Properties

Label 399.2.x.a.65.1
Level $399$
Weight $2$
Character 399.65
Analytic conductor $3.186$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [399,2,Mod(65,399)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(399, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("399.65");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 399 = 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 399.x (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18603104065\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

Embedding invariants

Embedding label 65.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 399.65
Dual form 399.2.x.a.221.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205i q^{3} +(1.00000 - 1.73205i) q^{4} +(-2.50000 - 0.866025i) q^{7} -3.00000 q^{9} +O(q^{10})\) \(q-1.73205i q^{3} +(1.00000 - 1.73205i) q^{4} +(-2.50000 - 0.866025i) q^{7} -3.00000 q^{9} +(-3.00000 - 1.73205i) q^{12} +(4.50000 - 2.59808i) q^{13} +(-2.00000 - 3.46410i) q^{16} +(-4.00000 + 1.73205i) q^{19} +(-1.50000 + 4.33013i) q^{21} +(-2.50000 + 4.33013i) q^{25} +5.19615i q^{27} +(-4.00000 + 3.46410i) q^{28} +(9.00000 - 5.19615i) q^{31} +(-3.00000 + 5.19615i) q^{36} +(-4.50000 - 2.59808i) q^{37} +(-4.50000 - 7.79423i) q^{39} +(6.50000 - 11.2583i) q^{43} +(-6.00000 + 3.46410i) q^{48} +(5.50000 + 4.33013i) q^{49} -10.3923i q^{52} +(3.00000 + 6.92820i) q^{57} +13.0000 q^{61} +(7.50000 + 2.59808i) q^{63} -8.00000 q^{64} +(-3.00000 - 1.73205i) q^{67} +17.0000 q^{73} +(7.50000 + 4.33013i) q^{75} +(-1.00000 + 8.66025i) q^{76} +(-4.50000 + 2.59808i) q^{79} +9.00000 q^{81} +(6.00000 + 6.92820i) q^{84} +(-13.5000 + 2.59808i) q^{91} +(-9.00000 - 15.5885i) q^{93} +(12.0000 + 6.92820i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{4} - 5 q^{7} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{4} - 5 q^{7} - 6 q^{9} - 6 q^{12} + 9 q^{13} - 4 q^{16} - 8 q^{19} - 3 q^{21} - 5 q^{25} - 8 q^{28} + 18 q^{31} - 6 q^{36} - 9 q^{37} - 9 q^{39} + 13 q^{43} - 12 q^{48} + 11 q^{49} + 6 q^{57} + 26 q^{61} + 15 q^{63} - 16 q^{64} - 6 q^{67} + 34 q^{73} + 15 q^{75} - 2 q^{76} - 9 q^{79} + 18 q^{81} + 12 q^{84} - 27 q^{91} - 18 q^{93} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/399\mathbb{Z}\right)^\times\).

\(n\) \(115\) \(134\) \(211\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(3\) 1.73205i 1.00000i
\(4\) 1.00000 1.73205i 0.500000 0.866025i
\(5\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(6\) 0 0
\(7\) −2.50000 0.866025i −0.944911 0.327327i
\(8\) 0 0
\(9\) −3.00000 −1.00000
\(10\) 0 0
\(11\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(12\) −3.00000 1.73205i −0.866025 0.500000i
\(13\) 4.50000 2.59808i 1.24808 0.720577i 0.277350 0.960769i \(-0.410544\pi\)
0.970725 + 0.240192i \(0.0772105\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.500000 0.866025i
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) −4.00000 + 1.73205i −0.917663 + 0.397360i
\(20\) 0 0
\(21\) −1.50000 + 4.33013i −0.327327 + 0.944911i
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) −2.50000 + 4.33013i −0.500000 + 0.866025i
\(26\) 0 0
\(27\) 5.19615i 1.00000i
\(28\) −4.00000 + 3.46410i −0.755929 + 0.654654i
\(29\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(30\) 0 0
\(31\) 9.00000 5.19615i 1.61645 0.933257i 0.628619 0.777714i \(-0.283621\pi\)
0.987829 0.155543i \(-0.0497126\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −3.00000 + 5.19615i −0.500000 + 0.866025i
\(37\) −4.50000 2.59808i −0.739795 0.427121i 0.0821995 0.996616i \(-0.473806\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) 0 0
