Properties

Label 399.2.j.d.58.1
Level $399$
Weight $2$
Character 399.58
Analytic conductor $3.186$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [399,2,Mod(58,399)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(399, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("399.58");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 399 = 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 399.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18603104065\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.310217769.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 4x^{6} - 2x^{5} + 15x^{4} - 4x^{3} + 5x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 58.1
Root \(0.882007 - 1.52768i\) of defining polynomial
Character \(\chi\) \(=\) 399.58
Dual form 399.2.j.d.172.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.882007 + 1.52768i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-0.555874 - 0.962803i) q^{4} +(-1.05587 + 1.82883i) q^{5} -1.76401 q^{6} +(-0.893022 + 2.49048i) q^{7} -1.56689 q^{8} +(-0.500000 + 0.866025i) q^{9} +(-1.86258 - 3.22608i) q^{10} +(-0.926867 - 1.60538i) q^{11} +(0.555874 - 0.962803i) q^{12} +3.85373 q^{13} +(-3.01702 - 3.56088i) q^{14} -2.11175 q^{15} +(2.49376 - 4.31931i) q^{16} +(-0.697126 - 1.20746i) q^{17} +(-0.882007 - 1.52768i) q^{18} +(-0.500000 + 0.866025i) q^{19} +2.34773 q^{20} +(-2.60333 + 0.471863i) q^{21} +3.27002 q^{22} +(-1.65444 + 2.86557i) q^{23} +(-0.783444 - 1.35697i) q^{24} +(0.270259 + 0.468102i) q^{25} +(-3.39902 + 5.88728i) q^{26} -1.00000 q^{27} +(2.89425 - 0.524593i) q^{28} -4.13624 q^{29} +(1.86258 - 3.22608i) q^{30} +(-2.14219 - 3.71039i) q^{31} +(2.83213 + 4.90540i) q^{32} +(0.926867 - 1.60538i) q^{33} +2.45948 q^{34} +(-3.61175 - 4.26282i) q^{35} +1.11175 q^{36} +(-0.328304 + 0.568640i) q^{37} +(-0.882007 - 1.52768i) q^{38} +(1.92687 + 3.33743i) q^{39} +(1.65444 - 2.86557i) q^{40} +6.74718 q^{41} +(1.57530 - 4.39325i) q^{42} +1.83690 q^{43} +(-1.03044 + 1.78478i) q^{44} +(-1.05587 - 1.82883i) q^{45} +(-2.91845 - 5.05491i) q^{46} +(-2.98151 + 5.16413i) q^{47} +4.98751 q^{48} +(-5.40502 - 4.44811i) q^{49} -0.953481 q^{50} +(0.697126 - 1.20746i) q^{51} +(-2.14219 - 3.71039i) q^{52} +(3.91004 + 6.77238i) q^{53} +(0.882007 - 1.52768i) q^{54} +3.91462 q^{55} +(1.39927 - 3.90231i) q^{56} -1.00000 q^{57} +(3.64819 - 6.31886i) q^{58} +(-2.40267 - 4.16154i) q^{59} +(1.17387 + 2.03320i) q^{60} +(-2.05970 + 3.56751i) q^{61} +7.55772 q^{62} +(-1.71031 - 2.01862i) q^{63} -0.0168302 q^{64} +(-4.06906 + 7.04782i) q^{65} +(1.63501 + 2.83192i) q^{66} +(3.05847 + 5.29743i) q^{67} +(-0.775029 + 1.34239i) q^{68} -3.30887 q^{69} +(9.69782 - 1.75776i) q^{70} +1.36976 q^{71} +(0.783444 - 1.35697i) q^{72} +(-2.37984 - 4.12200i) q^{73} +(-0.579134 - 1.00309i) q^{74} +(-0.270259 + 0.468102i) q^{75} +1.11175 q^{76} +(4.82589 - 0.874708i) q^{77} -6.79805 q^{78} +(-7.99257 + 13.8435i) q^{79} +(5.26619 + 9.12130i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-5.95107 + 10.3076i) q^{82} +3.27050 q^{83} +(1.90144 + 2.24420i) q^{84} +2.94431 q^{85} +(-1.62016 + 2.80621i) q^{86} +(-2.06812 - 3.58209i) q^{87} +(1.45230 + 2.51545i) q^{88} +(-6.99257 + 12.1115i) q^{89} +3.72516 q^{90} +(-3.44147 + 9.59767i) q^{91} +3.67864 q^{92} +(2.14219 - 3.71039i) q^{93} +(-5.25943 - 9.10960i) q^{94} +(-1.05587 - 1.82883i) q^{95} +(-2.83213 + 4.90540i) q^{96} -5.97314 q^{97} +(11.5626 - 4.33389i) q^{98} +1.85373 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} - 4 q^{5} + 2 q^{7} - 6 q^{8} - 4 q^{9} + 3 q^{10} + 2 q^{11} + 12 q^{13} + 2 q^{14} - 8 q^{15} + 4 q^{16} + 2 q^{17} - 4 q^{19} + 24 q^{20} + q^{21} - 12 q^{22} - 5 q^{23} - 3 q^{24} + 4 q^{25}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/399\mathbb{Z}\right)^\times\).

\(n\) \(115\) \(134\) \(211\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.882007 + 1.52768i −0.623673 + 1.08023i 0.365122 + 0.930960i \(0.381027\pi\)
−0.988796 + 0.149275i \(0.952306\pi\)
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) −0.555874 0.962803i −0.277937 0.481401i
\(5\) −1.05587 + 1.82883i −0.472201 + 0.817877i −0.999494 0.0318070i \(-0.989874\pi\)
0.527293 + 0.849684i \(0.323207\pi\)
\(6\) −1.76401 −0.720156
\(7\) −0.893022 + 2.49048i −0.337530 + 0.941315i
\(8\) −1.56689 −0.553979
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) −1.86258 3.22608i −0.588999 1.02018i
\(11\) −0.926867 1.60538i −0.279461 0.484041i 0.691790 0.722099i \(-0.256822\pi\)
−0.971251 + 0.238058i \(0.923489\pi\)
\(12\) 0.555874 0.962803i 0.160467 0.277937i
\(13\) 3.85373 1.06883 0.534417 0.845221i \(-0.320531\pi\)
0.534417 + 0.845221i \(0.320531\pi\)
\(14\) −3.01702 3.56088i −0.806331 0.951685i
\(15\) −2.11175 −0.545251
\(16\) 2.49376 4.31931i 0.623439 1.07983i
\(17\) −0.697126 1.20746i −0.169078 0.292852i 0.769018 0.639227i \(-0.220746\pi\)
−0.938096 + 0.346376i \(0.887412\pi\)
\(18\) −0.882007 1.52768i −0.207891 0.360078i
\(19\) −0.500000 + 0.866025i −0.114708 + 0.198680i
\(20\) 2.34773 0.524969
\(21\) −2.60333 + 0.471863i −0.568094 + 0.102969i
\(22\) 3.27002 0.697170
\(23\) −1.65444 + 2.86557i −0.344974 + 0.597513i −0.985349 0.170550i \(-0.945446\pi\)
0.640375 + 0.768062i \(0.278779\pi\)
\(24\) −0.783444 1.35697i −0.159920 0.276989i
\(25\) 0.270259 + 0.468102i 0.0540518 + 0.0936204i
\(26\) −3.39902 + 5.88728i −0.666603 + 1.15459i
\(27\) −1.00000 −0.192450
\(28\) 2.89425 0.524593i 0.546962 0.0991387i
\(29\) −4.13624 −0.768080 −0.384040 0.923316i \(-0.625468\pi\)
−0.384040 + 0.923316i \(0.625468\pi\)
\(30\) 1.86258 3.22608i 0.340059 0.588999i
\(31\) −2.14219 3.71039i −0.384749 0.666405i 0.606985 0.794713i \(-0.292379\pi\)
−0.991734 + 0.128308i \(0.959045\pi\)
\(32\) 2.83213 + 4.90540i 0.500655 + 0.867161i
\(33\) 0.926867 1.60538i 0.161347 0.279461i
\(34\) 2.45948 0.421798
\(35\) −3.61175 4.26282i −0.610497 0.720548i
\(36\) 1.11175 0.185291
\(37\) −0.328304 + 0.568640i −0.0539729 + 0.0934838i −0.891750 0.452529i \(-0.850522\pi\)
0.837777 + 0.546013i \(0.183855\pi\)
\(38\) −0.882007 1.52768i −0.143081 0.247823i
\(39\) 1.92687 + 3.33743i 0.308546 + 0.534417i
\(40\) 1.65444 2.86557i 0.261590 0.453086i
\(41\) 6.74718 1.05373 0.526867 0.849948i \(-0.323367\pi\)
0.526867 + 0.849948i \(0.323367\pi\)
\(42\) 1.57530 4.39325i 0.243075 0.677893i
\(43\) 1.83690 0.280125 0.140063 0.990143i \(-0.455270\pi\)
0.140063 + 0.990143i \(0.455270\pi\)
\(44\) −1.03044 + 1.78478i −0.155345 + 0.269066i
\(45\) −1.05587 1.82883i −0.157400 0.272626i
\(46\) −2.91845 5.05491i −0.430302 0.745306i
\(47\) −2.98151 + 5.16413i −0.434898 + 0.753266i −0.997287 0.0736071i \(-0.976549\pi\)
0.562389 + 0.826873i \(0.309882\pi\)
\(48\) 4.98751 0.719885
\(49\) −5.40502 4.44811i −0.772146 0.635445i
\(50\) −0.953481 −0.134843
\(51\) 0.697126 1.20746i 0.0976172 0.169078i
\(52\) −2.14219 3.71039i −0.297069 0.514538i
\(53\) 3.91004 + 6.77238i 0.537085 + 0.930258i 0.999059 + 0.0433651i \(0.0138079\pi\)
−0.461974 + 0.886893i \(0.652859\pi\)
\(54\) 0.882007 1.52768i 0.120026 0.207891i
\(55\) 3.91462 0.527848
\(56\) 1.39927 3.90231i 0.186985 0.521468i
\(57\) −1.00000 −0.132453
\(58\) 3.64819 6.31886i 0.479031 0.829707i
\(59\) −2.40267 4.16154i −0.312801 0.541787i 0.666167 0.745803i \(-0.267934\pi\)
−0.978968 + 0.204016i \(0.934601\pi\)
\(60\) 1.17387 + 2.03320i 0.151546 + 0.262485i
