Properties

Label 399.2.k.c.64.3
Level $399$
Weight $2$
Character 399.64
Analytic conductor $3.186$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [399,2,Mod(64,399)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(399, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("399.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 399 = 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 399.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18603104065\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 11 x^{10} - 10 x^{9} + 90 x^{8} - 79 x^{7} + 275 x^{6} - 177 x^{5} + 560 x^{4} + \cdots + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 64.3
Root \(0.597305 + 1.03456i\) of defining polynomial
Character \(\chi\) \(=\) 399.64
Dual form 399.2.k.c.106.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.597305 - 1.03456i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(0.286453 - 0.496151i) q^{4} +(0.0760004 + 0.131637i) q^{5} +(-0.597305 + 1.03456i) q^{6} -1.00000 q^{7} -3.07362 q^{8} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.597305 - 1.03456i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(0.286453 - 0.496151i) q^{4} +(0.0760004 + 0.131637i) q^{5} +(-0.597305 + 1.03456i) q^{6} -1.00000 q^{7} -3.07362 q^{8} +(-0.500000 + 0.866025i) q^{9} +(0.0907909 - 0.157254i) q^{10} -4.35742 q^{11} -0.572906 q^{12} +(0.191130 - 0.331047i) q^{13} +(0.597305 + 1.03456i) q^{14} +(0.0760004 - 0.131637i) q^{15} +(1.26298 + 2.18755i) q^{16} +(-0.710452 - 1.23054i) q^{17} +1.19461 q^{18} +(-3.81189 - 2.11411i) q^{19} +0.0870821 q^{20} +(0.500000 + 0.866025i) q^{21} +(2.60271 + 4.50802i) q^{22} +(-0.195662 + 0.338896i) q^{23} +(1.53681 + 2.66183i) q^{24} +(2.48845 - 4.31012i) q^{25} -0.456652 q^{26} +1.00000 q^{27} +(-0.286453 + 0.496151i) q^{28} +(-2.29279 + 3.97122i) q^{29} -0.181582 q^{30} -2.38016 q^{31} +(-1.56485 + 2.71039i) q^{32} +(2.17871 + 3.77363i) q^{33} +(-0.848714 + 1.47002i) q^{34} +(-0.0760004 - 0.131637i) q^{35} +(0.286453 + 0.496151i) q^{36} +4.84114 q^{37} +(0.0896785 + 5.20641i) q^{38} -0.382260 q^{39} +(-0.233596 - 0.404601i) q^{40} +(-4.15977 - 7.20493i) q^{41} +(0.597305 - 1.03456i) q^{42} +(2.70200 + 4.67999i) q^{43} +(-1.24819 + 2.16193i) q^{44} -0.152001 q^{45} +0.467480 q^{46} +(-6.29279 + 10.8994i) q^{47} +(1.26298 - 2.18755i) q^{48} +1.00000 q^{49} -5.94545 q^{50} +(-0.710452 + 1.23054i) q^{51} +(-0.109499 - 0.189659i) q^{52} +(6.77910 - 11.7417i) q^{53} +(-0.597305 - 1.03456i) q^{54} +(-0.331165 - 0.573595i) q^{55} +3.07362 q^{56} +(0.0750692 + 4.35825i) q^{57} +5.47797 q^{58} +(-5.80973 - 10.0627i) q^{59} +(-0.0435410 - 0.0754153i) q^{60} +(-2.04116 + 3.53539i) q^{61} +(1.42168 + 2.46242i) q^{62} +(0.500000 - 0.866025i) q^{63} +8.79070 q^{64} +0.0581038 q^{65} +(2.60271 - 4.50802i) q^{66} +(7.59723 - 13.1588i) q^{67} -0.814044 q^{68} +0.391324 q^{69} +(-0.0907909 + 0.157254i) q^{70} +(-2.79948 - 4.84884i) q^{71} +(1.53681 - 2.66183i) q^{72} +(1.21808 + 2.10978i) q^{73} +(-2.89164 - 5.00846i) q^{74} -4.97690 q^{75} +(-2.14085 + 1.28568i) q^{76} +4.35742 q^{77} +(0.228326 + 0.395472i) q^{78} +(-4.21230 - 7.29592i) q^{79} +(-0.191975 + 0.332510i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-4.96931 + 8.60709i) q^{82} +3.44575 q^{83} +0.572906 q^{84} +(0.107989 - 0.187043i) q^{85} +(3.22783 - 5.59077i) q^{86} +4.58557 q^{87} +13.3930 q^{88} +(-1.70940 + 2.96077i) q^{89} +(0.0907909 + 0.157254i) q^{90} +(-0.191130 + 0.331047i) q^{91} +(0.112096 + 0.194156i) q^{92} +(1.19008 + 2.06128i) q^{93} +15.0349 q^{94} +(-0.0114106 - 0.662458i) q^{95} +3.12969 q^{96} +(-8.63195 - 14.9510i) q^{97} +(-0.597305 - 1.03456i) q^{98} +(2.17871 - 3.77363i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - q^{2} - 6 q^{3} - 9 q^{4} - q^{6} - 12 q^{7} - 6 q^{8} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - q^{2} - 6 q^{3} - 9 q^{4} - q^{6} - 12 q^{7} - 6 q^{8} - 6 q^{9} - 4 q^{10} + 8 q^{11} + 18 q^{12} - 2 q^{13} + q^{14} - 19 q^{16} + 3 q^{17} + 2 q^{18} + 3 q^{19} - 26 q^{20} + 6 q^{21} + 2 q^{22} + 5 q^{23} + 3 q^{24} - 16 q^{25} + 98 q^{26} + 12 q^{27} + 9 q^{28} + 11 q^{29} + 8 q^{30} - 10 q^{31} - 4 q^{33} - 6 q^{34} - 9 q^{36} - 10 q^{37} - 26 q^{38} + 4 q^{39} - 62 q^{40} + 5 q^{41} + q^{42} - q^{43} + 15 q^{44} - 24 q^{46} - 37 q^{47} - 19 q^{48} + 12 q^{49} + 6 q^{50} + 3 q^{51} + 9 q^{52} + 9 q^{53} - q^{54} + 9 q^{55} + 6 q^{56} + 3 q^{57} + 18 q^{58} + 6 q^{59} + 13 q^{60} + 19 q^{61} + 5 q^{62} + 6 q^{63} + 118 q^{64} + 48 q^{65} + 2 q^{66} + 8 q^{67} - 130 q^{68} - 10 q^{69} + 4 q^{70} - 19 q^{71} + 3 q^{72} + 24 q^{73} + 15 q^{74} + 32 q^{75} - 6 q^{76} - 8 q^{77} - 49 q^{78} + 27 q^{79} - 11 q^{80} - 6 q^{81} - 46 q^{82} + 70 q^{83} - 18 q^{84} - 59 q^{85} - 3 q^{86} - 22 q^{87} - 14 q^{88} - 4 q^{89} - 4 q^{90} + 2 q^{91} - 9 q^{92} + 5 q^{93} + 34 q^{94} - 55 q^{97} - q^{98} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/399\mathbb{Z}\right)^\times\).

\(n\) \(115\) \(134\) \(211\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.597305 1.03456i −0.422359 0.731547i 0.573811 0.818988i \(-0.305464\pi\)
−0.996170 + 0.0874411i \(0.972131\pi\)
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) 0.286453 0.496151i 0.143226 0.248075i
\(5\) 0.0760004 + 0.131637i 0.0339884 + 0.0588696i 0.882519 0.470276i \(-0.155846\pi\)
−0.848531 + 0.529146i \(0.822512\pi\)
\(6\) −0.597305 + 1.03456i −0.243849 + 0.422359i
\(7\) −1.00000 −0.377964
\(8\) −3.07362 −1.08669
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0.0907909 0.157254i 0.0287106 0.0497282i
\(11\) −4.35742 −1.31381 −0.656905 0.753973i \(-0.728135\pi\)
−0.656905 + 0.753973i \(0.728135\pi\)
\(12\) −0.572906 −0.165384
\(13\) 0.191130 0.331047i 0.0530099 0.0918158i −0.838303 0.545205i \(-0.816452\pi\)
0.891313 + 0.453389i \(0.149785\pi\)
\(14\) 0.597305 + 1.03456i 0.159637 + 0.276499i
\(15\) 0.0760004 0.131637i 0.0196232 0.0339884i
\(16\) 1.26298 + 2.18755i 0.315746 + 0.546888i
\(17\) −0.710452 1.23054i −0.172310 0.298450i 0.766917 0.641746i \(-0.221790\pi\)
−0.939227 + 0.343297i \(0.888456\pi\)
\(18\) 1.19461 0.281572
\(19\) −3.81189 2.11411i −0.874508 0.485011i
\(20\) 0.0870821 0.0194721
\(21\) 0.500000 + 0.866025i 0.109109 + 0.188982i
\(22\) 2.60271 + 4.50802i 0.554899 + 0.961113i
\(23\) −0.195662 + 0.338896i −0.0407983 + 0.0706648i −0.885704 0.464251i \(-0.846323\pi\)
0.844905 + 0.534916i \(0.179657\pi\)
\(24\) 1.53681 + 2.66183i 0.313700 + 0.543344i
\(25\) 2.48845 4.31012i 0.497690 0.862024i
\(26\) −0.456652 −0.0895568
\(27\) 1.00000 0.192450
\(28\) −0.286453 + 0.496151i −0.0541345 + 0.0937637i
\(29\) −2.29279 + 3.97122i −0.425760 + 0.737437i −0.996491 0.0836995i \(-0.973326\pi\)
0.570731 + 0.821137i \(0.306660\pi\)
\(30\) −0.181582 −0.0331521
\(31\) −2.38016 −0.427489 −0.213744 0.976890i \(-0.568566\pi\)
−0.213744 + 0.976890i \(0.568566\pi\)
\(32\) −1.56485 + 2.71039i −0.276628 + 0.479134i
\(33\) 2.17871 + 3.77363i 0.379264 + 0.656905i
\(34\) −0.848714 + 1.47002i −0.145553 + 0.252106i
\(35\) −0.0760004 0.131637i −0.0128464 0.0222506i
\(36\) 0.286453 + 0.496151i 0.0477421 + 0.0826918i
\(37\) 4.84114 0.795878 0.397939 0.917412i \(-0.369726\pi\)
0.397939 + 0.917412i \(0.369726\pi\)
\(38\) 0.0896785 + 5.20641i 0.0145478 + 0.844592i
\(39\) −0.382260 −0.0612106
\(40\) −0.233596 0.404601i −0.0369348 0.0639730i
\(41\) −4.15977 7.20493i −0.649647 1.12522i −0.983207 0.182493i \(-0.941583\pi\)
0.333560 0.942729i \(-0.391750\pi\)
