Properties

Label 400.2.bi.c.127.1
Level $400$
Weight $2$
Character 400.127
Analytic conductor $3.194$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,2,Mod(47,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([10, 0, 17]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 400.bi (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.19401608085\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{20})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 32 x^{14} - 64 x^{13} + 66 x^{12} - 28 x^{11} + 160 x^{10} - 392 x^{9} + 419 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 127.1
Root \(1.31377 - 1.31377i\) of defining polynomial
Character \(\chi\) \(=\) 400.127
Dual form 400.2.bi.c.63.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.58417 + 1.31670i) q^{3} -2.23607 q^{5} +(-1.62753 + 1.62753i) q^{7} +(3.18088 - 4.37811i) q^{9} +(1.12460 + 1.54787i) q^{11} +(-0.951057 + 0.150633i) q^{13} +(5.77838 - 2.94423i) q^{15} +(2.48990 - 4.88670i) q^{17} +(-1.87751 - 5.77838i) q^{19} +(2.06285 - 6.34879i) q^{21} +(-2.55374 - 0.404473i) q^{23} +5.00000 q^{25} +(-1.09417 + 6.90832i) q^{27} +(2.65063 + 0.861243i) q^{29} +(9.86654 - 3.20583i) q^{31} +(-4.94424 - 2.51921i) q^{33} +(3.63927 - 3.63927i) q^{35} +(1.58628 + 10.0154i) q^{37} +(2.25935 - 1.64152i) q^{39} +(-8.52488 - 6.19369i) q^{41} +(-6.17421 - 6.17421i) q^{43} +(-7.11267 + 9.78975i) q^{45} +(-0.494291 - 0.970102i) q^{47} +1.70228i q^{49} +15.9065i q^{51} +(-4.26445 - 8.36946i) q^{53} +(-2.51467 - 3.46115i) q^{55} +(12.4602 + 12.4602i) q^{57} +(-7.85962 - 5.71035i) q^{59} +(-0.975062 + 0.708424i) q^{61} +(1.94852 + 12.3025i) q^{63} +(2.12663 - 0.336825i) q^{65} +(5.77838 + 2.94423i) q^{67} +(7.13188 - 2.31729i) q^{69} +(-8.83270 - 2.86992i) q^{71} +(-0.212028 + 1.33869i) q^{73} +(-12.9209 + 6.58350i) q^{75} +(-4.34953 - 0.688898i) q^{77} +(-2.28496 + 7.03239i) q^{79} +(-1.25180 - 3.85265i) q^{81} +(6.97154 - 13.6824i) q^{83} +(-5.56758 + 10.9270i) q^{85} +(-7.98369 + 1.26449i) q^{87} +(-1.95788 - 2.69479i) q^{89} +(1.30272 - 1.79303i) q^{91} +(-21.2757 + 21.2757i) q^{93} +(4.19824 + 12.9209i) q^{95} +(2.23955 - 1.14111i) q^{97} +10.3540 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 20 q^{9} + 20 q^{21} + 80 q^{25} + 20 q^{29} - 20 q^{33} - 40 q^{37} - 12 q^{41} + 20 q^{45} - 40 q^{53} + 20 q^{57} - 12 q^{61} - 60 q^{69} - 40 q^{73} - 100 q^{77} - 24 q^{81} - 60 q^{89} - 100 q^{93}+ \cdots - 80 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{20}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.58417 + 1.31670i −1.49197 + 0.760198i −0.994244 0.107136i \(-0.965832\pi\)
−0.497727 + 0.867334i \(0.665832\pi\)
\(4\) 0 0
\(5\) −2.23607 −1.00000
\(6\) 0 0
\(7\) −1.62753 + 1.62753i −0.615149 + 0.615149i −0.944283 0.329134i \(-0.893243\pi\)
0.329134 + 0.944283i \(0.393243\pi\)
\(8\) 0 0
\(9\) 3.18088 4.37811i 1.06029 1.45937i
\(10\) 0 0
\(11\) 1.12460 + 1.54787i 0.339079 + 0.466702i 0.944172 0.329453i \(-0.106864\pi\)
−0.605093 + 0.796154i \(0.706864\pi\)
\(12\) 0 0
\(13\) −0.951057 + 0.150633i −0.263776 + 0.0417780i −0.286921 0.957954i \(-0.592632\pi\)
0.0231457 + 0.999732i \(0.492632\pi\)
\(14\) 0 0
\(15\) 5.77838 2.94423i 1.49197 0.760198i
\(16\) 0 0
\(17\) 2.48990 4.88670i 0.603889 1.18520i −0.363426 0.931623i \(-0.618393\pi\)
0.967315 0.253576i \(-0.0816068\pi\)
\(18\) 0 0
\(19\) −1.87751 5.77838i −0.430730 1.32565i −0.897399 0.441219i \(-0.854546\pi\)
0.466669 0.884432i \(-0.345454\pi\)
\(20\) 0 0
\(21\) 2.06285 6.34879i 0.450150 1.38542i
\(22\) 0 0
\(23\) −2.55374 0.404473i −0.532493 0.0843385i −0.115603 0.993296i \(-0.536880\pi\)
−0.416890 + 0.908957i \(0.636880\pi\)
\(24\) 0 0
\(25\) 5.00000 1.00000
\(26\) 0 0
\(27\) −1.09417 + 6.90832i −0.210573 + 1.32951i
\(28\) 0 0
\(29\) 2.65063 + 0.861243i 0.492210 + 0.159929i 0.544597 0.838698i \(-0.316683\pi\)
−0.0523865 + 0.998627i \(0.516683\pi\)
\(30\) 0 0
\(31\) 9.86654 3.20583i 1.77208 0.575784i 0.773749 0.633492i \(-0.218379\pi\)
0.998334 + 0.0577079i \(0.0183792\pi\)
\(32\) 0 0
\(33\) −4.94424 2.51921i −0.860681 0.438539i
