
\(433\) −30.0940 + 5.30639i −1.44623 + 0.255009i −0.840996 0.541041i \(-0.818030\pi\)
−0.605231 + 0.796050i \(0.706919\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 2.00000 3.46410i 0.0957826 0.165900i
\(437\) 0 0
\(438\) 0 0
\(439\) 7.57944 + 20.8243i 0.361747 + 0.993892i 0.978412 + 0.206666i \(0.0662612\pi\)
−0.616665 + 0.787226i \(0.711517\pi\)
\(440\) 0 0
\(441\) 19.5000 + 7.79423i 0.928571 + 0.371154i
\(442\) 0 0
\(443\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(444\) 15.2594 + 8.81002i 0.724179 + 0.418105i
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −10.8675 + 18.1631i −0.513442 + 0.858124i
\(449\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −39.2320 6.91765i −1.84328 0.325020i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 19.6006 33.9492i 0.916878 1.58808i 0.112749 0.993624i \(-0.464034\pi\)
0.804129 0.594455i \(-0.202632\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(462\) 0 0
\(463\) 4.58630 + 7.94371i 0.213144 + 0.369176i 0.952697 0.303923i \(-0.0982964\pi\)
−0.739553 + 0.673098i \(0.764963\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(468\) −30.2746 + 17.4790i −1.39944 + 0.807968i
\(469\) 0.265111 + 1.65392i 0.0122417 + 0.0763710i
\(470\) 0 0
\(471\) 23.9954 + 8.73362i 1.10565 + 0.402424i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 21.7558 1.29757i 0.998226 0.0595368i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(480\) 0 0
\(481\) −19.0493 22.7021i −0.868574 1.03513i
\(482\) 0 0
\(483\) 0 0
\(484\) 16.8530 14.1413i 0.766044 0.642788i
\(485\) 0 0
\(486\) 0 0
\(487\) 22.0000 38.1051i 0.996915 1.72671i 0.430486 0.902597i \(-0.358342\pi\)
0.566429 0.824110i \(-0.308325\pi\)
\(488\) 0 0
\(489\) −38.3640 6.76460i −1.73488 0.305906i
\(490\) 0 0
\(491\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 21.5912 25.7314i 0.969474 1.15537i
\(497\) 0 0
\(498\) 0 0
\(499\) −34.1300 28.6385i −1.52787 1.28203i −0.811610 0.584199i \(-0.801409\pi\)
−0.716258 0.697835i \(-0.754147\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 35.7288 6.29995i 1.58677 0.279791i
\(508\) 35.7083 12.9968i 1.58430 0.576638i
\(509\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(510\) 0 0
\(511\) 42.7149 + 8.22048i 1.88959 + 0.363653i
\(512\) 0 0
\(513\) −13.5000 + 18.1865i −0.596040 + 0.802955i
\(514\) 0 0
\(515\) 0 0
\(516\) 30.1753 + 5.32072i 1.32839 + 0.234232i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) −15.4599 + 2.72600i −0.676015 + 0.119200i −0.501107 0.865385i \(-0.667074\pi\)
−0.174908 + 0.984585i \(0.555963\pi\)
\(524\) 0 0
\(525\) 0.357259 22.9101i 0.0155920 0.999878i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 17.6190 + 14.7841i 0.766044 + 0.642788i
\(530\) 0 0
\(531\) 0 0
\(532\) 10.6432 20.4627i 0.461442 0.887171i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −0.202277 1.14717i −0.00869658 0.0493207i 0.980151 0.198254i \(-0.0635271\pi\)
−0.988847 + 0.148933i \(0.952416\pi\)
\(542\) 0 0
\(543\) 12.0000 0.514969
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 7.96720 + 45.1842i 0.340653 + 1.93194i 0.362031 + 0.932166i \(0.382083\pi\)
−0.0213785 + 0.999771i \(0.506805\pi\)
\(548\) 0 0
\(549\) 37.1792 + 6.55569i 1.58677 + 0.279790i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 35.4940 12.2955i 1.50936 0.522857i
\(554\) 0 0
\(555\) 0 0
\(556\) −16.1111 44.2649i −0.683264 1.87725i
\(557\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(558\) 0 0
\(559\) −44.6309 25.7677i −1.88769 1.08986i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 18.0000 + 15.5885i 0.755929 + 0.654654i
\(568\) 0 0
\(569\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(570\) 0 0
\(571\) −15.2187 26.3595i −0.636882 1.10311i −0.986113 0.166076i \(-0.946890\pi\)
0.349231 0.937037i \(-0.386443\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −18.3851 + 15.4269i −0.766044 + 0.642788i