\(61\) −2.05970 + 3.56751i −0.263718 + 0.456773i −0.967227 0.253913i \(-0.918282\pi\)
0.703509 + 0.710686i \(0.251616\pi\)
\(62\) 7.55772 0.959831
\(63\) −1.71031 2.01862i −0.215479 0.254322i
\(64\) −0.0168302 −0.00210377
\(65\) −4.06906 + 7.04782i −0.504705 + 0.874174i
\(66\) 1.63501 + 2.83192i 0.201256 + 0.348585i
\(67\) 3.05847 + 5.29743i 0.373652 + 0.647184i 0.990124 0.140192i \(-0.0447721\pi\)
−0.616472 + 0.787377i \(0.711439\pi\)
\(68\) −0.775029 + 1.34239i −0.0939861 + 0.162789i
\(69\) −3.30887 −0.398342
\(70\) 9.69782 1.75776i 1.15911 0.210093i
\(71\) 1.36976 0.162561 0.0812804 0.996691i \(-0.474099\pi\)
0.0812804 + 0.996691i \(0.474099\pi\)
\(72\) 0.783444 1.35697i 0.0923298 0.159920i
\(73\) −2.37984 4.12200i −0.278539 0.482443i 0.692483 0.721434i \(-0.256517\pi\)
−0.971022 + 0.238991i \(0.923183\pi\)
\(74\) −0.579134 1.00309i −0.0673229 0.116607i
\(75\) −0.270259 + 0.468102i −0.0312068 + 0.0540518i
\(76\) 1.11175 0.127526
\(77\) 4.82589 0.874708i 0.549961 0.0996823i
\(78\) −6.79805 −0.769727
\(79\) −7.99257 + 13.8435i −0.899235 + 1.55752i −0.0707603 + 0.997493i \(0.522543\pi\)
−0.828474 + 0.560027i \(0.810791\pi\)
\(80\) 5.26619 + 9.12130i 0.588778 + 1.01979i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −5.95107 + 10.3076i −0.657185 + 1.13828i
\(83\) 3.27050 0.358984 0.179492 0.983759i \(-0.442555\pi\)
0.179492 + 0.983759i \(0.442555\pi\)
\(84\) 1.90144 + 2.24420i 0.207464 + 0.244862i
\(85\) 2.94431 0.319355
\(86\) −1.62016 + 2.80621i −0.174707 + 0.302601i
\(87\) −2.06812 3.58209i −0.221726 0.384040i
\(88\) 1.45230 + 2.51545i 0.154816 + 0.268148i
\(89\) −6.99257 + 12.1115i −0.741211 + 1.28382i 0.210733 + 0.977544i \(0.432415\pi\)
−0.951944 + 0.306272i \(0.900918\pi\)
\(90\) 3.72516 0.392666
\(91\) −3.44147 + 9.59767i −0.360764 + 1.00611i
\(92\) 3.67864 0.383524
\(93\) 2.14219 3.71039i 0.222135 0.384749i
\(94\) −5.25943 9.10960i −0.542469 0.939583i
\(95\) −1.05587 1.82883i −0.108330 0.187634i
\(96\) −2.83213 + 4.90540i −0.289054 + 0.500655i
\(97\) −5.97314 −0.606481 −0.303240 0.952914i \(-0.598069\pi\)
−0.303240 + 0.952914i \(0.598069\pi\)
\(98\) 11.5626 4.33389i 1.16800 0.437789i
\(99\) 1.85373 0.186307
\(100\) 0.300460 0.520412i 0.0300460 0.0520412i
\(101\) 4.87335 + 8.44089i 0.484916 + 0.839900i 0.999850 0.0173303i \(-0.00551668\pi\)
−0.514933 + 0.857230i \(0.672183\pi\)
\(102\) 1.22974 + 2.12997i 0.121763 + 0.210899i
\(103\) −0.974569 + 1.68800i −0.0960272 + 0.166324i −0.910037 0.414527i \(-0.863947\pi\)
0.814010 + 0.580851i \(0.197280\pi\)
\(104\) −6.03837 −0.592111
\(105\) 1.88584 5.25928i 0.184039 0.513253i
\(106\) −13.7947 −1.33986
\(107\) −2.49783 + 4.32637i −0.241474 + 0.418246i −0.961134 0.276081i \(-0.910964\pi\)
0.719660 + 0.694326i \(0.244298\pi\)
\(108\) 0.555874 + 0.962803i 0.0534890 + 0.0926457i
\(109\) 7.23451 + 12.5305i 0.692941 + 1.20021i 0.970870 + 0.239607i \(0.0770185\pi\)
−0.277929 + 0.960601i \(0.589648\pi\)
\(110\) −3.45273 + 5.98030i −0.329205 + 0.570199i
\(111\) −0.656609 −0.0623225
\(112\) 8.53020 + 10.0679i 0.806028 + 0.951327i
\(113\) 18.3663 1.72776 0.863880 0.503699i \(-0.168028\pi\)
0.863880 + 0.503699i \(0.168028\pi\)
\(114\) 0.882007 1.52768i 0.0826076 0.143081i
\(115\) −3.49376 6.05136i −0.325794 0.564293i
\(116\) 2.29923 + 3.98238i 0.213478 + 0.369755i
\(117\) −1.92687 + 3.33743i −0.178139 + 0.308546i
\(118\) 8.47668 0.780342
\(119\) 3.62970 0.657896i 0.332734 0.0603092i
\(120\) 3.30887 0.302058
\(121\) 3.78183 6.55033i 0.343803 0.595484i
\(122\) −3.63335 6.29315i −0.328948 0.569755i
\(123\) 3.37359 + 5.84323i 0.304187 + 0.526867i
\(124\) −2.38158 + 4.12502i −0.213872 + 0.370437i
\(125\) −11.7002 −1.04650
\(126\) 4.59232 0.832373i 0.409116 0.0741537i
\(127\) 19.3701 1.71882 0.859411 0.511286i \(-0.170831\pi\)
0.859411 + 0.511286i \(0.170831\pi\)
\(128\) −5.64942 + 9.78509i −0.499343 + 0.864888i
\(129\) 0.918452 + 1.59081i 0.0808652 + 0.140063i
\(130\) −7.17788 12.4325i −0.629542 1.09040i
\(131\) 9.49040 16.4379i 0.829180 1.43618i −0.0695019 0.997582i \(-0.522141\pi\)
0.898682 0.438601i \(-0.144526\pi\)
\(132\) −2.06089 −0.179377
\(133\) −1.71031 2.01862i −0.148303 0.175037i
\(134\) −10.7904 −0.932147
\(135\) 1.05587 1.82883i 0.0908752 0.157400i
\(136\) 1.09232 + 1.89195i 0.0936656 + 0.162234i
\(137\) 5.96548 + 10.3325i 0.509666 + 0.882767i 0.999937 + 0.0111971i \(0.00356423\pi\)
−0.490272 + 0.871570i \(0.663102\pi\)
\(138\) 2.91845 5.05491i 0.248435 0.430302i
\(139\) −13.3932 −1.13600 −0.567998 0.823030i \(-0.692282\pi\)
−0.567998 + 0.823030i \(0.692282\pi\)
\(140\) −2.09658 + 5.84699i −0.177193 + 0.494161i
\(141\) −5.96302 −0.502177
\(142\) −1.20814 + 2.09256i −0.101385 + 0.175604i
\(143\) −3.57190 6.18672i −0.298697 0.517359i
\(144\) 2.49376 + 4.31931i 0.207813 + 0.359943i
\(145\) 4.36735 7.56447i 0.362689 0.628195i
\(146\) 8.39613 0.694869
\(147\) 1.14967 6.90495i 0.0948229 0.569510i
\(148\) 0.729984 0.0600043
\(149\) −0.321363 + 0.556617i −0.0263271 + 0.0455998i −0.878889 0.477027i \(-0.841714\pi\)
0.852562 + 0.522627i \(0.175048\pi\)
\(150\) −0.476741 0.825739i −0.0389257 0.0674213i
\(151\) 4.12182 + 7.13921i 0.335429 + 0.580980i 0.983567 0.180543i \(-0.0577853\pi\)
−0.648138 + 0.761523i \(0.724452\pi\)
\(152\) 0.783444 1.35697i 0.0635457 0.110064i
\(153\) 1.39425 0.112719
\(154\) −2.92020 + 8.14392i −0.235316 + 0.656256i
\(155\) 9.04754 0.726716
\(156\) 2.14219 3.71039i 0.171513 0.297069i
\(157\) −10.2676 17.7840i −0.819444 1.41932i −0.906093 0.423079i \(-0.860949\pi\)
0.0866487 0.996239i \(-0.472384\pi\)
\(158\) −14.0990 24.4202i −1.12166 1.94277i
\(159\) −3.91004 + 6.77238i −0.310086 + 0.537085i
\(160\) −11.9615 −0.945641
\(161\) −5.65921 6.67937i −0.446008 0.526408i
\(162\) 1.76401 0.138594
\(163\) −7.38530 + 12.7917i −0.578462 + 1.00193i 0.417194 + 0.908817i \(0.363013\pi\)
−0.995656 + 0.0931077i \(0.970320\pi\)
\(164\) −3.75059 6.49621i −0.292872 0.507269i
\(165\) 1.95731 + 3.39016i 0.152376 + 0.263924i
\(166\) −2.88461 + 4.99629i −0.223889 + 0.387787i
\(167\) 4.66722 0.361160 0.180580 0.983560i \(-0.442203\pi\)
0.180580 + 0.983560i \(0.442203\pi\)
\(168\) 4.07913 0.739356i 0.314712 0.0570426i
\(169\) 1.85127 0.142406
\(170\) −2.59690 + 4.49797i −0.199173 + 0.344979i
\(171\) −0.500000 0.866025i −0.0382360 0.0662266i
\(172\) −1.02109 1.76858i −0.0778572 0.134853i
\(173\) 9.98553 17.2954i 0.759186 1.31495i −0.184081 0.982911i \(-0.558931\pi\)
0.943266 0.332037i \(-0.107736\pi\)
\(174\) 7.29639 0.553138
\(175\) −1.40715 + 0.255050i −0.106370 + 0.0192800i
\(176\) −9.24553 −0.696908
\(177\) 2.40267 4.16154i 0.180596 0.312801i
\(178\) −12.3350 21.3649i −0.924548 1.60136i
\(179\) −10.4204 18.0486i −0.778856 1.34902i −0.932602 0.360907i \(-0.882467\pi\)
0.153746 0.988110i \(-0.450866\pi\)
\(180\) −1.17387 + 2.03320i −0.0874949 + 0.151546i
\(181\) 23.0771 1.71531 0.857654 0.514227i \(-0.171921\pi\)
0.857654 + 0.514227i \(0.171921\pi\)
\(182\) −11.6268 13.7227i −0.861834 1.01719i
\(183\) −4.11941 −0.304515
\(184\) 2.59232 4.49003i 0.191108 0.331009i
\(185\) −0.693296 1.20082i −0.0509722 0.0882864i
\(186\) 3.77886 + 6.54518i 0.277079 + 0.479916i
\(187\) −1.29229 + 2.23831i −0.0945014 + 0.163681i
\(188\) 6.62938 0.483497
\(189\) 0.893022 2.49048i 0.0649578 0.181156i
\(190\) 3.72516 0.270251
