Properties

Label 399.2.k.c.64.1
Level $399$
Weight $2$
Character 399.64
Analytic conductor $3.186$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [399,2,Mod(64,399)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(399, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("399.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 399 = 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 399.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18603104065\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 11 x^{10} - 10 x^{9} + 90 x^{8} - 79 x^{7} + 275 x^{6} - 177 x^{5} + 560 x^{4} + \cdots + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 64.1
Root \(1.34639 + 2.33202i\) of defining polynomial
Character \(\chi\) \(=\) 399.64
Dual form 399.2.k.c.106.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.34639 - 2.33202i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(-2.62554 + 4.54758i) q^{4} +(-1.03963 - 1.80069i) q^{5} +(-1.34639 + 2.33202i) q^{6} -1.00000 q^{7} +8.75448 q^{8} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(-1.34639 - 2.33202i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(-2.62554 + 4.54758i) q^{4} +(-1.03963 - 1.80069i) q^{5} +(-1.34639 + 2.33202i) q^{6} -1.00000 q^{7} +8.75448 q^{8} +(-0.500000 + 0.866025i) q^{9} +(-2.79950 + 4.84888i) q^{10} -1.81905 q^{11} +5.25109 q^{12} +(-3.30361 + 5.72202i) q^{13} +(1.34639 + 2.33202i) q^{14} +(-1.03963 + 1.80069i) q^{15} +(-6.53587 - 11.3205i) q^{16} +(1.08591 + 1.88086i) q^{17} +2.69278 q^{18} +(4.30847 - 0.661119i) q^{19} +10.9184 q^{20} +(0.500000 + 0.866025i) q^{21} +(2.44916 + 4.24207i) q^{22} +(-0.173960 + 0.301308i) q^{23} +(-4.37724 - 7.58160i) q^{24} +(0.338332 - 0.586008i) q^{25} +17.7918 q^{26} +1.00000 q^{27} +(2.62554 - 4.54758i) q^{28} +(-0.164372 + 0.284700i) q^{29} +5.59901 q^{30} +1.56957 q^{31} +(-8.84522 + 15.3204i) q^{32} +(0.909526 + 1.57535i) q^{33} +(2.92413 - 5.06474i) q^{34} +(1.03963 + 1.80069i) q^{35} +(-2.62554 - 4.54758i) q^{36} -11.3128 q^{37} +(-7.34263 - 9.15731i) q^{38} +6.60722 q^{39} +(-9.10143 - 15.7641i) q^{40} +(-1.47677 - 2.55783i) q^{41} +(1.34639 - 2.33202i) q^{42} +(3.46388 + 5.99961i) q^{43} +(4.77600 - 8.27228i) q^{44} +2.07926 q^{45} +0.936875 q^{46} +(-4.16437 + 7.21290i) q^{47} +(-6.53587 + 11.3205i) q^{48} +1.00000 q^{49} -1.82211 q^{50} +(1.08591 - 1.88086i) q^{51} +(-17.3475 - 30.0468i) q^{52} +(0.705792 - 1.22247i) q^{53} +(-1.34639 - 2.33202i) q^{54} +(1.89114 + 3.27556i) q^{55} -8.75448 q^{56} +(-2.72678 - 3.40069i) q^{57} +0.885234 q^{58} +(5.33278 + 9.23664i) q^{59} +(-5.45920 - 9.45561i) q^{60} +(3.25565 - 5.63895i) q^{61} +(-2.11326 - 3.66027i) q^{62} +(0.500000 - 0.866025i) q^{63} +21.4931 q^{64} +13.7382 q^{65} +(2.44916 - 4.24207i) q^{66} +(-7.97715 + 13.8168i) q^{67} -11.4044 q^{68} +0.347920 q^{69} +(2.79950 - 4.84888i) q^{70} +(-7.16625 - 12.4123i) q^{71} +(-4.37724 + 7.58160i) q^{72} +(7.60311 + 13.1690i) q^{73} +(15.2314 + 26.3816i) q^{74} -0.676663 q^{75} +(-8.30559 + 21.3289i) q^{76} +1.81905 q^{77} +(-8.89591 - 15.4082i) q^{78} +(4.47320 + 7.74780i) q^{79} +(-13.5898 + 23.5382i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-3.97661 + 6.88770i) q^{82} -4.59810 q^{83} -5.25109 q^{84} +(2.25790 - 3.91079i) q^{85} +(9.32747 - 16.1557i) q^{86} +0.328743 q^{87} -15.9249 q^{88} +(-1.43291 + 2.48188i) q^{89} +(-2.79950 - 4.84888i) q^{90} +(3.30361 - 5.72202i) q^{91} +(-0.913480 - 1.58219i) q^{92} +(-0.784786 - 1.35929i) q^{93} +22.4275 q^{94} +(-5.66970 - 7.07092i) q^{95} +17.6904 q^{96} +(-0.444846 - 0.770496i) q^{97} +(-1.34639 - 2.33202i) q^{98} +(0.909526 - 1.57535i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - q^{2} - 6 q^{3} - 9 q^{4} - q^{6} - 12 q^{7} - 6 q^{8} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - q^{2} - 6 q^{3} - 9 q^{4} - q^{6} - 12 q^{7} - 6 q^{8} - 6 q^{9} - 4 q^{10} + 8 q^{11} + 18 q^{12} - 2 q^{13} + q^{14} - 19 q^{16} + 3 q^{17} + 2 q^{18} + 3 q^{19} - 26 q^{20} + 6 q^{21} + 2 q^{22} + 5 q^{23} + 3 q^{24} - 16 q^{25} + 98 q^{26} + 12 q^{27} + 9 q^{28} + 11 q^{29} + 8 q^{30} - 10 q^{31} - 4 q^{33} - 6 q^{34} - 9 q^{36} - 10 q^{37} - 26 q^{38} + 4 q^{39} - 62 q^{40} + 5 q^{41} + q^{42} - q^{43} + 15 q^{44} - 24 q^{46} - 37 q^{47} - 19 q^{48} + 12 q^{49} + 6 q^{50} + 3 q^{51} + 9 q^{52} + 9 q^{53} - q^{54} + 9 q^{55} + 6 q^{56} + 3 q^{57} + 18 q^{58} + 6 q^{59} + 13 q^{60} + 19 q^{61} + 5 q^{62} + 6 q^{63} + 118 q^{64} + 48 q^{65} + 2 q^{66} + 8 q^{67} - 130 q^{68} - 10 q^{69} + 4 q^{70} - 19 q^{71} + 3 q^{72} + 24 q^{73} + 15 q^{74} + 32 q^{75} - 6 q^{76} - 8 q^{77} - 49 q^{78} + 27 q^{79} - 11 q^{80} - 6 q^{81} - 46 q^{82} + 70 q^{83} - 18 q^{84} - 59 q^{85} - 3 q^{86} - 22 q^{87} - 14 q^{88} - 4 q^{89} - 4 q^{90} + 2 q^{91} - 9 q^{92} + 5 q^{93} + 34 q^{94} - 55 q^{97} - q^{98} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/399\mathbb{Z}\right)^\times\).

\(n\) \(115\) \(134\) \(211\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.34639 2.33202i −0.952043 1.64899i −0.740994 0.671511i \(-0.765645\pi\)
−0.211049 0.977476i \(-0.567688\pi\)
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) −2.62554 + 4.54758i −1.31277 + 2.27379i
\(5\) −1.03963 1.80069i −0.464937 0.805295i 0.534261 0.845319i \(-0.320590\pi\)
−0.999199 + 0.0400241i \(0.987257\pi\)
\(6\) −1.34639 + 2.33202i −0.549662 + 0.952043i
\(7\) −1.00000 −0.377964
\(8\) 8.75448 3.09518
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) −2.79950 + 4.84888i −0.885281 + 1.53335i
\(11\) −1.81905 −0.548465 −0.274232 0.961663i \(-0.588424\pi\)
−0.274232 + 0.961663i \(0.588424\pi\)
\(12\) 5.25109 1.51586
\(13\) −3.30361 + 5.72202i −0.916257 + 1.58700i −0.111206 + 0.993797i \(0.535471\pi\)
−0.805051 + 0.593206i \(0.797862\pi\)
\(14\) 1.34639 + 2.33202i 0.359838 + 0.623258i
\(15\) −1.03963 + 1.80069i −0.268432 + 0.464937i
\(16\) −6.53587 11.3205i −1.63397 2.83012i
\(17\) 1.08591 + 1.88086i 0.263372 + 0.456174i 0.967136 0.254260i \(-0.0818319\pi\)
−0.703764 + 0.710434i \(0.748499\pi\)
\(18\) 2.69278 0.634695
\(19\) 4.30847 0.661119i 0.988431 0.151671i
\(20\) 10.9184 2.44143
\(21\) 0.500000 + 0.866025i 0.109109 + 0.188982i
\(22\) 2.44916 + 4.24207i 0.522162 + 0.904411i
\(23\) −0.173960 + 0.301308i −0.0362732 + 0.0628270i −0.883592 0.468257i \(-0.844882\pi\)
0.847319 + 0.531084i \(0.178215\pi\)
\(24\) −4.37724 7.58160i −0.893500 1.54759i
\(25\) 0.338332 0.586008i 0.0676663 0.117202i
\(26\) 17.7918 3.48926
\(27\) 1.00000 0.192450
\(28\) 2.62554 4.54758i 0.496181 0.859411i
\(29\) −0.164372 + 0.284700i −0.0305230 + 0.0528674i −0.880883 0.473333i \(-0.843051\pi\)
0.850360 + 0.526201i \(0.176384\pi\)
\(30\) 5.59901 1.02223
\(31\) 1.56957 0.281904 0.140952 0.990016i \(-0.454984\pi\)
0.140952 + 0.990016i \(0.454984\pi\)
\(32\) −8.84522 + 15.3204i −1.56363 + 2.70828i
\(33\) 0.909526 + 1.57535i 0.158328 + 0.274232i
\(34\) 2.92413 5.06474i 0.501484 0.868595i
\(35\) 1.03963 + 1.80069i 0.175730 + 0.304373i
\(36\) −2.62554 4.54758i −0.437591 0.757929i
\(37\) −11.3128 −1.85981 −0.929905 0.367800i \(-0.880111\pi\)
−0.929905 + 0.367800i \(0.880111\pi\)
\(38\) −7.34263 9.15731i −1.19113 1.48551i
\(39\) 6.60722 1.05800
\(40\) −9.10143 15.7641i −1.43906 2.49253i
\(41\) −1.47677 2.55783i −0.230632 0.399467i 0.727362 0.686254i \(-0.240746\pi\)
−0.957994 + 0.286787i \(0.907413\pi\)