\(577\) 28.5000 + 16.4545i 1.18647 + 0.685009i 0.957503 0.288425i \(-0.0931316\pi\)
0.228968 + 0.973434i \(0.426465\pi\)
\(578\) 0 0
\(579\) 12.9618 2.28552i 0.538675 0.0949829i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(588\) −20.6117 12.7732i −0.850014 0.526760i
\(589\) −21.8173 + 29.3912i −0.898967 + 1.21104i
\(590\) 0 0
\(591\) 0 0
\(592\) −15.5858 13.0781i −0.640574 0.537505i
\(593\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −13.2886 23.0166i −0.543868 0.942007i
\(598\) 0 0
\(599\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(600\) 0 0
\(601\) 13.1042 7.56570i 0.534530 0.308611i −0.208329 0.978059i \(-0.566802\pi\)
0.742859 + 0.669448i \(0.233469\pi\)
\(602\) 0 0
\(603\) −0.329812 + 1.87046i −0.0134310 + 0.0761708i
\(604\) 43.2259 + 15.7329i 1.75884 + 0.640164i
\(605\) 0 0
\(606\) 0 0
\(607\) −41.0091 23.6766i −1.66451 0.961005i −0.970520 0.241020i \(-0.922518\pi\)
−0.693990 0.719985i \(-0.744149\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −44.1656 + 16.0749i −1.78383 + 0.649261i −0.784245 + 0.620451i \(0.786949\pi\)
−0.999585 + 0.0288097i \(0.990828\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(618\) 0 0
\(619\) 49.7594i 2.00000i −0.000400419 1.00000i \(-0.500127\pi\)
0.000400419 1.00000i \(-0.499873\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 37.9317 13.8060i 1.51848 0.552683i
\(625\) −23.4923 + 8.55050i −0.939693 + 0.342020i
\(626\) 0 0
\(627\) 0 0
\(628\) −25.5354 14.7429i −1.01897 0.588304i
\(629\) 0 0
\(630\) 0 0
\(631\) 8.55959 + 48.5439i 0.340752 + 1.93250i 0.360657 + 0.932699i \(0.382553\pi\)
−0.0199047 + 0.999802i \(0.506336\pi\)
\(632\) 0 0
\(633\) −47.4937 + 8.37441i −1.88770 + 0.332853i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 25.2288 + 32.0449i 0.999601 + 1.26966i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(642\) 0 0
\(643\) −11.6213 31.9293i −0.458301 1.25917i −0.926750 0.375680i \(-0.877409\pi\)
0.468449 0.883491i \(-0.344813\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 29.0898 + 25.1925i 1.14012 + 0.987371i
\(652\) 42.2695 + 15.3848i 1.65540 + 0.602517i
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 42.7149 + 24.6614i 1.66647 + 0.962135i
\(658\) 0 0
\(659\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(660\) 0 0
\(661\) −32.2869 38.4780i −1.25581 1.49662i −0.791783 0.610802i \(-0.790847\pi\)
−0.464031 0.885819i \(-0.653597\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −0.250781 + 0.210430i −0.00969577 + 0.00813571i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 14.6977 25.4572i 0.566557 0.981305i −0.430346 0.902664i \(-0.641609\pi\)
0.996903 0.0786409i \(-0.0250581\pi\)
\(674\) 0 0
\(675\) 8.88594 24.4139i 0.342020 0.939693i
\(676\) −41.8925 −1.61125
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) −49.5000 9.52628i −1.89964 0.365585i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(684\) 18.9982 17.9741i 0.726416 0.687255i
\(685\) 0 0
\(686\) 0 0
\(687\) −19.5421 + 7.11272i −0.745576 + 0.271367i
\(688\) −33.2472 12.1010i −1.26754 0.461346i
\(689\) 0 0
\(690\) 0 0
\(691\) 51.9615i 1.97671i −0.152167 0.988355i \(-0.548625\pi\)
0.152167 0.988355i \(-0.451375\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −5.00000 + 25.9808i −0.188982 + 0.981981i
\(701\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(702\) 0 0
\(703\) 17.8026 + 13.2150i 0.671439 + 0.498414i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 39.5133 33.1556i 1.48395 1.24518i 0.582115 0.813107i \(-0.302225\pi\)
0.901837 0.432077i \(-0.142219\pi\)
\(710\) 0 0
\(711\) 42.5928 1.59735
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(720\) 0 0
\(721\) 35.2123 + 21.0686i 1.31137 + 0.784636i
\(722\) 0 0
\(723\) −26.6994 + 46.2447i −0.992961 + 1.71986i
\(724\) −13.6459 2.40614i −0.507146 0.0894235i
\(725\) 0 0
\(726\) 0 0