\(191\) 6.08417 10.5381i 0.440235 0.762510i −0.557471 0.830196i \(-0.688228\pi\)
0.997707 + 0.0676862i \(0.0215617\pi\)
\(192\) −0.00841509 0.0145754i −0.000607307 0.00105189i
\(193\) 10.9300 + 18.9314i 0.786761 + 1.36271i 0.927942 + 0.372725i \(0.121577\pi\)
−0.141181 + 0.989984i \(0.545090\pi\)
\(194\) 5.26836 9.12506i 0.378246 0.655141i
\(195\) −8.13812 −0.582783
\(196\) −1.27814 + 7.67656i −0.0912958 + 0.548326i
\(197\) 1.33905 0.0954033 0.0477016 0.998862i \(-0.484810\pi\)
0.0477016 + 0.998862i \(0.484810\pi\)
\(198\) −1.63501 + 2.83192i −0.116195 + 0.201256i
\(199\) −4.35904 7.55008i −0.309004 0.535211i 0.669141 0.743136i \(-0.266662\pi\)
−0.978145 + 0.207925i \(0.933329\pi\)
\(200\) −0.423465 0.733464i −0.0299435 0.0518637i
\(201\) −3.05847 + 5.29743i −0.215728 + 0.373652i
\(202\) −17.1933 −1.20972
\(203\) 3.69375 10.3012i 0.259251 0.723005i
\(204\) −1.55006 −0.108526
\(205\) −7.12418 + 12.3394i −0.497574 + 0.861824i
\(206\) −1.71915 2.97766i −0.119779 0.207464i
\(207\) −1.65444 2.86557i −0.114991 0.199171i
\(208\) 9.61028 16.6455i 0.666353 1.15416i
\(209\) 1.85373 0.128226
\(210\) 6.37118 + 7.51968i 0.439653 + 0.518907i
\(211\) −13.0243 −0.896628 −0.448314 0.893876i \(-0.647975\pi\)
−0.448314 + 0.893876i \(0.647975\pi\)
\(212\) 4.34698 7.52919i 0.298552 0.517107i
\(213\) 0.684881 + 1.18625i 0.0469273 + 0.0812804i
\(214\) −4.40621 7.63177i −0.301202 0.521697i
\(215\) −1.93954 + 3.35938i −0.132276 + 0.229108i
\(216\) 1.56689 0.106613
\(217\) 11.1537 2.02164i 0.757161 0.137238i
\(218\) −25.5236 −1.72867
\(219\) 2.37984 4.12200i 0.160814 0.278539i
\(220\) −2.17604 3.76901i −0.146708 0.254107i
\(221\) −2.68654 4.65322i −0.180716 0.313010i
\(222\) 0.579134 1.00309i 0.0388689 0.0673229i
\(223\) −14.0828 −0.943054 −0.471527 0.881852i \(-0.656297\pi\)
−0.471527 + 0.881852i \(0.656297\pi\)
\(224\) −14.7460 + 2.67276i −0.985257 + 0.178581i
\(225\) −0.540518 −0.0360345
\(226\) −16.1992 + 28.0579i −1.07756 + 1.86638i
\(227\) 9.36617 + 16.2227i 0.621654 + 1.07674i 0.989178 + 0.146722i \(0.0468724\pi\)
−0.367523 + 0.930014i \(0.619794\pi\)
\(228\) 0.555874 + 0.962803i 0.0368137 + 0.0637632i
\(229\) 7.34551 12.7228i 0.485405 0.840746i −0.514455 0.857518i \(-0.672006\pi\)
0.999859 + 0.0167720i \(0.00533896\pi\)
\(230\) 12.3261 0.812757
\(231\) 3.17046 + 3.74199i 0.208601 + 0.246205i
\(232\) 6.48103 0.425500
\(233\) 8.71404 15.0932i 0.570876 0.988785i −0.425601 0.904911i \(-0.639937\pi\)
0.996476 0.0838744i \(-0.0267295\pi\)
\(234\) −3.39902 5.88728i −0.222201 0.384864i
\(235\) −6.29620 10.9053i −0.410719 0.711386i
\(236\) −2.67116 + 4.62659i −0.173878 + 0.301165i
\(237\) −15.9851 −1.03835
\(238\) −2.19637 + 6.12530i −0.142370 + 0.397044i
\(239\) −21.4468 −1.38728 −0.693639 0.720323i \(-0.743993\pi\)
−0.693639 + 0.720323i \(0.743993\pi\)
\(240\) −5.26619 + 9.12130i −0.339931 + 0.588778i
\(241\) −8.16545 14.1430i −0.525983 0.911029i −0.999542 0.0302671i \(-0.990364\pi\)
0.473559 0.880762i \(-0.342969\pi\)
\(242\) 6.67121 + 11.5549i 0.428842 + 0.742776i
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) 4.57975 0.293188
\(245\) 13.8419 5.18821i 0.884324 0.331463i
\(246\) −11.9021 −0.758852
\(247\) −1.92687 + 3.33743i −0.122604 + 0.212356i
\(248\) 3.35658 + 5.81376i 0.213143 + 0.369174i
\(249\) 1.63525 + 2.83234i 0.103630 + 0.179492i
\(250\) 10.3196 17.8742i 0.652672 1.13046i
\(251\) 0.829730 0.0523721 0.0261860 0.999657i \(-0.491664\pi\)
0.0261860 + 0.999657i \(0.491664\pi\)
\(252\) −0.992816 + 2.76879i −0.0625415 + 0.174418i
\(253\) 6.13378 0.385627
\(254\) −17.0846 + 29.5914i −1.07198 + 1.85673i
\(255\) 1.47216 + 2.54985i 0.0921900 + 0.159678i
\(256\) −9.98250 17.2902i −0.623906 1.08064i
\(257\) 13.6733 23.6828i 0.852916 1.47729i −0.0256498 0.999671i \(-0.508165\pi\)
0.878565 0.477622i \(-0.158501\pi\)
\(258\) −3.24033 −0.201734
\(259\) −1.12301 1.32544i −0.0697802 0.0823591i
\(260\) 9.04754 0.561105
\(261\) 2.06812 3.58209i 0.128013 0.221726i
\(262\) 16.7412 + 28.9966i 1.03428 + 1.79142i
\(263\) −7.63107 13.2174i −0.470552 0.815020i 0.528881 0.848696i \(-0.322612\pi\)
−0.999433 + 0.0336760i \(0.989279\pi\)
\(264\) −1.45230 + 2.51545i −0.0893828 + 0.154816i
\(265\) −16.5140 −1.01445
\(266\) 4.59232 0.832373i 0.281573 0.0510360i
\(267\) −13.9851 −0.855877
\(268\) 3.40025 5.88941i 0.207704 0.359753i
\(269\) 13.9010 + 24.0772i 0.847556 + 1.46801i 0.883383 + 0.468652i \(0.155260\pi\)
−0.0358269 + 0.999358i \(0.511406\pi\)
\(270\) 1.86258 + 3.22608i 0.113353 + 0.196333i
\(271\) −4.82329 + 8.35419i −0.292994 + 0.507481i −0.974516 0.224317i \(-0.927985\pi\)
0.681522 + 0.731797i \(0.261318\pi\)
\(272\) −6.95385 −0.421639
\(273\) −10.0326 + 1.81843i −0.607198 + 0.110057i
\(274\) −21.0464 −1.27146
\(275\) 0.500988 0.867737i 0.0302107 0.0523265i
\(276\) 1.83932 + 3.18579i 0.110714 + 0.191762i
\(277\) 13.8357 + 23.9641i 0.831305 + 1.43986i 0.897004 + 0.442023i \(0.145739\pi\)
−0.0656986 + 0.997840i \(0.520928\pi\)
\(278\) 11.8129 20.4605i 0.708490 1.22714i
\(279\) 4.28438 0.256499
\(280\) 5.65921 + 6.67937i 0.338202 + 0.399169i
\(281\) 11.8994 0.709859 0.354929 0.934893i \(-0.384505\pi\)
0.354929 + 0.934893i \(0.384505\pi\)
\(282\) 5.25943 9.10960i 0.313194 0.542469i
\(283\) 6.36263 + 11.0204i 0.378219 + 0.655094i 0.990803 0.135311i \(-0.0432033\pi\)
−0.612584 + 0.790405i \(0.709870\pi\)
\(284\) −0.761416 1.31881i −0.0451817 0.0782570i
\(285\) 1.05587 1.82883i 0.0625446 0.108330i
\(286\) 12.6018 0.745159
\(287\) −6.02538 + 16.8038i −0.355667 + 0.991894i
\(288\) −5.66427 −0.333770
\(289\) 7.52803 13.0389i 0.442825 0.766996i
\(290\) 7.70407 + 13.3438i 0.452398 + 0.783577i
\(291\) −2.98657 5.17289i −0.175076 0.303240i
\(292\) −2.64578 + 4.58262i −0.154833 + 0.268178i
\(293\) 23.9055 1.39657 0.698287 0.715818i \(-0.253946\pi\)
0.698287 + 0.715818i \(0.253946\pi\)
\(294\) 9.53454 + 7.84654i 0.556066 + 0.457619i
\(295\) 10.1477 0.590820
\(296\) 0.514416 0.890995i 0.0298998 0.0517880i
\(297\) 0.926867 + 1.60538i 0.0537823 + 0.0931537i
\(298\) −0.566889 0.981880i −0.0328390 0.0568788i
\(299\) −6.37576 + 11.0431i −0.368720 + 0.638642i
\(300\) 0.600920 0.0346941
\(301\) −1.64040 + 4.57478i −0.0945509 + 0.263686i
\(302\) −14.5419 −0.836793
\(303\) −4.87335 + 8.44089i −0.279967 + 0.484916i
\(304\) 2.49376 + 4.31931i 0.143027 + 0.247730i
\(305\) −4.34958 7.53369i −0.249056 0.431378i
\(306\) −1.22974 + 2.12997i −0.0702996 + 0.121763i
\(307\) 14.3010 0.816201 0.408101 0.912937i \(-0.366191\pi\)
0.408101 + 0.912937i \(0.366191\pi\)
\(308\) −3.52476 4.16015i −0.200842 0.237047i
\(309\) −1.94914 −0.110883
\(310\) −7.98000 + 13.8218i −0.453234 + 0.785024i
\(311\) −1.68994 2.92707i −0.0958278 0.165979i 0.814126 0.580688i \(-0.197216\pi\)
−0.909954 + 0.414710i \(0.863883\pi\)
\(312\) −3.01919 5.22938i −0.170928 0.296056i
\(313\) 16.9577 29.3716i 0.958505 1.66018i 0.232369 0.972628i \(-0.425352\pi\)
0.726136 0.687551i \(-0.241314\pi\)
\(314\) 36.2244 2.04426
\(315\) 5.49759 0.996455i 0.309754 0.0561439i
\(316\) 17.7715 0.999723
\(317\) −5.78591 + 10.0215i −0.324969 + 0.562863i −0.981506 0.191431i \(-0.938687\pi\)
0.656537 + 0.754294i \(0.272020\pi\)
\(318\) −6.89736 11.9466i −0.386785 0.669931i
\(319\) 3.83375 + 6.64024i 0.214649 + 0.371782i
\(320\) 0.0177706 0.0307795i 0.000993404 0.00172063i
\(321\) −4.99566 −0.278830
\(322\) 15.1954 2.75422i 0.846807 0.153487i