\(42\) 1.34639 2.33202i 0.207753 0.359838i
\(43\) 3.46388 + 5.99961i 0.528236 + 0.914932i 0.999458 + 0.0329171i \(0.0104797\pi\)
−0.471222 + 0.882015i \(0.656187\pi\)
\(44\) 4.77600 8.27228i 0.720009 1.24709i
\(45\) 2.07926 0.309958
\(46\) 0.936875 0.138135
\(47\) −4.16437 + 7.21290i −0.607436 + 1.05211i 0.384225 + 0.923239i \(0.374469\pi\)
−0.991661 + 0.128871i \(0.958865\pi\)
\(48\) −6.53587 + 11.3205i −0.943372 + 1.63397i
\(49\) 1.00000 0.142857
\(50\) −1.82211 −0.257685
\(51\) 1.08591 1.88086i 0.152058 0.263372i
\(52\) −17.3475 30.0468i −2.40567 4.16675i
\(53\) 0.705792 1.22247i 0.0969480 0.167919i −0.813472 0.581604i \(-0.802425\pi\)
0.910420 + 0.413685i \(0.135759\pi\)
\(54\) −1.34639 2.33202i −0.183221 0.317348i
\(55\) 1.89114 + 3.27556i 0.255002 + 0.441676i
\(56\) −8.75448 −1.16987
\(57\) −2.72678 3.40069i −0.361171 0.450432i
\(58\) 0.885234 0.116237
\(59\) 5.33278 + 9.23664i 0.694268 + 1.20251i 0.970427 + 0.241396i \(0.0776053\pi\)
−0.276158 + 0.961112i \(0.589061\pi\)
\(60\) −5.45920 9.45561i −0.704779 1.22071i
\(61\) 3.25565 5.63895i 0.416843 0.721994i −0.578777 0.815486i \(-0.696470\pi\)
0.995620 + 0.0934924i \(0.0298031\pi\)
\(62\) −2.11326 3.66027i −0.268384 0.464855i
\(63\) 0.500000 0.866025i 0.0629941 0.109109i
\(64\) 21.4931 2.68663
\(65\) 13.7382 1.70401
\(66\) 2.44916 4.24207i 0.301470 0.522162i
\(67\) −7.97715 + 13.8168i −0.974563 + 1.68799i −0.293195 + 0.956053i \(0.594719\pi\)
−0.681368 + 0.731941i \(0.738615\pi\)
\(68\) −11.4044 −1.38299
\(69\) 0.347920 0.0418847
\(70\) 2.79950 4.84888i 0.334605 0.579552i
\(71\) −7.16625 12.4123i −0.850477 1.47307i −0.880778 0.473529i \(-0.842980\pi\)
0.0303010 0.999541i \(-0.490353\pi\)
\(72\) −4.37724 + 7.58160i −0.515863 + 0.893500i
\(73\) 7.60311 + 13.1690i 0.889877 + 1.54131i 0.840019 + 0.542556i \(0.182543\pi\)
0.0498579 + 0.998756i \(0.484123\pi\)
\(74\) 15.2314 + 26.3816i 1.77062 + 3.06680i
\(75\) −0.676663 −0.0781344
\(76\) −8.30559 + 21.3289i −0.952717 + 2.44659i
\(77\) 1.81905 0.207300
\(78\) −8.89591 15.4082i −1.00726 1.74463i
\(79\) 4.47320 + 7.74780i 0.503274 + 0.871696i 0.999993 + 0.00378441i \(0.00120462\pi\)
−0.496719 + 0.867911i \(0.665462\pi\)
\(80\) −13.5898 + 23.5382i −1.51939 + 2.63165i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −3.97661 + 6.88770i −0.439144 + 0.760619i
\(83\) −4.59810 −0.504707 −0.252353 0.967635i \(-0.581205\pi\)
−0.252353 + 0.967635i \(0.581205\pi\)
\(84\) −5.25109 −0.572941
\(85\) 2.25790 3.91079i 0.244903 0.424185i
\(86\) 9.32747 16.1557i 1.00581 1.74211i
\(87\) 0.328743 0.0352450
\(88\) −15.9249 −1.69760
\(89\) −1.43291 + 2.48188i −0.151888 + 0.263078i −0.931922 0.362660i \(-0.881869\pi\)
0.780033 + 0.625738i \(0.215202\pi\)
\(90\) −2.79950 4.84888i −0.295094 0.511117i
\(91\) 3.30361 5.72202i 0.346312 0.599831i
\(92\) −0.913480 1.58219i −0.0952369 0.164955i
\(93\) −0.784786 1.35929i −0.0813786 0.140952i
\(94\) 22.4275 2.31322
\(95\) −5.66970 7.07092i −0.581699 0.725461i
\(96\) 17.6904 1.80552
\(97\) −0.444846 0.770496i −0.0451673 0.0782321i 0.842558 0.538606i \(-0.181049\pi\)
−0.887725 + 0.460374i \(0.847715\pi\)
\(98\) −1.34639 2.33202i −0.136006 0.235570i
\(99\) 0.909526 1.57535i 0.0914108 0.158328i
\(100\) 1.77661 + 3.07718i 0.177661 + 0.307718i
\(101\) −7.96908 + 13.8029i −0.792954 + 1.37344i 0.131177 + 0.991359i \(0.458124\pi\)
−0.924131 + 0.382077i \(0.875209\pi\)
\(102\) −5.84826 −0.579064
\(103\) −1.27080 −0.125216 −0.0626080 0.998038i \(-0.519942\pi\)
−0.0626080 + 0.998038i \(0.519942\pi\)
\(104\) −28.9214 + 50.0933i −2.83598 + 4.91205i
\(105\) 1.03963 1.80069i 0.101458 0.175730i
\(106\) −3.80109 −0.369195
\(107\) −0.695303 −0.0672175 −0.0336087 0.999435i \(-0.510700\pi\)
−0.0336087 + 0.999435i \(0.510700\pi\)
\(108\) −2.62554 + 4.54758i −0.252643 + 0.437591i
\(109\) −1.41617 2.45289i −0.135645 0.234944i 0.790199 0.612851i \(-0.209977\pi\)
−0.925844 + 0.377907i \(0.876644\pi\)
\(110\) 5.09244 8.82037i 0.485546 0.840990i
\(111\) 5.65639 + 9.79716i 0.536881 + 0.929905i
\(112\) 6.53587 + 11.3205i 0.617582 + 1.06968i
\(113\) −13.9069 −1.30825 −0.654127 0.756385i \(-0.726964\pi\)
−0.654127 + 0.756385i \(0.726964\pi\)
\(114\) −4.25915 + 10.9376i −0.398906 + 1.02440i
\(115\) 0.723418 0.0674591
\(116\) −0.863129 1.49498i −0.0801395 0.138806i
\(117\) −3.30361 5.72202i −0.305419 0.529001i
\(118\) 14.3600 24.8723i 1.32195 2.28968i
\(119\) −1.08591 1.88086i −0.0995454 0.172418i
\(120\) −9.10143 + 15.7641i −0.830843 + 1.43906i
\(121\) −7.69105 −0.699186
\(122\) −17.5335 −1.58741
\(123\) −1.47677 + 2.55783i −0.133156 + 0.230632i
\(124\) −4.12098 + 7.13775i −0.370075 + 0.640989i
\(125\) −11.8033 −1.05572
\(126\) −2.69278 −0.239892
\(127\) −6.69260 + 11.5919i −0.593872 + 1.02862i 0.399833 + 0.916588i \(0.369068\pi\)
−0.993705 + 0.112029i \(0.964265\pi\)
\(128\) −11.2476 19.4815i −0.994160 1.72194i
\(129\) 3.46388 5.99961i 0.304977 0.528236i
\(130\) −18.4969 32.0376i −1.62229 2.80989i
\(131\) 8.19664 + 14.1970i 0.716144 + 1.24040i 0.962517 + 0.271222i \(0.0874279\pi\)
−0.246373 + 0.969175i \(0.579239\pi\)
\(132\) −9.55200 −0.831395
\(133\) −4.30847 + 0.661119i −0.373592 + 0.0573263i
\(134\) 42.9615 3.71131
\(135\) −1.03963 1.80069i −0.0894773 0.154979i
\(136\) 9.50660 + 16.4659i 0.815184 + 1.41194i
\(137\) 7.54771 13.0730i 0.644844 1.11690i −0.339493 0.940609i \(-0.610255\pi\)
0.984337 0.176295i \(-0.0564112\pi\)
\(138\) −0.468437 0.811357i −0.0398760 0.0690673i
\(139\) −2.82847 + 4.89906i −0.239908 + 0.415533i −0.960688 0.277631i \(-0.910451\pi\)
0.720780 + 0.693164i \(0.243784\pi\)
\(140\) −10.9184 −0.922773
\(141\) 8.32874 0.701407
\(142\) −19.2972 + 33.4237i −1.61938 + 2.80485i
\(143\) 6.00944 10.4087i 0.502535 0.870416i
\(144\) 13.0717 1.08931
\(145\) 0.683543 0.0567652
\(146\) 20.4735 35.4612i 1.69440 2.93479i
\(147\) −0.500000 0.866025i −0.0412393 0.0714286i
\(148\) 29.7022 51.4457i 2.44151 4.22881i
\(149\) −7.19308 12.4588i −0.589280 1.02066i −0.994327 0.106367i \(-0.966078\pi\)
0.405047 0.914296i \(-0.367255\pi\)
\(150\) 0.911054 + 1.57799i 0.0743873 + 0.128843i
\(151\) −3.66213 −0.298020 −0.149010 0.988836i \(-0.547609\pi\)
−0.149010 + 0.988836i \(0.547609\pi\)
\(152\) 37.7184 5.78775i 3.05937 0.469449i
\(153\) −2.17182 −0.175582
\(154\) −2.44916 4.24207i −0.197359 0.341835i
\(155\) −1.63178 2.82632i −0.131068 0.227016i
\(156\) −17.3475 + 30.0468i −1.38892 + 2.40567i
\(157\) 2.64186 + 4.57584i 0.210843 + 0.365191i 0.951979 0.306164i \(-0.0990457\pi\)
−0.741135 + 0.671356i \(0.765712\pi\)
\(158\) 12.0454 20.8632i 0.958277 1.65978i
\(159\) −1.41158 −0.111946
\(160\) 36.7831 2.90796
\(161\) 0.173960 0.301308i 0.0137100 0.0237464i
\(162\) −1.34639 + 2.33202i −0.105783 + 0.183221i
\(163\) 17.1383 1.34238 0.671188 0.741287i \(-0.265784\pi\)
0.671188 + 0.741287i \(0.265784\pi\)
\(164\) 15.5093 1.21107
\(165\) 1.89114 3.27556i 0.147225 0.255002i
\(166\) 6.19084 + 10.7229i 0.480503 + 0.832255i
\(167\) 8.65153 14.9849i 0.669476 1.15957i −0.308575 0.951200i \(-0.599852\pi\)
0.978051 0.208366i \(-0.0668145\pi\)
\(168\) 4.37724 + 7.58160i 0.337711 + 0.584933i
\(169\) −15.3277 26.5483i −1.17905 2.04218i
\(170\) −12.1601 −0.932634
\(171\) −1.58169 + 4.06180i −0.120955 + 0.310614i
\(172\) −36.3782 −2.77381
\(173\) −3.72606 6.45372i −0.283287 0.490667i 0.688905 0.724851i \(-0.258092\pi\)
