Properties

Label 399.2.w.c
Level 399399
Weight 22
Character orbit 399.w
Analytic conductor 3.1863.186
Analytic rank 00
Dimension 88
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [399,2,Mod(170,399)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(399, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("399.170");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 399=3719 399 = 3 \cdot 7 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 399.w (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.186031040653.18603104065
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: 8.0.3317760000.8
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+4x6+7x4+36x2+81 x^{8} + 4x^{6} + 7x^{4} + 36x^{2} + 81 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 32 3^{2}
Twist minimal: yes
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q3+2β4q4+β6q5+(2β41)q7+(β6+2β42)q92β2q11+2β5q12+(β7β5+β1)q13++(4β6+4β2+10)q99+O(q100) q + \beta_1 q^{3} + 2 \beta_{4} q^{4} + \beta_{6} q^{5} + ( - 2 \beta_{4} - 1) q^{7} + (\beta_{6} + 2 \beta_{4} - 2) q^{9} - 2 \beta_{2} q^{11} + 2 \beta_{5} q^{12} + ( - \beta_{7} - \beta_{5} + \beta_1) q^{13}+ \cdots + (4 \beta_{6} + 4 \beta_{2} + 10) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+8q416q78q916q164q19+8q2832q3612q39+40q43+20q45+8q49+80q5524q57+16q61+40q6364q6432q7316q76++80q99+O(q100) 8 q + 8 q^{4} - 16 q^{7} - 8 q^{9} - 16 q^{16} - 4 q^{19} + 8 q^{28} - 32 q^{36} - 12 q^{39} + 40 q^{43} + 20 q^{45} + 8 q^{49} + 80 q^{55} - 24 q^{57} + 16 q^{61} + 40 q^{63} - 64 q^{64} - 32 q^{73} - 16 q^{76}+ \cdots + 80 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8+4x6+7x4+36x2+81 x^{8} + 4x^{6} + 7x^{4} + 36x^{2} + 81 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν6+14ν47ν236)/63 ( -\nu^{6} + 14\nu^{4} - 7\nu^{2} - 36 ) / 63 Copy content Toggle raw display
β3\beta_{3}== (ν7+14ν57ν336ν)/63 ( -\nu^{7} + 14\nu^{5} - 7\nu^{3} - 36\nu ) / 63 Copy content Toggle raw display
β4\beta_{4}== (4ν6+7ν4+28ν2+144)/63 ( 4\nu^{6} + 7\nu^{4} + 28\nu^{2} + 144 ) / 63 Copy content Toggle raw display
β5\beta_{5}== (4ν7+7ν5+28ν3+144ν)/63 ( 4\nu^{7} + 7\nu^{5} + 28\nu^{3} + 144\nu ) / 63 Copy content Toggle raw display
β6\beta_{6}== (8ν614ν4+7ν2162)/63 ( -8\nu^{6} - 14\nu^{4} + 7\nu^{2} - 162 ) / 63 Copy content Toggle raw display
β7\beta_{7}== (8ν714ν5+7ν3162ν)/63 ( -8\nu^{7} - 14\nu^{5} + 7\nu^{3} - 162\nu ) / 63 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β6+2β42 \beta_{6} + 2\beta_{4} - 2 Copy content Toggle raw display
ν3\nu^{3}== β7+2β52β1 \beta_{7} + 2\beta_{5} - 2\beta_1 Copy content Toggle raw display
ν4\nu^{4}== β4+4β2 \beta_{4} + 4\beta_{2} Copy content Toggle raw display
ν5\nu^{5}== β5+4β3 \beta_{5} + 4\beta_{3} Copy content Toggle raw display
ν6\nu^{6}== 7β67β222 -7\beta_{6} - 7\beta_{2} - 22 Copy content Toggle raw display
ν7\nu^{7}== 7β77β322β1 -7\beta_{7} - 7\beta_{3} - 22\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/399Z)×\left(\mathbb{Z}/399\mathbb{Z}\right)^\times.