\(42\) 0.597305 1.03456i 0.0921662 0.159637i
\(43\) 2.70200 + 4.67999i 0.412050 + 0.713692i 0.995114 0.0987344i \(-0.0314794\pi\)
−0.583063 + 0.812427i \(0.698146\pi\)
\(44\) −1.24819 + 2.16193i −0.188172 + 0.325924i
\(45\) −0.152001 −0.0226589
\(46\) 0.467480 0.0689261
\(47\) −6.29279 + 10.8994i −0.917897 + 1.58984i −0.115294 + 0.993331i \(0.536781\pi\)
−0.802603 + 0.596513i \(0.796552\pi\)
\(48\) 1.26298 2.18755i 0.182296 0.315746i
\(49\) 1.00000 0.142857
\(50\) −5.94545 −0.840814
\(51\) −0.710452 + 1.23054i −0.0994832 + 0.172310i
\(52\) −0.109499 0.189659i −0.0151848 0.0263009i
\(53\) 6.77910 11.7417i 0.931180 1.61285i 0.149873 0.988705i \(-0.452113\pi\)
0.781307 0.624147i \(-0.214553\pi\)
\(54\) −0.597305 1.03456i −0.0812830 0.140786i
\(55\) −0.331165 0.573595i −0.0446543 0.0773435i
\(56\) 3.07362 0.410730
\(57\) 0.0750692 + 4.35825i 0.00994316 + 0.577265i
\(58\) 5.47797 0.719293
\(59\) −5.80973 10.0627i −0.756362 1.31006i −0.944694 0.327952i \(-0.893641\pi\)
0.188332 0.982105i \(-0.439692\pi\)
\(60\) −0.0435410 0.0754153i −0.00562112 0.00973607i
\(61\) −2.04116 + 3.53539i −0.261344 + 0.452661i −0.966599 0.256292i \(-0.917499\pi\)
0.705255 + 0.708953i \(0.250832\pi\)
\(62\) 1.42168 + 2.46242i 0.180554 + 0.312728i
\(63\) 0.500000 0.866025i 0.0629941 0.109109i
\(64\) 8.79070 1.09884
\(65\) 0.0581038 0.00720689
\(66\) 2.60271 4.50802i 0.320371 0.554899i
\(67\) 7.59723 13.1588i 0.928150 1.60760i 0.141734 0.989905i \(-0.454732\pi\)
0.786416 0.617698i \(-0.211934\pi\)
\(68\) −0.814044 −0.0987174
\(69\) 0.391324 0.0471098
\(70\) −0.0907909 + 0.157254i −0.0108516 + 0.0187955i
\(71\) −2.79948 4.84884i −0.332237 0.575452i 0.650713 0.759324i \(-0.274470\pi\)
−0.982950 + 0.183872i \(0.941137\pi\)
\(72\) 1.53681 2.66183i 0.181115 0.313700i
\(73\) 1.21808 + 2.10978i 0.142565 + 0.246930i 0.928462 0.371427i \(-0.121132\pi\)
−0.785897 + 0.618358i \(0.787798\pi\)
\(74\) −2.89164 5.00846i −0.336146 0.582222i
\(75\) −4.97690 −0.574682
\(76\) −2.14085 + 1.28568i −0.245572 + 0.147478i
\(77\) 4.35742 0.496574
\(78\) 0.228326 + 0.395472i 0.0258528 + 0.0447784i
\(79\) −4.21230 7.29592i −0.473921 0.820855i 0.525633 0.850711i \(-0.323828\pi\)
−0.999554 + 0.0298559i \(0.990495\pi\)
\(80\) −0.191975 + 0.332510i −0.0214634 + 0.0371757i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −4.96931 + 8.60709i −0.548768 + 0.950494i
\(83\) 3.44575 0.378220 0.189110 0.981956i \(-0.439440\pi\)
0.189110 + 0.981956i \(0.439440\pi\)
\(84\) 0.572906 0.0625091
\(85\) 0.107989 0.187043i 0.0117131 0.0202877i
\(86\) 3.22783 5.59077i 0.348066 0.602868i
\(87\) 4.58557 0.491625
\(88\) 13.3930 1.42770
\(89\) −1.70940 + 2.96077i −0.181196 + 0.313841i −0.942288 0.334803i \(-0.891330\pi\)
0.761092 + 0.648644i \(0.224664\pi\)
\(90\) 0.0907909 + 0.157254i 0.00957020 + 0.0165761i
\(91\) −0.191130 + 0.331047i −0.0200359 + 0.0347031i
\(92\) 0.112096 + 0.194156i 0.0116868 + 0.0202421i
\(93\) 1.19008 + 2.06128i 0.123405 + 0.213744i
\(94\) 15.0349 1.55073
\(95\) −0.0114106 0.662458i −0.00117070 0.0679667i
\(96\) 3.12969 0.319423
\(97\) −8.63195 14.9510i −0.876442 1.51804i −0.855219 0.518267i \(-0.826577\pi\)
−0.0212231 0.999775i \(-0.506756\pi\)
\(98\) −0.597305 1.03456i −0.0603369 0.104507i
\(99\) 2.17871 3.77363i 0.218968 0.379264i
\(100\) −1.42565 2.46929i −0.142565 0.246929i
\(101\) 4.70609 8.15119i 0.468273 0.811073i −0.531069 0.847328i \(-0.678210\pi\)
0.999343 + 0.0362551i \(0.0115429\pi\)
\(102\) 1.69743 0.168070
\(103\) −2.86719 −0.282513 −0.141257 0.989973i \(-0.545114\pi\)
−0.141257 + 0.989973i \(0.545114\pi\)
\(104\) −0.587461 + 1.01751i −0.0576053 + 0.0997753i
\(105\) −0.0760004 + 0.131637i −0.00741688 + 0.0128464i
\(106\) −16.1968 −1.57317
\(107\) 10.8517 1.04907 0.524537 0.851388i \(-0.324239\pi\)
0.524537 + 0.851388i \(0.324239\pi\)
\(108\) 0.286453 0.496151i 0.0275639 0.0477421i
\(109\) −3.12026 5.40444i −0.298866 0.517652i 0.677011 0.735973i \(-0.263275\pi\)
−0.975877 + 0.218322i \(0.929942\pi\)
\(110\) −0.395613 + 0.685223i −0.0377203 + 0.0653334i
\(111\) −2.42057 4.19255i −0.229750 0.397939i
\(112\) −1.26298 2.18755i −0.119341 0.206704i
\(113\) 4.95084 0.465736 0.232868 0.972508i \(-0.425189\pi\)
0.232868 + 0.972508i \(0.425189\pi\)
\(114\) 4.46405 2.68087i 0.418096 0.251087i
\(115\) −0.0594815 −0.00554668
\(116\) 1.31355 + 2.27513i 0.121960 + 0.211241i
\(117\) 0.191130 + 0.331047i 0.0176700 + 0.0306053i
\(118\) −6.94036 + 12.0211i −0.638912 + 1.10663i
\(119\) 0.710452 + 1.23054i 0.0651271 + 0.112803i
\(120\) −0.233596 + 0.404601i −0.0213243 + 0.0369348i
\(121\) 7.98707 0.726097
\(122\) 4.87678 0.441523
\(123\) −4.15977 + 7.20493i −0.375074 + 0.649647i
\(124\) −0.681803 + 1.18092i −0.0612277 + 0.106049i
\(125\) 1.51650 0.135639
\(126\) −1.19461 −0.106424
\(127\) −9.87970 + 17.1121i −0.876682 + 1.51846i −0.0217212 + 0.999764i \(0.506915\pi\)
−0.854960 + 0.518693i \(0.826419\pi\)
\(128\) −2.12104 3.67375i −0.187475 0.324717i
\(129\) 2.70200 4.67999i 0.237897 0.412050i
\(130\) −0.0347057 0.0601120i −0.00304389 0.00527217i
\(131\) −2.46672 4.27248i −0.215518 0.373288i 0.737915 0.674894i \(-0.235811\pi\)
−0.953433 + 0.301606i \(0.902477\pi\)
\(132\) 2.49639 0.217283
\(133\) 3.81189 + 2.11411i 0.330533 + 0.183317i
\(134\) −18.1515 −1.56805
\(135\) 0.0760004 + 0.131637i 0.00654107 + 0.0113295i
\(136\) 2.18366 + 3.78221i 0.187247 + 0.324322i
\(137\) 0.789042 1.36666i 0.0674124 0.116762i −0.830349 0.557243i \(-0.811859\pi\)
0.897762 + 0.440482i \(0.145192\pi\)
\(138\) −0.233740 0.404849i −0.0198973 0.0344631i
\(139\) −1.26840 + 2.19693i −0.107584 + 0.186341i −0.914791 0.403927i \(-0.867645\pi\)
0.807207 + 0.590269i \(0.200978\pi\)
\(140\) −0.0870821 −0.00735978
\(141\) 12.5856 1.05990
\(142\) −3.34429 + 5.79248i −0.280647 + 0.486094i
\(143\) −0.832832 + 1.44251i −0.0696450 + 0.120629i
\(144\) −2.52597 −0.210497
\(145\) −0.697010 −0.0578836
\(146\) 1.45513 2.52036i 0.120427 0.208586i
\(147\) −0.500000 0.866025i −0.0412393 0.0714286i
\(148\) 1.38676 2.40193i 0.113991 0.197438i
\(149\) −0.542104 0.938952i −0.0444109 0.0769219i 0.842965 0.537968i \(-0.180808\pi\)
−0.887376 + 0.461046i \(0.847474\pi\)
\(150\) 2.97273 + 5.14891i 0.242722 + 0.420407i
\(151\) 1.64906 0.134199 0.0670994 0.997746i \(-0.478626\pi\)
0.0670994 + 0.997746i \(0.478626\pi\)
\(152\) 11.7163 + 6.49798i 0.950318 + 0.527056i
\(153\) 1.42090 0.114873
\(154\) −2.60271 4.50802i −0.209732 0.363267i
\(155\) −0.180893 0.313316i −0.0145297 0.0251661i
\(156\) −0.109499 + 0.189659i −0.00876697 + 0.0151848i
\(157\) −9.20495 15.9434i −0.734635 1.27242i −0.954883 0.296981i \(-0.904020\pi\)
0.220249 0.975444i \(-0.429313\pi\)
\(158\) −5.03206 + 8.71579i −0.400329 + 0.693391i
\(159\) −13.5582 −1.07523
\(160\) −0.475716 −0.0376086
\(161\) 0.195662 0.338896i 0.0154203 0.0267088i
\(162\) −0.597305 + 1.03456i −0.0469287 + 0.0812830i
\(163\) −11.8661 −0.929423 −0.464712 0.885462i \(-0.653842\pi\)
−0.464712 + 0.885462i \(0.653842\pi\)
\(164\) −4.76631 −0.372186
\(165\) −0.331165 + 0.573595i −0.0257812 + 0.0446543i
\(166\) −2.05816 3.56485i −0.159745 0.276686i
\(167\) 5.20019 9.00700i 0.402403 0.696983i −0.591612 0.806223i \(-0.701508\pi\)
0.994015 + 0.109240i \(0.0348417\pi\)
\(168\) −1.53681 2.66183i −0.118567 0.205365i
\(169\) 6.42694 + 11.1318i 0.494380 + 0.856291i
\(170\) −0.258010 −0.0197885
\(171\) 3.73682 2.24414i 0.285762 0.171614i
\(172\) 3.09598 0.236066
\(173\) 6.02433 + 10.4344i 0.458021 + 0.793316i 0.998856 0.0478128i \(-0.0152251\pi\)