\(34\) 0 0
\(35\) 3.63927 3.63927i 0.615149 0.615149i
\(36\) 0 0
\(37\) 1.58628 + 10.0154i 0.260782 + 1.64651i 0.676080 + 0.736829i \(0.263678\pi\)
−0.415297 + 0.909686i \(0.636322\pi\)
\(38\) 0 0
\(39\) 2.25935 1.64152i 0.361786 0.262853i
\(40\) 0 0
\(41\) −8.52488 6.19369i −1.33136 0.967292i −0.999715 0.0238886i \(-0.992395\pi\)
−0.331648 0.943403i \(-0.607605\pi\)
\(42\) 0 0
\(43\) −6.17421 6.17421i −0.941558 0.941558i 0.0568258 0.998384i \(-0.481902\pi\)
−0.998384 + 0.0568258i \(0.981902\pi\)
\(44\) 0 0
\(45\) −7.11267 + 9.78975i −1.06029 + 1.45937i
\(46\) 0 0
\(47\) −0.494291 0.970102i −0.0720998 0.141504i 0.852143 0.523309i \(-0.175303\pi\)
−0.924243 + 0.381805i \(0.875303\pi\)
\(48\) 0 0
\(49\) 1.70228i 0.243183i
\(50\) 0 0
\(51\) 15.9065i 2.22736i
\(52\) 0 0
\(53\) −4.26445 8.36946i −0.585768 1.14963i −0.973676 0.227936i \(-0.926802\pi\)
0.387909 0.921698i \(-0.373198\pi\)
\(54\) 0 0
\(55\) −2.51467 3.46115i −0.339079 0.466702i
\(56\) 0 0
\(57\) 12.4602 + 12.4602i 1.65039 + 1.65039i
\(58\) 0 0
\(59\) −7.85962 5.71035i −1.02323 0.743424i −0.0562914 0.998414i \(-0.517928\pi\)
−0.966944 + 0.254991i \(0.917928\pi\)
\(60\) 0 0
\(61\) −0.975062 + 0.708424i −0.124844 + 0.0907044i −0.648455 0.761253i \(-0.724585\pi\)
0.523611 + 0.851957i \(0.324585\pi\)
\(62\) 0 0
\(63\) 1.94852 + 12.3025i 0.245491 + 1.54997i
\(64\) 0 0
\(65\) 2.12663 0.336825i 0.263776 0.0417780i
\(66\) 0 0
\(67\) 5.77838 + 2.94423i 0.705942 + 0.359695i 0.769819 0.638263i \(-0.220347\pi\)
−0.0638771 + 0.997958i \(0.520347\pi\)
\(68\) 0 0
\(69\) 7.13188 2.31729i 0.858578 0.278969i
\(70\) 0 0
\(71\) −8.83270 2.86992i −1.04825 0.340597i −0.266268 0.963899i \(-0.585790\pi\)
−0.781981 + 0.623303i \(0.785790\pi\)
\(72\) 0 0
\(73\) −0.212028 + 1.33869i −0.0248160 + 0.156682i −0.996985 0.0776007i \(-0.975274\pi\)
0.972169 + 0.234282i \(0.0752741\pi\)
\(74\) 0 0
\(75\) −12.9209 + 6.58350i −1.49197 + 0.760198i
\(76\) 0 0
\(77\) −4.34953 0.688898i −0.495675 0.0785072i
\(78\) 0 0
\(79\) −2.28496 + 7.03239i −0.257078 + 0.791206i 0.736335 + 0.676617i \(0.236555\pi\)
−0.993413 + 0.114588i \(0.963445\pi\)
\(80\) 0 0
\(81\) −1.25180 3.85265i −0.139089 0.428072i
\(82\) 0 0
\(83\) 6.97154 13.6824i 0.765225 1.50184i −0.0969830 0.995286i \(-0.530919\pi\)
0.862209 0.506554i \(-0.169081\pi\)
\(84\) 0 0
\(85\) −5.56758 + 10.9270i −0.603889 + 1.18520i
\(86\) 0 0
\(87\) −7.98369 + 1.26449i −0.855941 + 0.135568i
\(88\) 0 0
\(89\) −1.95788 2.69479i −0.207534 0.285647i 0.692543 0.721377i \(-0.256490\pi\)
−0.900077 + 0.435730i \(0.856490\pi\)
\(90\) 0 0
\(91\) 1.30272 1.79303i 0.136562 0.187961i
\(92\) 0 0
\(93\) −21.2757 + 21.2757i −2.20619 + 2.20619i
\(94\) 0 0
\(95\) 4.19824 + 12.9209i 0.430730 + 1.32565i
\(96\) 0 0
\(97\) 2.23955 1.14111i 0.227392 0.115862i −0.336583 0.941654i \(-0.609271\pi\)
0.563975 + 0.825792i \(0.309271\pi\)
\(98\) 0 0
\(99\) 10.3540 1.04061
\(100\) 0 0
\(101\) 2.89806 0.288367 0.144184 0.989551i \(-0.453944\pi\)
0.144184 + 0.989551i \(0.453944\pi\)
\(102\) 0 0
\(103\) −7.80741 + 3.97807i −0.769287 + 0.391971i −0.794152 0.607720i \(-0.792084\pi\)
0.0248649 + 0.999691i \(0.492084\pi\)
\(104\) 0 0
\(105\) −4.61267 + 14.1963i −0.450150 + 1.38542i
\(106\) 0 0
\(107\) 11.2441 11.2441i 1.08701 1.08701i 0.0911721 0.995835i \(-0.470939\pi\)
0.995835 0.0911721i \(-0.0290613\pi\)
\(108\) 0 0
\(109\) 5.03556 6.93085i 0.482319 0.663855i −0.496629 0.867963i \(-0.665429\pi\)
0.978949 + 0.204107i \(0.0654292\pi\)
\(110\) 0 0
\(111\) −17.2864 23.7927i −1.64076 2.25831i
\(112\) 0 0
\(113\) −5.16807 + 0.818542i −0.486171 + 0.0770020i −0.394708 0.918806i \(-0.629154\pi\)
−0.0914631 + 0.995808i \(0.529154\pi\)
\(114\) 0 0
\(115\) 5.71035 + 0.904430i 0.532493 + 0.0843385i
\(116\) 0 0
\(117\) −2.36571 + 4.64297i −0.218710 + 0.429243i
\(118\) 0 0
\(119\) 3.90087 + 12.0056i 0.357592 + 1.10056i
\(120\) 0 0
\(121\) 2.26799 6.98015i 0.206181 0.634559i
\(122\) 0 0
\(123\) 30.1850 + 4.78083i 2.72169 + 0.431073i
\(124\) 0 0
\(125\) −11.1803 −1.00000
\(126\) 0 0