\(39\) −4.50000 7.79423i −0.720577 1.24808i
\(40\) 0 0
\(41\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(42\) 0 0
\(43\) 6.50000 11.2583i 0.991241 1.71688i 0.381246 0.924473i \(-0.375495\pi\)
0.609994 0.792406i \(-0.291172\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) −6.00000 + 3.46410i −0.866025 + 0.500000i
\(49\) 5.50000 + 4.33013i 0.785714 + 0.618590i
\(50\) 0 0
\(51\) 0 0
\(52\) 10.3923i 1.44115i
\(53\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 3.00000 + 6.92820i 0.397360 + 0.917663i
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 13.0000 1.66448 0.832240 0.554416i \(-0.187058\pi\)
0.832240 + 0.554416i \(0.187058\pi\)
\(62\) 0 0
\(63\) 7.50000 + 2.59808i 0.944911 + 0.327327i
\(64\) −8.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) −3.00000 1.73205i −0.366508 0.211604i 0.305424 0.952217i \(-0.401202\pi\)
−0.671932 + 0.740613i \(0.734535\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(72\) 0 0
\(73\) 17.0000 1.98970 0.994850 0.101361i \(-0.0323196\pi\)
0.994850 + 0.101361i \(0.0323196\pi\)
\(74\) 0 0
\(75\) 7.50000 + 4.33013i 0.866025 + 0.500000i
\(76\) −1.00000 + 8.66025i −0.114708 + 0.993399i
\(77\) 0 0
\(78\) 0 0
\(79\) −4.50000 + 2.59808i −0.506290 + 0.292306i −0.731307 0.682048i \(-0.761089\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 6.00000 + 6.92820i 0.654654 + 0.755929i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) −13.5000 + 2.59808i −1.41518 + 0.272352i
\(92\) 0 0
\(93\) −9.00000 15.5885i −0.933257 1.61645i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 12.0000 + 6.92820i 1.21842 + 0.703452i 0.964579 0.263795i \(-0.0849741\pi\)
0.253837 + 0.967247i \(0.418307\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 5.00000 + 8.66025i 0.500000 + 0.866025i
\(101\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(102\) 0 0
\(103\) −3.00000 1.73205i −0.295599 0.170664i 0.344865 0.938652i \(-0.387925\pi\)
−0.640464 + 0.767988i \(0.721258\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(108\) 9.00000 + 5.19615i 0.866025 + 0.500000i
\(109\) 12.1244i 1.16130i 0.814152 + 0.580651i \(0.197202\pi\)
−0.814152 + 0.580651i \(0.802798\pi\)
\(110\) 0 0
\(111\) −4.50000 + 7.79423i −0.427121 + 0.739795i
\(112\) 2.00000 + 10.3923i 0.188982 + 0.981981i
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −13.5000 + 7.79423i −1.24808 + 0.720577i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −5.50000 + 9.52628i −0.500000 + 0.866025i
\(122\) 0 0
\(123\) 0 0
\(124\) 20.7846i 1.86651i
\(125\) 0 0
\(126\) 0 0
\(127\) 10.5000 6.06218i 0.931724 0.537931i 0.0443678 0.999015i \(-0.485873\pi\)
0.887357 + 0.461084i \(0.152539\pi\)
\(128\) 0 0
\(129\) −19.5000 11.2583i −1.71688 0.991241i
\(130\) 0 0
\(131\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(132\) 0 0
\(133\) 11.5000 0.866025i 0.997176 0.0750939i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(138\) 0 0
\(139\) −8.00000 13.8564i −0.678551 1.17529i −0.975417 0.220366i \(-0.929275\pi\)
0.296866 0.954919i \(-0.404058\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 6.00000 + 10.3923i 0.500000 + 0.866025i
\(145\) 0 0
\(146\) 0 0
\(147\) 7.50000 9.52628i 0.618590 0.785714i
\(148\) −9.00000 + 5.19615i −0.739795 + 0.427121i
\(149\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(150\) 0 0
\(151\) −21.0000 + 12.1244i −1.70896 + 0.986666i −0.773099 + 0.634285i \(0.781294\pi\)
−0.935857 + 0.352381i \(0.885372\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −18.0000 −1.44115
\(157\) 25.0000 1.99522 0.997609 0.0691164i \(-0.0220180\pi\)