−0.540835 + 0.841129i \(0.681892\pi\)
\(174\) −2.73899 4.74406i −0.207642 0.359647i
\(175\) −2.48845 + 4.31012i −0.188109 + 0.325814i
\(176\) −5.50335 9.53208i −0.414830 0.718507i
\(177\) −5.80973 + 10.0627i −0.436686 + 0.756362i
\(178\) 4.08414 0.306119
\(179\) 3.04546 0.227628 0.113814 0.993502i \(-0.463693\pi\)
0.113814 + 0.993502i \(0.463693\pi\)
\(180\) −0.0435410 + 0.0754153i −0.00324536 + 0.00562112i
\(181\) −6.48950 + 11.2401i −0.482361 + 0.835473i −0.999795 0.0202498i \(-0.993554\pi\)
0.517434 + 0.855723i \(0.326887\pi\)
\(182\) 0.456652 0.0338493
\(183\) 4.08232 0.301774
\(184\) 0.601390 1.04164i 0.0443351 0.0767906i
\(185\) 0.367928 + 0.637270i 0.0270506 + 0.0468530i
\(186\) 1.42168 2.46242i 0.104243 0.180554i
\(187\) 3.09574 + 5.36197i 0.226383 + 0.392106i
\(188\) 3.60517 + 6.24434i 0.262934 + 0.455415i
\(189\) −1.00000 −0.0727393
\(190\) −0.678539 + 0.407494i −0.0492264 + 0.0295628i
\(191\) 15.0370 1.08804 0.544018 0.839073i \(-0.316902\pi\)
0.544018 + 0.839073i \(0.316902\pi\)
\(192\) −4.39535 7.61297i −0.317207 0.549419i
\(193\) 11.9088 + 20.6267i 0.857216 + 1.48474i 0.874574 + 0.484892i \(0.161141\pi\)
−0.0173582 + 0.999849i \(0.505526\pi\)
\(194\) −10.3118 + 17.8606i −0.740346 + 1.28232i
\(195\) −0.0290519 0.0503194i −0.00208045 0.00360344i
\(196\) 0.286453 0.496151i 0.0204609 0.0354393i
\(197\) −1.90086 −0.135431 −0.0677154 0.997705i \(-0.521571\pi\)
−0.0677154 + 0.997705i \(0.521571\pi\)
\(198\) −5.20541 −0.369933
\(199\) −8.22002 + 14.2375i −0.582702 + 1.00927i 0.412456 + 0.910978i \(0.364671\pi\)
−0.995158 + 0.0982918i \(0.968662\pi\)
\(200\) −7.64854 + 13.2477i −0.540834 + 0.936751i
\(201\) −15.1945 −1.07173
\(202\) −11.2439 −0.791117
\(203\) 2.29279 3.97122i 0.160922 0.278725i
\(204\) 0.407022 + 0.704983i 0.0284972 + 0.0493587i
\(205\) 0.632288 1.09516i 0.0441609 0.0764890i
\(206\) 1.71259 + 2.96629i 0.119322 + 0.206671i
\(207\) −0.195662 0.338896i −0.0135994 0.0235549i
\(208\) 0.965576 0.0669507
\(209\) 16.6100 + 9.21207i 1.14894 + 0.637213i
\(210\) 0.181582 0.0125303
\(211\) −12.0784 20.9205i −0.831514 1.44023i −0.896837 0.442361i \(-0.854141\pi\)
0.0653225 0.997864i \(-0.479192\pi\)
\(212\) −3.88378 6.72691i −0.266739 0.462006i
\(213\) −2.79948 + 4.84884i −0.191817 + 0.332237i
\(214\) −6.48178 11.2268i −0.443085 0.767446i
\(215\) −0.410705 + 0.711362i −0.0280099 + 0.0485145i
\(216\) −3.07362 −0.209133
\(217\) 2.38016 0.161576
\(218\) −3.72749 + 6.45620i −0.252458 + 0.437269i
\(219\) 1.21808 2.10978i 0.0823102 0.142565i
\(220\) −0.379453 −0.0255827
\(221\) −0.543155 −0.0365365
\(222\) −2.89164 + 5.00846i −0.194074 + 0.336146i
\(223\) 3.18103 + 5.50970i 0.213017 + 0.368957i 0.952657 0.304046i \(-0.0983376\pi\)
−0.739640 + 0.673003i \(0.765004\pi\)
\(224\) 1.56485 2.71039i 0.104556 0.181096i
\(225\) 2.48845 + 4.31012i 0.165897 + 0.287341i
\(226\) −2.95716 5.12195i −0.196707 0.340707i
\(227\) −5.72133 −0.379738 −0.189869 0.981809i \(-0.560806\pi\)
−0.189869 + 0.981809i \(0.560806\pi\)
\(228\) 2.18385 + 1.21119i 0.144629 + 0.0802129i
\(229\) 4.90284 0.323989 0.161994 0.986792i \(-0.448207\pi\)
0.161994 + 0.986792i \(0.448207\pi\)
\(230\) 0.0355286 + 0.0615374i 0.00234269 + 0.00405765i
\(231\) −2.17871 3.77363i −0.143348 0.248287i
\(232\) 7.04715 12.2060i 0.462668 0.801365i
\(233\) 8.76247 + 15.1770i 0.574048 + 0.994281i 0.996144 + 0.0877297i \(0.0279612\pi\)
−0.422096 + 0.906551i \(0.638706\pi\)
\(234\) 0.228326 0.395472i 0.0149261 0.0258528i
\(235\) −1.91302 −0.124791
\(236\) −6.65685 −0.433324
\(237\) −4.21230 + 7.29592i −0.273618 + 0.473921i
\(238\) 0.848714 1.47002i 0.0550140 0.0952870i
\(239\) −10.0256 −0.648502 −0.324251 0.945971i \(-0.605112\pi\)
−0.324251 + 0.945971i \(0.605112\pi\)
\(240\) 0.383949 0.0247838
\(241\) −10.7721 + 18.6578i −0.693890 + 1.20185i 0.276664 + 0.960967i \(0.410771\pi\)
−0.970554 + 0.240885i \(0.922562\pi\)
\(242\) −4.77072 8.26313i −0.306673 0.531174i
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 1.16939 + 2.02545i 0.0748627 + 0.129666i
\(245\) 0.0760004 + 0.131637i 0.00485549 + 0.00840995i
\(246\) 9.93861 0.633663
\(247\) −1.42844 + 0.857844i −0.0908893 + 0.0545833i
\(248\) 7.31570 0.464547
\(249\) −1.72287 2.98411i −0.109183 0.189110i
\(250\) −0.905811 1.56891i −0.0572885 0.0992266i
\(251\) −6.42613 + 11.1304i −0.405613 + 0.702543i −0.994393 0.105751i \(-0.966275\pi\)
0.588779 + 0.808294i \(0.299609\pi\)
\(252\) −0.286453 0.496151i −0.0180448 0.0312546i
\(253\) 0.852580 1.47671i 0.0536013 0.0928401i
\(254\) 23.6048 1.48110
\(255\) −0.215979 −0.0135251
\(256\) 6.25688 10.8372i 0.391055 0.677327i
\(257\) 9.84276 17.0482i 0.613974 1.06343i −0.376589 0.926380i \(-0.622903\pi\)
0.990564 0.137054i \(-0.0437635\pi\)
\(258\) −6.45566 −0.401912
\(259\) −4.84114 −0.300814
\(260\) 0.0166440 0.0288282i 0.00103222 0.00178785i
\(261\) −2.29279 3.97122i −0.141920 0.245812i
\(262\) −2.94677 + 5.10395i −0.182052 + 0.315323i
\(263\) 9.49582 + 16.4472i 0.585537 + 1.01418i 0.994808 + 0.101768i \(0.0324498\pi\)
−0.409271 + 0.912413i \(0.634217\pi\)
\(264\) −6.69652 11.5987i −0.412142 0.713851i
\(265\) 2.06086 0.126597
\(266\) −0.0896785 5.20641i −0.00549854 0.319226i
\(267\) 3.41880 0.209227
\(268\) −4.35250 7.53874i −0.265871 0.460502i
\(269\) −5.58464 9.67288i −0.340502 0.589766i 0.644024 0.765005i \(-0.277264\pi\)
−0.984526 + 0.175239i \(0.943930\pi\)
\(270\) 0.0907909 0.157254i 0.00552536 0.00957020i
\(271\) −8.03378 13.9149i −0.488017 0.845271i 0.511888 0.859052i \(-0.328946\pi\)
−0.999905 + 0.0137818i \(0.995613\pi\)
\(272\) 1.79458 3.10830i 0.108812 0.188469i
\(273\) 0.382260 0.0231354
\(274\) −1.88520 −0.113889
\(275\) −10.8432 + 18.7810i −0.653870 + 1.13254i
\(276\) 0.112096 0.194156i 0.00674737 0.0116868i
\(277\) 7.51483 0.451522 0.225761 0.974183i \(-0.427513\pi\)
0.225761 + 0.974183i \(0.427513\pi\)
\(278\) 3.03048 0.181756
\(279\) 1.19008 2.06128i 0.0712481 0.123405i
\(280\) 0.233596 + 0.404601i 0.0139600 + 0.0241795i
\(281\) 3.03598 5.25846i 0.181111 0.313694i −0.761148 0.648578i \(-0.775364\pi\)
0.942259 + 0.334885i \(0.108697\pi\)
\(282\) −7.51743 13.0206i −0.447656 0.775364i
\(283\) −1.33044 2.30439i −0.0790864 0.136982i 0.823770 0.566925i \(-0.191867\pi\)
−0.902856 + 0.429943i \(0.858534\pi\)
\(284\) −3.20768 −0.190341
\(285\) −0.568000 + 0.341111i −0.0336454 + 0.0202057i
\(286\) 1.98982 0.117661
\(287\) 4.15977 + 7.20493i 0.245544 + 0.425294i
\(288\) −1.56485 2.71039i −0.0922094 0.159711i
\(289\) 7.49051 12.9740i 0.440619 0.763174i
\(290\) 0.416328 + 0.721101i 0.0244476 + 0.0423445i
\(291\) −8.63195 + 14.9510i −0.506014 + 0.876442i
\(292\) 1.39569 0.0816765
\(293\) 27.2943 1.59455 0.797275 0.603617i \(-0.206274\pi\)
0.797275 + 0.603617i \(0.206274\pi\)
\(294\) −0.597305 + 1.03456i −0.0348356 + 0.0603369i
\(295\) 0.883083 1.52954i 0.0514151 0.0890535i
\(296\) −14.8798 −0.864872
\(297\) −4.35742 −0.252843
\(298\) −0.647603 + 1.12168i −0.0375146 + 0.0649773i
\(299\) 0.0747937 + 0.129546i 0.00432543 + 0.00749187i
\(300\) −1.42565 + 2.46929i −0.0823097 + 0.142565i
\(301\) −2.70200 4.67999i −0.155740 0.269750i
\(302\) −0.984993 1.70606i −0.0566800 0.0981726i
\(303\) −9.41218 −0.540716
\(304\) −0.189622 11.0088i −0.0108756 0.631398i
\(305\) −0.620516 −0.0355306
\(306\) −0.848714 1.47002i −0.0485177 0.0840352i
\(307\) −10.3347 17.9002i −0.589831 1.02162i −0.994254 0.107045i \(-0.965861\pi\)
0.404423 0.914572i \(-0.367472\pi\)
\(308\) 1.24819 2.16193i 0.0711224 0.123188i