\(323\) 1.39425 0.0775783
\(324\) −0.555874 + 0.962803i −0.0308819 + 0.0534890i
\(325\) 1.04151 + 1.80394i 0.0577723 + 0.100065i
\(326\) −13.0278 22.5648i −0.721542 1.24975i
\(327\) −7.23451 + 12.5305i −0.400069 + 0.692941i
\(328\) −10.5721 −0.583746
\(329\) −10.1986 12.0371i −0.562269 0.663626i
\(330\) −6.90545 −0.380133
\(331\) −15.1045 + 26.1617i −0.830218 + 1.43798i 0.0676478 + 0.997709i \(0.478451\pi\)
−0.897865 + 0.440270i \(0.854883\pi\)
\(332\) −1.81799 3.14885i −0.0997750 0.172815i
\(333\) −0.328304 0.568640i −0.0179910 0.0311613i
\(334\) −4.11652 + 7.13002i −0.225246 + 0.390137i
\(335\) −12.9175 −0.705756
\(336\) −4.45396 + 12.4213i −0.242983 + 0.677639i
\(337\) −6.68523 −0.364168 −0.182084 0.983283i \(-0.558284\pi\)
−0.182084 + 0.983283i \(0.558284\pi\)
\(338\) −1.63284 + 2.82816i −0.0888146 + 0.153831i
\(339\) 9.18317 + 15.9057i 0.498761 + 0.863880i
\(340\) −1.63667 2.83479i −0.0887607 0.153738i
\(341\) −3.97106 + 6.87807i −0.215045 + 0.372468i
\(342\) 1.76401 0.0953870
\(343\) 15.9048 9.48887i 0.858776 0.512351i
\(344\) −2.87823 −0.155184
\(345\) 3.49376 6.05136i 0.188098 0.325794i
\(346\) 17.6146 + 30.5094i 0.946968 + 1.64020i
\(347\) −4.25830 7.37560i −0.228598 0.395943i 0.728795 0.684732i \(-0.240081\pi\)
−0.957393 + 0.288789i \(0.906747\pi\)
\(348\) −2.29923 + 3.98238i −0.123252 + 0.213478i
\(349\) −9.37979 −0.502089 −0.251044 0.967976i \(-0.580774\pi\)
−0.251044 + 0.967976i \(0.580774\pi\)
\(350\) 0.851479 2.37463i 0.0455135 0.126929i
\(351\) −3.85373 −0.205697
\(352\) 5.25003 9.09331i 0.279827 0.484675i
\(353\) −10.6973 18.5283i −0.569362 0.986164i −0.996629 0.0820384i \(-0.973857\pi\)
0.427267 0.904125i \(-0.359476\pi\)
\(354\) 4.23834 + 7.34102i 0.225265 + 0.390171i
\(355\) −1.44630 + 2.50506i −0.0767615 + 0.132955i
\(356\) 15.5480 0.824041
\(357\) 2.38461 + 2.81447i 0.126207 + 0.148957i
\(358\) 36.7634 1.94301
\(359\) 2.23167 3.86537i 0.117783 0.204006i −0.801106 0.598523i \(-0.795755\pi\)
0.918889 + 0.394517i \(0.129088\pi\)
\(360\) 1.65444 + 2.86557i 0.0871965 + 0.151029i
\(361\) −0.500000 0.866025i −0.0263158 0.0455803i
\(362\) −20.3542 + 35.2545i −1.06979 + 1.85293i
\(363\) 7.56367 0.396990
\(364\) 11.1537 2.02164i 0.584612 0.105963i
\(365\) 10.0512 0.526106
\(366\) 3.63335 6.29315i 0.189918 0.328948i
\(367\) −1.16914 2.02502i −0.0610288 0.105705i 0.833897 0.551921i \(-0.186105\pi\)
−0.894926 + 0.446215i \(0.852771\pi\)
\(368\) 8.25153 + 14.2921i 0.430141 + 0.745025i
\(369\) −3.37359 + 5.84323i −0.175622 + 0.304187i
\(370\) 2.44597 0.127160
\(371\) −20.3583 + 3.69000i −1.05695 + 0.191575i
\(372\) −4.76316 −0.246958
\(373\) 17.1110 29.6372i 0.885975 1.53455i 0.0413831 0.999143i \(-0.486824\pi\)
0.844592 0.535410i \(-0.179843\pi\)
\(374\) −2.27961 3.94841i −0.117876 0.204167i
\(375\) −5.85009 10.1327i −0.302097 0.523248i
\(376\) 4.67170 8.09161i 0.240924 0.417293i
\(377\) −15.9400 −0.820950
\(378\) 3.01702 + 3.56088i 0.155179 + 0.183152i
\(379\) 2.11646 0.108715 0.0543577 0.998522i \(-0.482689\pi\)
0.0543577 + 0.998522i \(0.482689\pi\)
\(380\) −1.17387 + 2.03320i −0.0602181 + 0.104301i
\(381\) 9.68507 + 16.7750i 0.496181 + 0.859411i
\(382\) 10.7326 + 18.5894i 0.549126 + 0.951115i
\(383\) 7.37566 12.7750i 0.376879 0.652773i −0.613728 0.789518i \(-0.710331\pi\)
0.990606 + 0.136745i \(0.0436641\pi\)
\(384\) −11.2988 −0.576592
\(385\) −3.49584 + 9.74931i −0.178165 + 0.496871i
\(386\) −38.5615 −1.96273
\(387\) −0.918452 + 1.59081i −0.0466876 + 0.0808652i
\(388\) 3.32032 + 5.75096i 0.168564 + 0.291961i
\(389\) 17.6664 + 30.5991i 0.895721 + 1.55143i 0.832910 + 0.553409i \(0.186673\pi\)
0.0628116 + 0.998025i \(0.479993\pi\)
\(390\) 7.17788 12.4325i 0.363466 0.629542i
\(391\) 4.61341 0.233310
\(392\) 8.46907 + 6.96970i 0.427753 + 0.352023i
\(393\) 18.9808 0.957455
\(394\) −1.18105 + 2.04564i −0.0595005 + 0.103058i
\(395\) −16.8783 29.2341i −0.849240 1.47093i
\(396\) −1.03044 1.78478i −0.0517817 0.0896886i
\(397\) −13.0360 + 22.5789i −0.654256 + 1.13320i 0.327824 + 0.944739i \(0.393685\pi\)
−0.982080 + 0.188466i \(0.939649\pi\)
\(398\) 15.3788 0.770870
\(399\) 0.893022 2.49048i 0.0447070 0.124680i
\(400\) 2.69584 0.134792
\(401\) −13.5755 + 23.5135i −0.677930 + 1.17421i 0.297673 + 0.954668i \(0.403789\pi\)
−0.975603 + 0.219541i \(0.929544\pi\)
\(402\) −5.39519 9.34475i −0.269088 0.466074i
\(403\) −8.25544 14.2988i −0.411233 0.712276i
\(404\) 5.41794 9.38415i 0.269553 0.466879i
\(405\) 2.11175 0.104934
\(406\) 12.4791 + 14.7286i 0.619327 + 0.730970i
\(407\) 1.21718 0.0603333
\(408\) −1.09232 + 1.89195i −0.0540779 + 0.0936656i
\(409\) 1.96776 + 3.40826i 0.0972995 + 0.168528i 0.910566 0.413364i \(-0.135646\pi\)
−0.813267 + 0.581891i \(0.802313\pi\)
\(410\) −12.5672 21.7670i −0.620648 1.07499i
\(411\) −5.96548 + 10.3325i −0.294256 + 0.509666i
\(412\) 2.16695 0.106758
\(413\) 12.5099 2.26746i 0.615571 0.111574i
\(414\) 5.83690 0.286868
\(415\) −3.45324 + 5.98118i −0.169513 + 0.293605i
\(416\) 10.9143 + 18.9041i 0.535117 + 0.926850i
\(417\) −6.69659 11.5988i −0.327934 0.567998i
\(418\) −1.63501 + 2.83192i −0.0799709 + 0.138514i
\(419\) −10.7269 −0.524044 −0.262022 0.965062i \(-0.584389\pi\)
−0.262022 + 0.965062i \(0.584389\pi\)
\(420\) −6.11193 + 1.10781i −0.298232 + 0.0540555i
\(421\) −9.98526 −0.486652 −0.243326 0.969945i \(-0.578238\pi\)
−0.243326 + 0.969945i \(0.578238\pi\)
\(422\) 11.4875 19.8970i 0.559203 0.968569i
\(423\) −2.98151 5.16413i −0.144966 0.251089i
\(424\) −6.12659 10.6116i −0.297534 0.515343i
\(425\) 0.376809 0.652652i 0.0182779 0.0316583i
\(426\) −2.41628 −0.117069
\(427\) −7.04547 8.31553i −0.340954 0.402417i
\(428\) 5.55392 0.268459
\(429\) 3.57190 6.18672i 0.172453 0.298697i
\(430\) −3.42138 5.92600i −0.164994 0.285777i
\(431\) 4.73261 + 8.19712i 0.227962 + 0.394841i 0.957204 0.289414i \(-0.0934605\pi\)
−0.729242 + 0.684256i \(0.760127\pi\)
\(432\) −2.49376 + 4.31931i −0.119981 + 0.207813i
\(433\) −23.5884 −1.13359 −0.566794 0.823860i \(-0.691816\pi\)
−0.566794 + 0.823860i \(0.691816\pi\)
\(434\) −6.74921 + 18.8224i −0.323972 + 0.903503i
\(435\) 8.73470 0.418797
\(436\) 8.04296 13.9308i 0.385188 0.667165i
\(437\) −1.65444 2.86557i −0.0791425 0.137079i
\(438\) 4.19807 + 7.27126i 0.200591 + 0.347434i
\(439\) 16.9194 29.3052i 0.807518 1.39866i −0.107060 0.994253i \(-0.534144\pi\)
0.914578 0.404410i \(-0.132523\pi\)
\(440\) −6.13378 −0.292416
\(441\) 6.55469 2.45683i 0.312128 0.116992i
\(442\) 9.47819 0.450832
\(443\) −2.67282 + 4.62946i −0.126990 + 0.219952i −0.922509 0.385976i \(-0.873865\pi\)
0.795519 + 0.605928i \(0.207198\pi\)
\(444\) 0.364992 + 0.632185i 0.0173217 + 0.0300022i
\(445\) −14.7666 25.5764i −0.700002 1.21244i
\(446\) 12.4211 21.5140i 0.588158 1.01872i
\(447\) −0.642725 −0.0303999
\(448\) 0.0150297 0.0419153i 0.000710087 0.00198031i
\(449\) 10.1900 0.480894 0.240447 0.970662i \(-0.422706\pi\)
0.240447 + 0.970662i \(0.422706\pi\)
\(450\) 0.476741 0.825739i 0.0224738 0.0389257i
\(451\) −6.25375 10.8318i −0.294477 0.510050i
\(452\) −10.2094 17.6832i −0.480208 0.831745i
\(453\) −4.12182 + 7.13921i −0.193660 + 0.335429i
\(454\) −33.0441 −1.55084
\(455\) −13.9187 16.4278i −0.652520 0.770146i
\(456\) 1.56689 0.0733763
\(457\) 14.9489 25.8922i 0.699280 1.21119i −0.269437 0.963018i \(-0.586837\pi\)
0.968716 0.248170i \(-0.0798292\pi\)
\(458\) 12.9576 + 22.4432i 0.605468 + 1.04870i