\(127\) 2.77391 17.5138i 0.246145 1.55410i −0.486619 0.873614i \(-0.661770\pi\)
0.732764 0.680483i \(-0.238230\pi\)
\(128\) 0 0
\(129\) 24.0848 + 7.82563i 2.12055 + 0.689008i
\(130\) 0 0
\(131\) 14.5010 4.71166i 1.26696 0.411660i 0.402989 0.915205i \(-0.367971\pi\)
0.863969 + 0.503545i \(0.167971\pi\)
\(132\) 0 0
\(133\) 12.4602 + 6.34879i 1.08044 + 0.550510i
\(134\) 0 0
\(135\) 2.44664 15.4475i 0.210573 1.32951i
\(136\) 0 0
\(137\) 0.153395 + 0.968498i 0.0131054 + 0.0827443i 0.993374 0.114925i \(-0.0366628\pi\)
−0.980269 + 0.197669i \(0.936663\pi\)
\(138\) 0 0
\(139\) −3.91731 + 2.84609i −0.332262 + 0.241403i −0.741390 0.671075i \(-0.765833\pi\)
0.409128 + 0.912477i \(0.365833\pi\)
\(140\) 0 0
\(141\) 2.55467 + 1.85607i 0.215142 + 0.156310i
\(142\) 0 0
\(143\) −1.30272 1.30272i −0.108939 0.108939i
\(144\) 0 0
\(145\) −5.92699 1.92580i −0.492210 0.159929i
\(146\) 0 0
\(147\) −2.24140 4.39899i −0.184867 0.362822i
\(148\) 0 0
\(149\) 9.16129i 0.750522i −0.926919 0.375261i \(-0.877553\pi\)
0.926919 0.375261i \(-0.122447\pi\)
\(150\) 0 0
\(151\) 15.6035i 1.26979i 0.772597 + 0.634897i \(0.218957\pi\)
−0.772597 + 0.634897i \(0.781043\pi\)
\(152\) 0 0
\(153\) −13.4744 26.4451i −1.08934 2.13796i
\(154\) 0 0
\(155\) −22.0622 + 7.16846i −1.77208 + 0.575784i
\(156\) 0 0
\(157\) −5.05644 5.05644i −0.403548 0.403548i 0.475933 0.879481i \(-0.342110\pi\)
−0.879481 + 0.475933i \(0.842110\pi\)
\(158\) 0 0
\(159\) 22.0401 + 16.0131i 1.74790 + 1.26992i
\(160\) 0 0
\(161\) 4.81459 3.49801i 0.379443 0.275682i
\(162\) 0 0
\(163\) 0.542005 + 3.42208i 0.0424531 + 0.268038i 0.999780 0.0209686i \(-0.00667499\pi\)
−0.957327 + 0.289007i \(0.906675\pi\)
\(164\) 0 0
\(165\) 11.0557 + 5.63314i 0.860681 + 0.438539i
\(166\) 0 0
\(167\) −12.2007 6.21658i −0.944121 0.481054i −0.0870224 0.996206i \(-0.527735\pi\)
−0.857098 + 0.515153i \(0.827735\pi\)
\(168\) 0 0
\(169\) −11.4819 + 3.73070i −0.883224 + 0.286977i
\(170\) 0 0
\(171\) −31.2705 10.1604i −2.39132 0.776986i
\(172\) 0 0
\(173\) −0.0270578 + 0.170836i −0.00205716 + 0.0129884i −0.988696 0.149937i \(-0.952093\pi\)
0.986638 + 0.162925i \(0.0520930\pi\)
\(174\) 0 0
\(175\) −8.13766 + 8.13766i −0.615149 + 0.615149i
\(176\) 0 0
\(177\) 27.8294 + 4.40775i 2.09179 + 0.331306i
\(178\) 0 0
\(179\) −3.01577 + 9.28158i −0.225409 + 0.693738i 0.772841 + 0.634600i \(0.218835\pi\)
−0.998250 + 0.0591379i \(0.981165\pi\)
\(180\) 0 0
\(181\) −5.57180 17.1482i −0.414148 1.27462i −0.913010 0.407936i \(-0.866249\pi\)
0.498862 0.866681i \(-0.333751\pi\)
\(182\) 0 0
\(183\) 1.58694 3.11455i 0.117310 0.230234i
\(184\) 0 0
\(185\) −3.54702 22.3950i −0.260782 1.64651i
\(186\) 0 0
\(187\) 10.3641 1.64152i 0.757900 0.120040i
\(188\) 0 0
\(189\) −9.46271 13.0243i −0.688311 0.947379i
\(190\) 0 0
\(191\) 3.50986 4.83091i 0.253965 0.349552i −0.662930 0.748681i \(-0.730687\pi\)
0.916895 + 0.399129i \(0.130687\pi\)
\(192\) 0 0
\(193\) 5.93294 5.93294i 0.427062 0.427062i −0.460564 0.887626i \(-0.652353\pi\)
0.887626 + 0.460564i \(0.152353\pi\)
\(194\) 0 0
\(195\) −5.05207 + 3.67054i −0.361786 + 0.262853i
\(196\) 0 0
\(197\) 9.22957 4.70270i 0.657580 0.335054i −0.0931606 0.995651i \(-0.529697\pi\)
0.750740 + 0.660598i \(0.229697\pi\)
\(198\) 0 0
\(199\) −12.1515 −0.861397 −0.430698 0.902496i \(-0.641733\pi\)
−0.430698 + 0.902496i \(0.641733\pi\)
\(200\) 0 0
\(201\) −18.8090 −1.32668
\(202\) 0 0
\(203\) −5.71569 + 2.91229i −0.401163 + 0.204403i
\(204\) 0 0
\(205\) 19.0622 + 13.8495i 1.33136 + 0.967292i
\(206\) 0 0
\(207\) −9.89399 + 9.89399i −0.687680 + 0.687680i
\(208\) 0 0
\(209\) 6.83277 9.40450i 0.472632 0.650523i
\(210\) 0 0
\(211\) 0.265481 + 0.365404i 0.0182765 + 0.0251554i 0.818057 0.575137i \(-0.195051\pi\)
−0.799781 + 0.600292i \(0.795051\pi\)
\(212\) 0 0
\(213\) 26.6040 4.21366i 1.82288 0.288715i
\(214\) 0 0
\(215\) 13.8060 + 13.8060i 0.941558 + 0.941558i
\(216\) 0 0
\(217\) −10.8405 + 21.2757i −0.735902 + 1.44429i
\(218\) 0 0
\(219\) −1.21474 3.73858i −0.0820844 0.252630i
\(220\) 0 0
\(221\) −1.63194 + 5.02259i −0.109776 + 0.337856i
\(222\) 0 0