\(727\) 14.0314 + 2.47411i 0.520395 + 0.0917597i 0.427675 0.903933i \(-0.359333\pi\)
0.0927199 + 0.995692i \(0.470444\pi\)
\(728\) 0 0
\(729\) 13.5000 + 23.3827i 0.500000 + 0.866025i
\(730\) 0 0
\(731\) 0 0
\(732\) −40.9641 14.9097i −1.51408 0.551079i
\(733\) 18.0000 10.3923i 0.664845 0.383849i −0.129275 0.991609i \(-0.541265\pi\)
0.794121 + 0.607760i \(0.207932\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 3.67153 20.8223i 0.135060 0.765961i −0.839759 0.542960i \(-0.817304\pi\)
0.974818 0.223001i \(-0.0715853\pi\)
\(740\) 0 0
\(741\) −40.3661 + 17.4790i −1.48288 + 0.642108i
\(742\) 0 0
\(743\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 8.85045 + 50.1934i 0.322958 + 1.83158i 0.523655 + 0.851930i \(0.324568\pi\)
−0.200698 + 0.979653i \(0.564321\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) −17.3432 21.3357i −0.630765 0.775974i
\(757\) −10.5775 + 3.84991i −0.384447 + 0.139927i −0.527011 0.849858i \(-0.676688\pi\)
0.142564 + 0.989786i \(0.454465\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(762\) 0 0
\(763\) −4.00000 3.46410i −0.144810 0.125409i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 24.0000 13.8564i 0.866025 0.500000i
\(769\) −26.4654 31.5403i −0.954368 1.13737i −0.990429 0.138022i \(-0.955925\pi\)
0.0360609 0.999350i \(-0.488519\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −15.1979 −0.546985
\(773\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(774\) 0 0
\(775\) 14.3606 39.4553i 0.515846 1.41728i
\(776\) 0 0
\(777\) 15.2594 17.6200i 0.547428 0.632115i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 20.8776 + 18.6581i 0.745630 + 0.666361i
\(785\) 0 0
\(786\) 0 0
\(787\) 55.7508i 1.98730i 0.112514 + 0.993650i \(0.464110\pi\)
−0.112514 + 0.993650i \(0.535890\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 56.1664 + 47.1292i 1.99453 + 1.67361i
\(794\) 0 0
\(795\) 0 0
\(796\) 10.4962 + 28.8380i 0.372027 + 1.02214i
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0.750096 2.06087i 0.0264538 0.0726813i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) −14.8099 + 40.6899i −0.520046 + 1.42882i 0.350423 + 0.936592i \(0.386038\pi\)
−0.870469 + 0.492223i \(0.836184\pi\)
\(812\) 0 0
\(813\) 4.68850 + 26.5898i 0.164433 + 0.932545i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 36.9511 + 11.0063i 1.29276 + 0.385063i
\(818\) 0 0
\(819\) 15.1373 + 43.6976i 0.528939 + 1.52692i
\(820\) 0 0
\(821\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(822\) 0 0
\(823\) 0.868241 + 4.92404i 0.0302650 + 0.171641i 0.996194 0.0871670i \(-0.0277814\pi\)
−0.965929 + 0.258808i \(0.916670\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(828\) 0 0
\(829\) 2.62551 + 1.51584i 0.0911876 + 0.0526472i 0.544900 0.838501i \(-0.316567\pi\)
−0.453713 + 0.891148i \(0.649901\pi\)
\(830\) 0 0
\(831\) −28.9469 + 34.4975i −1.00416 + 1.19671i
\(832\) −45.9026 + 8.09387i −1.59139 + 0.280604i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 21.8173 + 37.7887i 0.754117 + 1.30617i
\(838\) 0 0
\(839\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(840\) 0 0
\(841\) 5.03580 28.5594i 0.173648 0.984808i
\(842\) 0 0
\(843\) 0 0
\(844\) 55.6870 1.91682
\(845\) 0 0
\(846\) 0 0
\(847\) −14.1569 25.4280i −0.486436 0.873716i
\(848\) 0 0
\(849\) 43.6645 36.6389i 1.49856 1.25744i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −35.9420 + 42.8340i −1.23063 + 1.46661i −0.393753 + 0.919216i \(0.628823\pi\)
−0.836877 + 0.547391i \(0.815621\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(858\) 0 0
\(859\) −0.984052 + 2.70366i −0.0335754 + 0.0922477i −0.955348 0.295484i \(-0.904519\pi\)
0.921772 + 0.387732i \(0.126741\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −25.5000 + 14.7224i −0.866025 + 0.500000i
\(868\) −28.0283 34.4807i −0.951342 1.17035i
\(869\) 0 0
\(870\) 0 0
\(871\) −2.37104 + 2.82569i −0.0803395 + 0.0957448i