\(459\) 0.697126 + 1.20746i 0.0325391 + 0.0563593i
\(460\) −3.88418 + 6.72759i −0.181101 + 0.313676i
\(461\) 35.2500 1.64176 0.820879 0.571102i \(-0.193484\pi\)
0.820879 + 0.571102i \(0.193484\pi\)
\(462\) −8.51294 + 1.54300i −0.396058 + 0.0717868i
\(463\) −28.0784 −1.30491 −0.652457 0.757825i \(-0.726262\pi\)
−0.652457 + 0.757825i \(0.726262\pi\)
\(464\) −10.3148 + 17.8657i −0.478851 + 0.829395i
\(465\) 4.52377 + 7.83540i 0.209785 + 0.363358i
\(466\) 15.3717 + 26.6245i 0.712080 + 1.23336i
\(467\) −15.6692 + 27.1398i −0.725083 + 1.25588i 0.233857 + 0.972271i \(0.424865\pi\)
−0.958940 + 0.283610i \(0.908468\pi\)
\(468\) 4.28438 0.198046
\(469\) −15.9245 + 2.88636i −0.735323 + 0.133280i
\(470\) 22.2132 1.02462
\(471\) 10.2676 17.7840i 0.473106 0.819444i
\(472\) 3.76471 + 6.52067i 0.173285 + 0.300138i
\(473\) −1.70257 2.94893i −0.0782841 0.135592i
\(474\) 14.0990 24.4202i 0.647589 1.12166i
\(475\) −0.540518 −0.0248006
\(476\) −2.65108 3.12898i −0.121512 0.143417i
\(477\) −7.82007 −0.358057
\(478\) 18.9162 32.7639i 0.865208 1.49858i
\(479\) 9.83661 + 17.0375i 0.449446 + 0.778464i 0.998350 0.0574217i \(-0.0182879\pi\)
−0.548904 + 0.835886i \(0.684955\pi\)
\(480\) −5.98076 10.3590i −0.272983 0.472820i
\(481\) −1.26520 + 2.19139i −0.0576881 + 0.0999187i
\(482\) 28.8080 1.31217
\(483\) 2.95490 8.24070i 0.134452 0.374965i
\(484\) −8.40890 −0.382223
\(485\) 6.30689 10.9239i 0.286381 0.496027i
\(486\) 0.882007 + 1.52768i 0.0400087 + 0.0692971i
\(487\) 2.96259 + 5.13136i 0.134248 + 0.232524i 0.925310 0.379212i \(-0.123805\pi\)
−0.791062 + 0.611736i \(0.790471\pi\)
\(488\) 3.22733 5.58989i 0.146094 0.253043i
\(489\) −14.7706 −0.667950
\(490\) −4.28269 + 25.7220i −0.193472 + 1.16200i
\(491\) 21.3951 0.965548 0.482774 0.875745i \(-0.339629\pi\)
0.482774 + 0.875745i \(0.339629\pi\)
\(492\) 3.75059 6.49621i 0.169090 0.292872i
\(493\) 2.88348 + 4.99434i 0.129865 + 0.224934i
\(494\) −3.39902 5.88728i −0.152929 0.264881i
\(495\) −1.95731 + 3.39016i −0.0879746 + 0.152376i
\(496\) −21.3684 −0.959470
\(497\) −1.22323 + 3.41137i −0.0548693 + 0.153021i
\(498\) −5.76921 −0.258525
\(499\) 14.4680 25.0593i 0.647676 1.12181i −0.336001 0.941862i \(-0.609075\pi\)
0.983677 0.179945i \(-0.0575921\pi\)
\(500\) 6.50383 + 11.2650i 0.290860 + 0.503785i
\(501\) 2.33361 + 4.04193i 0.104258 + 0.180580i
\(502\) −0.731828 + 1.26756i −0.0326631 + 0.0565741i
\(503\) 13.3877 0.596929 0.298464 0.954421i \(-0.403526\pi\)
0.298464 + 0.954421i \(0.403526\pi\)
\(504\) 2.67987 + 3.16296i 0.119371 + 0.140889i
\(505\) −20.5826 −0.915913
\(506\) −5.41004 + 9.37046i −0.240505 + 0.416568i
\(507\) 0.925637 + 1.60325i 0.0411090 + 0.0712028i
\(508\) −10.7674 18.6496i −0.477724 0.827443i
\(509\) 16.4703 28.5274i 0.730033 1.26445i −0.226835 0.973933i \(-0.572838\pi\)
0.956868 0.290522i \(-0.0938288\pi\)
\(510\) −5.19381 −0.229986
\(511\) 12.3910 2.24591i 0.548146 0.0993533i
\(512\) 12.6209 0.557768
\(513\) 0.500000 0.866025i 0.0220755 0.0382360i
\(514\) 24.1199 + 41.7768i 1.06388 + 1.84270i
\(515\) −2.05805 3.56464i −0.0906883 0.157077i
\(516\) 1.02109 1.76858i 0.0449509 0.0778572i
\(517\) 11.0539 0.486148
\(518\) 3.01536 0.546543i 0.132487 0.0240137i
\(519\) 19.9711 0.876632
\(520\) 6.37576 11.0431i 0.279596 0.484274i
\(521\) −4.45230 7.71161i −0.195059 0.337852i 0.751861 0.659322i \(-0.229156\pi\)
−0.946920 + 0.321470i \(0.895823\pi\)
\(522\) 3.64819 + 6.31886i 0.159677 + 0.276569i
\(523\) −6.75788 + 11.7050i −0.295501 + 0.511823i −0.975101 0.221760i \(-0.928820\pi\)
0.679600 + 0.733583i \(0.262153\pi\)
\(524\) −21.1019 −0.921840
\(525\) −0.924454 1.09110i −0.0403465 0.0476195i
\(526\) 26.9227 1.17388
\(527\) −2.98676 + 5.17322i −0.130105 + 0.225349i
\(528\) −4.62276 8.00686i −0.201180 0.348454i
\(529\) 6.02567 + 10.4368i 0.261986 + 0.453773i
\(530\) 14.5655 25.2282i 0.632685 1.09584i
\(531\) 4.80534 0.208534
\(532\) −0.992816 + 2.76879i −0.0430440 + 0.120042i
\(533\) 26.0019 1.12627
\(534\) 12.3350 21.3649i 0.533788 0.924548i
\(535\) −5.27479 9.13620i −0.228049 0.394992i
\(536\) −4.79229 8.30049i −0.206995 0.358526i
\(537\) 10.4204 18.0486i 0.449673 0.778856i
\(538\) −49.0430 −2.11439
\(539\) −2.13118 + 12.7999i −0.0917963 + 0.551332i
\(540\) −2.34773 −0.101030
\(541\) −4.22449 + 7.31702i −0.181625 + 0.314583i −0.942434 0.334392i \(-0.891469\pi\)
0.760809 + 0.648976i \(0.224802\pi\)
\(542\) −8.50836 14.7369i −0.365465 0.633004i
\(543\) 11.5386 + 19.9854i 0.495167 + 0.857654i
\(544\) 3.94871 6.83937i 0.169300 0.293235i
\(545\) −30.5549 −1.30883
\(546\) 6.07080 16.9304i 0.259806 0.724555i
\(547\) −33.0166 −1.41169 −0.705844 0.708367i \(-0.749432\pi\)
−0.705844 + 0.708367i \(0.749432\pi\)
\(548\) 6.63212 11.4872i 0.283310 0.490707i
\(549\) −2.05970 3.56751i −0.0879060 0.152258i
\(550\) 0.883751 + 1.53070i 0.0376833 + 0.0652693i
\(551\) 2.06812 3.58209i 0.0881049 0.152602i
\(552\) 5.18464 0.220673
\(553\) −27.3396 32.2680i −1.16260 1.37217i
\(554\) −48.8127 −2.07385
\(555\) 0.693296 1.20082i 0.0294288 0.0509722i
\(556\) 7.44493 + 12.8950i 0.315735 + 0.546870i
\(557\) 13.1049 + 22.6983i 0.555272 + 0.961759i 0.997882 + 0.0650451i \(0.0207191\pi\)
−0.442610 + 0.896714i \(0.645948\pi\)
\(558\) −3.77886 + 6.54518i −0.159972 + 0.277079i
\(559\) 7.07894 0.299407
\(560\) −27.4193 + 4.96983i −1.15868 + 0.210014i
\(561\) −2.58457 −0.109121
\(562\) −10.4954 + 18.1785i −0.442720 + 0.766813i
\(563\) 11.3938 + 19.7347i 0.480192 + 0.831718i 0.999742 0.0227227i \(-0.00723349\pi\)
−0.519549 + 0.854440i \(0.673900\pi\)
\(564\) 3.31469 + 5.74121i 0.139574 + 0.241749i
\(565\) −19.3925 + 33.5889i −0.815850 + 1.41309i
\(566\) −22.4475 −0.943540
\(567\) 2.60333 0.471863i 0.109330 0.0198164i
\(568\) −2.14627 −0.0900553
\(569\) 1.57096 2.72098i 0.0658581 0.114070i −0.831216 0.555949i \(-0.812355\pi\)
0.897074 + 0.441880i \(0.145688\pi\)
\(570\) 1.86258 + 3.22608i 0.0780148 + 0.135126i
\(571\) −18.1589 31.4522i −0.759927 1.31623i −0.942887 0.333112i \(-0.891901\pi\)
0.182960 0.983120i \(-0.441432\pi\)
\(572\) −3.97106 + 6.87807i −0.166038 + 0.287587i
\(573\) 12.1683 0.508340
\(574\) −20.3564 24.0259i −0.849658 1.00282i
\(575\) −1.78851 −0.0745858
\(576\) 0.00841509 0.0145754i 0.000350629 0.000607307i
\(577\) −7.02731 12.1717i −0.292551 0.506713i 0.681861 0.731481i \(-0.261171\pi\)
−0.974412 + 0.224769i \(0.927837\pi\)
\(578\) 13.2796 + 23.0009i 0.552357 + 0.956710i
\(579\) −10.9300 + 18.9314i −0.454236 + 0.786761i
\(580\) −9.71079 −0.403219
\(581\) −2.92063 + 8.14513i −0.121168 + 0.337917i
\(582\) 10.5367 0.436761
\(583\) 7.24817 12.5542i 0.300189 0.519942i
\(584\) 3.72894 + 6.45871i 0.154305 + 0.267263i
\(585\) −4.06906 7.04782i −0.168235 0.291391i
\(586\) −21.0848 + 36.5200i −0.871007 + 1.50863i
\(587\) −16.1927 −0.668346 −0.334173 0.942512i \(-0.608457\pi\)
−0.334173 + 0.942512i \(0.608457\pi\)
\(588\) −7.28717 + 2.73138i −0.300518 + 0.112640i
\(589\) 4.28438 0.176535
\(590\) −8.95031 + 15.5024i −0.368479 + 0.638224i
\(591\) 0.669524 + 1.15965i 0.0275406 + 0.0477016i
\(592\) 1.63742 + 2.83610i 0.0672976 + 0.116563i
\(593\) 1.59666 2.76550i 0.0655670 0.113565i −0.831378 0.555707i \(-0.812448\pi\)
0.896945 + 0.442141i \(0.145781\pi\)
\(594\) −3.27002 −0.134170
\(595\) −2.62933 + 7.33276i −0.107792 + 0.300614i
\(596\) 0.714549 0.0292691
\(597\) 4.35904 7.55008i 0.178404 0.309004i