\(223\) 8.45289 + 1.33881i 0.566048 + 0.0896531i 0.432898 0.901443i \(-0.357491\pi\)
0.133149 + 0.991096i \(0.457491\pi\)
\(224\) 0 0
\(225\) 15.9044 21.8905i 1.06029 1.45937i
\(226\) 0 0
\(227\) −0.623179 + 3.93460i −0.0413619 + 0.261149i −0.999700 0.0244872i \(-0.992205\pi\)
0.958338 + 0.285636i \(0.0922047\pi\)
\(228\) 0 0
\(229\) −6.21003 2.01776i −0.410371 0.133337i 0.0965543 0.995328i \(-0.469218\pi\)
−0.506925 + 0.861990i \(0.669218\pi\)
\(230\) 0 0
\(231\) 12.1470 3.94680i 0.799214 0.259680i
\(232\) 0 0
\(233\) −12.7395 6.49110i −0.834592 0.425246i −0.0161739 0.999869i \(-0.505149\pi\)
−0.818418 + 0.574623i \(0.805149\pi\)
\(234\) 0 0
\(235\) 1.10527 + 2.16921i 0.0720998 + 0.141504i
\(236\) 0 0
\(237\) −3.35482 21.1815i −0.217919 1.37589i
\(238\) 0 0
\(239\) −6.67715 + 4.85123i −0.431909 + 0.313800i −0.782412 0.622762i \(-0.786011\pi\)
0.350503 + 0.936562i \(0.386011\pi\)
\(240\) 0 0
\(241\) 6.93466 + 5.03832i 0.446700 + 0.324547i 0.788292 0.615302i \(-0.210966\pi\)
−0.341591 + 0.939849i \(0.610966\pi\)
\(242\) 0 0
\(243\) −6.52978 6.52978i −0.418885 0.418885i
\(244\) 0 0
\(245\) 3.80642i 0.243183i
\(246\) 0 0
\(247\) 2.65603 + 5.21275i 0.168999 + 0.331680i
\(248\) 0 0
\(249\) 44.5371i 2.82242i
\(250\) 0 0
\(251\) 17.5281i 1.10636i 0.833061 + 0.553182i \(0.186586\pi\)
−0.833061 + 0.553182i \(0.813414\pi\)
\(252\) 0 0
\(253\) −2.24586 4.40775i −0.141196 0.277113i
\(254\) 0 0
\(255\) 35.5681i 2.22736i
\(256\) 0 0
\(257\) −12.1447 12.1447i −0.757568 0.757568i 0.218311 0.975879i \(-0.429945\pi\)
−0.975879 + 0.218311i \(0.929945\pi\)
\(258\) 0 0
\(259\) −18.8820 13.7186i −1.17327 0.852432i
\(260\) 0 0
\(261\) 12.2020 8.86524i 0.755282 0.548745i
\(262\) 0 0
\(263\) −0.382691 2.41621i −0.0235977 0.148990i 0.973076 0.230484i \(-0.0740309\pi\)
−0.996674 + 0.0814938i \(0.974031\pi\)
\(264\) 0 0
\(265\) 9.53560 + 18.7147i 0.585768 + 1.14963i
\(266\) 0 0
\(267\) 8.60771 + 4.38585i 0.526783 + 0.268410i
\(268\) 0 0
\(269\) −7.51890 + 2.44304i −0.458436 + 0.148955i −0.529126 0.848544i \(-0.677480\pi\)
0.0706899 + 0.997498i \(0.477480\pi\)
\(270\) 0 0
\(271\) 10.8617 + 3.52919i 0.659803 + 0.214383i 0.619731 0.784814i \(-0.287242\pi\)
0.0400712 + 0.999197i \(0.487242\pi\)
\(272\) 0 0
\(273\) −1.00555 + 6.34879i −0.0608586 + 0.384246i
\(274\) 0 0
\(275\) 5.62298 + 7.73937i 0.339079 + 0.466702i
\(276\) 0 0
\(277\) −5.09695 0.807278i −0.306246 0.0485047i 0.00141993 0.999999i \(-0.499548\pi\)
−0.307666 + 0.951494i \(0.599548\pi\)
\(278\) 0 0
\(279\) 17.3488 53.3941i 1.03865 3.19662i
\(280\) 0 0
\(281\) 0.292927 + 0.901537i 0.0174746 + 0.0537812i 0.959414 0.282003i \(-0.0909988\pi\)
−0.941939 + 0.335784i \(0.890999\pi\)
\(282\) 0 0
\(283\) 2.13911 4.19824i 0.127157 0.249559i −0.818648 0.574296i \(-0.805276\pi\)
0.945804 + 0.324737i \(0.105276\pi\)
\(284\) 0 0
\(285\) −27.8619 27.8619i −1.65039 1.65039i
\(286\) 0 0
\(287\) 23.9549 3.79409i 1.41402 0.223958i
\(288\) 0 0
\(289\) −7.68790 10.5815i −0.452229 0.622440i
\(290\) 0 0
\(291\) −4.28488 + 5.89763i −0.251184 + 0.345725i
\(292\) 0 0
\(293\) −17.4021 + 17.4021i −1.01664 + 1.01664i −0.0167798 + 0.999859i \(0.505341\pi\)
−0.999859 + 0.0167798i \(0.994659\pi\)
\(294\) 0 0
\(295\) 17.5746 + 12.7687i 1.02323 + 0.743424i
\(296\) 0 0
\(297\) −11.9237 + 6.07543i −0.691884 + 0.352532i
\(298\) 0 0
\(299\) 2.48968 0.143982
\(300\) 0 0
\(301\) 20.0974 1.15840
\(302\) 0 0
\(303\) −7.48907 + 3.81587i −0.430236 + 0.219216i
\(304\) 0 0
\(305\) 2.18031 1.58408i 0.124844 0.0907044i
\(306\) 0 0
\(307\) −9.15421 + 9.15421i −0.522458 + 0.522458i −0.918313 0.395855i \(-0.870448\pi\)
0.395855 + 0.918313i \(0.370448\pi\)
\(308\) 0 0
\(309\) 14.9377 20.5600i 0.849778 1.16962i
\(310\) 0 0
\(311\) 14.5504 + 20.0269i 0.825079 + 1.13562i 0.988819 + 0.149120i \(0.0476441\pi\)
−0.163740 + 0.986504i \(0.552356\pi\)
\(312\) 0 0
\(313\) 24.1995 3.83282i 1.36784 0.216644i 0.571055 0.820912i \(-0.306534\pi\)
0.796781 + 0.604268i \(0.206534\pi\)
\(314\) 0 0
\(315\) −4.35703 27.5092i −0.245491 1.54997i
\(316\) 0 0
\(317\) 5.10607 10.0212i 0.286785 0.562848i −0.702003 0.712174i \(-0.747711\pi\)