0.997609 + 0.0691164i \(0.0220180\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 8.50000 14.7224i 0.665771 1.15315i −0.313304 0.949653i \(-0.601436\pi\)
0.979076 0.203497i \(-0.0652307\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(168\) 0 0
\(169\) 7.00000 12.1244i 0.538462 0.932643i
\(170\) 0 0
\(171\) 12.0000 5.19615i 0.917663 0.397360i
\(172\) −13.0000 22.5167i −0.991241 1.71688i
\(173\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(174\) 0 0
\(175\) 10.0000 8.66025i 0.755929 0.654654i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(180\) 0 0
\(181\) −22.5000 + 12.9904i −1.67241 + 0.965567i −0.706129 + 0.708083i \(0.749560\pi\)
−0.966282 + 0.257485i \(0.917106\pi\)
\(182\) 0 0
\(183\) 22.5167i 1.66448i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 4.50000 12.9904i 0.327327 0.944911i
\(190\) 0 0
\(191\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) 13.8564i 1.00000i
\(193\) 27.7128i 1.99481i 0.0719816 + 0.997406i \(0.477068\pi\)
−0.0719816 + 0.997406i \(0.522932\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 13.0000 5.19615i 0.928571 0.371154i
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) −5.50000 + 9.52628i −0.389885 + 0.675300i −0.992434 0.122782i \(-0.960818\pi\)
0.602549 + 0.798082i \(0.294152\pi\)
\(200\) 0 0
\(201\) −3.00000 + 5.19615i −0.211604 + 0.366508i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −18.0000 10.3923i −1.24808 0.720577i
\(209\) 0 0
\(210\) 0 0
\(211\) −22.5000 12.9904i −1.54896 0.894295i −0.998221 0.0596196i \(-0.981011\pi\)
−0.550743 0.834675i \(-0.685655\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −27.0000 + 5.19615i −1.83288 + 0.352738i
\(218\) 0 0
\(219\) 29.4449i 1.98970i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 16.5000 + 9.52628i 1.10492 + 0.637927i 0.937509 0.347960i \(-0.113126\pi\)
0.167412 + 0.985887i \(0.446459\pi\)
\(224\) 0 0
\(225\) 7.50000 12.9904i 0.500000 0.866025i
\(226\) 0 0
\(227\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(228\) 15.0000 + 1.73205i 0.993399 + 0.114708i
\(229\) −11.0000 + 19.0526i −0.726900 + 1.25903i 0.231287 + 0.972886i \(0.425707\pi\)
−0.958187 + 0.286143i \(0.907627\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 4.50000 + 7.79423i 0.292306 + 0.506290i
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) −22.5000 12.9904i −1.44935 0.836784i −0.450910 0.892570i \(-0.648900\pi\)
−0.998443 + 0.0557856i \(0.982234\pi\)
\(242\) 0 0
\(243\) 15.5885i 1.00000i
\(244\) 13.0000 22.5167i 0.832240 1.44148i
\(245\) 0 0
\(246\) 0 0
\(247\) −13.5000 + 18.1865i −0.858984 + 1.15718i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(252\) 12.0000 10.3923i 0.755929 0.654654i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 9.00000 + 10.3923i 0.559233 + 0.645746i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −6.00000 + 3.46410i −0.366508 + 0.211604i
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 14.0000 + 24.2487i 0.850439 + 1.47300i 0.880812 + 0.473466i \(0.156997\pi\)
−0.0303728 + 0.999539i \(0.509669\pi\)
\(272\) 0 0
\(273\) 4.50000 + 23.3827i 0.272352 + 1.41518i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −15.5000 26.8468i −0.931305 1.61307i −0.781094 0.624413i \(-0.785338\pi\)
−0.150210 0.988654i \(-0.547995\pi\)
\(278\) 0 0
\(279\) −27.0000 + 15.5885i −1.61645 + 0.933257i
\(280\) 0 0
\(281\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(282\) 0 0
\(283\) −7.00000 −0.416107 −0.208053 0.978117i \(-0.566713\pi\)
−0.208053 + 0.978117i \(0.566713\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) 12.0000 20.7846i 0.703452 1.21842i
\(292\) 17.0000 29.4449i 0.994850 1.72313i