−0.972192 + 0.234184i \(0.924758\pi\)
\(174\) −0.442617 0.766635i −0.0335547 0.0581185i
\(175\) −0.338332 + 0.586008i −0.0255755 + 0.0442980i
\(176\) 11.8891 + 20.5925i 0.896174 + 1.55222i
\(177\) 5.33278 9.23664i 0.400836 0.694268i
\(178\) 7.71705 0.578417
\(179\) −20.3004 −1.51732 −0.758662 0.651484i \(-0.774147\pi\)
−0.758662 + 0.651484i \(0.774147\pi\)
\(180\) −5.45920 + 9.45561i −0.406905 + 0.704779i
\(181\) −2.81951 + 4.88353i −0.209572 + 0.362990i −0.951580 0.307402i \(-0.900541\pi\)
0.742008 + 0.670392i \(0.233874\pi\)
\(182\) −17.7918 −1.31882
\(183\) −6.51130 −0.481329
\(184\) −1.52293 + 2.63779i −0.112272 + 0.194461i
\(185\) 11.7611 + 20.3709i 0.864695 + 1.49770i
\(186\) −2.11326 + 3.66027i −0.154952 + 0.268384i
\(187\) −1.97533 3.42137i −0.144451 0.250196i
\(188\) −21.8675 37.8756i −1.59485 2.76236i
\(189\) −1.00000 −0.0727393
\(190\) −8.85589 + 22.7421i −0.642474 + 1.64988i
\(191\) 19.3899 1.40300 0.701501 0.712669i \(-0.252514\pi\)
0.701501 + 0.712669i \(0.252514\pi\)
\(192\) −10.7465 18.6135i −0.775564 1.34332i
\(193\) −11.4356 19.8071i −0.823154 1.42574i −0.903322 0.428963i \(-0.858879\pi\)
0.0801677 0.996781i \(-0.474454\pi\)
\(194\) −1.19788 + 2.07478i −0.0860024 + 0.148961i
\(195\) −6.86908 11.8976i −0.491905 0.852004i
\(196\) −2.62554 + 4.54758i −0.187539 + 0.324827i
\(197\) −9.21162 −0.656301 −0.328150 0.944626i \(-0.606425\pi\)
−0.328150 + 0.944626i \(0.606425\pi\)
\(198\) −4.89832 −0.348108
\(199\) −3.28246 + 5.68539i −0.232688 + 0.403027i −0.958598 0.284762i \(-0.908085\pi\)
0.725911 + 0.687789i \(0.241419\pi\)
\(200\) 2.96192 5.13019i 0.209439 0.362759i
\(201\) 15.9543 1.12533
\(202\) 42.9181 3.01970
\(203\) 0.164372 0.284700i 0.0115366 0.0199820i
\(204\) 5.70222 + 9.87654i 0.399235 + 0.691496i
\(205\) −3.07059 + 5.31841i −0.214459 + 0.371454i
\(206\) 1.71100 + 2.96354i 0.119211 + 0.206479i
\(207\) −0.173960 0.301308i −0.0120911 0.0209423i
\(208\) 86.3679 5.98854
\(209\) −7.83733 + 1.20261i −0.542120 + 0.0831863i
\(210\) −5.59901 −0.386368
\(211\) −3.31643 5.74423i −0.228313 0.395449i 0.728996 0.684518i \(-0.239987\pi\)
−0.957308 + 0.289069i \(0.906654\pi\)
\(212\) 3.70617 + 6.41928i 0.254541 + 0.440878i
\(213\) −7.16625 + 12.4123i −0.491023 + 0.850477i
\(214\) 0.936151 + 1.62146i 0.0639939 + 0.110841i
\(215\) 7.20231 12.4748i 0.491193 0.850772i
\(216\) 8.75448 0.595667
\(217\) −1.56957 −0.106550
\(218\) −3.81345 + 6.60510i −0.258280 + 0.447354i
\(219\) 7.60311 13.1690i 0.513771 0.889877i
\(220\) −19.8611 −1.33904
\(221\) −14.3497 −0.965267
\(222\) 15.2314 26.3816i 1.02227 1.77062i
\(223\) 6.56242 + 11.3664i 0.439452 + 0.761153i 0.997647 0.0685564i \(-0.0218393\pi\)
−0.558195 + 0.829710i \(0.688506\pi\)
\(224\) 8.84522 15.3204i 0.590996 1.02364i
\(225\) 0.338332 + 0.586008i 0.0225554 + 0.0390672i
\(226\) 18.7242 + 32.4312i 1.24551 + 2.15729i
\(227\) −13.3182 −0.883959 −0.441980 0.897025i \(-0.645724\pi\)
−0.441980 + 0.897025i \(0.645724\pi\)
\(228\) 22.6242 3.47160i 1.49832 0.229912i
\(229\) −2.94994 −0.194937 −0.0974687 0.995239i \(-0.531075\pi\)
−0.0974687 + 0.995239i \(0.531075\pi\)
\(230\) −0.974004 1.68703i −0.0642240 0.111239i
\(231\) −0.909526 1.57535i −0.0598424 0.103650i
\(232\) −1.43899 + 2.49240i −0.0944741 + 0.163634i
\(233\) −4.33566 7.50958i −0.284038 0.491969i 0.688337 0.725391i \(-0.258341\pi\)
−0.972376 + 0.233422i \(0.925008\pi\)
\(234\) −8.89591 + 15.4082i −0.581544 + 1.00726i
\(235\) 17.3177 1.12968
\(236\) −56.0058 −3.64566
\(237\) 4.47320 7.74780i 0.290565 0.503274i
\(238\) −2.92413 + 5.06474i −0.189543 + 0.328298i
\(239\) 14.3796 0.930137 0.465068 0.885275i \(-0.346030\pi\)
0.465068 + 0.885275i \(0.346030\pi\)
\(240\) 27.1796 1.75444
\(241\) 6.28065 10.8784i 0.404572 0.700740i −0.589699 0.807623i \(-0.700754\pi\)
0.994272 + 0.106883i \(0.0340870\pi\)
\(242\) 10.3552 + 17.9357i 0.665655 + 1.15295i
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 17.0957 + 29.6106i 1.09444 + 1.89563i
\(245\) −1.03963 1.80069i −0.0664196 0.115042i
\(246\) 7.95323 0.507079
\(247\) −10.4506 + 26.8372i −0.664954 + 1.70761i
\(248\) 13.7408 0.872541
\(249\) 2.29905 + 3.98207i 0.145696 + 0.252353i
\(250\) 15.8918 + 27.5255i 1.00509 + 1.74086i
\(251\) 0.925040 1.60222i 0.0583880 0.101131i −0.835354 0.549712i \(-0.814737\pi\)
0.893742 + 0.448582i \(0.148071\pi\)
\(252\) 2.62554 + 4.54758i 0.165394 + 0.286470i
\(253\) 0.316443 0.548095i 0.0198946 0.0344584i
\(254\) 36.0434 2.26157
\(255\) −4.51580 −0.282790
\(256\) −8.79440 + 15.2324i −0.549650 + 0.952022i
\(257\) −11.8564 + 20.5359i −0.739583 + 1.28100i 0.213100 + 0.977030i \(0.431644\pi\)
−0.952683 + 0.303965i \(0.901689\pi\)
\(258\) −18.6549 −1.16141
\(259\) 11.3128 0.702942
\(260\) −36.0701 + 62.4753i −2.23697 + 3.87455i
\(261\) −0.164372 0.284700i −0.0101743 0.0176225i
\(262\) 22.0718 38.2295i 1.36360 2.36182i
\(263\) −3.65216 6.32573i −0.225202 0.390061i 0.731178 0.682187i \(-0.238971\pi\)
−0.956380 + 0.292126i \(0.905637\pi\)
\(264\) 7.96243 + 13.7913i 0.490054 + 0.848798i
\(265\) −2.93505 −0.180299
\(266\) 7.34263 + 9.15731i 0.450206 + 0.561471i
\(267\) 2.86582 0.175386
\(268\) −41.8887 72.5533i −2.55876 4.43190i
\(269\) 0.358407 + 0.620779i 0.0218524 + 0.0378495i 0.876745 0.480956i \(-0.159710\pi\)
−0.854892 + 0.518805i \(0.826377\pi\)
\(270\) −2.79950 + 4.84888i −0.170372 + 0.295094i
\(271\) −3.47326 6.01586i −0.210985 0.365438i 0.741038 0.671463i \(-0.234334\pi\)
−0.952023 + 0.306026i \(0.901001\pi\)
\(272\) 14.1948 24.5861i 0.860684 1.49075i
\(273\) −6.60722 −0.399887
\(274\) −40.6487 −2.45568
\(275\) −0.615443 + 1.06598i −0.0371126 + 0.0642809i
\(276\) −0.913480 + 1.58219i −0.0549850 + 0.0952369i
\(277\) 12.6155 0.757989 0.378995 0.925399i \(-0.376270\pi\)
0.378995 + 0.925399i \(0.376270\pi\)
\(278\) 15.2329 0.913611
\(279\) −0.784786 + 1.35929i −0.0469839 + 0.0813786i
\(280\) 9.10143 + 15.7641i 0.543915 + 0.942088i
\(281\) 6.33213 10.9676i 0.377743 0.654270i −0.612991 0.790090i \(-0.710034\pi\)
0.990733 + 0.135820i \(0.0433670\pi\)
\(282\) −11.2138 19.4228i −0.667769 1.15661i
\(283\) 7.19010 + 12.4536i 0.427407 + 0.740291i 0.996642 0.0818842i \(-0.0260938\pi\)
−0.569235 + 0.822175i \(0.692760\pi\)
\(284\) 75.2612 4.46593
\(285\) −3.28875 + 8.44556i −0.194809 + 0.500272i
\(286\) −32.3643 −1.91374
\(287\) 1.47677 + 2.55783i 0.0871708 + 0.150984i
\(288\) −8.84522 15.3204i −0.521210 0.902762i
\(289\) 6.14159 10.6375i 0.361270 0.625738i
\(290\) −0.920317 1.59404i −0.0540429 0.0936051i
\(291\) −0.444846 + 0.770496i −0.0260774 + 0.0451673i
\(292\) −79.8492 −4.67282
\(293\) −20.3785 −1.19052 −0.595262 0.803532i \(-0.702952\pi\)
−0.595262 + 0.803532i \(0.702952\pi\)
\(294\) −1.34639 + 2.33202i −0.0785232 + 0.136006i
\(295\) 11.0882 19.2054i 0.645583 1.11818i
\(296\) −99.0375 −5.75644
\(297\) −1.81905 −0.105552
\(298\) −19.3694 + 33.5488i −1.12204 + 1.94343i
\(299\) −1.14939 1.99081i −0.0664711 0.115131i
\(300\) 1.77661 3.07718i 0.102573 0.177661i
\(301\) −3.46388 5.99961i −0.199654 0.345812i
\(302\) 4.93067 + 8.54017i 0.283728 + 0.491431i
\(303\) 15.9382 0.915624
\(304\) −35.6438 44.4529i −2.04431 2.54955i
\(305\) −13.5387 −0.775224
\(306\) 2.92413 + 5.06474i 0.167161 + 0.289532i
\(307\) −9.20768 15.9482i −0.525510 0.910210i −0.999559 0.0297112i \(-0.990541\pi\)
0.474049 0.880499i \(-0.342792\pi\)
\(308\) −4.77600 + 8.27228i −0.272138 + 0.471357i