0.988788 + 0.149326i \(0.0477105\pi\)
\(318\) 0 0
\(319\) 1.64780 + 5.07140i 0.0922589 + 0.283944i
\(320\) 0 0
\(321\) −14.2515 + 43.8618i −0.795444 + 2.44812i
\(322\) 0 0
\(323\) −32.9120 5.21275i −1.83127 0.290045i
\(324\) 0 0
\(325\) −4.75528 + 0.753163i −0.263776 + 0.0417780i
\(326\) 0 0
\(327\) −3.88689 + 24.5408i −0.214945 + 1.35711i
\(328\) 0 0
\(329\) 2.38335 + 0.774396i 0.131398 + 0.0426938i
\(330\) 0 0
\(331\) 20.0332 6.50919i 1.10113 0.357777i 0.298590 0.954382i \(-0.403484\pi\)
0.802536 + 0.596604i \(0.203484\pi\)
\(332\) 0 0
\(333\) 48.8941 + 24.9128i 2.67938 + 1.36521i
\(334\) 0 0
\(335\) −12.9209 6.58350i −0.705942 0.359695i
\(336\) 0 0
\(337\) −0.744661 4.70160i −0.0405643 0.256113i 0.959070 0.283170i \(-0.0913862\pi\)
−0.999634 + 0.0270577i \(0.991386\pi\)
\(338\) 0 0
\(339\) 12.2774 8.92006i 0.666817 0.484471i
\(340\) 0 0
\(341\) 16.0581 + 11.6669i 0.869595 + 0.631798i
\(342\) 0 0
\(343\) −14.1632 14.1632i −0.764743 0.764743i
\(344\) 0 0
\(345\) −15.9474 + 5.18162i −0.858578 + 0.278969i
\(346\) 0 0
\(347\) 2.39689 + 4.70415i 0.128672 + 0.252532i 0.946350 0.323143i \(-0.104739\pi\)
−0.817679 + 0.575675i \(0.804739\pi\)
\(348\) 0 0
\(349\) 1.87772i 0.100512i 0.998736 + 0.0502560i \(0.0160037\pi\)
−0.998736 + 0.0502560i \(0.983996\pi\)
\(350\) 0 0
\(351\) 6.73502i 0.359489i
\(352\) 0 0
\(353\) −2.87675 5.64593i −0.153114 0.300503i 0.801690 0.597740i \(-0.203935\pi\)
−0.954804 + 0.297238i \(0.903935\pi\)
\(354\) 0 0
\(355\) 19.7505 + 6.41733i 1.04825 + 0.340597i
\(356\) 0 0
\(357\) −25.8884 25.8884i −1.37016 1.37016i
\(358\) 0 0
\(359\) −9.96018 7.23649i −0.525678 0.381928i 0.293060 0.956094i \(-0.405326\pi\)
−0.818739 + 0.574166i \(0.805326\pi\)
\(360\) 0 0
\(361\) −14.4933 + 10.5300i −0.762806 + 0.554211i
\(362\) 0 0
\(363\) 3.32990 + 21.0242i 0.174774 + 1.10348i
\(364\) 0 0
\(365\) 0.474108 2.99340i 0.0248160 0.156682i
\(366\) 0 0
\(367\) −8.31332 4.23585i −0.433952 0.221109i 0.223348 0.974739i \(-0.428301\pi\)
−0.657300 + 0.753629i \(0.728301\pi\)
\(368\) 0 0
\(369\) −54.2333 + 17.6215i −2.82327 + 0.917336i
\(370\) 0 0
\(371\) 20.5621 + 6.68103i 1.06753 + 0.346862i
\(372\) 0 0
\(373\) −0.744661 + 4.70160i −0.0385571 + 0.243440i −0.999438 0.0335221i \(-0.989328\pi\)
0.960881 + 0.276962i \(0.0893276\pi\)
\(374\) 0 0
\(375\) 28.8919 14.7212i 1.49197 0.760198i
\(376\) 0 0
\(377\) −2.65063 0.419819i −0.136515 0.0216218i
\(378\) 0 0
\(379\) −8.61253 + 26.5066i −0.442396 + 1.36155i 0.442918 + 0.896562i \(0.353943\pi\)
−0.885314 + 0.464993i \(0.846057\pi\)
\(380\) 0 0
\(381\) 15.8922 + 48.9110i 0.814180 + 2.50579i
\(382\) 0 0
\(383\) −5.76109 + 11.3068i −0.294378 + 0.577750i −0.990067 0.140593i \(-0.955099\pi\)
0.695689 + 0.718343i \(0.255099\pi\)
\(384\) 0 0
\(385\) 9.72585 + 1.54042i 0.495675 + 0.0785072i
\(386\) 0 0
\(387\) −46.6708 + 7.39193i −2.37241 + 0.375753i
\(388\) 0 0
\(389\) 3.10772 + 4.27741i 0.157568 + 0.216873i 0.880501 0.474045i \(-0.157207\pi\)
−0.722933 + 0.690918i \(0.757207\pi\)
\(390\) 0 0
\(391\) −8.33510 + 11.4723i −0.421524 + 0.580178i
\(392\) 0 0
\(393\) −31.2692 + 31.2692i −1.57732 + 1.57732i
\(394\) 0 0
\(395\) 5.10933 15.7249i 0.257078 0.791206i
\(396\) 0 0
\(397\) −24.5503 + 12.5090i −1.23214 + 0.627808i −0.944053 0.329795i \(-0.893020\pi\)
−0.288091 + 0.957603i \(0.593020\pi\)
\(398\) 0 0
\(399\) −40.5588 −2.03048
\(400\) 0 0
\(401\) −32.1362 −1.60481 −0.802403 0.596783i \(-0.796445\pi\)
−0.802403 + 0.596783i \(0.796445\pi\)
\(402\) 0 0
\(403\) −8.90073 + 4.53515i −0.443377 + 0.225912i
\(404\) 0 0
\(405\) 2.79911 + 8.61479i 0.139089 + 0.428072i
\(406\) 0 0
\(407\) −13.7186 + 13.7186i −0.680005 + 0.680005i
\(408\) 0 0
\(409\) −17.8888 + 24.6219i −0.884546 + 1.21747i 0.0905950 + 0.995888i \(0.471123\pi\)
−0.975141 + 0.221585i \(0.928877\pi\)
\(410\) 0 0
\(411\) −1.67162 2.30079i −0.0824549 0.113489i
\(412\) 0 0
\(413\) 22.0855 3.49801i 1.08676 0.172126i
\(414\) 0 0
\(415\) −15.5888 + 30.5948i −0.765225 + 1.50184i
\(416\) 0 0
\(417\) 6.37555 12.5127i 0.312212 0.612751i