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 15.0000 8.66025i 0.866025 0.500000i
\(301\) −26.0000 + 22.5167i −1.49862 + 1.29784i
\(302\) 0 0
\(303\) 0 0
\(304\) 14.0000 + 10.3923i 0.802955 + 0.596040i
\(305\) 0 0
\(306\) 0 0
\(307\) −1.50000 0.866025i −0.0856095 0.0494267i 0.456584 0.889680i \(-0.349073\pi\)
−0.542194 + 0.840254i \(0.682406\pi\)
\(308\) 0 0
\(309\) −3.00000 + 5.19615i −0.170664 + 0.295599i
\(310\) 0 0
\(311\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(312\) 0 0
\(313\) −35.0000 −1.97832 −0.989158 0.146852i \(-0.953086\pi\)
−0.989158 + 0.146852i \(0.953086\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 10.3923i 0.584613i
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 9.00000 15.5885i 0.500000 0.866025i
\(325\) 25.9808i 1.44115i
\(326\) 0 0
\(327\) 21.0000 1.16130
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 15.0000 + 8.66025i 0.824475 + 0.476011i 0.851957 0.523612i \(-0.175416\pi\)
−0.0274825 + 0.999622i \(0.508749\pi\)
\(332\) 0 0
\(333\) 13.5000 + 7.79423i 0.739795 + 0.427121i
\(334\) 0 0
\(335\) 0 0
\(336\) 18.0000 3.46410i 0.981981 0.188982i
\(337\) −19.5000 11.2583i −1.06223 0.613280i −0.136184 0.990684i \(-0.543484\pi\)
−0.926049 + 0.377403i \(0.876817\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −10.0000 15.5885i −0.539949 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 23.0000 1.23116 0.615581 0.788074i \(-0.288921\pi\)
0.615581 + 0.788074i \(0.288921\pi\)
\(350\) 0 0
\(351\) 13.5000 + 23.3827i 0.720577 + 1.24808i
\(352\) 0 0
\(353\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(360\) 0 0
\(361\) 13.0000 13.8564i 0.684211 0.729285i
\(362\) 0 0
\(363\) 16.5000 + 9.52628i 0.866025 + 0.500000i
\(364\) −9.00000 + 25.9808i −0.471728 + 1.36176i
\(365\) 0 0
\(366\) 0 0
\(367\) 2.00000 3.46410i 0.104399 0.180825i −0.809093 0.587680i \(-0.800041\pi\)
0.913493 + 0.406855i \(0.133375\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) −36.0000 −1.86651
\(373\) 31.5000 + 18.1865i 1.63101 + 0.941663i 0.983783 + 0.179364i \(0.0574041\pi\)
0.647225 + 0.762299i \(0.275929\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 38.1051i 1.95733i 0.205466 + 0.978664i \(0.434129\pi\)
−0.205466 + 0.978664i \(0.565871\pi\)
\(380\) 0 0
\(381\) −10.5000 18.1865i −0.537931 0.931724i
\(382\) 0 0
\(383\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −19.5000 + 33.7750i −0.991241 + 1.71688i
\(388\) 24.0000 13.8564i 1.21842 0.703452i
\(389\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 17.0000 + 29.4449i 0.853206 + 1.47780i 0.878300 + 0.478110i \(0.158678\pi\)
−0.0250943 + 0.999685i \(0.507989\pi\)
\(398\) 0 0
\(399\) −1.50000 19.9186i −0.0750939 0.997176i
\(400\) 20.0000 1.00000
\(401\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(402\) 0 0
\(403\) 27.0000 46.7654i 1.34497 2.32955i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −34.5000 19.9186i −1.70592 0.984911i −0.939490 0.342578i \(-0.888700\pi\)
−0.766426 0.642333i \(-0.777967\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −6.00000 + 3.46410i −0.295599 + 0.170664i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −24.0000 + 13.8564i −1.17529 + 0.678551i
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 31.5000 + 18.1865i 1.53522 + 0.886357i 0.999109 + 0.0422075i \(0.0134391\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −32.5000 11.2583i −1.57279 0.544829i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(432\) 18.0000 10.3923i 0.866025 0.500000i
\(433\) 16.5000 9.52628i 0.792939 0.457804i −0.0480569 0.998845i \(-0.515303\pi\)
0.840996 + 0.541041i \(0.181970\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 21.0000 + 12.1244i 1.00572 + 0.580651i