\(309\) 1.43360 + 2.48306i 0.0815545 + 0.141257i
\(310\) −0.216097 + 0.374290i −0.0122735 + 0.0212583i
\(311\) 12.7100 0.720716 0.360358 0.932814i \(-0.382654\pi\)
0.360358 + 0.932814i \(0.382654\pi\)
\(312\) 1.17492 0.0665168
\(313\) −7.39943 + 12.8162i −0.418241 + 0.724414i −0.995763 0.0919611i \(-0.970686\pi\)
0.577522 + 0.816375i \(0.304020\pi\)
\(314\) −10.9963 + 19.0462i −0.620559 + 1.07484i
\(315\) 0.152001 0.00856427
\(316\) −4.82650 −0.271512
\(317\) 8.21433 14.2276i 0.461363 0.799104i −0.537666 0.843158i \(-0.680694\pi\)
0.999029 + 0.0440537i \(0.0140273\pi\)
\(318\) 8.09838 + 14.0268i 0.454135 + 0.786584i
\(319\) 9.99062 17.3043i 0.559367 0.968853i
\(320\) 0.668096 + 1.15718i 0.0373477 + 0.0646882i
\(321\) −5.42585 9.39785i −0.302841 0.524537i
\(322\) −0.467480 −0.0260516
\(323\) 0.106666 + 6.19266i 0.00593506 + 0.344569i
\(324\) −0.572906 −0.0318281
\(325\) −0.951234 1.64759i −0.0527650 0.0913916i
\(326\) 7.08767 + 12.2762i 0.392550 + 0.679916i
\(327\) −3.12026 + 5.40444i −0.172551 + 0.298866i
\(328\) 12.7856 + 22.1452i 0.705964 + 1.22277i
\(329\) 6.29279 10.8994i 0.346933 0.600905i
\(330\) 0.791227 0.0435556
\(331\) 11.5538 0.635054 0.317527 0.948249i \(-0.397148\pi\)
0.317527 + 0.948249i \(0.397148\pi\)
\(332\) 0.987044 1.70961i 0.0541711 0.0938271i
\(333\) −2.42057 + 4.19255i −0.132646 + 0.229750i
\(334\) −12.4244 −0.679834
\(335\) 2.30957 0.126185
\(336\) −1.26298 + 2.18755i −0.0689014 + 0.119341i
\(337\) 9.06087 + 15.6939i 0.493577 + 0.854900i 0.999973 0.00740084i \(-0.00235578\pi\)
−0.506396 + 0.862301i \(0.669022\pi\)
\(338\) 7.67769 13.2981i 0.417611 0.723324i
\(339\) −2.47542 4.28755i −0.134446 0.232868i
\(340\) −0.0618677 0.107158i −0.00335524 0.00581145i
\(341\) 10.3713 0.561639
\(342\) −4.55373 2.52554i −0.246237 0.136566i
\(343\) −1.00000 −0.0539949
\(344\) −8.30491 14.3845i −0.447771 0.775561i
\(345\) 0.0297408 + 0.0515125i 0.00160119 + 0.00277334i
\(346\) 7.19672 12.4651i 0.386898 0.670128i
\(347\) −8.81970 15.2762i −0.473466 0.820068i 0.526072 0.850440i \(-0.323664\pi\)
−0.999539 + 0.0303722i \(0.990331\pi\)
\(348\) 1.31355 2.27513i 0.0704137 0.121960i
\(349\) 2.81083 0.150460 0.0752301 0.997166i \(-0.476031\pi\)
0.0752301 + 0.997166i \(0.476031\pi\)
\(350\) 5.94545 0.317798
\(351\) 0.191130 0.331047i 0.0102018 0.0176700i
\(352\) 6.81868 11.8103i 0.363437 0.629491i
\(353\) −19.2746 −1.02588 −0.512941 0.858424i \(-0.671444\pi\)
−0.512941 + 0.858424i \(0.671444\pi\)
\(354\) 13.8807 0.737752
\(355\) 0.425523 0.737028i 0.0225844 0.0391174i
\(356\) 0.979325 + 1.69624i 0.0519041 + 0.0899006i
\(357\) 0.710452 1.23054i 0.0376011 0.0651271i
\(358\) −1.81907 3.15072i −0.0961408 0.166521i
\(359\) −2.58957 4.48527i −0.136672 0.236723i 0.789563 0.613670i \(-0.210307\pi\)
−0.926235 + 0.376946i \(0.876974\pi\)
\(360\) 0.467193 0.0246232
\(361\) 10.0610 + 16.1176i 0.529528 + 0.848292i
\(362\) 15.5048 0.814917
\(363\) −3.99353 6.91701i −0.209606 0.363049i
\(364\) 0.109499 + 0.189659i 0.00573933 + 0.00994081i
\(365\) −0.185149 + 0.320687i −0.00969114 + 0.0167855i
\(366\) −2.43839 4.22342i −0.127457 0.220762i
\(367\) 15.9492 27.6248i 0.832542 1.44201i −0.0634737 0.997984i \(-0.520218\pi\)
0.896016 0.444022i \(-0.146449\pi\)
\(368\) −0.988472 −0.0515276
\(369\) 8.31954 0.433098
\(370\) 0.439531 0.761290i 0.0228501 0.0395776i
\(371\) −6.77910 + 11.7417i −0.351953 + 0.609601i
\(372\) 1.36361 0.0706996
\(373\) 8.13943 0.421444 0.210722 0.977546i \(-0.432419\pi\)
0.210722 + 0.977546i \(0.432419\pi\)
\(374\) 3.69820 6.40547i 0.191229 0.331219i
\(375\) −0.758248 1.31332i −0.0391557 0.0678197i
\(376\) 19.3416 33.5007i 0.997469 1.72767i
\(377\) 0.876440 + 1.51804i 0.0451390 + 0.0781830i
\(378\) 0.597305 + 1.03456i 0.0307221 + 0.0532122i
\(379\) 1.23889 0.0636375 0.0318188 0.999494i \(-0.489870\pi\)
0.0318188 + 0.999494i \(0.489870\pi\)
\(380\) −0.331947 0.184101i −0.0170285 0.00944421i
\(381\) 19.7594 1.01230
\(382\) −8.98166 15.5567i −0.459542 0.795949i
\(383\) 7.02202 + 12.1625i 0.358808 + 0.621474i 0.987762 0.155968i \(-0.0498498\pi\)
−0.628954 + 0.777443i \(0.716516\pi\)
\(384\) −2.12104 + 3.67375i −0.108239 + 0.187475i
\(385\) 0.331165 + 0.573595i 0.0168777 + 0.0292331i
\(386\) 14.2264 24.6409i 0.724105 1.25419i
\(387\) −5.40399 −0.274700
\(388\) −9.89059 −0.502118
\(389\) −6.51900 + 11.2912i −0.330526 + 0.572488i −0.982615 0.185654i \(-0.940560\pi\)
0.652089 + 0.758143i \(0.273893\pi\)
\(390\) −0.0347057 + 0.0601120i −0.00175739 + 0.00304389i
\(391\) 0.556034 0.0281198
\(392\) −3.07362 −0.155241
\(393\) −2.46672 + 4.27248i −0.124429 + 0.215518i
\(394\) 1.13540 + 1.96656i 0.0572004 + 0.0990740i
\(395\) 0.640273 1.10899i 0.0322156 0.0557991i
\(396\) −1.24819 2.16193i −0.0627241 0.108641i
\(397\) 3.28053 + 5.68205i 0.164645 + 0.285174i 0.936529 0.350589i \(-0.114019\pi\)
−0.771884 + 0.635763i \(0.780685\pi\)
\(398\) 19.6395 0.984437
\(399\) −0.0750692 4.35825i −0.00375816 0.218186i
\(400\) 12.5715 0.628574
\(401\) −1.84991 3.20414i −0.0923800 0.160007i 0.816132 0.577865i \(-0.196114\pi\)
−0.908512 + 0.417858i \(0.862781\pi\)
\(402\) 9.07573 + 15.7196i 0.452656 + 0.784024i
\(403\) −0.454919 + 0.787943i −0.0226611 + 0.0392503i
\(404\) −2.69614 4.66986i −0.134138 0.232334i
\(405\) 0.0760004 0.131637i 0.00377649 0.00654107i
\(406\) −5.47797 −0.271867
\(407\) −21.0948 −1.04563
\(408\) 2.18366 3.78221i 0.108107 0.187247i
\(409\) −8.19114 + 14.1875i −0.405026 + 0.701525i −0.994324 0.106390i \(-0.966071\pi\)
0.589299 + 0.807915i \(0.299404\pi\)
\(410\) −1.51068 −0.0746070
\(411\) −1.57808 −0.0778411
\(412\) −0.821316 + 1.42256i −0.0404633 + 0.0700845i
\(413\) 5.80973 + 10.0627i 0.285878 + 0.495155i
\(414\) −0.233740 + 0.404849i −0.0114877 + 0.0198973i
\(415\) 0.261878 + 0.453586i 0.0128551 + 0.0222657i
\(416\) 0.598178 + 1.03607i 0.0293281 + 0.0507977i
\(417\) 2.53680 0.124227
\(418\) −0.390766 22.6865i −0.0191130 1.10963i
\(419\) −3.24051 −0.158309 −0.0791547 0.996862i \(-0.525222\pi\)
−0.0791547 + 0.996862i \(0.525222\pi\)
\(420\) 0.0435410 + 0.0754153i 0.00212458 + 0.00367989i
\(421\) 10.3568 + 17.9386i 0.504761 + 0.874272i 0.999985 + 0.00550656i \(0.00175280\pi\)
−0.495224 + 0.868766i \(0.664914\pi\)
\(422\) −14.4290 + 24.9918i −0.702395 + 1.21658i
\(423\) −6.29279 10.8994i −0.305966 0.529948i
\(424\) −20.8364 + 36.0896i −1.01190 + 1.75267i
\(425\) −7.07169 −0.343028
\(426\) 6.68858 0.324063
\(427\) 2.04116 3.53539i 0.0987787 0.171090i
\(428\) 3.10850 5.38408i 0.150255 0.260249i
\(429\) 1.66566 0.0804191
\(430\) 0.981266 0.0473208
\(431\) 13.0935 22.6787i 0.630694 1.09239i −0.356717 0.934213i \(-0.616104\pi\)
0.987410 0.158181i \(-0.0505628\pi\)
\(432\) 1.26298 + 2.18755i 0.0607654 + 0.105249i
\(433\) −4.52689 + 7.84080i −0.217548 + 0.376805i −0.954058 0.299622i \(-0.903139\pi\)
0.736510 + 0.676427i \(0.236473\pi\)
\(434\) −1.42168 2.46242i −0.0682429 0.118200i
\(435\) 0.348505 + 0.603629i 0.0167095 + 0.0289418i
\(436\) −3.57522 −0.171222
\(437\) 1.46231 0.878185i 0.0699517 0.0420093i
\(438\) −2.91026 −0.139058
\(439\) −8.04180 13.9288i −0.383814 0.664786i 0.607790 0.794098i \(-0.292056\pi\)
−0.991604 + 0.129312i \(0.958723\pi\)
\(440\) 1.01788 + 1.76301i 0.0485253 + 0.0840483i
\(441\) −0.500000 + 0.866025i −0.0238095 + 0.0412393i
\(442\) 0.324429 + 0.561928i 0.0154315 + 0.0267282i
\(443\) −4.80730 + 8.32649i −0.228402 + 0.395603i −0.957335 0.288982i \(-0.906683\pi\)
0.728933 + 0.684585i \(0.240017\pi\)
\(444\) −2.77351 −0.131625
\(445\) −0.519660 −0.0246343