\(598\) −11.2469 19.4803i −0.459922 0.796608i
\(599\) 5.79016 + 10.0289i 0.236580 + 0.409768i 0.959731 0.280922i \(-0.0906402\pi\)
−0.723151 + 0.690690i \(0.757307\pi\)
\(600\) 0.423465 0.733464i 0.0172879 0.0299435i
\(601\) −17.2632 −0.704179 −0.352090 0.935966i \(-0.614529\pi\)
−0.352090 + 0.935966i \(0.614529\pi\)
\(602\) −5.54197 6.54100i −0.225874 0.266591i
\(603\) −6.11695 −0.249101
\(604\) 4.58243 7.93700i 0.186456 0.322952i
\(605\) 7.98628 + 13.8326i 0.324689 + 0.562377i
\(606\) −8.59666 14.8899i −0.349216 0.604859i
\(607\) −16.1522 + 27.9764i −0.655596 + 1.13553i 0.326148 + 0.945319i \(0.394249\pi\)
−0.981744 + 0.190207i \(0.939084\pi\)
\(608\) −5.66427 −0.229716
\(609\) 10.7680 1.95174i 0.436342 0.0790884i
\(610\) 15.3454 0.621319
\(611\) −11.4900 + 19.9012i −0.464834 + 0.805116i
\(612\) −0.775029 1.34239i −0.0313287 0.0542629i
\(613\) 23.9323 + 41.4519i 0.966616 + 1.67423i 0.705210 + 0.708998i \(0.250853\pi\)
0.261405 + 0.965229i \(0.415814\pi\)
\(614\) −12.6136 + 21.8474i −0.509043 + 0.881689i
\(615\) −14.2484 −0.574549
\(616\) −7.56163 + 1.37057i −0.304667 + 0.0552219i
\(617\) −11.2397 −0.452494 −0.226247 0.974070i \(-0.572646\pi\)
−0.226247 + 0.974070i \(0.572646\pi\)
\(618\) 1.71915 2.97766i 0.0691546 0.119779i
\(619\) 7.51267 + 13.0123i 0.301960 + 0.523010i 0.976580 0.215155i \(-0.0690258\pi\)
−0.674620 + 0.738165i \(0.735692\pi\)
\(620\) −5.02930 8.71100i −0.201981 0.349842i
\(621\) 1.65444 2.86557i 0.0663903 0.114991i
\(622\) 5.96217 0.239061
\(623\) −23.9190 28.2307i −0.958293 1.13104i
\(624\) 19.2206 0.769438
\(625\) 11.0026 19.0571i 0.440105 0.762284i
\(626\) 29.9136 + 51.8119i 1.19559 + 2.07082i
\(627\) 0.926867 + 1.60538i 0.0370155 + 0.0641128i
\(628\) −11.4150 + 19.7713i −0.455508 + 0.788963i
\(629\) 0.915478 0.0365025
\(630\) −3.32665 + 9.27744i −0.132537 + 0.369622i
\(631\) −34.5520 −1.37549 −0.687747 0.725950i \(-0.741400\pi\)
−0.687747 + 0.725950i \(0.741400\pi\)
\(632\) 12.5235 21.6913i 0.498157 0.862833i
\(633\) −6.51214 11.2794i −0.258834 0.448314i
\(634\) −10.2064 17.6780i −0.405349 0.702085i
\(635\) −20.4524 + 35.4246i −0.811630 + 1.40578i
\(636\) 8.69396 0.344738
\(637\) −20.8295 17.1419i −0.825296 0.679185i
\(638\) −13.5256 −0.535482
\(639\) −0.684881 + 1.18625i −0.0270935 + 0.0469273i
\(640\) −11.9302 20.6637i −0.471581 0.816803i
\(641\) 5.05221 + 8.75068i 0.199550 + 0.345631i 0.948383 0.317128i \(-0.102719\pi\)
−0.748832 + 0.662759i \(0.769385\pi\)
\(642\) 4.40621 7.63177i 0.173899 0.301202i
\(643\) −10.3803 −0.409357 −0.204679 0.978829i \(-0.565615\pi\)
−0.204679 + 0.978829i \(0.565615\pi\)
\(644\) −3.28510 + 9.16159i −0.129451 + 0.361017i
\(645\) −3.87908 −0.152739
\(646\) −1.22974 + 2.12997i −0.0483835 + 0.0838027i
\(647\) −14.1766 24.5546i −0.557341 0.965343i −0.997717 0.0675295i \(-0.978488\pi\)
0.440376 0.897813i \(-0.354845\pi\)
\(648\) 0.783444 + 1.35697i 0.0307766 + 0.0533066i
\(649\) −4.45391 + 7.71440i −0.174831 + 0.302817i
\(650\) −3.67446 −0.144124
\(651\) 7.32763 + 8.64855i 0.287193 + 0.338963i
\(652\) 16.4212 0.643104
\(653\) −9.54243 + 16.5280i −0.373424 + 0.646789i −0.990090 0.140436i \(-0.955150\pi\)
0.616666 + 0.787225i \(0.288483\pi\)
\(654\) −12.7618 22.1041i −0.499025 0.864337i
\(655\) 20.0413 + 34.7126i 0.783080 + 1.35633i
\(656\) 16.8258 29.1432i 0.656938 1.13785i
\(657\) 4.75967 0.185693
\(658\) 27.3841 4.96346i 1.06754 0.193496i
\(659\) 38.9663 1.51791 0.758957 0.651141i \(-0.225709\pi\)
0.758957 + 0.651141i \(0.225709\pi\)
\(660\) 2.17604 3.76901i 0.0847022 0.146708i
\(661\) −5.17486 8.96311i −0.201279 0.348625i 0.747662 0.664079i \(-0.231176\pi\)
−0.948941 + 0.315455i \(0.897843\pi\)
\(662\) −26.6445 46.1497i −1.03557 1.79366i
\(663\) 2.68654 4.65322i 0.104337 0.180716i
\(664\) −5.12451 −0.198870
\(665\) 5.49759 0.996455i 0.213187 0.0386409i
\(666\) 1.15827 0.0448820
\(667\) 6.84315 11.8527i 0.264968 0.458938i
\(668\) −2.59439 4.49361i −0.100380 0.173863i
\(669\) −7.04140 12.1961i −0.272236 0.471527i
\(670\) 11.3933 19.7338i 0.440161 0.762382i
\(671\) 7.63629 0.294796
\(672\) −9.68767 11.4340i −0.373710 0.441077i
\(673\) 8.42309 0.324686 0.162343 0.986734i \(-0.448095\pi\)
0.162343 + 0.986734i \(0.448095\pi\)
\(674\) 5.89642 10.2129i 0.227122 0.393386i
\(675\) −0.270259 0.468102i −0.0104023 0.0180173i
\(676\) −1.02908 1.78241i −0.0395798 0.0685543i
\(677\) −13.5472 + 23.4644i −0.520660 + 0.901809i 0.479052 + 0.877787i \(0.340981\pi\)
−0.999711 + 0.0240223i \(0.992353\pi\)
\(678\) −32.3985 −1.24426
\(679\) 5.33415 14.8760i 0.204706 0.570889i
\(680\) −4.61341 −0.176916
\(681\) −9.36617 + 16.2227i −0.358912 + 0.621654i
\(682\) −7.00500 12.1330i −0.268235 0.464597i
\(683\) 2.21744 + 3.84072i 0.0848479 + 0.146961i 0.905326 0.424716i \(-0.139626\pi\)
−0.820478 + 0.571677i \(0.806293\pi\)
\(684\) −0.555874 + 0.962803i −0.0212544 + 0.0368137i
\(685\) −25.1952 −0.962659
\(686\) 0.467850 + 32.6667i 0.0178626 + 1.24722i
\(687\) 14.6910 0.560497
\(688\) 4.58079 7.93417i 0.174641 0.302487i
\(689\) 15.0682 + 26.0990i 0.574055 + 0.994292i
\(690\) 6.16304 + 10.6747i 0.234623 + 0.406379i
\(691\) 13.0331 22.5740i 0.495802 0.858754i −0.504186 0.863595i \(-0.668207\pi\)
0.999988 + 0.00484051i \(0.00154079\pi\)
\(692\) −22.2028 −0.844023
\(693\) −1.65543 + 4.61670i −0.0628844 + 0.175374i
\(694\) 15.0234 0.570281
\(695\) 14.1415 24.4938i 0.536418 0.929104i
\(696\) 3.24051 + 5.61273i 0.122831 + 0.212750i
\(697\) −4.70364 8.14694i −0.178163 0.308587i
\(698\) 8.27304 14.3293i 0.313139 0.542373i
\(699\) 17.4281 0.659190
\(700\) 1.02776 + 1.21303i 0.0388457 + 0.0458482i
\(701\) −1.46977 −0.0555126 −0.0277563 0.999615i \(-0.508836\pi\)
−0.0277563 + 0.999615i \(0.508836\pi\)
\(702\) 3.39902 5.88728i 0.128288 0.222201i
\(703\) −0.328304 0.568640i −0.0123822 0.0214467i
\(704\) 0.0155993 + 0.0270189i 0.000587922 + 0.00101831i
\(705\) 6.29620 10.9053i 0.237129 0.410719i
\(706\) 37.7405 1.42038
\(707\) −25.3739 + 4.59910i −0.954284 + 0.172967i
\(708\) −5.34233 −0.200777
\(709\) 13.7704 23.8511i 0.517160 0.895747i −0.482642 0.875818i \(-0.660323\pi\)
0.999801 0.0199292i \(-0.00634408\pi\)
\(710\) −2.55129 4.41896i −0.0957482 0.165841i
\(711\) −7.99257 13.8435i −0.299745 0.519173i
\(712\) 10.9566 18.9774i 0.410615 0.711207i
\(713\) 14.1765 0.530914
\(714\) −6.40285 + 1.16054i −0.239621 + 0.0434320i
\(715\) 15.0859 0.564181
\(716\) −11.5848 + 20.0655i −0.432946 + 0.749884i
\(717\) −10.7234 18.5735i −0.400472 0.693639i
\(718\) 3.93670 + 6.81856i 0.146916 + 0.254466i
\(719\) −11.3758 + 19.7035i −0.424247 + 0.734818i −0.996350 0.0853641i \(-0.972795\pi\)
0.572102 + 0.820182i \(0.306128\pi\)
\(720\) −10.5324 −0.392518
\(721\) −3.33363 3.93457i −0.124151 0.146531i
\(722\) 1.76401 0.0656498
\(723\) 8.16545 14.1430i 0.303676 0.525983i
\(724\) −12.8280 22.2187i −0.476748 0.825752i
\(725\) −1.11785 1.93618i −0.0415161 0.0719080i
\(726\) −6.67121 + 11.5549i −0.247592 + 0.428842i
\(727\) 39.3667 1.46003 0.730016 0.683430i \(-0.239513\pi\)
0.730016 + 0.683430i \(0.239513\pi\)
\(728\) 5.39240 15.0385i 0.199856 0.557363i
\(729\) 1.00000 0.0370370
\(730\) −8.86526 + 15.3551i −0.328118 + 0.568317i
\(731\) −1.28055 2.21799i −0.0473630 0.0820352i
\(732\) 2.28987 + 3.96618i 0.0846362 + 0.146594i
\(733\) 0.985769 1.70740i 0.0364102 0.0630643i −0.847246 0.531201i \(-0.821741\pi\)