\(437\) 0 0
\(438\) 0 0
\(439\) 7.50000 4.33013i 0.357955 0.206666i −0.310228 0.950662i \(-0.600405\pi\)
0.668184 + 0.743996i \(0.267072\pi\)
\(440\) 0 0
\(441\) −16.5000 12.9904i −0.785714 0.618590i
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 9.00000 + 15.5885i 0.427121 + 0.739795i
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 20.0000 + 6.92820i 0.944911 + 0.327327i
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 21.0000 + 36.3731i 0.986666 + 1.70896i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 5.00000 8.66025i 0.233890 0.405110i −0.725059 0.688686i \(-0.758188\pi\)
0.958950 + 0.283577i \(0.0915211\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(462\) 0 0
\(463\) 20.0000 0.929479 0.464739 0.885448i \(-0.346148\pi\)
0.464739 + 0.885448i \(0.346148\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(468\) 31.1769i 1.44115i
\(469\) 6.00000 + 6.92820i 0.277054 + 0.319915i
\(470\) 0 0
\(471\) 43.3013i 1.99522i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 2.50000 21.6506i 0.114708 0.993399i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(480\) 0 0
\(481\) −27.0000 −1.23109
\(482\) 0 0
\(483\) 0 0
\(484\) 11.0000 + 19.0526i 0.500000 + 0.866025i
\(485\) 0 0
\(486\) 0 0
\(487\) −31.5000 + 18.1865i −1.42740 + 0.824110i −0.996915 0.0784867i \(-0.974991\pi\)
−0.430486 + 0.902597i \(0.641658\pi\)
\(488\) 0 0
\(489\) −25.5000 14.7224i −1.15315 0.665771i
\(490\) 0 0
\(491\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −36.0000 20.7846i −1.61645 0.933257i
\(497\) 0 0
\(498\) 0 0
\(499\) 16.0000 + 27.7128i 0.716258 + 1.24060i 0.962472 + 0.271380i \(0.0874801\pi\)
−0.246214 + 0.969216i \(0.579187\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −21.0000 12.1244i −0.932643 0.538462i
\(508\) 24.2487i 1.07586i
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) −42.5000 14.7224i −1.88009 0.651282i
\(512\) 0 0
\(513\) −9.00000 20.7846i −0.397360 0.917663i
\(514\) 0 0
\(515\) 0 0
\(516\) −39.0000 + 22.5167i −1.71688 + 0.991241i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(522\) 0 0
\(523\) 15.5885i 0.681636i −0.940129 0.340818i \(-0.889296\pi\)
0.940129 0.340818i \(-0.110704\pi\)
\(524\) 0 0
\(525\) −15.0000 17.3205i −0.654654 0.755929i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 10.0000 20.7846i 0.433555 0.901127i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −46.0000 −1.97769 −0.988847 0.148933i \(-0.952416\pi\)
−0.988847 + 0.148933i \(0.952416\pi\)
\(542\) 0 0
\(543\) 22.5000 + 38.9711i 0.965567 + 1.67241i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 19.5000 11.2583i 0.833760 0.481371i −0.0213785 0.999771i \(-0.506805\pi\)
0.855138 + 0.518400i \(0.173472\pi\)
\(548\) 0 0
\(549\) −39.0000 −1.66448
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 13.5000 2.59808i 0.574078 0.110481i
\(554\) 0 0
\(555\) 0 0
\(556\) −32.0000 −1.35710
\(557\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(558\) 0 0
\(559\) 67.5500i 2.85706i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −22.5000 7.79423i −0.944911 0.327327i
\(568\) 0 0
\(569\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(570\) 0 0
\(571\) 8.00000 + 13.8564i 0.334790 + 0.579873i 0.983444 0.181210i \(-0.0580014\pi\)
−0.648655 + 0.761083i \(0.724668\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 24.0000 1.00000
\(577\) 17.5000 + 30.3109i 0.728535 + 1.26186i 0.957503 + 0.288425i \(0.0931316\pi\)
−0.228968 + 0.973434i \(0.573535\pi\)
\(578\) 0 0
\(579\) 48.0000 1.99481