\(446\) 3.80009 6.58195i 0.179939 0.311664i
\(447\) −0.542104 + 0.938952i −0.0256406 + 0.0444109i
\(448\) −8.79070 −0.415322
\(449\) −13.9383 −0.657790 −0.328895 0.944367i \(-0.606676\pi\)
−0.328895 + 0.944367i \(0.606676\pi\)
\(450\) 2.97273 5.14891i 0.140136 0.242722i
\(451\) 18.1259 + 31.3949i 0.853513 + 1.47833i
\(452\) 1.41818 2.45636i 0.0667056 0.115538i
\(453\) −0.824531 1.42813i −0.0387398 0.0670994i
\(454\) 3.41738 + 5.91908i 0.160386 + 0.277796i
\(455\) −0.0581038 −0.00272395
\(456\) −0.230734 13.3956i −0.0108051 0.627307i
\(457\) −26.2618 −1.22848 −0.614238 0.789121i \(-0.710536\pi\)
−0.614238 + 0.789121i \(0.710536\pi\)
\(458\) −2.92849 5.07230i −0.136840 0.237013i
\(459\) −0.710452 1.23054i −0.0331611 0.0574367i
\(460\) −0.0170386 + 0.0295118i −0.000794431 + 0.00137599i
\(461\) −0.0322523 0.0558626i −0.00150214 0.00260178i 0.865273 0.501300i \(-0.167145\pi\)
−0.866775 + 0.498699i \(0.833811\pi\)
\(462\) −2.60271 + 4.50802i −0.121089 + 0.209732i
\(463\) 37.7314 1.75353 0.876764 0.480921i \(-0.159698\pi\)
0.876764 + 0.480921i \(0.159698\pi\)
\(464\) −11.5830 −0.537728
\(465\) −0.180893 + 0.313316i −0.00838870 + 0.0145297i
\(466\) 10.4677 18.1306i 0.484908 0.839886i
\(467\) 38.0543 1.76094 0.880471 0.474101i \(-0.157227\pi\)
0.880471 + 0.474101i \(0.157227\pi\)
\(468\) 0.218999 0.0101232
\(469\) −7.59723 + 13.1588i −0.350808 + 0.607617i
\(470\) 1.14265 + 1.97914i 0.0527067 + 0.0912907i
\(471\) −9.20495 + 15.9434i −0.424142 + 0.734635i
\(472\) 17.8569 + 30.9291i 0.821930 + 1.42363i
\(473\) −11.7737 20.3927i −0.541356 0.937656i
\(474\) 10.0641 0.462260
\(475\) −18.5978 + 11.1688i −0.853325 + 0.512462i
\(476\) 0.814044 0.0373117
\(477\) 6.77910 + 11.7417i 0.310393 + 0.537617i
\(478\) 5.98834 + 10.3721i 0.273900 + 0.474409i
\(479\) −13.8240 + 23.9438i −0.631634 + 1.09402i 0.355584 + 0.934644i \(0.384282\pi\)
−0.987218 + 0.159377i \(0.949051\pi\)
\(480\) 0.237858 + 0.411982i 0.0108567 + 0.0188043i
\(481\) 0.925286 1.60264i 0.0421894 0.0730742i
\(482\) 25.7368 1.17228
\(483\) −0.391324 −0.0178058
\(484\) 2.28792 3.96279i 0.103996 0.180127i
\(485\) 1.31206 2.27256i 0.0595777 0.103192i
\(486\) 1.19461 0.0541886
\(487\) −35.8936 −1.62649 −0.813247 0.581919i \(-0.802302\pi\)
−0.813247 + 0.581919i \(0.802302\pi\)
\(488\) 6.27375 10.8665i 0.283999 0.491902i
\(489\) 5.93304 + 10.2763i 0.268301 + 0.464712i
\(490\) 0.0907909 0.157254i 0.00410151 0.00710403i
\(491\) −6.12650 10.6114i −0.276485 0.478886i 0.694024 0.719952i \(-0.255836\pi\)
−0.970509 + 0.241066i \(0.922503\pi\)
\(492\) 2.38316 + 4.12775i 0.107441 + 0.186093i
\(493\) 6.51566 0.293451
\(494\) 1.74071 + 0.965414i 0.0783181 + 0.0434360i
\(495\) 0.662330 0.0297695
\(496\) −3.00610 5.20672i −0.134978 0.233789i
\(497\) 2.79948 + 4.84884i 0.125574 + 0.217500i
\(498\) −2.05816 + 3.56485i −0.0922285 + 0.159745i
\(499\) −7.37222 12.7691i −0.330026 0.571621i 0.652491 0.757797i \(-0.273724\pi\)
−0.982517 + 0.186175i \(0.940391\pi\)
\(500\) 0.434404 0.752410i 0.0194272 0.0336488i
\(501\) −10.4004 −0.464655
\(502\) 15.3534 0.685257
\(503\) −7.89127 + 13.6681i −0.351854 + 0.609429i −0.986574 0.163313i \(-0.947782\pi\)
0.634720 + 0.772742i \(0.281115\pi\)
\(504\) −1.53681 + 2.66183i −0.0684550 + 0.118567i
\(505\) 1.43066 0.0636635
\(506\) −2.03700 −0.0905558
\(507\) 6.42694 11.1318i 0.285430 0.494380i
\(508\) 5.66013 + 9.80364i 0.251128 + 0.434966i
\(509\) 18.9548 32.8306i 0.840156 1.45519i −0.0496067 0.998769i \(-0.515797\pi\)
0.889763 0.456424i \(-0.150870\pi\)
\(510\) 0.129005 + 0.223443i 0.00571244 + 0.00989424i
\(511\) −1.21808 2.10978i −0.0538847 0.0933310i
\(512\) −23.4332 −1.03561
\(513\) −3.81189 2.11411i −0.168299 0.0933404i
\(514\) −23.5165 −1.03727
\(515\) −0.217908 0.377427i −0.00960217 0.0166314i
\(516\) −1.54799 2.68119i −0.0681464 0.118033i
\(517\) 27.4203 47.4933i 1.20594 2.08875i
\(518\) 2.89164 + 5.00846i 0.127051 + 0.220059i
\(519\) 6.02433 10.4344i 0.264439 0.458021i
\(520\) −0.178589 −0.00783164
\(521\) −41.8605 −1.83394 −0.916970 0.398956i \(-0.869372\pi\)
−0.916970 + 0.398956i \(0.869372\pi\)
\(522\) −2.73899 + 4.74406i −0.119882 + 0.207642i
\(523\) −14.5229 + 25.1544i −0.635042 + 1.09992i 0.351465 + 0.936201i \(0.385684\pi\)
−0.986506 + 0.163723i \(0.947650\pi\)
\(524\) −2.82639 −0.123472
\(525\) 4.97690 0.217210
\(526\) 11.3438 19.6481i 0.494614 0.856696i
\(527\) 1.69099 + 2.92888i 0.0736606 + 0.127584i
\(528\) −5.50335 + 9.53208i −0.239502 + 0.414830i
\(529\) 11.4234 + 19.7860i 0.496671 + 0.860259i
\(530\) −1.23096 2.13208i −0.0534695 0.0926119i
\(531\) 11.6195 0.504241
\(532\) 2.14085 1.28568i 0.0928175 0.0557413i
\(533\) −3.18023 −0.137751
\(534\) −2.04207 3.53697i −0.0883690 0.153060i
\(535\) 0.824733 + 1.42848i 0.0356563 + 0.0617586i
\(536\) −23.3510 + 40.4451i −1.00861 + 1.74696i
\(537\) −1.52273 2.63745i −0.0657106 0.113814i
\(538\) −6.67147 + 11.5553i −0.287628 + 0.498186i
\(539\) −4.35742 −0.187687
\(540\) 0.0870821 0.00374742
\(541\) −15.8711 + 27.4895i −0.682350 + 1.18187i 0.291911 + 0.956445i \(0.405709\pi\)
−0.974262 + 0.225420i \(0.927625\pi\)
\(542\) −9.59723 + 16.6229i −0.412237 + 0.714015i
\(543\) 12.9790 0.556982
\(544\) 4.44699 0.190663
\(545\) 0.474281 0.821479i 0.0203160 0.0351883i
\(546\) −0.228326 0.395472i −0.00977144 0.0169246i
\(547\) 4.47020 7.74261i 0.191132 0.331050i −0.754494 0.656307i \(-0.772118\pi\)
0.945626 + 0.325257i \(0.105451\pi\)
\(548\) −0.452046 0.782967i −0.0193105 0.0334467i
\(549\) −2.04116 3.53539i −0.0871146 0.150887i
\(550\) 25.9068 1.10467
\(551\) 17.1355 10.2907i 0.729996 0.438397i
\(552\) −1.20278 −0.0511937
\(553\) 4.21230 + 7.29592i 0.179125 + 0.310254i
\(554\) −4.48865 7.77456i −0.190704 0.330309i
\(555\) 0.367928 0.637270i 0.0156177 0.0270506i
\(556\) 0.726672 + 1.25863i 0.0308178 + 0.0533779i
\(557\) 3.20848 5.55725i 0.135948 0.235468i −0.790011 0.613092i \(-0.789925\pi\)
0.925959 + 0.377624i \(0.123259\pi\)
\(558\) −2.84336 −0.120369
\(559\) 2.06573 0.0873710
\(560\) 0.191975 0.332510i 0.00811240 0.0140511i
\(561\) 3.09574 5.36197i 0.130702 0.226383i
\(562\) −7.25362 −0.305975
\(563\) −41.9161 −1.76655 −0.883276 0.468853i \(-0.844668\pi\)
−0.883276 + 0.468853i \(0.844668\pi\)
\(564\) 3.60517 6.24434i 0.151805 0.262934i
\(565\) 0.376266 + 0.651711i 0.0158296 + 0.0274177i
\(566\) −1.58936 + 2.75284i −0.0668056 + 0.115711i
\(567\) 0.500000 + 0.866025i 0.0209980 + 0.0363696i
\(568\) 8.60454 + 14.9035i 0.361039 + 0.625337i
\(569\) −8.47478 −0.355281 −0.177641 0.984095i \(-0.556846\pi\)
−0.177641 + 0.984095i \(0.556846\pi\)
\(570\) 0.692170 + 0.383884i 0.0289918 + 0.0160792i
\(571\) −44.9870 −1.88265 −0.941323 0.337507i \(-0.890416\pi\)
−0.941323 + 0.337507i \(0.890416\pi\)
\(572\) 0.477134 + 0.826421i 0.0199500 + 0.0345544i
\(573\) −7.51848 13.0224i −0.314089 0.544018i
\(574\) 4.96931 8.60709i 0.207415 0.359253i
\(575\) 0.973789 + 1.68665i 0.0406098 + 0.0703382i
\(576\) −4.39535 + 7.61297i −0.183140 + 0.317207i
\(577\) −28.1625 −1.17242 −0.586209 0.810160i \(-0.699380\pi\)
−0.586209 + 0.810160i \(0.699380\pi\)
\(578\) −17.8965 −0.744396
\(579\) 11.9088 20.6267i 0.494914 0.857216i
\(580\) −0.199661 + 0.345822i −0.00829045 + 0.0143595i
\(581\) −3.44575 −0.142954
\(582\) 20.6236 0.854877
\(583\) −29.5393 + 51.1636i −1.22339 + 2.11898i
\(584\) −3.74391 6.48465i −0.154924 0.268337i
\(585\) −0.0290519 + 0.0503194i −0.00120115 + 0.00208045i
\(586\) −16.3030 28.2377i −0.673472 1.16649i