\(418\) 0 0
\(419\) −5.60088 17.2377i −0.273621 0.842118i −0.989581 0.143977i \(-0.954011\pi\)
0.715960 0.698141i \(-0.245989\pi\)
\(420\) 0 0
\(421\) 8.04143 24.7490i 0.391915 1.20619i −0.539423 0.842035i \(-0.681358\pi\)
0.931338 0.364156i \(-0.118642\pi\)
\(422\) 0 0
\(423\) −5.81949 0.921717i −0.282953 0.0448154i
\(424\) 0 0
\(425\) 12.4495 24.4335i 0.603889 1.18520i
\(426\) 0 0
\(427\) 0.433962 2.73993i 0.0210009 0.132594i
\(428\) 0 0
\(429\) 5.08172 + 1.65115i 0.245348 + 0.0797184i
\(430\) 0 0
\(431\) −25.3453 + 8.23518i −1.22084 + 0.396675i −0.847388 0.530975i \(-0.821826\pi\)
−0.373452 + 0.927650i \(0.621826\pi\)
\(432\) 0 0
\(433\) 27.7248 + 14.1265i 1.33237 + 0.678876i 0.967663 0.252246i \(-0.0811693\pi\)
0.364706 + 0.931123i \(0.381169\pi\)
\(434\) 0 0
\(435\) 17.8521 2.82749i 0.855941 0.135568i
\(436\) 0 0
\(437\) 2.45748 + 15.5159i 0.117557 + 0.742227i
\(438\) 0 0
\(439\) 7.74387 5.62625i 0.369595 0.268526i −0.387448 0.921891i \(-0.626643\pi\)
0.757043 + 0.653365i \(0.226643\pi\)
\(440\) 0 0
\(441\) 7.45277 + 5.41476i 0.354894 + 0.257846i
\(442\) 0 0
\(443\) 9.95720 + 9.95720i 0.473081 + 0.473081i 0.902910 0.429829i \(-0.141426\pi\)
−0.429829 + 0.902910i \(0.641426\pi\)
\(444\) 0 0
\(445\) 4.37794 + 6.02572i 0.207534 + 0.285647i
\(446\) 0 0
\(447\) 12.0627 + 23.6743i 0.570545 + 1.11976i
\(448\) 0 0
\(449\) 24.2916i 1.14639i 0.819419 + 0.573195i \(0.194296\pi\)
−0.819419 + 0.573195i \(0.805704\pi\)
\(450\) 0 0
\(451\) 20.1608i 0.949337i
\(452\) 0 0
\(453\) −20.5451 40.3221i −0.965294 1.89450i
\(454\) 0 0
\(455\) −2.91296 + 4.00935i −0.136562 + 0.187961i
\(456\) 0 0
\(457\) 19.1711 + 19.1711i 0.896786 + 0.896786i 0.995150 0.0983649i \(-0.0313612\pi\)
−0.0983649 + 0.995150i \(0.531361\pi\)
\(458\) 0 0
\(459\) 31.0345 + 22.5479i 1.44857 + 1.05245i
\(460\) 0 0
\(461\) −11.1879 + 8.12849i −0.521073 + 0.378582i −0.817008 0.576626i \(-0.804369\pi\)
0.295935 + 0.955208i \(0.404369\pi\)
\(462\) 0 0
\(463\) −4.57144 28.8629i −0.212453 1.34137i −0.831283 0.555850i \(-0.812393\pi\)
0.618830 0.785525i \(-0.287607\pi\)
\(464\) 0 0
\(465\) 47.5739 47.5739i 2.20619 2.20619i
\(466\) 0 0
\(467\) −1.17085 0.596577i −0.0541804 0.0276063i 0.426690 0.904398i \(-0.359679\pi\)
−0.480871 + 0.876791i \(0.659679\pi\)
\(468\) 0 0
\(469\) −14.1963 + 4.61267i −0.655526 + 0.212993i
\(470\) 0 0
\(471\) 19.7245 + 6.40889i 0.908858 + 0.295306i
\(472\) 0 0
\(473\) 2.61341 16.5004i 0.120165 0.758689i
\(474\) 0 0
\(475\) −9.38755 28.8919i −0.430730 1.32565i
\(476\) 0 0
\(477\) −50.2071 7.95202i −2.29883 0.364098i
\(478\) 0 0
\(479\) 1.74144 5.35960i 0.0795684 0.244886i −0.903357 0.428888i \(-0.858905\pi\)
0.982926 + 0.184002i \(0.0589053\pi\)
\(480\) 0 0
\(481\) −3.01728 9.28622i −0.137576 0.423415i
\(482\) 0 0
\(483\) −7.83590 + 15.3788i −0.356546 + 0.699761i
\(484\) 0 0
\(485\) −5.00778 + 2.55159i −0.227392 + 0.115862i
\(486\) 0 0
\(487\) 21.6062 3.42208i 0.979070 0.155069i 0.353667 0.935371i \(-0.384935\pi\)
0.625403 + 0.780302i \(0.284935\pi\)
\(488\) 0 0
\(489\) −5.90649 8.12959i −0.267101 0.367633i
\(490\) 0 0
\(491\) 24.4969 33.7171i 1.10553 1.52163i 0.277691 0.960671i \(-0.410431\pi\)
0.827841 0.560963i \(-0.189569\pi\)
\(492\) 0 0
\(493\) 10.8084 10.8084i 0.486788 0.486788i
\(494\) 0 0
\(495\) −23.1522 −1.04061
\(496\) 0 0
\(497\) 19.0464 9.70461i 0.854347 0.435311i
\(498\) 0 0
\(499\) 31.4385 1.40738 0.703690 0.710508i \(-0.251535\pi\)
0.703690 + 0.710508i \(0.251535\pi\)
\(500\) 0 0
\(501\) 39.7141 1.77430
\(502\) 0 0
\(503\) 25.4190 12.9516i 1.13338 0.577483i 0.216351 0.976316i \(-0.430584\pi\)
0.917024 + 0.398832i \(0.130584\pi\)
\(504\) 0 0
\(505\) −6.48025 −0.288367
\(506\) 0 0
\(507\) 24.7590 24.7590i 1.09959 1.09959i
\(508\) 0 0
\(509\) −11.3987 + 15.6889i −0.505237 + 0.695400i −0.983107 0.183031i \(-0.941409\pi\)
0.477870 + 0.878431i \(0.341409\pi\)
\(510\) 0 0
\(511\) −1.83368 2.52384i −0.0811171 0.111648i
\(512\) 0 0
\(513\) 41.9732 6.64791i 1.85316 0.293512i
\(514\) 0 0
\(515\) 17.4579 8.89524i 0.769287 0.391971i
\(516\) 0 0