0.883656 + 0.468136i \(0.155074\pi\)
\(734\) 4.12478 0.152248
\(735\) 11.4141 + 9.39330i 0.421014 + 0.346477i
\(736\) −18.7424 −0.690852
\(737\) 5.66960 9.82003i 0.208842 0.361726i
\(738\) −5.95107 10.3076i −0.219062 0.379426i
\(739\) 5.85636 + 10.1435i 0.215430 + 0.373135i 0.953405 0.301692i \(-0.0975514\pi\)
−0.737976 + 0.674827i \(0.764218\pi\)
\(740\) −0.770771 + 1.33501i −0.0283341 + 0.0490761i
\(741\) −3.85373 −0.141570
\(742\) 12.3190 34.3556i 0.452244 1.26123i
\(743\) 50.4205 1.84975 0.924875 0.380272i \(-0.124170\pi\)
0.924875 + 0.380272i \(0.124170\pi\)
\(744\) −3.35658 + 5.81376i −0.123058 + 0.213143i
\(745\) −0.678637 1.17543i −0.0248633 0.0430646i
\(746\) 30.1841 + 52.2804i 1.10512 + 1.91412i
\(747\) −1.63525 + 2.83234i −0.0598307 + 0.103630i
\(748\) 2.87340 0.105062
\(749\) −8.54413 10.0843i −0.312196 0.368474i
\(750\) 20.6393 0.753640
\(751\) 15.3504 26.5876i 0.560143 0.970197i −0.437340 0.899296i \(-0.644079\pi\)
0.997483 0.0709005i \(-0.0225873\pi\)
\(752\) 14.8703 + 25.7562i 0.542265 + 0.939230i
\(753\) 0.414865 + 0.718567i 0.0151185 + 0.0261860i
\(754\) 14.0592 24.3512i 0.512005 0.886818i
\(755\) −17.4085 −0.633560
\(756\) −2.89425 + 0.524593i −0.105263 + 0.0190792i
\(757\) 31.5476 1.14662 0.573308 0.819340i \(-0.305660\pi\)
0.573308 + 0.819340i \(0.305660\pi\)
\(758\) −1.86674 + 3.23328i −0.0678029 + 0.117438i
\(759\) 3.06689 + 5.31201i 0.111321 + 0.192814i
\(760\) 1.65444 + 2.86557i 0.0600128 + 0.103945i
\(761\) −1.13705 + 1.96942i −0.0412179 + 0.0713915i −0.885898 0.463879i \(-0.846457\pi\)
0.844680 + 0.535271i \(0.179790\pi\)
\(762\) −34.1692 −1.23782
\(763\) −37.6677 + 6.82739i −1.36366 + 0.247168i
\(764\) −13.5281 −0.489431
\(765\) −1.47216 + 2.54985i −0.0532259 + 0.0921900i
\(766\) 13.0108 + 22.5353i 0.470098 + 0.814234i
\(767\) −9.25924 16.0375i −0.334332 0.579080i
\(768\) 9.98250 17.2902i 0.360212 0.623906i
\(769\) 37.9412 1.36819 0.684097 0.729391i \(-0.260196\pi\)
0.684097 + 0.729391i \(0.260196\pi\)
\(770\) −11.8105 13.9395i −0.425620 0.502345i
\(771\) 27.3466 0.984862
\(772\) 12.1514 21.0469i 0.437340 0.757495i
\(773\) −6.08642 10.5420i −0.218913 0.379169i 0.735563 0.677457i \(-0.236918\pi\)
−0.954476 + 0.298288i \(0.903585\pi\)
\(774\) −1.62016 2.80621i −0.0582356 0.100867i
\(775\) 1.15789 2.00553i 0.0415927 0.0720407i
\(776\) 9.35925 0.335978
\(777\) 0.586366 1.63527i 0.0210358 0.0586651i
\(778\) −62.3275 −2.23455
\(779\) −3.37359 + 5.84323i −0.120871 + 0.209356i
\(780\) 4.52377 + 7.83540i 0.161977 + 0.280552i
\(781\) −1.26959 2.19899i −0.0454294 0.0786861i
\(782\) −4.06906 + 7.04782i −0.145509 + 0.252029i
\(783\) 4.13624 0.147817
\(784\) −32.6916 + 12.2535i −1.16756 + 0.437624i
\(785\) 43.3652 1.54777
\(786\) −16.7412 + 28.9966i −0.597139 + 1.03428i
\(787\) 26.0572 + 45.1324i 0.928839 + 1.60880i 0.785267 + 0.619157i \(0.212526\pi\)
0.143572 + 0.989640i \(0.454141\pi\)
\(788\) −0.744343 1.28924i −0.0265161 0.0459273i
\(789\) 7.63107 13.2174i 0.271673 0.470552i
\(790\) 59.5472 2.11859
\(791\) −16.4015 + 45.7411i −0.583171 + 1.62636i
\(792\) −2.90460 −0.103210
\(793\) −7.93755 + 13.7482i −0.281871 + 0.488215i
\(794\) −22.9956 39.8296i −0.816084 1.41350i
\(795\) −8.25702 14.3016i −0.292846 0.507224i
\(796\) −4.84616 + 8.39379i −0.171767 + 0.297510i
\(797\) 23.5613 0.834583 0.417291 0.908773i \(-0.362979\pi\)
0.417291 + 0.908773i \(0.362979\pi\)
\(798\) 3.01702 + 3.56088i 0.106801 + 0.126054i
\(799\) 8.31396 0.294127
\(800\) −1.53082 + 2.65146i −0.0541226 + 0.0937431i
\(801\) −6.99257 12.1115i −0.247070 0.427939i
\(802\) −23.9474 41.4782i −0.845614 1.46465i
\(803\) −4.41159 + 7.64109i −0.155681 + 0.269648i
\(804\) 6.80051 0.239835
\(805\) 18.1908 3.29715i 0.641142 0.116209i
\(806\) 29.1254 1.02590
\(807\) −13.9010 + 24.0772i −0.489337 + 0.847556i
\(808\) −7.63600 13.2259i −0.268633 0.465287i
\(809\) −7.10719 12.3100i −0.249876 0.432797i 0.713616 0.700538i \(-0.247056\pi\)
−0.963491 + 0.267740i \(0.913723\pi\)
\(810\) −1.86258 + 3.22608i −0.0654443 + 0.113353i
\(811\) 13.5557 0.476004 0.238002 0.971265i \(-0.423507\pi\)
0.238002 + 0.971265i \(0.423507\pi\)
\(812\) −11.9713 + 2.16984i −0.420111 + 0.0761465i
\(813\) −9.64658 −0.338320
\(814\) −1.07356 + 1.85946i −0.0376283 + 0.0651741i
\(815\) −15.5959 27.0129i −0.546301 0.946221i
\(816\) −3.47693 6.02221i −0.121717 0.210820i
\(817\) −0.918452 + 1.59081i −0.0321326 + 0.0556553i
\(818\) −6.94232 −0.242732
\(819\) −6.59109 7.77923i −0.230311 0.271828i
\(820\) 15.8406 0.553178
\(821\) −3.75204 + 6.49872i −0.130947 + 0.226807i −0.924042 0.382291i \(-0.875135\pi\)
0.793095 + 0.609098i \(0.208468\pi\)
\(822\) −10.5232 18.2267i −0.367039 0.635730i
\(823\) 10.9842 + 19.0253i 0.382887 + 0.663179i 0.991474 0.130308i \(-0.0415967\pi\)
−0.608587 + 0.793487i \(0.708263\pi\)
\(824\) 1.52704 2.64491i 0.0531970 0.0921399i
\(825\) 1.00198 0.0348843
\(826\) −7.56986 + 21.1110i −0.263389 + 0.734547i
\(827\) −40.3377 −1.40268 −0.701339 0.712828i \(-0.747414\pi\)
−0.701339 + 0.712828i \(0.747414\pi\)
\(828\) −1.83932 + 3.18579i −0.0639207 + 0.110714i
\(829\) 6.47596 + 11.2167i 0.224920 + 0.389572i 0.956295 0.292403i \(-0.0944547\pi\)
−0.731376 + 0.681975i \(0.761121\pi\)
\(830\) −6.09156 10.5509i −0.211441 0.366227i
\(831\) −13.8357 + 23.9641i −0.479954 + 0.831305i
\(832\) −0.0648590 −0.00224858
\(833\) −1.60293 + 9.62724i −0.0555381 + 0.333564i
\(834\) 23.6258 0.818094
\(835\) −4.92799 + 8.53553i −0.170540 + 0.295384i
\(836\) −1.03044 1.78478i −0.0356386 0.0617279i
\(837\) 2.14219 + 3.71039i 0.0740450 + 0.128250i
\(838\) 9.46123 16.3873i 0.326833 0.566091i
\(839\) −3.47905 −0.120110 −0.0600551 0.998195i \(-0.519128\pi\)
−0.0600551 + 0.998195i \(0.519128\pi\)
\(840\) −2.95490 + 8.24070i −0.101954 + 0.284331i
\(841\) −11.8915 −0.410053
\(842\) 8.80707 15.2543i 0.303512 0.525698i
\(843\) 5.94970 + 10.3052i 0.204919 + 0.354929i
\(844\) 7.23986 + 12.5398i 0.249206 + 0.431638i
\(845\) −1.95471 + 3.38566i −0.0672441 + 0.116470i
\(846\) 10.5189 0.361646
\(847\) 12.9362 + 15.2682i 0.444494 + 0.524621i
\(848\) 39.0027 1.33936
\(849\) −6.36263 + 11.0204i −0.218365 + 0.378219i
\(850\) 0.664697 + 1.15129i 0.0227989 + 0.0394889i
\(851\) −1.08632 1.88156i −0.0372385 0.0644990i
\(852\) 0.761416 1.31881i 0.0260857 0.0451817i
\(853\) −9.59308 −0.328461 −0.164230 0.986422i \(-0.552514\pi\)
−0.164230 + 0.986422i \(0.552514\pi\)
\(854\) 18.9176 3.42888i 0.647348 0.117334i
\(855\) 2.11175 0.0722203
\(856\) 3.91382 6.77893i 0.133772 0.231699i
\(857\) −26.3851 45.7003i −0.901297 1.56109i −0.825812 0.563946i \(-0.809283\pi\)
−0.0754854 0.997147i \(-0.524051\pi\)
\(858\) 6.30089 + 10.9135i 0.215109 + 0.372579i
\(859\) −3.18536 + 5.51720i −0.108683 + 0.188244i −0.915237 0.402916i \(-0.867997\pi\)
0.806554 + 0.591160i \(0.201330\pi\)
\(860\) 4.31256 0.147057
\(861\) −17.5652 + 3.18374i −0.598619 + 0.108502i
\(862\) −16.6968 −0.568695
\(863\) −4.08401 + 7.07371i −0.139021 + 0.240792i −0.927126 0.374749i \(-0.877729\pi\)
0.788105 + 0.615541i \(0.211062\pi\)
\(864\) −2.83213 4.90540i −0.0963512 0.166885i
\(865\) 21.0869 + 36.5236i 0.716977 + 1.24184i
\(866\) 20.8052 36.0356i 0.706989 1.22454i
\(867\) 15.0561 0.511331
\(868\) −8.14649 9.61502i −0.276510 0.326355i
\(869\) 29.6322 1.00520
\(870\) −7.70407 + 13.3438i −0.261192 + 0.452398i