\(587\) −18.8817 32.7040i −0.779329 1.34984i −0.932329 0.361612i \(-0.882227\pi\)
0.152999 0.988226i \(-0.451107\pi\)
\(588\) −0.572906 −0.0236262
\(589\) 9.07290 + 5.03192i 0.373842 + 0.207337i
\(590\) −2.10988 −0.0868624
\(591\) 0.950431 + 1.64619i 0.0390955 + 0.0677154i
\(592\) 6.11428 + 10.5902i 0.251295 + 0.435256i
\(593\) 9.32589 16.1529i 0.382968 0.663321i −0.608517 0.793541i \(-0.708235\pi\)
0.991485 + 0.130220i \(0.0415685\pi\)
\(594\) 2.60271 + 4.50802i 0.106790 + 0.184966i
\(595\) −0.107989 + 0.187043i −0.00442713 + 0.00766801i
\(596\) −0.621149 −0.0254432
\(597\) 16.4400 0.672846
\(598\) 0.0893493 0.154758i 0.00365377 0.00632851i
\(599\) −1.48454 + 2.57129i −0.0606565 + 0.105060i −0.894759 0.446549i \(-0.852653\pi\)
0.834103 + 0.551609i \(0.185986\pi\)
\(600\) 15.2971 0.624501
\(601\) −3.07231 −0.125322 −0.0626610 0.998035i \(-0.519959\pi\)
−0.0626610 + 0.998035i \(0.519959\pi\)
\(602\) −3.22783 + 5.59077i −0.131557 + 0.227863i
\(603\) 7.59723 + 13.1588i 0.309383 + 0.535867i
\(604\) 0.472378 0.818183i 0.0192208 0.0332914i
\(605\) 0.607020 + 1.05139i 0.0246789 + 0.0427451i
\(606\) 5.62194 + 9.73749i 0.228376 + 0.395559i
\(607\) −14.3398 −0.582035 −0.291017 0.956718i \(-0.593994\pi\)
−0.291017 + 0.956718i \(0.593994\pi\)
\(608\) 11.6951 7.02346i 0.474299 0.284839i
\(609\) −4.58557 −0.185817
\(610\) 0.370637 + 0.641963i 0.0150067 + 0.0259923i
\(611\) 2.40548 + 4.16641i 0.0973153 + 0.168555i
\(612\) 0.407022 0.704983i 0.0164529 0.0284972i
\(613\) −7.12510 12.3410i −0.287780 0.498449i 0.685500 0.728073i \(-0.259584\pi\)
−0.973280 + 0.229624i \(0.926251\pi\)
\(614\) −12.3459 + 21.3837i −0.498240 + 0.862978i
\(615\) −1.26458 −0.0509927
\(616\) −13.3930 −0.539621
\(617\) −20.6696 + 35.8008i −0.832127 + 1.44129i 0.0642218 + 0.997936i \(0.479543\pi\)
−0.896349 + 0.443350i \(0.853790\pi\)
\(618\) 1.71259 2.96629i 0.0688905 0.119322i
\(619\) 40.1692 1.61454 0.807268 0.590185i \(-0.200945\pi\)
0.807268 + 0.590185i \(0.200945\pi\)
\(620\) −0.207269 −0.00832412
\(621\) −0.195662 + 0.338896i −0.00785164 + 0.0135994i
\(622\) −7.59173 13.1493i −0.304401 0.527238i
\(623\) 1.70940 2.96077i 0.0684857 0.118621i
\(624\) −0.482788 0.836214i −0.0193270 0.0334753i
\(625\) −12.3270 21.3510i −0.493079 0.854039i
\(626\) 17.6789 0.706590
\(627\) −0.327108 18.9907i −0.0130634 0.758416i
\(628\) −10.5471 −0.420876
\(629\) −3.43940 5.95721i −0.137138 0.237530i
\(630\) −0.0907909 0.157254i −0.00361719 0.00626516i
\(631\) 3.27073 5.66507i 0.130206 0.225523i −0.793550 0.608505i \(-0.791770\pi\)
0.923756 + 0.382982i \(0.125103\pi\)
\(632\) 12.9470 + 22.4249i 0.515005 + 0.892014i
\(633\) −12.0784 + 20.9205i −0.480075 + 0.831514i
\(634\) −19.6259 −0.779443
\(635\) −3.00344 −0.119188
\(636\) −3.88378 + 6.72691i −0.154002 + 0.266739i
\(637\) 0.191130 0.331047i 0.00757284 0.0131165i
\(638\) −23.8698 −0.945015
\(639\) 5.59896 0.221492
\(640\) 0.322400 0.558412i 0.0127440 0.0220732i
\(641\) −20.9583 36.3009i −0.827804 1.43380i −0.899757 0.436391i \(-0.856256\pi\)
0.0719528 0.997408i \(-0.477077\pi\)
\(642\) −6.48178 + 11.2268i −0.255815 + 0.443085i
\(643\) −15.8285 27.4158i −0.624215 1.08117i −0.988692 0.149960i \(-0.952086\pi\)
0.364477 0.931212i \(-0.381248\pi\)
\(644\) −0.112096 0.194156i −0.00441719 0.00765080i
\(645\) 0.821411 0.0323430
\(646\) 6.34299 3.80926i 0.249561 0.149873i
\(647\) 26.5647 1.04437 0.522183 0.852833i \(-0.325118\pi\)
0.522183 + 0.852833i \(0.325118\pi\)
\(648\) 1.53681 + 2.66183i 0.0603716 + 0.104567i
\(649\) 25.3154 + 43.8476i 0.993716 + 1.72117i
\(650\) −1.13635 + 1.96822i −0.0445715 + 0.0772000i
\(651\) −1.19008 2.06128i −0.0466429 0.0807878i
\(652\) −3.39907 + 5.88736i −0.133118 + 0.230567i
\(653\) 27.9865 1.09519 0.547597 0.836742i \(-0.315543\pi\)
0.547597 + 0.836742i \(0.315543\pi\)
\(654\) 7.45498 0.291513
\(655\) 0.374943 0.649420i 0.0146502 0.0253749i
\(656\) 10.5074 18.1994i 0.410247 0.710569i
\(657\) −2.43616 −0.0950436
\(658\) −15.0349 −0.586120
\(659\) 0.534319 0.925468i 0.0208141 0.0360511i −0.855431 0.517917i \(-0.826708\pi\)
0.876245 + 0.481866i \(0.160041\pi\)
\(660\) 0.189726 + 0.328616i 0.00738509 + 0.0127913i
\(661\) 8.56235 14.8304i 0.333037 0.576837i −0.650069 0.759875i \(-0.725260\pi\)
0.983106 + 0.183039i \(0.0585933\pi\)
\(662\) −6.90114 11.9531i −0.268220 0.464571i
\(663\) 0.271577 + 0.470386i 0.0105472 + 0.0182683i
\(664\) −10.5909 −0.411008
\(665\) 0.0114106 + 0.662458i 0.000442483 + 0.0256890i
\(666\) 5.78327 0.224097
\(667\) −0.897222 1.55403i −0.0347406 0.0601724i
\(668\) −2.97922 5.16016i −0.115269 0.199653i
\(669\) 3.18103 5.50970i 0.122986 0.213017i
\(670\) −1.37952 2.38940i −0.0532954 0.0923104i
\(671\) 8.89419 15.4052i 0.343356 0.594710i
\(672\) −3.12969 −0.120730
\(673\) 20.9247 0.806586 0.403293 0.915071i \(-0.367865\pi\)
0.403293 + 0.915071i \(0.367865\pi\)
\(674\) 10.8242 18.7481i 0.416933 0.722149i
\(675\) 2.48845 4.31012i 0.0957804 0.165897i
\(676\) 7.36406 0.283233
\(677\) −7.00773 −0.269329 −0.134665 0.990891i \(-0.542996\pi\)
−0.134665 + 0.990891i \(0.542996\pi\)
\(678\) −2.95716 + 5.12195i −0.113569 + 0.196707i
\(679\) 8.63195 + 14.9510i 0.331264 + 0.573766i
\(680\) −0.331918 + 0.574899i −0.0127285 + 0.0220464i
\(681\) 2.86067 + 4.95482i 0.109621 + 0.189869i
\(682\) −6.19485 10.7298i −0.237213 0.410865i
\(683\) −7.30884 −0.279665 −0.139832 0.990175i \(-0.544656\pi\)
−0.139832 + 0.990175i \(0.544656\pi\)
\(684\) −0.0430076 2.49687i −0.00164444 0.0954701i
\(685\) 0.239870 0.00916496
\(686\) 0.597305 + 1.03456i 0.0228052 + 0.0394998i
\(687\) −2.45142 4.24599i −0.0935276 0.161994i
\(688\) −6.82515 + 11.8215i −0.260207 + 0.450691i
\(689\) −2.59138 4.48840i −0.0987236 0.170994i
\(690\) 0.0355286 0.0615374i 0.00135255 0.00234269i
\(691\) 39.3070 1.49531 0.747655 0.664087i \(-0.231180\pi\)
0.747655 + 0.664087i \(0.231180\pi\)
\(692\) 6.90274 0.262403
\(693\) −2.17871 + 3.77363i −0.0827623 + 0.143348i
\(694\) −10.5361 + 18.2491i −0.399945 + 0.692725i
\(695\) −0.385595 −0.0146264
\(696\) −14.0943 −0.534243
\(697\) −5.91064 + 10.2375i −0.223881 + 0.387774i
\(698\) −1.67892 2.90798i −0.0635481 0.110069i
\(699\) 8.76247 15.1770i 0.331427 0.574048i
\(700\) 1.42565 + 2.46929i 0.0538843 + 0.0933304i
\(701\) −20.2709 35.1102i −0.765621 1.32610i −0.939917 0.341402i \(-0.889098\pi\)
0.174296 0.984693i \(-0.444235\pi\)
\(702\) −0.456652 −0.0172352
\(703\) −18.4539 10.2347i −0.696002 0.386010i
\(704\) −38.3047 −1.44366
\(705\) 0.956508 + 1.65672i 0.0360242 + 0.0623957i
\(706\) 11.5128 + 19.9408i 0.433290 + 0.750481i
\(707\) −4.70609 + 8.15119i −0.176991 + 0.306557i
\(708\) 3.32843 + 5.76500i 0.125090 + 0.216662i
\(709\) −17.4985 + 30.3083i −0.657171 + 1.13825i 0.324174 + 0.945998i \(0.394914\pi\)
−0.981345 + 0.192256i \(0.938420\pi\)
\(710\) −1.01667 −0.0381549
\(711\) 8.42461 0.315947
\(712\) 5.25405 9.10028i 0.196904 0.341047i
\(713\) 0.465706 0.806627i 0.0174408 0.0302084i
\(714\) −1.69743 −0.0635246
\(715\) −0.253182 −0.00946848
\(716\) 0.872380 1.51101i 0.0326024 0.0564690i
\(717\) 5.01280 + 8.68242i 0.187206 + 0.324251i
\(718\) −3.09353 + 5.35815i −0.115449 + 0.199964i
\(719\) 17.8906 + 30.9874i 0.667207 + 1.15564i 0.978682 + 0.205382i \(0.0658436\pi\)
−0.311475 + 0.950254i \(0.600823\pi\)
\(720\) −0.191975 0.332510i −0.00715447 0.0123919i
\(721\) 2.86719 0.106780
\(722\) 10.6651 20.0359i 0.396914 0.745658i
\(723\) 21.5441 0.801235
\(724\) 3.71787 + 6.43954i 0.138174 + 0.239324i
\(725\) 11.4110 + 19.7644i 0.423792 + 0.734030i