\(309\) 0.635401 + 1.10055i 0.0361467 + 0.0626080i
\(310\) −4.39403 + 7.61068i −0.249564 + 0.432257i
\(311\) −5.39233 −0.305771 −0.152886 0.988244i \(-0.548857\pi\)
−0.152886 + 0.988244i \(0.548857\pi\)
\(312\) 57.8428 3.27470
\(313\) 9.94802 17.2305i 0.562295 0.973924i −0.435001 0.900430i \(-0.643252\pi\)
0.997296 0.0734936i \(-0.0234149\pi\)
\(314\) 7.11396 12.3217i 0.401464 0.695356i
\(315\) −2.07926 −0.117153
\(316\) −46.9783 −2.64274
\(317\) −4.50450 + 7.80202i −0.252998 + 0.438205i −0.964350 0.264631i \(-0.914750\pi\)
0.711352 + 0.702836i \(0.248083\pi\)
\(318\) 1.90055 + 3.29184i 0.106577 + 0.184597i
\(319\) 0.299000 0.517884i 0.0167408 0.0289959i
\(320\) −22.3449 38.7024i −1.24912 2.16353i
\(321\) 0.347652 + 0.602150i 0.0194040 + 0.0336087i
\(322\) −0.936875 −0.0522100
\(323\) 5.92209 + 7.38569i 0.329514 + 0.410951i
\(324\) 5.25109 0.291727
\(325\) 2.23543 + 3.87188i 0.123999 + 0.214773i
\(326\) −23.0749 39.9669i −1.27800 2.21356i
\(327\) −1.41617 + 2.45289i −0.0783147 + 0.135645i
\(328\) −12.9283 22.3925i −0.713847 1.23642i
\(329\) 4.16437 7.21290i 0.229589 0.397660i
\(330\) −10.1849 −0.560660
\(331\) 22.2854 1.22492 0.612458 0.790503i \(-0.290181\pi\)
0.612458 + 0.790503i \(0.290181\pi\)
\(332\) 12.0725 20.9102i 0.662565 1.14760i
\(333\) 5.65639 9.79716i 0.309968 0.536881i
\(334\) −46.5934 −2.54948
\(335\) 33.1732 1.81244
\(336\) 6.53587 11.3205i 0.356561 0.617582i
\(337\) 5.74699 + 9.95407i 0.313058 + 0.542233i 0.979023 0.203750i \(-0.0653131\pi\)
−0.665964 + 0.745983i \(0.731980\pi\)
\(338\) −41.2742 + 71.4889i −2.24502 + 3.88849i
\(339\) 6.95346 + 12.0437i 0.377660 + 0.654127i
\(340\) 11.8564 + 20.5359i 0.643005 + 1.11372i
\(341\) −2.85514 −0.154614
\(342\) 11.6018 1.78025i 0.627353 0.0962650i
\(343\) −1.00000 −0.0539949
\(344\) 30.3244 + 52.5234i 1.63498 + 2.83187i
\(345\) −0.361709 0.626498i −0.0194738 0.0337295i
\(346\) −10.0335 + 17.3785i −0.539403 + 0.934273i
\(347\) 16.2544 + 28.1535i 0.872583 + 1.51136i 0.859316 + 0.511446i \(0.170890\pi\)
0.0132671 + 0.999912i \(0.495777\pi\)
\(348\) −0.863129 + 1.49498i −0.0462686 + 0.0801395i
\(349\) −6.88550 −0.368572 −0.184286 0.982873i \(-0.558997\pi\)
−0.184286 + 0.982873i \(0.558997\pi\)
\(350\) 1.82211 0.0973958
\(351\) −3.30361 + 5.72202i −0.176334 + 0.305419i
\(352\) 16.0899 27.8686i 0.857596 1.48540i
\(353\) 11.0287 0.586998 0.293499 0.955959i \(-0.405180\pi\)
0.293499 + 0.955959i \(0.405180\pi\)
\(354\) −28.7200 −1.52645
\(355\) −14.9005 + 25.8085i −0.790837 + 1.36977i
\(356\) −7.52435 13.0326i −0.398790 0.690724i
\(357\) −1.08591 + 1.88086i −0.0574726 + 0.0995454i
\(358\) 27.3323 + 47.3410i 1.44456 + 2.50205i
\(359\) −8.62492 14.9388i −0.455206 0.788440i 0.543494 0.839413i \(-0.317101\pi\)
−0.998700 + 0.0509731i \(0.983768\pi\)
\(360\) 18.2029 0.959375
\(361\) 18.1258 5.69683i 0.953992 0.299833i
\(362\) 15.1847 0.798088
\(363\) 3.84552 + 6.66064i 0.201838 + 0.349593i
\(364\) 17.3475 + 30.0468i 0.909259 + 1.57488i
\(365\) 15.8089 27.3818i 0.827475 1.43323i
\(366\) 8.76676 + 15.1845i 0.458246 + 0.793705i
\(367\) 4.10950 7.11786i 0.214514 0.371549i −0.738608 0.674135i \(-0.764517\pi\)
0.953122 + 0.302586i \(0.0978499\pi\)
\(368\) 4.54793 0.237077
\(369\) 2.95353 0.153755
\(370\) 31.6702 54.8544i 1.64645 2.85174i
\(371\) −0.705792 + 1.22247i −0.0366429 + 0.0634673i
\(372\) 8.24196 0.427326
\(373\) −4.05835 −0.210133 −0.105067 0.994465i \(-0.533506\pi\)
−0.105067 + 0.994465i \(0.533506\pi\)
\(374\) −5.31914 + 9.21302i −0.275046 + 0.476394i
\(375\) 5.90164 + 10.2219i 0.304759 + 0.527859i
\(376\) −36.4569 + 63.1452i −1.88012 + 3.25647i
\(377\) −1.08604 1.88107i −0.0559339 0.0968803i
\(378\) 1.34639 + 2.33202i 0.0692509 + 0.119946i
\(379\) −11.9539 −0.614030 −0.307015 0.951705i \(-0.599330\pi\)
−0.307015 + 0.951705i \(0.599330\pi\)
\(380\) 47.0416 7.21836i 2.41318 0.370294i
\(381\) 13.3852 0.685744
\(382\) −26.1064 45.2175i −1.33572 2.31353i
\(383\) 2.88263 + 4.99287i 0.147296 + 0.255124i 0.930227 0.366984i \(-0.119610\pi\)
−0.782931 + 0.622108i \(0.786276\pi\)
\(384\) −11.2476 + 19.4815i −0.573978 + 0.994160i
\(385\) −1.89114 3.27556i −0.0963817 0.166938i
\(386\) −30.7937 + 53.3362i −1.56736 + 2.71474i
\(387\) −6.92775 −0.352157
\(388\) 4.67185 0.237177
\(389\) −13.9947 + 24.2396i −0.709560 + 1.22899i 0.255460 + 0.966820i \(0.417773\pi\)
−0.965020 + 0.262175i \(0.915560\pi\)
\(390\) −18.4969 + 32.0376i −0.936629 + 1.62229i
\(391\) −0.755622 −0.0382134
\(392\) 8.75448 0.442168
\(393\) 8.19664 14.1970i 0.413466 0.716144i
\(394\) 12.4025 + 21.4817i 0.624827 + 1.08223i
\(395\) 9.30095 16.1097i 0.467982 0.810568i
\(396\) 4.77600 + 8.27228i 0.240003 + 0.415698i
\(397\) −6.06886 10.5116i −0.304587 0.527561i 0.672582 0.740022i \(-0.265185\pi\)
−0.977169 + 0.212462i \(0.931852\pi\)
\(398\) 17.6779 0.886114
\(399\) 2.72678 + 3.40069i 0.136510 + 0.170247i
\(400\) −8.84517 −0.442259
\(401\) 12.0759 + 20.9162i 0.603044 + 1.04450i 0.992357 + 0.123398i \(0.0393790\pi\)
−0.389313 + 0.921105i \(0.627288\pi\)
\(402\) −21.4807 37.2057i −1.07136 1.85565i
\(403\) −5.18526 + 8.98113i −0.258296 + 0.447382i
\(404\) −41.8464 72.4800i −2.08193 3.60602i
\(405\) −1.03963 + 1.80069i −0.0516597 + 0.0894773i
\(406\) −0.885234 −0.0439334
\(407\) 20.5785 1.02004
\(408\) 9.50660 16.4659i 0.470647 0.815184i
\(409\) 10.9922 19.0391i 0.543530 0.941422i −0.455168 0.890406i \(-0.650421\pi\)
0.998698 0.0510161i \(-0.0162460\pi\)
\(410\) 16.5369 0.816697
\(411\) −15.0954 −0.744602
\(412\) 3.33655 5.77907i 0.164380 0.284714i
\(413\) −5.33278 9.23664i −0.262409 0.454505i
\(414\) −0.468437 + 0.811357i −0.0230224 + 0.0398760i
\(415\) 4.78033 + 8.27977i 0.234657 + 0.406438i
\(416\) −58.4423 101.225i −2.86537 4.96297i
\(417\) 5.65695 0.277022
\(418\) 13.3566 + 16.6576i 0.653294 + 0.814751i
\(419\) 0.167650 0.00819025 0.00409512 0.999992i \(-0.498696\pi\)
0.00409512 + 0.999992i \(0.498696\pi\)
\(420\) 5.45920 + 9.45561i 0.266382 + 0.461386i
\(421\) 1.58228 + 2.74059i 0.0771157 + 0.133568i 0.902004 0.431727i \(-0.142096\pi\)
−0.824889 + 0.565295i \(0.808762\pi\)
\(422\) −8.93044 + 15.4680i −0.434727 + 0.752969i
\(423\) −4.16437 7.21290i −0.202479 0.350703i
\(424\) 6.17884 10.7021i 0.300071 0.519738i
\(425\) 1.46959 0.0712858
\(426\) 38.5943 1.86990
\(427\) −3.25565 + 5.63895i −0.157552 + 0.272888i
\(428\) 1.82555 3.16194i 0.0882412 0.152838i
\(429\) −12.0189 −0.580277
\(430\) −38.7885 −1.87055
\(431\) 2.20657 3.82188i 0.106287 0.184094i −0.807977 0.589215i \(-0.799437\pi\)
0.914263 + 0.405121i \(0.132771\pi\)
\(432\) −6.53587 11.3205i −0.314457 0.544656i
\(433\) −8.34477 + 14.4536i −0.401024 + 0.694594i −0.993850 0.110737i \(-0.964679\pi\)
0.592826 + 0.805331i \(0.298012\pi\)
\(434\) 2.11326 + 3.66027i 0.101440 + 0.175699i
\(435\) −0.341772 0.591966i −0.0163867 0.0283826i
\(436\) 14.8729 0.712284
\(437\) −0.550302 + 1.41318i −0.0263245 + 0.0676018i
\(438\) −40.9471 −1.95653
\(439\) 4.25269 + 7.36588i 0.202970 + 0.351554i 0.949484 0.313815i \(-0.101607\pi\)
−0.746514 + 0.665370i \(0.768274\pi\)
\(440\) 16.5560 + 28.6758i 0.789276 + 1.36707i
\(441\) −0.500000 + 0.866025i −0.0238095 + 0.0412393i
\(442\) 19.3204 + 33.4638i 0.918976 + 1.59171i
\(443\) −4.52265 + 7.83346i −0.214878 + 0.372179i −0.953235 0.302231i \(-0.902269\pi\)
0.738357 + 0.674410i \(0.235602\pi\)
\(444\) −59.4044 −2.81921