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(588\) −9.00000 22.5167i −0.371154 0.928571i
\(589\) −27.0000 + 36.3731i −1.11252 + 1.49873i
\(590\) 0 0
\(591\) 0 0
\(592\) 20.7846i 0.854242i
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 16.5000 + 9.52628i 0.675300 + 0.389885i
\(598\) 0 0
\(599\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(600\) 0 0
\(601\) 41.5692i 1.69564i −0.530281 0.847822i \(-0.677914\pi\)
0.530281 0.847822i \(-0.322086\pi\)
\(602\) 0 0
\(603\) 9.00000 + 5.19615i 0.366508 + 0.211604i
\(604\) 48.4974i 1.97333i
\(605\) 0 0
\(606\) 0 0
\(607\) −34.5000 19.9186i −1.40031 0.808470i −0.405887 0.913923i \(-0.633038\pi\)
−0.994424 + 0.105453i \(0.966371\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 10.0000 0.403896 0.201948 0.979396i \(-0.435273\pi\)
0.201948 + 0.979396i \(0.435273\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(618\) 0 0
\(619\) 8.50000 + 14.7224i 0.341644 + 0.591744i 0.984738 0.174042i \(-0.0556830\pi\)
−0.643094 + 0.765787i \(0.722350\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) −18.0000 + 31.1769i −0.720577 + 1.24808i
\(625\) −12.5000 21.6506i −0.500000 0.866025i
\(626\) 0 0
\(627\) 0 0
\(628\) 25.0000 43.3013i 0.997609 1.72791i
\(629\) 0 0
\(630\) 0 0
\(631\) −0.500000 0.866025i −0.0199047 0.0344759i 0.855901 0.517139i \(-0.173003\pi\)
−0.875806 + 0.482663i \(0.839670\pi\)
\(632\) 0 0
\(633\) −22.5000 + 38.9711i −0.894295 + 1.54896i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 36.0000 + 5.19615i 1.42637 + 0.205879i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 20.0000 34.6410i 0.788723 1.36611i −0.138027 0.990429i \(-0.544076\pi\)
0.926750 0.375680i \(-0.122591\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 9.00000 + 46.7654i 0.352738 + 1.83288i
\(652\) −17.0000 29.4449i −0.665771 1.15315i
\(653\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −51.0000 −1.98970
\(658\) 0 0
\(659\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(660\) 0 0
\(661\) −13.5000 7.79423i −0.525089 0.303160i 0.213925 0.976850i \(-0.431375\pi\)
−0.739014 + 0.673690i \(0.764708\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 16.5000 28.5788i 0.637927 1.10492i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 50.2295i 1.93620i −0.250557 0.968102i \(-0.580614\pi\)
0.250557 0.968102i \(-0.419386\pi\)
\(674\) 0 0
\(675\) −22.5000 12.9904i −0.866025 0.500000i
\(676\) −14.0000 24.2487i −0.538462 0.932643i
\(677\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(678\) 0 0
\(679\) −24.0000 27.7128i −0.921035 1.06352i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(684\) 3.00000 25.9808i 0.114708 0.993399i
\(685\) 0 0
\(686\) 0 0
\(687\) 33.0000 + 19.0526i 1.25903 + 0.726900i
\(688\) −52.0000 −1.98248
\(689\) 0 0
\(690\) 0 0
\(691\) 24.5000 42.4352i 0.932024 1.61431i 0.152167 0.988355i \(-0.451375\pi\)
0.779857 0.625958i \(-0.215292\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −5.00000 25.9808i −0.188982 0.981981i
\(701\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(702\) 0 0
\(703\) 22.5000 + 2.59808i 0.848604 + 0.0979883i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 53.0000 1.99046 0.995228 0.0975728i \(-0.0311079\pi\)
0.995228 + 0.0975728i \(0.0311079\pi\)
\(710\) 0 0
\(711\) 13.5000 7.79423i 0.506290 0.292306i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(720\) 0 0
\(721\) 6.00000 + 6.92820i 0.223452 + 0.258020i
\(722\) 0 0
\(723\) −22.5000 + 38.9711i −0.836784 + 1.44935i
\(724\) 51.9615i 1.93113i
\(725\) 0 0
\(726\) 0 0
\(727\) −2.50000 + 4.33013i −0.0927199 + 0.160596i −0.908655 0.417548i \(-0.862889\pi\)