\(872\) 0 0
\(873\) −49.5000 28.5788i −1.67532 0.967247i
\(874\) 0 0
\(875\) 0 0
\(876\) −43.6287 36.6088i −1.47408 1.23690i
\(877\) 2.66766 15.1291i 0.0900805 0.510872i −0.906064 0.423141i \(-0.860927\pi\)
0.996144 0.0877308i \(-0.0279615\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(882\) 0 0
\(883\) −45.4910 + 38.1715i −1.53089 + 1.28457i −0.740055 + 0.672546i \(0.765201\pi\)
−0.790838 + 0.612026i \(0.790355\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(888\) 0 0
\(889\) −7.95621 49.6357i −0.266843 1.66473i
\(890\) 0 0
\(891\) 0 0
\(892\) 0.327372 0.189008i 0.0109612 0.00632846i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −15.0000 + 25.9808i −0.500000 + 0.866025i
\(901\) 0 0
\(902\) 0 0
\(903\) 14.4556 37.8687i 0.481054 1.26019i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −37.5877 + 13.6808i −1.24808 + 0.454264i −0.879752 0.475433i \(-0.842292\pi\)
−0.368327 + 0.929696i \(0.620069\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) −25.2080 + 16.6300i −0.834721 + 0.550673i
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 23.6486 4.16988i 0.781371 0.137777i
\(917\) 0 0
\(918\) 0 0
\(919\) −59.5271 −1.96362 −0.981810 0.189867i \(-0.939194\pi\)
−0.981810 + 0.189867i \(0.939194\pi\)
\(920\) 0 0
\(921\) −50.7434 18.4691i −1.67205 0.608577i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −23.8986 8.69837i −0.785780 0.286001i
\(926\) 0 0
\(927\) 29.9078 + 35.6427i 0.982300 + 1.17066i
\(928\) 0 0
\(929\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(930\) 0 0
\(931\) −23.9210 18.9416i −0.783980 0.620786i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −8.80566 + 24.1933i −0.287668 + 0.790362i 0.708723 + 0.705487i \(0.249271\pi\)
−0.996392 + 0.0848755i \(0.972951\pi\)
\(938\) 0 0
\(939\) −24.0000 + 41.5692i −0.783210 + 1.35656i
\(940\) 0 0
\(941\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(948\) −48.4347 8.54034i −1.57309 0.277377i
\(949\) 47.8953 + 82.9572i 1.55475 + 2.69290i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 19.7589 + 34.2235i 0.637385 + 1.10398i
\(962\) 0 0
\(963\) 0 0
\(964\) 39.6340 47.2340i 1.27653 1.52130i
\(965\) 0 0
\(966\) 0 0
\(967\) 1.03234 + 0.866234i 0.0331977 + 0.0278562i 0.659236 0.751936i \(-0.270880\pi\)
−0.626038 + 0.779793i \(0.715324\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(972\) −10.6631 29.2967i −0.342020 0.939693i
\(973\) −61.5296 + 9.86272i −1.97255 + 0.316184i
\(974\) 0 0
\(975\) 38.6528 32.4335i 1.23788 1.03870i
\(976\) 43.5931 + 25.1685i 1.39538 + 0.805623i
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −3.00000 5.19615i −0.0957826 0.165900i
\(982\) 0 0
\(983\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 49.4074 11.7825i 1.57186 0.374853i
\(989\) 0 0
\(990\) 0 0
\(991\) 19.8744 + 16.6766i 0.631331 + 0.529749i 0.901342 0.433108i \(-0.142583\pi\)
−0.270011 + 0.962857i \(0.587027\pi\)
\(992\) 0 0
\(993\) 61.3965 + 10.8259i 1.94836 + 0.343548i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −7.07151 + 19.4288i −0.223957 + 0.615317i −0.999880 0.0155113i \(-0.995062\pi\)
0.775923 + 0.630828i \(0.217285\pi\)
\(998\) 0 0
\(999\) 22.8891 13.2150i 0.724179 0.418105i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 399.2.cb.a.320.1 yes 6
3.2 odd 2 CM 399.2.cb.a.320.1 yes 6
7.3 odd 6 399.2.ci.a.206.1 yes 6
19.6 even 9 399.2.ci.a.215.1 yes 6
21.17 even 6 399.2.ci.a.206.1 yes 6
57.44 odd 18 399.2.ci.a.215.1 yes 6
133.101 odd 18 inner 399.2.cb.a.101.1 6
399.101 even 18 inner 399.2.cb.a.101.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.cb.a.101.1 6 133.101 odd 18 inner
399.2.cb.a.101.1 6 399.101 even 18 inner
399.2.cb.a.320.1 yes 6 1.1 even 1 trivial
399.2.cb.a.320.1 yes 6 3.2 odd 2 CM
399.2.ci.a.206.1 yes 6 7.3 odd 6
399.2.ci.a.206.1 yes 6 21.17 even 6
399.2.ci.a.215.1 yes 6 19.6 even 9
399.2.ci.a.215.1 yes 6 57.44 odd 18