\(445\) 5.95880 0.282474
\(446\) 17.6712 30.6074i 0.836755 1.44930i
\(447\) −7.19308 + 12.4588i −0.340221 + 0.589280i
\(448\) −21.4931 −1.01545
\(449\) −30.2418 −1.42720 −0.713601 0.700553i \(-0.752937\pi\)
−0.713601 + 0.700553i \(0.752937\pi\)
\(450\) 0.911054 1.57799i 0.0429475 0.0743873i
\(451\) 2.68632 + 4.65284i 0.126494 + 0.219093i
\(452\) 36.5132 63.2428i 1.71744 2.97469i
\(453\) 1.83107 + 3.17150i 0.0860310 + 0.149010i
\(454\) 17.9315 + 31.0583i 0.841567 + 1.45764i
\(455\) −13.7382 −0.644055
\(456\) −23.8716 29.7712i −1.11789 1.39417i
\(457\) −20.0678 −0.938731 −0.469365 0.883004i \(-0.655517\pi\)
−0.469365 + 0.883004i \(0.655517\pi\)
\(458\) 3.97178 + 6.87932i 0.185589 + 0.321449i
\(459\) 1.08591 + 1.88086i 0.0506860 + 0.0877908i
\(460\) −1.89937 + 3.28980i −0.0885584 + 0.153388i
\(461\) 10.5822 + 18.3289i 0.492862 + 0.853663i 0.999966 0.00822223i \(-0.00261725\pi\)
−0.507104 + 0.861885i \(0.669284\pi\)
\(462\) −2.44916 + 4.24207i −0.113945 + 0.197359i
\(463\) 24.1680 1.12318 0.561592 0.827415i \(-0.310189\pi\)
0.561592 + 0.827415i \(0.310189\pi\)
\(464\) 4.29725 0.199495
\(465\) −1.63178 + 2.82632i −0.0756719 + 0.131068i
\(466\) −11.6750 + 20.2217i −0.540834 + 0.936751i
\(467\) 11.6250 0.537942 0.268971 0.963148i \(-0.413316\pi\)
0.268971 + 0.963148i \(0.413316\pi\)
\(468\) 34.6951 1.60378
\(469\) 7.97715 13.8168i 0.368350 0.638002i
\(470\) −23.3164 40.3851i −1.07550 1.86283i
\(471\) 2.64186 4.57584i 0.121730 0.210843i
\(472\) 46.6857 + 80.8620i 2.14888 + 3.72197i
\(473\) −6.30097 10.9136i −0.289719 0.501808i
\(474\) −24.0907 −1.10652
\(475\) 1.07027 2.74847i 0.0491074 0.126109i
\(476\) 11.4044 0.522722
\(477\) 0.705792 + 1.22247i 0.0323160 + 0.0559729i
\(478\) −19.3605 33.5334i −0.885530 1.53378i
\(479\) −1.03459 + 1.79196i −0.0472716 + 0.0818768i −0.888693 0.458503i \(-0.848386\pi\)
0.841421 + 0.540379i \(0.181719\pi\)
\(480\) −18.3915 31.8551i −0.839455 1.45398i
\(481\) 37.3730 64.7320i 1.70406 2.95152i
\(482\) −33.8249 −1.54068
\(483\) −0.347920 −0.0158309
\(484\) 20.1932 34.9756i 0.917872 1.58980i
\(485\) −0.924953 + 1.60207i −0.0419999 + 0.0727460i
\(486\) 2.69278 0.122147
\(487\) −23.7932 −1.07818 −0.539088 0.842250i \(-0.681231\pi\)
−0.539088 + 0.842250i \(0.681231\pi\)
\(488\) 28.5015 49.3661i 1.29020 2.23470i
\(489\) −8.56916 14.8422i −0.387511 0.671188i
\(490\) −2.79950 + 4.84888i −0.126469 + 0.219050i
\(491\) −5.08247 8.80310i −0.229369 0.397278i 0.728252 0.685309i \(-0.240333\pi\)
−0.957621 + 0.288031i \(0.907000\pi\)
\(492\) −7.75463 13.4314i −0.349606 0.605535i
\(493\) −0.713972 −0.0321557
\(494\) 76.6555 11.7625i 3.44890 0.529221i
\(495\) −3.78229 −0.170001
\(496\) −10.2585 17.7683i −0.460622 0.797820i
\(497\) 7.16625 + 12.4123i 0.321450 + 0.556768i
\(498\) 6.19084 10.7229i 0.277418 0.480503i
\(499\) −13.3208 23.0722i −0.596319 1.03286i −0.993359 0.115054i \(-0.963296\pi\)
0.397040 0.917801i \(-0.370037\pi\)
\(500\) 30.9900 53.6763i 1.38592 2.40048i
\(501\) −17.3031 −0.773044
\(502\) −4.98186 −0.222352
\(503\) −19.1566 + 33.1802i −0.854151 + 1.47943i 0.0232791 + 0.999729i \(0.492589\pi\)
−0.877430 + 0.479704i \(0.840744\pi\)
\(504\) 4.37724 7.58160i 0.194978 0.337711i
\(505\) 33.1397 1.47470
\(506\) −1.70422 −0.0757620
\(507\) −15.3277 + 26.5483i −0.680726 + 1.17905i
\(508\) −35.1434 60.8702i −1.55924 2.70068i
\(509\) −18.0527 + 31.2681i −0.800171 + 1.38594i 0.119333 + 0.992854i \(0.461924\pi\)
−0.919503 + 0.393082i \(0.871409\pi\)
\(510\) 6.08003 + 10.5309i 0.269228 + 0.466317i
\(511\) −7.60311 13.1690i −0.336342 0.582561i
\(512\) 2.37233 0.104843
\(513\) 4.30847 0.661119i 0.190224 0.0291891i
\(514\) 63.8536 2.81646
\(515\) 1.32117 + 2.28833i 0.0582176 + 0.100836i
\(516\) 18.1891 + 31.5045i 0.800731 + 1.38691i
\(517\) 7.57521 13.1206i 0.333157 0.577045i
\(518\) −15.2314 26.3816i −0.669231 1.15914i
\(519\) −3.72606 + 6.45372i −0.163556 + 0.283287i
\(520\) 120.270 5.27421
\(521\) 17.8977 0.784113 0.392056 0.919941i \(-0.371764\pi\)
0.392056 + 0.919941i \(0.371764\pi\)
\(522\) −0.442617 + 0.766635i −0.0193728 + 0.0335547i
\(523\) 19.9424 34.5412i 0.872019 1.51038i 0.0121134 0.999927i \(-0.496144\pi\)
0.859905 0.510454i \(-0.170523\pi\)
\(524\) −86.0826 −3.76053
\(525\) 0.676663 0.0295320
\(526\) −9.83448 + 17.0338i −0.428804 + 0.742710i
\(527\) 1.70442 + 2.95214i 0.0742456 + 0.128597i
\(528\) 11.8891 20.5925i 0.517407 0.896174i
\(529\) 11.4395 + 19.8138i 0.497369 + 0.861468i
\(530\) 3.95173 + 6.84460i 0.171652 + 0.297311i
\(531\) −10.6656 −0.462846
\(532\) 8.30559 21.3289i 0.360093 0.924725i
\(533\) 19.5146 0.845273
\(534\) −3.85852 6.68316i −0.166975 0.289209i
\(535\) 0.722859 + 1.25203i 0.0312519 + 0.0541299i
\(536\) −69.8358 + 120.959i −3.01645 + 5.22464i
\(537\) 10.1502 + 17.5807i 0.438014 + 0.758662i
\(538\) 0.965112 1.67162i 0.0416089 0.0720688i
\(539\) −1.81905 −0.0783521
\(540\) 10.9184 0.469853
\(541\) −12.3864 + 21.4539i −0.532533 + 0.922374i 0.466745 + 0.884392i \(0.345427\pi\)
−0.999278 + 0.0379827i \(0.987907\pi\)
\(542\) −9.35274 + 16.1994i −0.401735 + 0.695825i
\(543\) 5.63901 0.241993
\(544\) −38.4205 −1.64727
\(545\) −2.94460 + 5.10020i −0.126133 + 0.218468i
\(546\) 8.89591 + 15.4082i 0.380710 + 0.659409i
\(547\) −1.20025 + 2.07889i −0.0513188 + 0.0888868i −0.890544 0.454898i \(-0.849676\pi\)
0.839225 + 0.543785i \(0.183009\pi\)
\(548\) 39.6337 + 68.6476i 1.69307 + 2.93248i
\(549\) 3.25565 + 5.63895i 0.138948 + 0.240665i
\(550\) 3.31451 0.141331
\(551\) −0.519969 + 1.33529i −0.0221514 + 0.0568853i
\(552\) 3.04586 0.129640
\(553\) −4.47320 7.74780i −0.190220 0.329470i
\(554\) −16.9853 29.4195i −0.721638 1.24991i
\(555\) 11.7611 20.3709i 0.499232 0.864695i
\(556\) −14.8526 25.7254i −0.629889 1.09100i
\(557\) −3.82254 + 6.62083i −0.161966 + 0.280534i −0.935574 0.353131i \(-0.885117\pi\)
0.773608 + 0.633665i \(0.218450\pi\)
\(558\) 4.22652 0.178923
\(559\) −45.7732 −1.93600
\(560\) 13.5898 23.5382i 0.574274 0.994672i
\(561\) −1.97533 + 3.42137i −0.0833985 + 0.144451i
\(562\) −34.1021 −1.43851
\(563\) −34.8166 −1.46734 −0.733672 0.679504i \(-0.762195\pi\)
−0.733672 + 0.679504i \(0.762195\pi\)
\(564\) −21.8675 + 37.8756i −0.920787 + 1.59485i
\(565\) 14.4581 + 25.0421i 0.608256 + 1.05353i
\(566\) 19.3614 33.5349i 0.813820 1.40958i
\(567\) 0.500000 + 0.866025i 0.0209980 + 0.0363696i
\(568\) −62.7368 108.663i −2.63238 4.55941i
\(569\) −4.11846 −0.172655 −0.0863274 0.996267i \(-0.527513\pi\)
−0.0863274 + 0.996267i \(0.527513\pi\)
\(570\) 24.1232 3.70161i 1.01041 0.155043i
\(571\) 14.1922 0.593924 0.296962 0.954889i \(-0.404027\pi\)
0.296962 + 0.954889i \(0.404027\pi\)
\(572\) 31.5561 + 54.6568i 1.31943 + 2.28531i
\(573\) −9.69493 16.7921i −0.405012 0.701501i
\(574\) 3.97661 6.88770i 0.165981 0.287487i
\(575\) 0.117712 + 0.203884i 0.00490895 + 0.00850255i
\(576\) −10.7465 + 18.6135i −0.447772 + 0.775564i
\(577\) −0.345930 −0.0144013 −0.00720064 0.999974i \(-0.502292\pi\)
−0.00720064 + 0.999974i \(0.502292\pi\)
\(578\) −33.0760 −1.37578
\(579\) −11.4356 + 19.8071i −0.475248 + 0.823154i
\(580\) −1.79467 + 3.10847i −0.0745197 + 0.129072i
\(581\) 4.59810 0.190761
\(582\) 2.39575 0.0993071
\(583\) −1.28387 + 2.22373i −0.0531726 + 0.0920976i
\(584\) 66.5613 + 115.288i 2.75433 + 4.77063i
\(585\) −6.86908 + 11.8976i −0.284001 + 0.491905i
\(586\) 27.4374 + 47.5230i 1.13343 + 1.96316i