\(871\) 11.7865 + 20.4149i 0.399372 + 0.691732i
\(872\) −11.3357 19.6340i −0.383874 0.664890i
\(873\) 2.98657 5.17289i 0.101080 0.175076i
\(874\) 5.83690 0.197436
\(875\) 10.4485 29.1391i 0.353224 0.985082i
\(876\) −5.29156 −0.178785
\(877\) −8.27393 + 14.3309i −0.279391 + 0.483919i −0.971233 0.238129i \(-0.923466\pi\)
0.691843 + 0.722048i \(0.256799\pi\)
\(878\) 29.8460 + 51.6949i 1.00726 + 1.74462i
\(879\) 11.9528 + 20.7028i 0.403156 + 0.698287i
\(880\) 9.76211 16.9085i 0.329081 0.569985i
\(881\) −46.4499 −1.56494 −0.782469 0.622690i \(-0.786040\pi\)
−0.782469 + 0.622690i \(0.786040\pi\)
\(882\) −2.02803 + 12.1804i −0.0682873 + 0.410136i
\(883\) 34.9542 1.17630 0.588152 0.808751i \(-0.299856\pi\)
0.588152 + 0.808751i \(0.299856\pi\)
\(884\) −2.98676 + 5.17322i −0.100456 + 0.173994i
\(885\) 5.07383 + 8.78813i 0.170555 + 0.295410i
\(886\) −4.71490 8.16644i −0.158400 0.274357i
\(887\) 2.09931 3.63611i 0.0704879 0.122089i −0.828627 0.559801i \(-0.810878\pi\)
0.899115 + 0.437712i \(0.144211\pi\)
\(888\) 1.02883 0.0345254
\(889\) −17.2980 + 48.2410i −0.580155 + 1.61795i
\(890\) 52.0969 1.74629
\(891\) −0.926867 + 1.60538i −0.0310512 + 0.0537823i
\(892\) 7.82827 + 13.5590i 0.262110 + 0.453987i
\(893\) −2.98151 5.16413i −0.0997725 0.172811i
\(894\) 0.566889 0.981880i 0.0189596 0.0328390i
\(895\) 44.0105 1.47111
\(896\) −19.3246 22.8081i −0.645588 0.761965i
\(897\) −12.7515 −0.425761
\(898\) −8.98761 + 15.5670i −0.299921 + 0.519478i
\(899\) 8.86062 + 15.3470i 0.295518 + 0.511853i
\(900\) 0.300460 + 0.520412i 0.0100153 + 0.0173471i
\(901\) 5.45158 9.44241i 0.181618 0.314572i
\(902\) 22.0634 0.734631
\(903\) −4.78208 + 0.866767i −0.159138 + 0.0288442i
\(904\) −28.7780 −0.957142
\(905\) −24.3665 + 42.2041i −0.809971 + 1.40291i
\(906\) −7.27096 12.5937i −0.241561 0.418397i
\(907\) −3.90780 6.76850i −0.129756 0.224744i 0.793826 0.608145i \(-0.208086\pi\)
−0.923582 + 0.383401i \(0.874753\pi\)
\(908\) 10.4128 18.0355i 0.345562 0.598530i
\(909\) −9.74670 −0.323278
\(910\) 37.3728 6.77395i 1.23890 0.224554i
\(911\) 3.36489 0.111484 0.0557419 0.998445i \(-0.482248\pi\)
0.0557419 + 0.998445i \(0.482248\pi\)
\(912\) −2.49376 + 4.31931i −0.0825765 + 0.143027i
\(913\) −3.03132 5.25040i −0.100322 0.173763i
\(914\) 26.3701 + 45.6743i 0.872245 + 1.51077i
\(915\) 4.34958 7.53369i 0.143793 0.249056i
\(916\) −16.3327 −0.539648
\(917\) 32.4631 + 38.3151i 1.07203 + 1.26527i
\(918\) −2.45948 −0.0811750
\(919\) 20.4932 35.4952i 0.676007 1.17088i −0.300166 0.953887i \(-0.597042\pi\)
0.976173 0.216992i \(-0.0696245\pi\)
\(920\) 5.47433 + 9.48181i 0.180483 + 0.312606i
\(921\) 7.15050 + 12.3850i 0.235617 + 0.408101i
\(922\) −31.0908 + 53.8508i −1.02392 + 1.77348i
\(923\) 5.27870 0.173751
\(924\) 1.84042 5.13261i 0.0605453 0.168850i
\(925\) −0.354909 −0.0116693
\(926\) 24.7654 42.8949i 0.813841 1.40961i
\(927\) −0.974569 1.68800i −0.0320091 0.0554413i
\(928\) −11.7144 20.2899i −0.384544 0.666049i
\(929\) −22.0702 + 38.2267i −0.724099 + 1.25418i 0.235245 + 0.971936i \(0.424411\pi\)
−0.959344 + 0.282240i \(0.908923\pi\)
\(930\) −15.9600 −0.523349
\(931\) 6.55469 2.45683i 0.214821 0.0805194i
\(932\) −19.3756 −0.634670
\(933\) 1.68994 2.92707i 0.0553262 0.0958278i
\(934\) −27.6407 47.8750i −0.904430 1.56652i
\(935\) −2.72899 4.72674i −0.0892474 0.154581i
\(936\) 3.01919 5.22938i 0.0986852 0.170928i
\(937\) 19.6219 0.641019 0.320509 0.947245i \(-0.396146\pi\)
0.320509 + 0.947245i \(0.396146\pi\)
\(938\) 9.63605 26.8733i 0.314628 0.877444i
\(939\) 33.9154 1.10679
\(940\) −6.99979 + 12.1240i −0.228308 + 0.395441i
\(941\) −5.60981 9.71648i −0.182875 0.316748i 0.759984 0.649942i \(-0.225207\pi\)
−0.942858 + 0.333194i \(0.891874\pi\)
\(942\) 18.1122 + 31.3713i 0.590127 + 1.02213i
\(943\) −11.1628 + 19.3345i −0.363511 + 0.629619i
\(944\) −23.9667 −0.780049
\(945\) 3.61175 + 4.26282i 0.117490 + 0.138670i
\(946\) 6.00671 0.195295
\(947\) −1.96629 + 3.40572i −0.0638959 + 0.110671i −0.896204 0.443643i \(-0.853686\pi\)
0.832308 + 0.554314i \(0.187019\pi\)
\(948\) 8.88573 + 15.3905i 0.288595 + 0.499862i
\(949\) −9.17126 15.8851i −0.297712 0.515652i
\(950\) 0.476741 0.825739i 0.0154675 0.0267905i
\(951\) −11.5718 −0.375242
\(952\) −5.68734 + 1.03085i −0.184328 + 0.0334100i
\(953\) −1.45702 −0.0471975 −0.0235988 0.999722i \(-0.507512\pi\)
−0.0235988 + 0.999722i \(0.507512\pi\)
\(954\) 6.89736 11.9466i 0.223310 0.386785i
\(955\) 12.8482 + 22.2538i 0.415759 + 0.720117i
\(956\) 11.9217 + 20.6490i 0.385576 + 0.667837i
\(957\) −3.83375 + 6.64024i −0.123927 + 0.214649i
\(958\) −34.7039 −1.12123
\(959\) −31.0603 + 5.62978i −1.00299 + 0.181795i
\(960\) 0.0355411 0.00114708
\(961\) 6.32202 10.9501i 0.203936 0.353228i
\(962\) −2.23183 3.86564i −0.0719570 0.124633i
\(963\) −2.49783 4.32637i −0.0804914 0.139415i
\(964\) −9.07793 + 15.7234i −0.292380 + 0.506418i
\(965\) −46.1629 −1.48604
\(966\) 9.98293 + 11.7825i 0.321195 + 0.379096i
\(967\) 34.2169 1.10034 0.550170 0.835052i \(-0.314563\pi\)
0.550170 + 0.835052i \(0.314563\pi\)
\(968\) −5.92571 + 10.2636i −0.190460 + 0.329886i
\(969\) 0.697126 + 1.20746i 0.0223949 + 0.0387891i
\(970\) 11.1254 + 19.2698i 0.357217 + 0.618717i
\(971\) −10.4370 + 18.0774i −0.334938 + 0.580130i −0.983473 0.181055i \(-0.942049\pi\)
0.648535 + 0.761185i \(0.275382\pi\)
\(972\) −1.11175 −0.0356594
\(973\) 11.9604 33.3555i 0.383433 1.06933i
\(974\) −10.4521 −0.334908
\(975\) −1.04151 + 1.80394i −0.0333549 + 0.0577723i
\(976\) 10.2728 + 17.7930i 0.328824 + 0.569540i
\(977\) −16.6022 28.7558i −0.531151 0.919980i −0.999339 0.0363515i \(-0.988426\pi\)
0.468188 0.883629i \(-0.344907\pi\)
\(978\) 13.0278 22.5648i 0.416583 0.721542i
\(979\) 25.9248 0.828559
\(980\) −12.6896 10.4430i −0.405353 0.333589i
\(981\) −14.4690 −0.461960
\(982\) −18.8706 + 32.6849i −0.602186 + 1.04302i
\(983\) −9.23588 15.9970i −0.294579 0.510225i 0.680308 0.732926i \(-0.261846\pi\)
−0.974887 + 0.222701i \(0.928513\pi\)
\(984\) −5.28604 9.15570i −0.168513 0.291873i
\(985\) −1.41387 + 2.44889i −0.0450496 + 0.0780281i
\(986\) −10.1730 −0.323975
\(987\) 5.32511 14.8508i 0.169500 0.472707i
\(988\) 4.28438 0.136304
\(989\) −3.03904 + 5.26378i −0.0966360 + 0.167378i
\(990\) −3.45273 5.98030i −0.109735 0.190066i
\(991\) −17.6821 30.6263i −0.561690 0.972876i −0.997349 0.0727639i \(-0.976818\pi\)
0.435659 0.900112i \(-0.356515\pi\)
\(992\) 12.1340 21.0166i 0.385253 0.667278i
\(993\) −30.2090 −0.958653
\(994\) −4.13259 4.87756i −0.131078 0.154707i
\(995\) 18.4104 0.583649
\(996\) 1.81799 3.14885i 0.0576051 0.0997750i
\(997\) 18.2688 + 31.6424i 0.578578 + 1.00213i 0.995643 + 0.0932496i \(0.0297255\pi\)
−0.417065 + 0.908877i \(0.636941\pi\)
\(998\) 25.5217 + 44.2049i 0.807876 + 1.39928i
\(999\) 0.328304 0.568640i 0.0103871 0.0179910i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 399.2.j.d.58.1 8
3.2 odd 2 1197.2.j.k.856.4 8
7.2 even 3 2793.2.a.bc.1.4 4
7.4 even 3 inner 399.2.j.d.172.1 yes 8
7.5 odd 6 2793.2.a.bd.1.4 4
21.2 odd 6 8379.2.a.br.1.1 4
21.5 even 6 8379.2.a.bt.1.1 4
21.11 odd 6 1197.2.j.k.172.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.j.d.58.1 8 1.1 even 1 trivial
399.2.j.d.172.1 yes 8 7.4 even 3 inner
1197.2.j.k.172.4 8 21.11 odd 6
1197.2.j.k.856.4 8 3.2 odd 2
2793.2.a.bc.1.4 4 7.2 even 3
2793.2.a.bd.1.4 4 7.5 odd 6
8379.2.a.br.1.1 4 21.2 odd 6
8379.2.a.bt.1.1 4 21.5 even 6