\(726\) −4.77072 + 8.26313i −0.177058 + 0.306673i
\(727\) −5.86331 10.1555i −0.217458 0.376648i 0.736572 0.676359i \(-0.236443\pi\)
−0.954030 + 0.299711i \(0.903110\pi\)
\(728\) 0.587461 1.01751i 0.0217727 0.0377115i
\(729\) 1.00000 0.0370370
\(730\) 0.442362 0.0163725
\(731\) 3.83928 6.64982i 0.142001 0.245953i
\(732\) 1.16939 2.02545i 0.0432220 0.0748627i
\(733\) 13.9576 0.515536 0.257768 0.966207i \(-0.417013\pi\)
0.257768 + 0.966207i \(0.417013\pi\)
\(734\) −38.1062 −1.40653
\(735\) 0.0760004 0.131637i 0.00280332 0.00485549i
\(736\) −0.612361 1.06064i −0.0225719 0.0390958i
\(737\) −33.1043 + 57.3383i −1.21941 + 2.11208i
\(738\) −4.96931 8.60709i −0.182923 0.316831i
\(739\) 5.15998 + 8.93734i 0.189813 + 0.328765i 0.945188 0.326527i \(-0.105879\pi\)
−0.755375 + 0.655293i \(0.772545\pi\)
\(740\) 0.421576 0.0154974
\(741\) 1.45713 + 0.808141i 0.0535291 + 0.0296878i
\(742\) 16.1968 0.594602
\(743\) 23.3692 + 40.4767i 0.857333 + 1.48494i 0.874464 + 0.485091i \(0.161214\pi\)
−0.0171304 + 0.999853i \(0.505453\pi\)
\(744\) −3.65785 6.33558i −0.134103 0.232274i
\(745\) 0.0824002 0.142721i 0.00301891 0.00522891i
\(746\) −4.86173 8.42076i −0.178000 0.308306i
\(747\) −1.72287 + 2.98411i −0.0630367 + 0.109183i
\(748\) 3.54713 0.129696
\(749\) −10.8517 −0.396512
\(750\) −0.905811 + 1.56891i −0.0330755 + 0.0572885i
\(751\) 26.8798 46.5573i 0.980860 1.69890i 0.321800 0.946808i \(-0.395712\pi\)
0.659059 0.752091i \(-0.270955\pi\)
\(752\) −31.7908 −1.15929
\(753\) 12.8523 0.468362
\(754\) 1.04700 1.81347i 0.0381297 0.0660425i
\(755\) 0.125329 + 0.217077i 0.00456120 + 0.00790023i
\(756\) −0.286453 + 0.496151i −0.0104182 + 0.0180448i
\(757\) −8.06664 13.9718i −0.293187 0.507815i 0.681374 0.731935i \(-0.261383\pi\)
−0.974562 + 0.224120i \(0.928049\pi\)
\(758\) −0.739996 1.28171i −0.0268779 0.0465538i
\(759\) −1.70516 −0.0618934
\(760\) 0.0350718 + 2.03614i 0.00127219 + 0.0738587i
\(761\) −37.0513 −1.34311 −0.671554 0.740955i \(-0.734373\pi\)
−0.671554 + 0.740955i \(0.734373\pi\)
\(762\) −11.8024 20.4423i −0.427556 0.740548i
\(763\) 3.12026 + 5.40444i 0.112961 + 0.195654i
\(764\) 4.30738 7.46060i 0.155835 0.269915i
\(765\) 0.107989 + 0.187043i 0.00390436 + 0.00676255i
\(766\) 8.38858 14.5294i 0.303092 0.524970i
\(767\) −4.44165 −0.160379
\(768\) −12.5138 −0.451552
\(769\) 25.1285 43.5239i 0.906158 1.56951i 0.0868022 0.996226i \(-0.472335\pi\)
0.819356 0.573286i \(-0.194331\pi\)
\(770\) 0.395613 0.685223i 0.0142569 0.0246937i
\(771\) −19.6855 −0.708956
\(772\) 13.6453 0.491104
\(773\) 15.8715 27.4903i 0.570859 0.988757i −0.425619 0.904902i \(-0.639944\pi\)
0.996478 0.0838542i \(-0.0267230\pi\)
\(774\) 3.22783 + 5.59077i 0.116022 + 0.200956i
\(775\) −5.92290 + 10.2588i −0.212757 + 0.368506i
\(776\) 26.5313 + 45.9536i 0.952420 + 1.64964i
\(777\) 2.42057 + 4.19255i 0.0868374 + 0.150407i
\(778\) 15.5753 0.558403
\(779\) 0.624541 + 36.2587i 0.0223765 + 1.29910i
\(780\) −0.0332880 −0.00119190
\(781\) 12.1985 + 21.1284i 0.436497 + 0.756035i
\(782\) −0.332122 0.575252i −0.0118767 0.0205710i
\(783\) −2.29279 + 3.97122i −0.0819375 + 0.141920i
\(784\) 1.26298 + 2.18755i 0.0451066 + 0.0781269i
\(785\) 1.39916 2.42341i 0.0499381 0.0864954i
\(786\) 5.89353 0.210215
\(787\) 47.7296 1.70138 0.850688 0.525671i \(-0.176186\pi\)
0.850688 + 0.525671i \(0.176186\pi\)
\(788\) −0.544507 + 0.943114i −0.0193973 + 0.0335971i
\(789\) 9.49582 16.4472i 0.338060 0.585537i
\(790\) −1.52975 −0.0544262
\(791\) −4.95084 −0.176032
\(792\) −6.69652 + 11.5987i −0.237950 + 0.412142i
\(793\) 0.780254 + 1.35144i 0.0277076 + 0.0479910i
\(794\) 3.91896 6.78784i 0.139079 0.240891i
\(795\) −1.03043 1.78475i −0.0365455 0.0632987i
\(796\) 4.70930 + 8.15674i 0.166917 + 0.289108i
\(797\) −44.3597 −1.57130 −0.785651 0.618670i \(-0.787672\pi\)
−0.785651 + 0.618670i \(0.787672\pi\)
\(798\) −4.46405 + 2.68087i −0.158026 + 0.0949018i
\(799\) 17.8829 0.632651
\(800\) 7.78808 + 13.4893i 0.275350 + 0.476920i
\(801\) −1.70940 2.96077i −0.0603987 0.104614i
\(802\) −2.20992 + 3.82769i −0.0780350 + 0.135161i
\(803\) −5.30768 9.19317i −0.187304 0.324420i
\(804\) −4.35250 + 7.53874i −0.153501 + 0.265871i
\(805\) 0.0594815 0.00209645
\(806\) 1.08690 0.0382845
\(807\) −5.58464 + 9.67288i −0.196589 + 0.340502i
\(808\) −14.4647 + 25.0537i −0.508868 + 0.881384i
\(809\) 37.6374 1.32326 0.661631 0.749830i \(-0.269865\pi\)
0.661631 + 0.749830i \(0.269865\pi\)
\(810\) −0.181582 −0.00638013
\(811\) 8.92112 15.4518i 0.313263 0.542587i −0.665804 0.746127i \(-0.731911\pi\)
0.979067 + 0.203540i \(0.0652446\pi\)
\(812\) −1.31355 2.27513i −0.0460966 0.0798416i
\(813\) −8.03378 + 13.9149i −0.281757 + 0.488017i
\(814\) 12.6001 + 21.8239i 0.441632 + 0.764929i
\(815\) −0.901826 1.56201i −0.0315896 0.0547148i
\(816\) −3.58916 −0.125646
\(817\) −0.405673 23.5520i −0.0141927 0.823979i
\(818\) 19.5704 0.684265
\(819\) −0.191130 0.331047i −0.00667862 0.0115677i
\(820\) −0.362241 0.627421i −0.0126500 0.0219105i
\(821\) 17.5737 30.4385i 0.613325 1.06231i −0.377351 0.926070i \(-0.623165\pi\)
0.990676 0.136239i \(-0.0435016\pi\)
\(822\) 0.942598 + 1.63263i 0.0328769 + 0.0569444i
\(823\) −12.7823 + 22.1396i −0.445564 + 0.771740i −0.998091 0.0617553i \(-0.980330\pi\)
0.552527 + 0.833495i \(0.313663\pi\)
\(824\) 8.81267 0.307004
\(825\) 21.6864 0.755024
\(826\) 6.94036 12.0211i 0.241486 0.418266i
\(827\) 5.44816 9.43648i 0.189451 0.328139i −0.755616 0.655014i \(-0.772663\pi\)
0.945067 + 0.326876i \(0.105996\pi\)
\(828\) −0.224192 −0.00779120
\(829\) 22.9851 0.798304 0.399152 0.916885i \(-0.369305\pi\)
0.399152 + 0.916885i \(0.369305\pi\)
\(830\) 0.312843 0.541859i 0.0108589 0.0188082i
\(831\) −3.75741 6.50803i −0.130343 0.225761i
\(832\) 1.68017 2.91013i 0.0582493 0.100891i
\(833\) −0.710452 1.23054i −0.0246157 0.0426357i
\(834\) −1.51524 2.62448i −0.0524685 0.0908782i
\(835\) 1.58087 0.0547081
\(836\) 9.32856 5.60224i 0.322635 0.193757i
\(837\) −2.38016 −0.0822703
\(838\) 1.93558 + 3.35251i 0.0668633 + 0.115811i
\(839\) −19.4350 33.6625i −0.670972 1.16216i −0.977629 0.210338i \(-0.932544\pi\)
0.306656 0.951820i \(-0.400790\pi\)
\(840\) 0.233596 0.404601i 0.00805984 0.0139600i
\(841\) 3.98626 + 6.90441i 0.137457 + 0.238083i
\(842\) 12.3724 21.4296i 0.426381 0.738513i
\(843\) −6.07195 −0.209129
\(844\) −13.8396 −0.476379
\(845\) −0.976899 + 1.69204i −0.0336064 + 0.0582079i
\(846\) −7.51743 + 13.0206i −0.258455 + 0.447656i
\(847\) −7.98707 −0.274439
\(848\) 34.2476 1.17607
\(849\) −1.33044 + 2.30439i −0.0456605 + 0.0790864i
\(850\) 4.22396 + 7.31611i 0.144881 + 0.250941i
\(851\) −0.947226 + 1.64064i −0.0324705 + 0.0562405i
\(852\) 1.60384 + 2.77793i 0.0549466 + 0.0951703i
\(853\) 3.49550 + 6.05438i 0.119683 + 0.207298i 0.919642 0.392757i \(-0.128479\pi\)
−0.799959 + 0.600055i \(0.795145\pi\)
\(854\) −4.87678 −0.166880
\(855\) 0.579410 + 0.321347i 0.0198154 + 0.0109898i
\(856\) −33.3540 −1.14002
\(857\) −4.86683 8.42959i −0.166248 0.287949i 0.770850 0.637017i \(-0.219832\pi\)
−0.937098 + 0.349067i \(0.886498\pi\)
\(858\) −0.994911 1.72324i −0.0339657 0.0588303i
\(859\) 6.84144 11.8497i 0.233427 0.404307i −0.725387 0.688341i \(-0.758339\pi\)
0.958814 + 0.284033i \(0.0916727\pi\)
\(860\) 0.235295 + 0.407543i 0.00802350 + 0.0138971i
\(861\) 4.15977 7.20493i 0.141765 0.245544i
\(862\) −31.2834 −1.06552
\(863\) 3.08754 0.105101 0.0525506 0.998618i \(-0.483265\pi\)
0.0525506 + 0.998618i \(0.483265\pi\)
\(864\) −1.56485 + 2.71039i −0.0532371 + 0.0922094i
\(865\) −0.915702 + 1.58604i −0.0311348 + 0.0539271i