\(587\) 19.9921 + 34.6274i 0.825163 + 1.42922i 0.901794 + 0.432165i \(0.142250\pi\)
−0.0766311 + 0.997060i \(0.524416\pi\)
\(588\) 5.25109 0.216551
\(589\) 6.76246 1.03767i 0.278642 0.0427566i
\(590\) −59.7165 −2.45849
\(591\) 4.60581 + 7.97750i 0.189458 + 0.328150i
\(592\) 73.9389 + 128.066i 3.03887 + 5.26348i
\(593\) 15.0050 25.9895i 0.616183 1.06726i −0.373993 0.927432i \(-0.622012\pi\)
0.990176 0.139828i \(-0.0446551\pi\)
\(594\) 2.44916 + 4.24207i 0.100490 + 0.174054i
\(595\) −2.25790 + 3.91079i −0.0925648 + 0.160327i
\(596\) 75.5430 3.09436
\(597\) 6.56493 0.268684
\(598\) −3.09507 + 5.36082i −0.126567 + 0.219220i
\(599\) 5.70926 9.88873i 0.233274 0.404043i −0.725496 0.688227i \(-0.758389\pi\)
0.958770 + 0.284184i \(0.0917227\pi\)
\(600\) −5.92384 −0.241840
\(601\) 15.2836 0.623429 0.311715 0.950176i \(-0.399097\pi\)
0.311715 + 0.950176i \(0.399097\pi\)
\(602\) −9.32747 + 16.1557i −0.380159 + 0.658455i
\(603\) −7.97715 13.8168i −0.324854 0.562664i
\(604\) 9.61509 16.6538i 0.391233 0.677635i
\(605\) 7.99586 + 13.8492i 0.325078 + 0.563051i
\(606\) −21.4590 37.1681i −0.871713 1.50985i
\(607\) 16.6552 0.676014 0.338007 0.941144i \(-0.390247\pi\)
0.338007 + 0.941144i \(0.390247\pi\)
\(608\) −27.9808 + 71.8551i −1.13477 + 2.91411i
\(609\) −0.328743 −0.0133213
\(610\) 18.2284 + 31.5725i 0.738047 + 1.27833i
\(611\) −27.5149 47.6572i −1.11313 1.92801i
\(612\) 5.70222 9.87654i 0.230499 0.399235i
\(613\) −17.2759 29.9227i −0.697766 1.20857i −0.969239 0.246121i \(-0.920844\pi\)
0.271473 0.962446i \(-0.412489\pi\)
\(614\) −24.7943 + 42.9450i −1.00062 + 1.73312i
\(615\) 6.14117 0.247636
\(616\) 15.9249 0.641631
\(617\) 7.76673 13.4524i 0.312677 0.541572i −0.666264 0.745716i \(-0.732108\pi\)
0.978941 + 0.204144i \(0.0654411\pi\)
\(618\) 1.71100 2.96354i 0.0688265 0.119211i
\(619\) 32.8322 1.31964 0.659819 0.751425i \(-0.270633\pi\)
0.659819 + 0.751425i \(0.270633\pi\)
\(620\) 17.1372 0.688247
\(621\) −0.173960 + 0.301308i −0.00698078 + 0.0120911i
\(622\) 7.26020 + 12.5750i 0.291107 + 0.504213i
\(623\) 1.43291 2.48188i 0.0574084 0.0994343i
\(624\) −43.1840 74.7968i −1.72874 2.99427i
\(625\) 10.5794 + 18.3241i 0.423176 + 0.732963i
\(626\) −53.5757 −2.14132
\(627\) 4.96016 + 6.18603i 0.198090 + 0.247046i
\(628\) −27.7453 −1.10716
\(629\) −12.2847 21.2777i −0.489823 0.848398i
\(630\) 2.79950 + 4.84888i 0.111535 + 0.193184i
\(631\) 0.447179 0.774536i 0.0178019 0.0308338i −0.856987 0.515338i \(-0.827667\pi\)
0.874789 + 0.484504i \(0.161000\pi\)
\(632\) 39.1605 + 67.8280i 1.55772 + 2.69805i
\(633\) −3.31643 + 5.74423i −0.131816 + 0.228313i
\(634\) 24.2593 0.963459
\(635\) 27.8313 1.10445
\(636\) 3.70617 6.41928i 0.146959 0.254541i
\(637\) −3.30361 + 5.72202i −0.130894 + 0.226715i
\(638\) −1.61029 −0.0637519
\(639\) 14.3325 0.566985
\(640\) −23.3868 + 40.5071i −0.924444 + 1.60118i
\(641\) 12.1034 + 20.9637i 0.478055 + 0.828016i 0.999684 0.0251571i \(-0.00800860\pi\)
−0.521628 + 0.853173i \(0.674675\pi\)
\(642\) 0.936151 1.62146i 0.0369469 0.0639939i
\(643\) 10.9152 + 18.9056i 0.430452 + 0.745564i 0.996912 0.0785247i \(-0.0250210\pi\)
−0.566460 + 0.824089i \(0.691688\pi\)
\(644\) 0.913480 + 1.58219i 0.0359962 + 0.0623472i
\(645\) −14.4046 −0.567181
\(646\) 9.25012 23.7545i 0.363941 0.934607i
\(647\) −4.28554 −0.168482 −0.0842411 0.996445i \(-0.526847\pi\)
−0.0842411 + 0.996445i \(0.526847\pi\)
\(648\) −4.37724 7.58160i −0.171954 0.297833i
\(649\) −9.70060 16.8019i −0.380782 0.659534i
\(650\) 6.01954 10.4261i 0.236106 0.408947i
\(651\) 0.784786 + 1.35929i 0.0307582 + 0.0532748i
\(652\) −44.9974 + 77.9378i −1.76223 + 3.05228i
\(653\) −4.45533 −0.174350 −0.0871752 0.996193i \(-0.527784\pi\)
−0.0871752 + 0.996193i \(0.527784\pi\)
\(654\) 7.62691 0.298236
\(655\) 17.0430 29.5193i 0.665924 1.15341i
\(656\) −19.3039 + 33.4354i −0.753692 + 1.30543i
\(657\) −15.2062 −0.593252
\(658\) −22.4275 −0.874315
\(659\) −23.4498 + 40.6162i −0.913473 + 1.58218i −0.104350 + 0.994541i \(0.533276\pi\)
−0.809122 + 0.587640i \(0.800057\pi\)
\(660\) 9.93057 + 17.2002i 0.386547 + 0.669519i
\(661\) 9.86580 17.0881i 0.383735 0.664649i −0.607858 0.794046i \(-0.707971\pi\)
0.991593 + 0.129397i \(0.0413043\pi\)
\(662\) −30.0049 51.9700i −1.16617 2.01987i
\(663\) 7.17486 + 12.4272i 0.278649 + 0.482633i
\(664\) −40.2540 −1.56216
\(665\) 5.66970 + 7.07092i 0.219861 + 0.274199i
\(666\) −30.4629 −1.18041
\(667\) −0.0571882 0.0990529i −0.00221434 0.00383534i
\(668\) 45.4300 + 78.6870i 1.75774 + 3.04449i
\(669\) 6.56242 11.3664i 0.253718 0.439452i
\(670\) −44.6641 77.3605i −1.72552 2.98870i
\(671\) −5.92220 + 10.2575i −0.228624 + 0.395988i
\(672\) −17.6904 −0.682424
\(673\) −24.6144 −0.948816 −0.474408 0.880305i \(-0.657338\pi\)
−0.474408 + 0.880305i \(0.657338\pi\)
\(674\) 15.4754 26.8042i 0.596090 1.03246i
\(675\) 0.338332 0.586008i 0.0130224 0.0225554i
\(676\) 160.974 6.19131
\(677\) −17.5627 −0.674988 −0.337494 0.941328i \(-0.609579\pi\)
−0.337494 + 0.941328i \(0.609579\pi\)
\(678\) 18.7242 32.4312i 0.719097 1.24551i
\(679\) 0.444846 + 0.770496i 0.0170716 + 0.0295689i
\(680\) 19.7667 34.2370i 0.758019 1.31293i
\(681\) 6.65909 + 11.5339i 0.255177 + 0.441980i
\(682\) 3.84413 + 6.65823i 0.147199 + 0.254957i
\(683\) 4.65125 0.177975 0.0889876 0.996033i \(-0.471637\pi\)
0.0889876 + 0.996033i \(0.471637\pi\)
\(684\) −14.3186 17.8573i −0.547484 0.682791i
\(685\) −31.3874 −1.19925
\(686\) 1.34639 + 2.33202i 0.0514055 + 0.0890369i
\(687\) 1.47497 + 2.55472i 0.0562736 + 0.0974687i
\(688\) 45.2789 78.4254i 1.72624 2.98994i
\(689\) 4.66332 + 8.07711i 0.177658 + 0.307713i
\(690\) −0.974004 + 1.68703i −0.0370797 + 0.0642240i
\(691\) 16.1793 0.615490 0.307745 0.951469i \(-0.400426\pi\)
0.307745 + 0.951469i \(0.400426\pi\)
\(692\) 39.1317 1.48756
\(693\) −0.909526 + 1.57535i −0.0345500 + 0.0598424i
\(694\) 43.7696 75.8112i 1.66147 2.87776i
\(695\) 11.7623 0.446169
\(696\) 2.87797 0.109089
\(697\) 3.20728 5.55517i 0.121484 0.210417i
\(698\) 9.27058 + 16.0571i 0.350897 + 0.607771i
\(699\) −4.33566 + 7.50958i −0.163990 + 0.284038i
\(700\) −1.77661 3.07718i −0.0671495 0.116306i
\(701\) −4.91661 8.51582i −0.185698 0.321638i 0.758114 0.652122i \(-0.226121\pi\)
−0.943811 + 0.330484i \(0.892788\pi\)
\(702\) 17.7918 0.671509
\(703\) −48.7408 + 7.47910i −1.83829 + 0.282080i
\(704\) −39.0970 −1.47352
\(705\) −8.65883 14.9975i −0.326110 0.564840i
\(706\) −14.8489 25.7191i −0.558847 0.967952i
\(707\) 7.96908 13.8029i 0.299708 0.519110i
\(708\) 28.0029 + 48.5024i 1.05241 + 1.82283i
\(709\) −5.31978 + 9.21414i −0.199789 + 0.346044i −0.948460 0.316897i \(-0.897359\pi\)
0.748671 + 0.662942i \(0.230692\pi\)
\(710\) 80.2478 3.01165
\(711\) −8.94639 −0.335516
\(712\) −12.5444 + 21.7275i −0.470121 + 0.814274i
\(713\) −0.273043 + 0.472925i −0.0102255 + 0.0177112i
\(714\) 5.84826 0.218865
\(715\) −24.9904 −0.934589
\(716\) 53.2996 92.3177i 1.99190 3.45007i
\(717\) −7.18978 12.4531i −0.268507 0.465068i
\(718\) −23.2251 + 40.2270i −0.866751 + 1.50126i
\(719\) −17.9967 31.1713i −0.671165 1.16249i −0.977574 0.210592i \(-0.932461\pi\)
0.306409 0.951900i \(-0.400873\pi\)
\(720\) −13.5898 23.5382i −0.506462 0.877218i
\(721\) 1.27080 0.0473272
\(722\) −37.6896 34.5997i −1.40266 1.28767i
\(723\) −12.5613 −0.467160
\(724\) −14.8055 25.6438i −0.550241 0.953046i
\(725\) 0.111224 + 0.192646i 0.00413076 + 0.00715469i