0.815935 + 0.578144i \(0.196223\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) −39.0000 22.5167i −1.44148 0.832240i
\(733\) 3.50000 6.06218i 0.129275 0.223912i −0.794121 0.607760i \(-0.792068\pi\)
0.923396 + 0.383849i \(0.125402\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 37.0000 1.36107 0.680534 0.732717i \(-0.261748\pi\)
0.680534 + 0.732717i \(0.261748\pi\)
\(740\) 0 0
\(741\) 31.5000 + 23.3827i 1.15718 + 0.858984i
\(742\) 0 0
\(743\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 17.3205i 0.632034i 0.948753 + 0.316017i \(0.102346\pi\)
−0.948753 + 0.316017i \(0.897654\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) −18.0000 20.7846i −0.654654 0.755929i
\(757\) −27.5000 + 47.6314i −0.999505 + 1.73119i −0.472493 + 0.881334i \(0.656646\pi\)
−0.527011 + 0.849858i \(0.676688\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(762\) 0 0
\(763\) 10.5000 30.3109i 0.380126 1.09733i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 24.0000 + 13.8564i 0.866025 + 0.500000i
\(769\) 1.00000 + 1.73205i 0.0360609 + 0.0624593i 0.883493 0.468445i \(-0.155186\pi\)
−0.847432 + 0.530904i \(0.821852\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 48.0000 + 27.7128i 1.72756 + 0.997406i
\(773\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(774\) 0 0
\(775\) 51.9615i 1.86651i
\(776\) 0 0
\(777\) 18.0000 15.5885i 0.645746 0.559233i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 4.00000 27.7128i 0.142857 0.989743i
\(785\) 0 0
\(786\) 0 0
\(787\) −43.5000 + 25.1147i −1.55061 + 0.895244i −0.552515 + 0.833503i \(0.686332\pi\)
−0.998092 + 0.0617409i \(0.980335\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 58.5000 33.7750i 2.07740 1.19939i
\(794\) 0 0
\(795\) 0 0
\(796\) 11.0000 + 19.0526i 0.389885 + 0.675300i
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 6.00000 + 10.3923i 0.211604 + 0.366508i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(810\) 0 0
\(811\) 9.00000 5.19615i 0.316033 0.182462i −0.333590 0.942718i \(-0.608260\pi\)
0.649623 + 0.760257i \(0.274927\pi\)
\(812\) 0 0
\(813\) 42.0000 24.2487i 1.47300 0.850439i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −6.50000 + 56.2917i −0.227406 + 1.96940i
\(818\) 0 0
\(819\) 40.5000 7.79423i 1.41518 0.272352i
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) −26.0000 + 45.0333i −0.906303 + 1.56976i −0.0871445 + 0.996196i \(0.527774\pi\)
−0.819159 + 0.573567i \(0.805559\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(828\) 0 0
\(829\) −19.5000 + 11.2583i −0.677263 + 0.391018i −0.798823 0.601566i \(-0.794544\pi\)
0.121560 + 0.992584i \(0.461210\pi\)
\(830\) 0 0
\(831\) −46.5000 + 26.8468i −1.61307 + 0.931305i
\(832\) −36.0000 + 20.7846i −1.24808 + 0.720577i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 27.0000 + 46.7654i 0.933257 + 1.61645i
\(838\) 0 0
\(839\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(840\) 0 0
\(841\) 14.5000 25.1147i 0.500000 0.866025i
\(842\) 0 0
\(843\) 0 0
\(844\) −45.0000 + 25.9808i −1.54896 + 0.894295i
\(845\) 0 0
\(846\) 0 0
\(847\) 22.0000 19.0526i 0.755929 0.654654i
\(848\) 0 0
\(849\) 12.1244i 0.416107i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −11.5000 + 19.9186i −0.393753 + 0.681999i −0.992941 0.118609i \(-0.962157\pi\)
0.599189 + 0.800608i \(0.295490\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 43.0000 1.46714 0.733571 0.679613i \(-0.237852\pi\)
0.733571 + 0.679613i \(0.237852\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 29.4449i 1.00000i
\(868\) −18.0000 + 51.9615i −0.610960 + 1.76369i
\(869\) 0 0
\(870\) 0 0
\(871\) −18.0000 −0.609907
\(872\) 0 0
\(873\) −36.0000 20.7846i −1.21842 0.703452i