\(517\) 0.945717 1.85607i 0.0415926 0.0816300i
\(518\) 0 0
\(519\) −0.155018 0.477096i −0.00680453 0.0209422i
\(520\) 0 0
\(521\) −3.07842 + 9.47439i −0.134868 + 0.415081i −0.995569 0.0940291i \(-0.970025\pi\)
0.860702 + 0.509110i \(0.170025\pi\)
\(522\) 0 0
\(523\) −6.66792 1.05610i −0.291568 0.0461798i 0.00893708 0.999960i \(-0.497155\pi\)
−0.300505 + 0.953780i \(0.597155\pi\)
\(524\) 0 0
\(525\) 10.3142 31.7440i 0.450150 1.38542i
\(526\) 0 0
\(527\) 8.90073 56.1970i 0.387722 2.44798i
\(528\) 0 0
\(529\) −15.5163 5.04155i −0.674621 0.219198i
\(530\) 0 0
\(531\) −50.0010 + 16.2463i −2.16986 + 0.705030i
\(532\) 0 0
\(533\) 9.04062 + 4.60642i 0.391593 + 0.199526i
\(534\) 0 0
\(535\) −25.1426 + 25.1426i −1.08701 + 1.08701i
\(536\) 0 0
\(537\) −4.42780 27.9561i −0.191074 1.20639i
\(538\) 0 0
\(539\) −2.63492 + 1.91438i −0.113494 + 0.0824582i
\(540\) 0 0
\(541\) −35.9536 26.1218i −1.54577 1.12306i −0.946587 0.322449i \(-0.895494\pi\)
−0.599179 0.800615i \(-0.704506\pi\)
\(542\) 0 0
\(543\) 36.9776 + 36.9776i 1.58686 + 1.58686i
\(544\) 0 0
\(545\) −11.2599 + 15.4979i −0.482319 + 0.663855i
\(546\) 0 0
\(547\) −13.3756 26.2510i −0.571897 1.12241i −0.978004 0.208586i \(-0.933114\pi\)
0.406107 0.913826i \(-0.366886\pi\)
\(548\) 0 0
\(549\) 6.52234i 0.278367i
\(550\) 0 0
\(551\) 16.9334i 0.721385i
\(552\) 0 0
\(553\) −7.72659 15.1643i −0.328568 0.644851i
\(554\) 0 0
\(555\) 38.6536 + 53.2022i 1.64076 + 2.25831i
\(556\) 0 0
\(557\) 8.25814 + 8.25814i 0.349908 + 0.349908i 0.860075 0.510167i \(-0.170416\pi\)
−0.510167 + 0.860075i \(0.670416\pi\)
\(558\) 0 0
\(559\) 6.80206 + 4.94199i 0.287697 + 0.209024i
\(560\) 0 0
\(561\) −24.6213 + 17.8884i −1.03951 + 0.755250i
\(562\) 0 0
\(563\) −2.84609 17.9695i −0.119949 0.757325i −0.972193 0.234181i \(-0.924759\pi\)
0.852244 0.523144i \(-0.175241\pi\)
\(564\) 0 0
\(565\) 11.5562 1.83032i 0.486171 0.0770020i
\(566\) 0 0
\(567\) 8.30766 + 4.23296i 0.348889 + 0.177768i
\(568\) 0 0
\(569\) 22.1612 7.20061i 0.929046 0.301865i 0.194873 0.980828i \(-0.437570\pi\)
0.734172 + 0.678963i \(0.237570\pi\)
\(570\) 0 0
\(571\) −4.48095 1.45595i −0.187522 0.0609296i 0.213751 0.976888i \(-0.431432\pi\)
−0.401273 + 0.915959i \(0.631432\pi\)
\(572\) 0 0
\(573\) −2.70922 + 17.1053i −0.113179 + 0.714585i
\(574\) 0 0
\(575\) −12.7687 2.02237i −0.532493 0.0843385i
\(576\) 0 0
\(577\) −25.3479 4.01471i −1.05525 0.167135i −0.395380 0.918517i \(-0.629387\pi\)
−0.659867 + 0.751383i \(0.729387\pi\)
\(578\) 0 0
\(579\) −7.51982 + 23.1436i −0.312513 + 0.961816i
\(580\) 0 0
\(581\) 10.9222 + 33.6149i 0.453128 + 1.39458i
\(582\) 0 0
\(583\) 8.15908 16.0131i 0.337915 0.663195i
\(584\) 0 0
\(585\) 5.28989 10.3820i 0.218710 0.429243i
\(586\) 0 0
\(587\) −3.46115 + 0.548193i −0.142857 + 0.0226263i −0.227453 0.973789i \(-0.573040\pi\)
0.0845963 + 0.996415i \(0.473040\pi\)
\(588\) 0 0
\(589\) −37.0490 50.9936i −1.52658 2.10116i
\(590\) 0 0
\(591\) −17.6587 + 24.3052i −0.726383 + 0.999781i
\(592\) 0 0
\(593\) −9.16670 + 9.16670i −0.376431 + 0.376431i −0.869813 0.493382i \(-0.835761\pi\)
0.493382 + 0.869813i \(0.335761\pi\)
\(594\) 0 0
\(595\) −8.72261 26.8454i −0.357592 1.10056i
\(596\) 0 0
\(597\) 31.4015 15.9999i 1.28518 0.654832i
\(598\) 0 0
\(599\) 1.02128 0.0417284 0.0208642 0.999782i \(-0.493358\pi\)
0.0208642 + 0.999782i \(0.493358\pi\)
\(600\) 0 0
\(601\) 24.7175 1.00825 0.504124 0.863631i \(-0.331816\pi\)
0.504124 + 0.863631i \(0.331816\pi\)
\(602\) 0 0
\(603\) 31.2705 15.9331i 1.27343 0.648847i
\(604\) 0 0
\(605\) −5.07138 + 15.6081i −0.206181 + 0.634559i
\(606\) 0 0
\(607\) 15.6989 15.6989i 0.637199 0.637199i −0.312664 0.949864i \(-0.601222\pi\)
0.949864 + 0.312664i \(0.101222\pi\)
\(608\) 0 0
\(609\) 10.9357 15.0517i 0.443137 0.609926i
\(610\) 0 0
\(611\) 0.616228 + 0.848165i 0.0249299 + 0.0343131i
\(612\) 0 0
\(613\) 24.4360 3.87028i 0.986961 0.156319i 0.357971 0.933733i \(-0.383469\pi\)
0.628990 + 0.777413i \(0.283469\pi\)
\(614\) 0 0
\(615\) −67.4957 10.6903i −2.72169 0.431073i
\(616\) 0 0
\(617\) 20.2483 39.7395i 0.815166 1.59985i 0.0151422 0.999885i \(-0.495180\pi\)