nn 115115 134134 211211
χ(n)\chi(n) 1+β4-1 + \beta_{4} 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
170.1
−1.40294 1.01575i
−0.178197 1.72286i
0.178197 + 1.72286i
1.40294 + 1.01575i
−1.40294 + 1.01575i
−0.178197 + 1.72286i
0.178197 1.72286i
1.40294 1.01575i
0 −1.40294 1.01575i 1.00000 + 1.73205i 1.93649 + 1.11803i 0 −2.00000 1.73205i 0 0.936492 + 2.85008i 0
170.2 0 −0.178197 1.72286i 1.00000 + 1.73205i −1.93649 1.11803i 0 −2.00000 1.73205i 0 −2.93649 + 0.614017i 0
170.3 0 0.178197 + 1.72286i 1.00000 + 1.73205i −1.93649 1.11803i 0 −2.00000 1.73205i 0 −2.93649 + 0.614017i 0
170.4 0 1.40294 + 1.01575i 1.00000 + 1.73205i 1.93649 + 1.11803i 0 −2.00000 1.73205i 0 0.936492 + 2.85008i 0
284.1 0 −1.40294 + 1.01575i 1.00000 1.73205i 1.93649 1.11803i 0 −2.00000 + 1.73205i 0 0.936492 2.85008i 0
284.2 0 −0.178197 + 1.72286i 1.00000 1.73205i −1.93649 + 1.11803i 0 −2.00000 + 1.73205i 0 −2.93649 0.614017i 0
284.3 0 0.178197 1.72286i 1.00000 1.73205i −1.93649 + 1.11803i 0 −2.00000 + 1.73205i 0 −2.93649 0.614017i 0
284.4 0 1.40294 1.01575i 1.00000 1.73205i 1.93649 1.11803i 0 −2.00000 + 1.73205i 0 0.936492 2.85008i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 170.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.c even 3 1 inner
19.b odd 2 1 inner
21.h odd 6 1 inner
57.d even 2 1 inner
133.r odd 6 1 inner
399.w even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 399.2.w.c 8
3.b odd 2 1 inner 399.2.w.c 8
7.c even 3 1 inner 399.2.w.c 8
19.b odd 2 1 inner 399.2.w.c 8
21.h odd 6 1 inner 399.2.w.c 8
57.d even 2 1 inner 399.2.w.c 8
133.r odd 6 1 inner 399.2.w.c 8
399.w even 6 1 inner 399.2.w.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
399.2.w.c 8 1.a even 1 1 trivial
399.2.w.c 8 3.b odd 2 1 inner
399.2.w.c 8 7.c even 3 1 inner
399.2.w.c 8 19.b odd 2 1 inner
399.2.w.c 8 21.h odd 6 1 inner
399.2.w.c 8 57.d even 2 1 inner
399.2.w.c 8 133.r odd 6 1 inner
399.2.w.c 8 399.w even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(399,[χ])S_{2}^{\mathrm{new}}(399, [\chi]):

T2 T_{2} Copy content Toggle raw display
T545T52+25 T_{5}^{4} - 5T_{5}^{2} + 25 Copy content Toggle raw display
T31 T_{31} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 T8+4T6++81 T^{8} + 4 T^{6} + \cdots + 81 Copy content Toggle raw display
55 (T45T2+25)2 (T^{4} - 5 T^{2} + 25)^{2} Copy content Toggle raw display
77 (T2+4T+7)4 (T^{2} + 4 T + 7)^{4} Copy content Toggle raw display
1111 (T420T2+400)2 (T^{4} - 20 T^{2} + 400)^{2} Copy content Toggle raw display
1313 (T2+18)4 (T^{2} + 18)^{4} Copy content Toggle raw display
1717 (T45T2+25)2 (T^{4} - 5 T^{2} + 25)^{2} Copy content Toggle raw display
1919 (T4+2T3++361)2 (T^{4} + 2 T^{3} + \cdots + 361)^{2} Copy content Toggle raw display
2323 (T45T2+25)2 (T^{4} - 5 T^{2} + 25)^{2} Copy content Toggle raw display
2929 (T290)4 (T^{2} - 90)^{4} Copy content Toggle raw display
3131 T8 T^{8} Copy content Toggle raw display
3737 (T472T2+5184)2 (T^{4} - 72 T^{2} + 5184)^{2} Copy content Toggle raw display
4141 (T290)4 (T^{2} - 90)^{4} Copy content Toggle raw display
4343 (T5)8 (T - 5)^{8} Copy content Toggle raw display
4747 (T420T2+400)2 (T^{4} - 20 T^{2} + 400)^{2} Copy content Toggle raw display
5353 (T4+90T2+8100)2 (T^{4} + 90 T^{2} + 8100)^{2} Copy content Toggle raw display
5959 T8 T^{8} Copy content Toggle raw display
6161 (T24T+16)4 (T^{2} - 4 T + 16)^{4} Copy content Toggle raw display
6767 (T4162T2+26244)2 (T^{4} - 162 T^{2} + 26244)^{2} Copy content Toggle raw display
7171 T8 T^{8} Copy content Toggle raw display
7373 (T2+8T+64)4 (T^{2} + 8 T + 64)^{4} Copy content Toggle raw display
7979 (T4162T2+26244)2 (T^{4} - 162 T^{2} + 26244)^{2} Copy content Toggle raw display
8383 (T2+245)4 (T^{2} + 245)^{4} Copy content Toggle raw display
8989 (T4+90T2+8100)2 (T^{4} + 90 T^{2} + 8100)^{2} Copy content Toggle raw display
9797 (T2+72)4 (T^{2} + 72)^{4} Copy content Toggle raw display
show more
show less