\(874\) 0 0
\(875\) 0 0
\(876\) −51.0000 29.4449i −1.72313 0.994850i
\(877\) 46.5000 26.8468i 1.57019 0.906552i 0.574049 0.818821i \(-0.305372\pi\)
0.996144 0.0877308i \(-0.0279615\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 4.00000 + 6.92820i 0.134611 + 0.233153i 0.925449 0.378873i \(-0.123688\pi\)
−0.790838 + 0.612026i \(0.790355\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) −31.5000 + 6.06218i −1.05648 + 0.203319i
\(890\) 0 0
\(891\) 0 0
\(892\) 33.0000 19.0526i 1.10492 0.637927i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −15.0000 25.9808i −0.500000 0.866025i
\(901\) 0 0
\(902\) 0 0
\(903\) 39.0000 + 45.0333i 1.29784 + 1.49862i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 12.1244i 0.402583i 0.979531 + 0.201291i \(0.0645138\pi\)
−0.979531 + 0.201291i \(0.935486\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 18.0000 24.2487i 0.596040 0.802955i
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 22.0000 + 38.1051i 0.726900 + 1.25903i
\(917\) 0 0
\(918\) 0 0
\(919\) −26.0000 + 45.0333i −0.857661 + 1.48551i 0.0164935 + 0.999864i \(0.494750\pi\)
−0.874154 + 0.485648i \(0.838584\pi\)
\(920\) 0 0
\(921\) −1.50000 + 2.59808i −0.0494267 + 0.0856095i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 22.5000 12.9904i 0.739795 0.427121i
\(926\) 0 0
\(927\) 9.00000 + 5.19615i 0.295599 + 0.170664i
\(928\) 0 0
\(929\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(930\) 0 0
\(931\) −29.5000 7.79423i −0.966823 0.255446i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 30.5000 + 52.8275i 0.996392 + 1.72580i 0.571700 + 0.820463i \(0.306284\pi\)
0.424691 + 0.905338i \(0.360383\pi\)
\(938\) 0 0
\(939\) 60.6218i 1.97832i
\(940\) 0 0
\(941\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(948\) 18.0000 0.584613
\(949\) 76.5000 44.1673i 2.48330 1.43373i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 38.5000 66.6840i 1.24194 2.15110i
\(962\) 0 0
\(963\) 0 0
\(964\) −45.0000 + 25.9808i −1.44935 + 0.836784i
\(965\) 0 0
\(966\) 0 0
\(967\) 10.0000 17.3205i 0.321578 0.556990i −0.659236 0.751936i \(-0.729120\pi\)
0.980814 + 0.194946i \(0.0624533\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(972\) −27.0000 15.5885i −0.866025 0.500000i
\(973\) 8.00000 + 41.5692i 0.256468 + 1.33265i
\(974\) 0 0
\(975\) 45.0000 1.44115
\(976\) −26.0000 45.0333i −0.832240 1.44148i
\(977\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 36.3731i 1.16130i
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 18.0000 + 41.5692i 0.572656 + 1.32249i
\(989\) 0 0
\(990\) 0 0
\(991\) 15.5885i 0.495184i −0.968864 0.247592i \(-0.920361\pi\)
0.968864 0.247592i \(-0.0796392\pi\)
\(992\) 0 0
\(993\) 15.0000 25.9808i 0.476011 0.824475i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 29.5000 51.0955i 0.934274 1.61821i 0.158352 0.987383i \(-0.449382\pi\)
0.775923 0.630828i \(-0.217285\pi\)
\(998\) 0 0
\(999\) 13.5000 23.3827i 0.427121 0.739795i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 399.2.x.a.65.1 2
3.2 odd 2 CM 399.2.x.a.65.1 2
7.4 even 3 399.2.bm.a.179.1 yes 2
19.12 odd 6 399.2.bm.a.107.1 yes 2
21.11 odd 6 399.2.bm.a.179.1 yes 2
57.50 even 6 399.2.bm.a.107.1 yes 2
133.88 odd 6 inner 399.2.x.a.221.1 yes 2
399.221 even 6 inner 399.2.x.a.221.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.x.a.65.1 2 1.1 even 1 trivial
399.2.x.a.65.1 2 3.2 odd 2 CM
399.2.x.a.221.1 yes 2 133.88 odd 6 inner
399.2.x.a.221.1 yes 2 399.221 even 6 inner
399.2.bm.a.107.1 yes 2 19.12 odd 6
399.2.bm.a.107.1 yes 2 57.50 even 6
399.2.bm.a.179.1 yes 2 7.4 even 3
399.2.bm.a.179.1 yes 2 21.11 odd 6