\(726\) 10.3552 17.9357i 0.384316 0.665655i
\(727\) −8.53497 14.7830i −0.316545 0.548271i 0.663220 0.748424i \(-0.269189\pi\)
−0.979765 + 0.200153i \(0.935856\pi\)
\(728\) 28.9214 50.0933i 1.07190 1.85658i
\(729\) 1.00000 0.0370370
\(730\) −85.1398 −3.15117
\(731\) −7.52293 + 13.0301i −0.278246 + 0.481936i
\(732\) 17.0957 29.6106i 0.631875 1.09444i
\(733\) 18.0341 0.666106 0.333053 0.942908i \(-0.391921\pi\)
0.333053 + 0.942908i \(0.391921\pi\)
\(734\) −22.1320 −0.816906
\(735\) −1.03963 + 1.80069i −0.0383474 + 0.0664196i
\(736\) −3.07743 5.33027i −0.113436 0.196476i
\(737\) 14.5108 25.1335i 0.534514 0.925805i
\(738\) −3.97661 6.88770i −0.146381 0.253540i
\(739\) −2.13504 3.69800i −0.0785387 0.136033i 0.824081 0.566472i \(-0.191692\pi\)
−0.902620 + 0.430439i \(0.858359\pi\)
\(740\) −123.517 −4.54059
\(741\) 28.4670 4.36816i 1.04576 0.160468i
\(742\) 3.80109 0.139542
\(743\) −14.5064 25.1258i −0.532188 0.921776i −0.999294 0.0375748i \(-0.988037\pi\)
0.467106 0.884201i \(-0.345297\pi\)
\(744\) −6.87040 11.8999i −0.251881 0.436271i
\(745\) −14.9563 + 25.9051i −0.547957 + 0.949089i
\(746\) 5.46413 + 9.46415i 0.200056 + 0.346507i
\(747\) 2.29905 3.98207i 0.0841178 0.145696i
\(748\) 20.7453 0.758522
\(749\) 0.695303 0.0254058
\(750\) 15.8918 27.5255i 0.580288 1.00509i
\(751\) −4.23617 + 7.33726i −0.154580 + 0.267740i −0.932906 0.360120i \(-0.882736\pi\)
0.778326 + 0.627860i \(0.216069\pi\)
\(752\) 108.871 3.97013
\(753\) −1.85008 −0.0674206
\(754\) −2.92447 + 5.06533i −0.106503 + 0.184468i
\(755\) 3.80727 + 6.59439i 0.138561 + 0.239994i
\(756\) 2.62554 4.54758i 0.0954901 0.165394i
\(757\) −19.2553 33.3512i −0.699846 1.21217i −0.968519 0.248938i \(-0.919918\pi\)
0.268673 0.963231i \(-0.413415\pi\)
\(758\) 16.0946 + 27.8767i 0.584583 + 1.01253i
\(759\) −0.632885 −0.0229723
\(760\) −49.6352 61.9022i −1.80046 2.24543i
\(761\) −44.9608 −1.62983 −0.814914 0.579582i \(-0.803216\pi\)
−0.814914 + 0.579582i \(0.803216\pi\)
\(762\) −18.0217 31.2145i −0.652858 1.13078i
\(763\) 1.41617 + 2.45289i 0.0512690 + 0.0888005i
\(764\) −50.9089 + 88.1769i −1.84182 + 3.19013i
\(765\) 2.25790 + 3.91079i 0.0816345 + 0.141395i
\(766\) 7.76231 13.4447i 0.280464 0.485777i
\(767\) −70.4697 −2.54451
\(768\) 17.5888 0.634682
\(769\) −14.6312 + 25.3419i −0.527613 + 0.913852i 0.471869 + 0.881669i \(0.343579\pi\)
−0.999482 + 0.0321836i \(0.989754\pi\)
\(770\) −5.09244 + 8.82037i −0.183519 + 0.317864i
\(771\) 23.7128 0.853997
\(772\) 120.099 4.32245
\(773\) 13.6650 23.6685i 0.491496 0.851296i −0.508456 0.861088i \(-0.669784\pi\)
0.999952 + 0.00979211i \(0.00311697\pi\)
\(774\) 9.32747 + 16.1557i 0.335269 + 0.580703i
\(775\) 0.531036 0.919782i 0.0190754 0.0330395i
\(776\) −3.89440 6.74529i −0.139801 0.242142i
\(777\) −5.65639 9.79716i −0.202922 0.351471i
\(778\) 75.3695 2.70213
\(779\) −8.05364 10.0440i −0.288552 0.359865i
\(780\) 72.1403 2.58304
\(781\) 13.0358 + 22.5786i 0.466457 + 0.807927i
\(782\) 1.01736 + 1.76213i 0.0363808 + 0.0630135i
\(783\) −0.164372 + 0.284700i −0.00587416 + 0.0101743i
\(784\) −6.53587 11.3205i −0.233424 0.404302i
\(785\) 5.49312 9.51437i 0.196058 0.339582i
\(786\) −44.1436 −1.57455
\(787\) −10.0026 −0.356556 −0.178278 0.983980i \(-0.557053\pi\)
−0.178278 + 0.983980i \(0.557053\pi\)
\(788\) 24.1855 41.8905i 0.861573 1.49229i
\(789\) −3.65216 + 6.32573i −0.130020 + 0.225202i
\(790\) −50.0909 −1.78215
\(791\) 13.9069 0.494473
\(792\) 7.96243 13.7913i 0.282933 0.490054i
\(793\) 21.5108 + 37.2578i 0.763871 + 1.32306i
\(794\) −16.3421 + 28.3054i −0.579960 + 1.00452i
\(795\) 1.46753 + 2.54183i 0.0520478 + 0.0901495i
\(796\) −17.2365 29.8545i −0.610932 1.05816i
\(797\) −11.7330 −0.415603 −0.207801 0.978171i \(-0.566631\pi\)
−0.207801 + 0.978171i \(0.566631\pi\)
\(798\) 4.25915 10.9376i 0.150772 0.387186i
\(799\) −18.0886 −0.639928
\(800\) 5.98524 + 10.3667i 0.211610 + 0.366519i
\(801\) −1.43291 2.48188i −0.0506295 0.0876928i
\(802\) 32.5179 56.3227i 1.14825 1.98882i
\(803\) −13.8305 23.9551i −0.488066 0.845356i
\(804\) −41.8887 + 72.5533i −1.47730 + 2.55876i
\(805\) −0.723418 −0.0254971
\(806\) 27.9256 0.983636
\(807\) 0.358407 0.620779i 0.0126165 0.0218524i
\(808\) −69.7652 + 120.837i −2.45433 + 4.25103i
\(809\) −7.48387 −0.263119 −0.131560 0.991308i \(-0.541998\pi\)
−0.131560 + 0.991308i \(0.541998\pi\)
\(810\) 5.59901 0.196729
\(811\) −2.87915 + 4.98683i −0.101101 + 0.175111i −0.912138 0.409882i \(-0.865570\pi\)
0.811038 + 0.584994i \(0.198903\pi\)
\(812\) 0.863129 + 1.49498i 0.0302899 + 0.0524636i
\(813\) −3.47326 + 6.01586i −0.121813 + 0.210985i
\(814\) −27.7068 47.9896i −0.971123 1.68203i
\(815\) −17.8175 30.8609i −0.624121 1.08101i
\(816\) −28.3895 −0.993833
\(817\) 18.8905 + 23.5591i 0.660894 + 0.824229i
\(818\) −59.1993 −2.06986
\(819\) 3.30361 + 5.72202i 0.115437 + 0.199944i
\(820\) −16.1239 27.9275i −0.563072 0.975269i
\(821\) 19.2186 33.2876i 0.670734 1.16174i −0.306963 0.951722i \(-0.599313\pi\)
0.977696 0.210023i \(-0.0673539\pi\)
\(822\) 20.3244 + 35.2028i 0.708893 + 1.22784i
\(823\) −1.25480 + 2.17338i −0.0437396 + 0.0757592i −0.887066 0.461642i \(-0.847261\pi\)
0.843327 + 0.537401i \(0.180594\pi\)
\(824\) −11.1252 −0.387565
\(825\) 1.23089 0.0428540
\(826\) −14.3600 + 24.8723i −0.499649 + 0.865417i
\(827\) −1.27616 + 2.21037i −0.0443765 + 0.0768623i −0.887360 0.461076i \(-0.847463\pi\)
0.842984 + 0.537939i \(0.180797\pi\)
\(828\) 1.82696 0.0634913
\(829\) −0.370818 −0.0128790 −0.00643952 0.999979i \(-0.502050\pi\)
−0.00643952 + 0.999979i \(0.502050\pi\)
\(830\) 12.8724 22.2956i 0.446807 0.773893i
\(831\) −6.30773 10.9253i −0.218813 0.378995i
\(832\) −71.0047 + 122.984i −2.46164 + 4.26369i
\(833\) 1.08591 + 1.88086i 0.0376246 + 0.0651678i
\(834\) −7.61647 13.1921i −0.263737 0.456806i
\(835\) −35.9776 −1.24506
\(836\) 15.1083 38.7984i 0.522532 1.34187i
\(837\) 1.56957 0.0542524
\(838\) −0.225723 0.390963i −0.00779747 0.0135056i
\(839\) 0.327853 + 0.567859i 0.0113188 + 0.0196047i 0.871629 0.490166i \(-0.163064\pi\)
−0.860311 + 0.509770i \(0.829730\pi\)
\(840\) 9.10143 15.7641i 0.314029 0.543915i
\(841\) 14.4460 + 25.0211i 0.498137 + 0.862798i
\(842\) 4.26074 7.37982i 0.146835 0.254326i
\(843\) −12.6643 −0.436180
\(844\) 34.8297 1.19889
\(845\) −31.8703 + 55.2010i −1.09637 + 1.89897i
\(846\) −11.2138 + 19.4228i −0.385537 + 0.667769i
\(847\) 7.69105 0.264268
\(848\) −18.4519 −0.633640
\(849\) 7.19010 12.4536i 0.246764 0.427407i
\(850\) −1.97865 3.42712i −0.0678671 0.117549i
\(851\) 1.96797 3.40863i 0.0674613 0.116846i
\(852\) −37.6306 65.1781i −1.28920 2.23297i
\(853\) −3.87514 6.71195i −0.132682 0.229813i 0.792027 0.610486i \(-0.209026\pi\)
−0.924710 + 0.380673i \(0.875692\pi\)
\(854\) 17.5335 0.599985
\(855\) 8.95845 1.37464i 0.306372 0.0470117i
\(856\) −6.08702 −0.208050
\(857\) 12.6461 + 21.9036i 0.431982 + 0.748214i 0.997044 0.0768341i \(-0.0244812\pi\)
−0.565062 + 0.825048i \(0.691148\pi\)
\(858\) 16.1821 + 28.0283i 0.552449 + 0.956869i
\(859\) 2.58290 4.47372i 0.0881275 0.152641i −0.818592 0.574375i \(-0.805245\pi\)
0.906720 + 0.421734i \(0.138578\pi\)
\(860\) 37.8200 + 65.5061i 1.28965 + 2.23374i
\(861\) 1.47677 2.55783i 0.0503281 0.0871708i
\(862\) −11.8836 −0.404757
\(863\) 11.2311 0.382311 0.191156 0.981560i \(-0.438777\pi\)
0.191156 + 0.981560i \(0.438777\pi\)
\(864\) −8.84522 + 15.3204i −0.300921 + 0.521210i