\(866\) 10.8157 0.367534
\(867\) −14.9810 −0.508782
\(868\) 0.681803 1.18092i 0.0231419 0.0400829i
\(869\) 18.3548 + 31.7914i 0.622642 + 1.07845i
\(870\) 0.416328 0.721101i 0.0141148 0.0244476i
\(871\) −2.90412 5.03008i −0.0984022 0.170438i
\(872\) 9.59048 + 16.6112i 0.324775 + 0.562526i
\(873\) 17.2639 0.584295
\(874\) −1.78198 0.988305i −0.0602764 0.0334299i
\(875\) −1.51650 −0.0512669
\(876\) −0.697844 1.20870i −0.0235780 0.0408382i
\(877\) −10.6253 18.4036i −0.358792 0.621445i 0.628968 0.777432i \(-0.283478\pi\)
−0.987759 + 0.155986i \(0.950144\pi\)
\(878\) −9.60683 + 16.6395i −0.324215 + 0.561556i
\(879\) −13.6471 23.6375i −0.460307 0.797275i
\(880\) 0.836513 1.44888i 0.0281988 0.0488418i
\(881\) 29.9975 1.01064 0.505320 0.862932i \(-0.331374\pi\)
0.505320 + 0.862932i \(0.331374\pi\)
\(882\) 1.19461 0.0402246
\(883\) 12.2001 21.1312i 0.410565 0.711120i −0.584386 0.811476i \(-0.698665\pi\)
0.994952 + 0.100355i \(0.0319980\pi\)
\(884\) −0.155588 + 0.269487i −0.00523300 + 0.00906382i
\(885\) −1.76617 −0.0593690
\(886\) 11.4857 0.385870
\(887\) −0.801001 + 1.38737i −0.0268950 + 0.0465835i −0.879160 0.476527i \(-0.841895\pi\)
0.852265 + 0.523111i \(0.175229\pi\)
\(888\) 7.43991 + 12.8863i 0.249667 + 0.432436i
\(889\) 9.87970 17.1121i 0.331355 0.573923i
\(890\) 0.310396 + 0.537622i 0.0104045 + 0.0180211i
\(891\) 2.17871 + 3.77363i 0.0729895 + 0.126421i
\(892\) 3.64486 0.122039
\(893\) 47.0301 28.2438i 1.57380 0.945141i
\(894\) 1.29521 0.0433182
\(895\) 0.231456 + 0.400894i 0.00773672 + 0.0134004i
\(896\) 2.12104 + 3.67375i 0.0708590 + 0.122731i
\(897\) 0.0747937 0.129546i 0.00249729 0.00432543i
\(898\) 8.32543 + 14.4201i 0.277823 + 0.481204i
\(899\) 5.45719 9.45213i 0.182008 0.315246i
\(900\) 2.85129 0.0950430
\(901\) −19.2649 −0.641807
\(902\) 21.6533 37.5047i 0.720977 1.24877i
\(903\) −2.70200 + 4.67999i −0.0899168 + 0.155740i
\(904\) −15.2170 −0.506110
\(905\) −1.97282 −0.0655787
\(906\) −0.984993 + 1.70606i −0.0327242 + 0.0566800i
\(907\) −12.0635 20.8946i −0.400563 0.693795i 0.593231 0.805032i \(-0.297852\pi\)
−0.993794 + 0.111237i \(0.964519\pi\)
\(908\) −1.63889 + 2.83864i −0.0543885 + 0.0942037i
\(909\) 4.70609 + 8.15119i 0.156091 + 0.270358i
\(910\) 0.0347057 + 0.0601120i 0.00115048 + 0.00199269i
\(911\) −33.0678 −1.09559 −0.547793 0.836614i \(-0.684532\pi\)
−0.547793 + 0.836614i \(0.684532\pi\)
\(912\) −9.43910 + 5.66862i −0.312560 + 0.187707i
\(913\) −15.0146 −0.496909
\(914\) 15.6863 + 27.1695i 0.518857 + 0.898687i
\(915\) 0.310258 + 0.537383i 0.0102568 + 0.0177653i
\(916\) 1.40443 2.43255i 0.0464038 0.0803737i
\(917\) 2.46672 + 4.27248i 0.0814582 + 0.141090i
\(918\) −0.848714 + 1.47002i −0.0280117 + 0.0485177i
\(919\) 51.9138 1.71248 0.856239 0.516580i \(-0.172795\pi\)
0.856239 + 0.516580i \(0.172795\pi\)
\(920\) 0.182824 0.00602751
\(921\) −10.3347 + 17.9002i −0.340539 + 0.589831i
\(922\) −0.0385289 + 0.0667341i −0.00126888 + 0.00219777i
\(923\) −2.14026 −0.0704475
\(924\) −2.49639 −0.0821251
\(925\) 12.0469 20.8659i 0.396100 0.686066i
\(926\) −22.5372 39.0355i −0.740618 1.28279i
\(927\) 1.43360 2.48306i 0.0470855 0.0815545i
\(928\) −7.17571 12.4287i −0.235554 0.407992i
\(929\) −0.173965 0.301316i −0.00570760 0.00988585i 0.863157 0.504935i \(-0.168483\pi\)
−0.868865 + 0.495049i \(0.835150\pi\)
\(930\) 0.432193 0.0141722
\(931\) −3.81189 2.11411i −0.124930 0.0692873i
\(932\) 10.0401 0.328875
\(933\) −6.35499 11.0072i −0.208053 0.360358i
\(934\) −22.7300 39.3695i −0.743749 1.28821i
\(935\) −0.470554 + 0.815024i −0.0153888 + 0.0266541i
\(936\) −0.587461 1.01751i −0.0192018 0.0332584i
\(937\) 21.6394 37.4805i 0.706927 1.22443i −0.259065 0.965860i \(-0.583414\pi\)
0.965992 0.258573i \(-0.0832524\pi\)
\(938\) 18.1515 0.592666
\(939\) 14.7989 0.482943
\(940\) −0.547989 + 0.949144i −0.0178734 + 0.0309577i
\(941\) −15.5041 + 26.8539i −0.505420 + 0.875413i 0.494560 + 0.869143i \(0.335329\pi\)
−0.999980 + 0.00626966i \(0.998004\pi\)
\(942\) 21.9927 0.716559
\(943\) 3.25563 0.106018
\(944\) 14.6752 25.4182i 0.477637 0.827291i
\(945\) −0.0760004 0.131637i −0.00247229 0.00428214i
\(946\) −14.0650 + 24.3613i −0.457293 + 0.792054i
\(947\) −17.3279 30.0128i −0.563082 0.975286i −0.997225 0.0744424i \(-0.976282\pi\)
0.434144 0.900844i \(-0.357051\pi\)
\(948\) 2.41325 + 4.17987i 0.0783788 + 0.135756i
\(949\) 0.931246 0.0302295
\(950\) 22.6634 + 12.5694i 0.735299 + 0.407804i
\(951\) −16.4287 −0.532736
\(952\) −2.18366 3.78221i −0.0707729 0.122582i
\(953\) −15.4442 26.7501i −0.500285 0.866520i −1.00000 0.000329698i \(-0.999895\pi\)
0.499714 0.866190i \(-0.333438\pi\)
\(954\) 8.09838 14.0268i 0.262195 0.454135i
\(955\) 1.14281 + 1.97941i 0.0369806 + 0.0640523i
\(956\) −2.87186 + 4.97420i −0.0928825 + 0.160877i
\(957\) −19.9812 −0.645902
\(958\) 33.0285 1.06710
\(959\) −0.789042 + 1.36666i −0.0254795 + 0.0441318i
\(960\) 0.668096 1.15718i 0.0215627 0.0373477i
\(961\) −25.3349 −0.817253
\(962\) −2.21071 −0.0712762
\(963\) −5.42585 + 9.39785i −0.174846 + 0.302841i
\(964\) 6.17137 + 10.6891i 0.198767 + 0.344274i
\(965\) −1.81015 + 3.13527i −0.0582708 + 0.100928i
\(966\) 0.233740 + 0.404849i 0.00752045 + 0.0130258i
\(967\) −17.6994 30.6563i −0.569175 0.985840i −0.996648 0.0818118i \(-0.973929\pi\)
0.427473 0.904028i \(-0.359404\pi\)
\(968\) −24.5492 −0.789042
\(969\) 5.30967 3.18871i 0.170571 0.102436i
\(970\) −3.13481 −0.100653
\(971\) 26.4357 + 45.7881i 0.848364 + 1.46941i 0.882668 + 0.469997i \(0.155745\pi\)
−0.0343043 + 0.999411i \(0.510922\pi\)
\(972\) 0.286453 + 0.496151i 0.00918798 + 0.0159140i
\(973\) 1.26840 2.19693i 0.0406630 0.0704303i
\(974\) 21.4394 + 37.1342i 0.686964 + 1.18986i
\(975\) −0.951234 + 1.64759i −0.0304639 + 0.0527650i
\(976\) −10.3118 −0.330073
\(977\) 15.1975 0.486211 0.243105 0.970000i \(-0.421834\pi\)
0.243105 + 0.970000i \(0.421834\pi\)
\(978\) 7.08767 12.2762i 0.226639 0.392550i
\(979\) 7.44857 12.9013i 0.238057 0.412327i
\(980\) 0.0870821 0.00278173
\(981\) 6.24051 0.199244
\(982\) −7.31878 + 12.6765i −0.233552 + 0.404523i
\(983\) 14.4362 + 25.0043i 0.460444 + 0.797513i 0.998983 0.0450877i \(-0.0143567\pi\)
−0.538539 + 0.842601i \(0.681023\pi\)
\(984\) 12.7856 22.1452i 0.407589 0.705964i
\(985\) −0.144466 0.250223i −0.00460308 0.00797276i
\(986\) −3.89184 6.74086i −0.123941 0.214673i
\(987\) −12.5856 −0.400603
\(988\) 0.0164401 + 0.954452i 0.000523028 + 0.0303652i
\(989\) −2.11471 −0.0672439
\(990\) −0.395613 0.685223i −0.0125734 0.0217778i
\(991\) −2.52755 4.37785i −0.0802904 0.139067i 0.823084 0.567919i \(-0.192251\pi\)
−0.903375 + 0.428852i \(0.858918\pi\)
\(992\) 3.72458 6.45116i 0.118256 0.204825i
\(993\) −5.77690 10.0059i −0.183324 0.317527i
\(994\) 3.34429 5.79248i 0.106074 0.183726i
\(995\) −2.49890 −0.0792204
\(996\) −1.97409 −0.0625514
\(997\) 26.6555 46.1686i 0.844187 1.46218i −0.0421379 0.999112i \(-0.513417\pi\)
0.886325 0.463063i \(-0.153250\pi\)
\(998\) −8.80693 + 15.2540i −0.278778 + 0.482859i
\(999\) 4.84114 0.153167
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 399.2.k.c.64.3 12
3.2 odd 2 1197.2.k.i.64.4 12
19.7 even 3 7581.2.a.bc.1.4 6
19.11 even 3 inner 399.2.k.c.106.3 yes 12
19.12 odd 6 7581.2.a.ba.1.3 6
57.11 odd 6 1197.2.k.i.505.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.k.c.64.3 12 1.1 even 1 trivial
399.2.k.c.106.3 yes 12 19.11 even 3 inner
1197.2.k.i.64.4 12 3.2 odd 2
1197.2.k.i.505.4 12 57.11 odd 6
7581.2.a.ba.1.3 6 19.12 odd 6
7581.2.a.bc.1.4 6 19.7 even 3