\(865\) −7.74746 + 13.4190i −0.263421 + 0.456259i
\(866\) 44.9413 1.52717
\(867\) −12.2832 −0.417159
\(868\) 4.12098 7.13775i 0.139875 0.242271i
\(869\) −8.13698 14.0937i −0.276028 0.478095i
\(870\) −0.920317 + 1.59404i −0.0312017 + 0.0540429i
\(871\) −52.7068 91.2908i −1.78590 3.09327i
\(872\) −12.3979 21.4737i −0.419845 0.727193i
\(873\) 0.889693 0.0301115
\(874\) 4.03650 0.619386i 0.136537 0.0209510i
\(875\) 11.8033 0.399024
\(876\) 39.9246 + 69.1515i 1.34893 + 2.33641i
\(877\) −5.57514 9.65642i −0.188259 0.326074i 0.756411 0.654097i \(-0.226951\pi\)
−0.944670 + 0.328023i \(0.893618\pi\)
\(878\) 11.4516 19.8347i 0.386472 0.669390i
\(879\) 10.1892 + 17.6483i 0.343675 + 0.595262i
\(880\) 24.7206 42.8173i 0.833330 1.44337i
\(881\) 52.2845 1.76151 0.880755 0.473572i \(-0.157036\pi\)
0.880755 + 0.473572i \(0.157036\pi\)
\(882\) 2.69278 0.0906708
\(883\) −12.1610 + 21.0634i −0.409250 + 0.708841i −0.994806 0.101791i \(-0.967543\pi\)
0.585556 + 0.810632i \(0.300876\pi\)
\(884\) 37.6758 65.2565i 1.26718 2.19481i
\(885\) −22.1765 −0.745455
\(886\) 24.3570 0.818291
\(887\) 26.9742 46.7206i 0.905703 1.56872i 0.0857334 0.996318i \(-0.472677\pi\)
0.819970 0.572406i \(-0.193990\pi\)
\(888\) 49.5188 + 85.7690i 1.66174 + 2.87822i
\(889\) 6.69260 11.5919i 0.224463 0.388781i
\(890\) −8.02289 13.8960i −0.268928 0.465797i
\(891\) 0.909526 + 1.57535i 0.0304703 + 0.0527761i
\(892\) −68.9197 −2.30760
\(893\) −13.1735 + 33.8297i −0.440834 + 1.13207i
\(894\) 38.7388 1.29562
\(895\) 21.1050 + 36.5549i 0.705461 + 1.22189i
\(896\) 11.2476 + 19.4815i 0.375757 + 0.650830i
\(897\) −1.14939 + 1.99081i −0.0383771 + 0.0664711i
\(898\) 40.7174 + 70.5246i 1.35876 + 2.35344i
\(899\) −0.257993 + 0.446857i −0.00860455 + 0.0149035i
\(900\) −3.55322 −0.118441
\(901\) 3.06571 0.102134
\(902\) 7.23367 12.5291i 0.240855 0.417173i
\(903\) −3.46388 + 5.99961i −0.115271 + 0.199654i
\(904\) −121.748 −4.04927
\(905\) 11.7250 0.389752
\(906\) 4.93067 8.54017i 0.163810 0.283728i
\(907\) −2.04325 3.53901i −0.0678450 0.117511i 0.830107 0.557603i \(-0.188279\pi\)
−0.897952 + 0.440092i \(0.854946\pi\)
\(908\) 34.9675 60.5655i 1.16044 2.00994i
\(909\) −7.96908 13.8029i −0.264318 0.457812i
\(910\) 18.4969 + 32.0376i 0.613168 + 1.06204i
\(911\) 46.2425 1.53208 0.766041 0.642792i \(-0.222224\pi\)
0.766041 + 0.642792i \(0.222224\pi\)
\(912\) −20.6754 + 53.0949i −0.684632 + 1.75815i
\(913\) 8.36418 0.276814
\(914\) 27.0191 + 46.7984i 0.893712 + 1.54795i
\(915\) 6.76935 + 11.7249i 0.223788 + 0.387612i
\(916\) 7.74520 13.4151i 0.255908 0.443246i
\(917\) −8.19664 14.1970i −0.270677 0.468826i
\(918\) 2.92413 5.06474i 0.0965106 0.167161i
\(919\) 37.2204 1.22779 0.613894 0.789388i \(-0.289602\pi\)
0.613894 + 0.789388i \(0.289602\pi\)
\(920\) 6.33315 0.208798
\(921\) −9.20768 + 15.9482i −0.303403 + 0.525510i
\(922\) 28.4956 49.3558i 0.938453 1.62545i
\(923\) 94.6980 3.11702
\(924\) 9.55200 0.314238
\(925\) −3.82747 + 6.62938i −0.125847 + 0.217973i
\(926\) −32.5396 56.3603i −1.06932 1.85211i
\(927\) 0.635401 1.10055i 0.0208693 0.0361467i
\(928\) −2.90781 5.03647i −0.0954534 0.165330i
\(929\) 18.8563 + 32.6601i 0.618656 + 1.07154i 0.989731 + 0.142941i \(0.0456560\pi\)
−0.371075 + 0.928603i \(0.621011\pi\)
\(930\) 8.78805 0.288172
\(931\) 4.30847 0.661119i 0.141204 0.0216673i
\(932\) 45.5338 1.49151
\(933\) 2.69617 + 4.66990i 0.0882685 + 0.152886i
\(934\) −15.6519 27.1098i −0.512144 0.887060i
\(935\) −4.10723 + 7.11394i −0.134321 + 0.232651i
\(936\) −28.9214 50.0933i −0.945325 1.63735i
\(937\) −8.04097 + 13.9274i −0.262687 + 0.454987i −0.966955 0.254947i \(-0.917942\pi\)
0.704268 + 0.709934i \(0.251275\pi\)
\(938\) −42.9615 −1.40274
\(939\) −19.8960 −0.649283
\(940\) −45.4683 + 78.7533i −1.48301 + 2.56865i
\(941\) 10.5257 18.2311i 0.343129 0.594316i −0.641883 0.766802i \(-0.721847\pi\)
0.985012 + 0.172486i \(0.0551800\pi\)
\(942\) −14.2279 −0.463571
\(943\) 1.02759 0.0334631
\(944\) 69.7087 120.739i 2.26883 3.92972i
\(945\) 1.03963 + 1.80069i 0.0338192 + 0.0585766i
\(946\) −16.9672 + 29.3880i −0.551650 + 0.955486i
\(947\) −1.60308 2.77662i −0.0520932 0.0902280i 0.838803 0.544435i \(-0.183256\pi\)
−0.890896 + 0.454207i \(0.849923\pi\)
\(948\) 23.4891 + 40.6844i 0.762892 + 1.32137i
\(949\) −100.471 −3.26142
\(950\) −7.85050 + 1.20463i −0.254704 + 0.0390834i
\(951\) 9.00900 0.292137
\(952\) −9.50660 16.4659i −0.308111 0.533663i
\(953\) 22.5385 + 39.0378i 0.730094 + 1.26456i 0.956843 + 0.290606i \(0.0938570\pi\)
−0.226749 + 0.973953i \(0.572810\pi\)
\(954\) 1.90055 3.29184i 0.0615324 0.106577i
\(955\) −20.1583 34.9152i −0.652308 1.12983i
\(956\) −37.7542 + 65.3921i −1.22106 + 2.11493i
\(957\) −0.598001 −0.0193306
\(958\) 5.57185 0.180018
\(959\) −7.54771 + 13.0730i −0.243728 + 0.422150i
\(960\) −22.3449 + 38.7024i −0.721177 + 1.24912i
\(961\) −28.5364 −0.920530
\(962\) −201.275 −6.48937
\(963\) 0.347652 0.602150i 0.0112029 0.0194040i
\(964\) 32.9803 + 57.1235i 1.06222 + 1.83982i
\(965\) −23.7777 + 41.1841i −0.765430 + 1.32576i
\(966\) 0.468437 + 0.811357i 0.0150717 + 0.0261050i
\(967\) 20.6984 + 35.8507i 0.665616 + 1.15288i 0.979118 + 0.203294i \(0.0651646\pi\)
−0.313502 + 0.949588i \(0.601502\pi\)
\(968\) −67.3311 −2.16410
\(969\) 3.43515 8.82153i 0.110353 0.283388i
\(970\) 4.98140 0.159943
\(971\) −7.55206 13.0806i −0.242357 0.419775i 0.719028 0.694981i \(-0.244587\pi\)
−0.961385 + 0.275206i \(0.911254\pi\)
\(972\) −2.62554 4.54758i −0.0842144 0.145864i
\(973\) 2.82847 4.89906i 0.0906767 0.157057i
\(974\) 32.0350 + 55.4863i 1.02647 + 1.77790i
\(975\) 2.23543 3.87188i 0.0715911 0.123999i
\(976\) −85.1141 −2.72443
\(977\) −8.03822 −0.257166 −0.128583 0.991699i \(-0.541043\pi\)
−0.128583 + 0.991699i \(0.541043\pi\)
\(978\) −23.0749 + 39.9669i −0.737854 + 1.27800i
\(979\) 2.60654 4.51466i 0.0833054 0.144289i
\(980\) 10.9184 0.348775
\(981\) 2.83235 0.0904300
\(982\) −13.6860 + 23.7049i −0.436738 + 0.756452i
\(983\) −2.22751 3.85815i −0.0710464 0.123056i 0.828314 0.560264i \(-0.189301\pi\)
−0.899360 + 0.437209i \(0.855967\pi\)
\(984\) −12.9283 + 22.3925i −0.412140 + 0.713847i
\(985\) 9.57669 + 16.5873i 0.305139 + 0.528516i
\(986\) 0.961287 + 1.66500i 0.0306136 + 0.0530243i
\(987\) −8.32874 −0.265107
\(988\) −94.6060 117.987i −3.00982 3.75367i
\(989\) −2.41031 −0.0766433
\(990\) 5.09244 + 8.82037i 0.161849 + 0.280330i
\(991\) 25.4907 + 44.1512i 0.809739 + 1.40251i 0.913045 + 0.407860i \(0.133725\pi\)
−0.103306 + 0.994650i \(0.532942\pi\)
\(992\) −13.8832 + 24.0464i −0.440793 + 0.763475i
\(993\) −11.1427 19.2997i −0.353603 0.612458i
\(994\) 19.2972 33.4237i 0.612069 1.06013i
\(995\) 13.6502 0.432741
\(996\) −24.1450 −0.765064
\(997\) 16.0713 27.8364i 0.508985 0.881587i −0.490961 0.871181i \(-0.663354\pi\)
0.999946 0.0104058i \(-0.00331232\pi\)
\(998\) −35.8699 + 62.1286i −1.13544 + 1.96665i
\(999\) −11.3128 −0.357921
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 399.2.k.c.64.1 12
3.2 odd 2 1197.2.k.i.64.6 12
19.7 even 3 7581.2.a.bc.1.6 6
19.11 even 3 inner 399.2.k.c.106.1 yes 12
19.12 odd 6 7581.2.a.ba.1.1 6
57.11 odd 6 1197.2.k.i.505.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.k.c.64.1 12 1.1 even 1 trivial
399.2.k.c.106.1 yes 12 19.11 even 3 inner
1197.2.k.i.64.6 12 3.2 odd 2
1197.2.k.i.505.6 12 57.11 odd 6
7581.2.a.ba.1.1 6 19.12 odd 6
7581.2.a.bc.1.6 6 19.7 even 3