0.800024 0.599968i \(-0.204820\pi\)
\(618\) 0 0
\(619\) 5.01747 + 15.4422i 0.201669 + 0.620674i 0.999834 + 0.0182344i \(0.00580452\pi\)
−0.798165 + 0.602439i \(0.794195\pi\)
\(620\) 0 0
\(621\) 5.58846 17.1995i 0.224257 0.690193i
\(622\) 0 0
\(623\) 7.57235 + 1.19934i 0.303380 + 0.0480507i
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) −5.27413 + 33.2995i −0.210628 + 1.32986i
\(628\) 0 0
\(629\) 52.8917 + 17.1856i 2.10893 + 0.685233i
\(630\) 0 0
\(631\) −33.0642 + 10.7432i −1.31626 + 0.427680i −0.881210 0.472725i \(-0.843270\pi\)
−0.435053 + 0.900405i \(0.643270\pi\)
\(632\) 0 0
\(633\) −1.16718 0.594706i −0.0463911 0.0236374i
\(634\) 0 0
\(635\) −6.20265 + 39.1620i −0.246145 + 1.55410i
\(636\) 0 0
\(637\) −0.256419 1.61897i −0.0101597 0.0641458i
\(638\) 0 0
\(639\) −40.6606 + 29.5416i −1.60851 + 1.16865i
\(640\) 0 0
\(641\) 24.7800 + 18.0037i 0.978751 + 0.711104i 0.957429 0.288668i \(-0.0932125\pi\)
0.0213220 + 0.999773i \(0.493212\pi\)
\(642\) 0 0
\(643\) 14.8959 + 14.8959i 0.587438 + 0.587438i 0.936937 0.349499i \(-0.113648\pi\)
−0.349499 + 0.936937i \(0.613648\pi\)
\(644\) 0 0
\(645\) −53.8553 17.4986i −2.12055 0.689008i
\(646\) 0 0
\(647\) 6.63750 + 13.0268i 0.260947 + 0.512137i 0.983891 0.178769i \(-0.0572116\pi\)
−0.722944 + 0.690907i \(0.757212\pi\)
\(648\) 0 0
\(649\) 18.5875i 0.729625i
\(650\) 0 0
\(651\) 69.2537i 2.71427i
\(652\) 0 0
\(653\) 11.8246 + 23.2070i 0.462731 + 0.908161i 0.997984 + 0.0634688i \(0.0202163\pi\)
−0.535253 + 0.844692i \(0.679784\pi\)
\(654\) 0 0
\(655\) −32.4252 + 10.5356i −1.26696 + 0.411660i
\(656\) 0 0
\(657\) 5.18649 + 5.18649i 0.202344 + 0.202344i
\(658\) 0 0
\(659\) −24.4969 17.7981i −0.954265 0.693314i −0.00245356 0.999997i \(-0.500781\pi\)
−0.951812 + 0.306683i \(0.900781\pi\)
\(660\) 0 0
\(661\) 22.1513 16.0939i 0.861587 0.625980i −0.0667289 0.997771i \(-0.521256\pi\)
0.928316 + 0.371791i \(0.121256\pi\)
\(662\) 0 0
\(663\) −2.39604 15.1280i −0.0930545 0.587523i
\(664\) 0 0
\(665\) −27.8619 14.1963i −1.08044 0.550510i
\(666\) 0 0
\(667\) −6.42069 3.27150i −0.248610 0.126673i
\(668\) 0 0
\(669\) −23.6065 + 7.67022i −0.912681 + 0.296548i
\(670\) 0 0
\(671\) −2.19310 0.712582i −0.0846638 0.0275089i
\(672\) 0 0
\(673\) 2.72840 17.2265i 0.105172 0.664031i −0.877626 0.479347i \(-0.840874\pi\)
0.982798 0.184684i \(-0.0591263\pi\)
\(674\) 0 0
\(675\) −5.47085 + 34.5416i −0.210573 + 1.32951i
\(676\) 0 0
\(677\) −30.9741 4.90581i −1.19043 0.188546i −0.470377 0.882465i \(-0.655882\pi\)
−0.720052 + 0.693920i \(0.755882\pi\)
\(678\) 0 0
\(679\) −1.78775 + 5.50212i −0.0686075 + 0.211152i
\(680\) 0 0
\(681\) −3.57029 10.9882i −0.136814 0.421069i
\(682\) 0 0
\(683\) −12.0790 + 23.7064i −0.462191 + 0.907101i 0.535836 + 0.844322i \(0.319996\pi\)
−0.998027 + 0.0627792i \(0.980004\pi\)
\(684\) 0 0
\(685\) −0.343002 2.16563i −0.0131054 0.0827443i
\(686\) 0 0
\(687\) 18.7046 2.96251i 0.713624 0.113027i
\(688\) 0 0
\(689\) 5.31645 + 7.31746i 0.202541 + 0.278773i
\(690\) 0 0
\(691\) −12.0424 + 16.5750i −0.458115 + 0.630541i −0.974116 0.226047i \(-0.927420\pi\)
0.516002 + 0.856588i \(0.327420\pi\)
\(692\) 0 0
\(693\) −16.8514 + 16.8514i −0.640132 + 0.640132i
\(694\) 0 0
\(695\) 8.75938 6.36406i 0.332262 0.241403i
\(696\) 0 0
\(697\) −51.4928 + 26.2369i −1.95043 + 0.993793i
\(698\) 0 0
\(699\) 41.4679 1.56846
\(700\) 0 0
\(701\) 0.0556153 0.00210056 0.00105028 0.999999i \(-0.499666\pi\)
0.00105028 + 0.999999i \(0.499666\pi\)
\(702\) 0 0
\(703\) 54.8943 27.9700i 2.07038 1.05491i
\(704\) 0 0
\(705\) −5.71241 4.15031i −0.215142 0.156310i
\(706\) 0 0
\(707\) −4.71668 + 4.71668i −0.177389 + 0.177389i
\(708\) 0 0
\(709\) 26.2864 36.1801i 0.987206 1.35877i 0.0543509 0.998522i \(-0.482691\pi\)
0.932855 0.360251i \(-0.117309\pi\)
\(710\) 0 0
\(711\) 23.5204 + 32.3730i 0.882082 + 1.21408i
\(712\) 0 0
\(713\) −26.4933 + 4.19612i −0.992181 + 0.157146i
\(714\) 0 0
\(715\) 2.91296 + 2.91296i 0.108939 + 0.108939i
\(716\) 0 0
\(717\) 10.8673 21.3282i 0.405845 0.796517i
\(718\) 0 0
\(719\) 6.24759 + 19.2281i 0.232996 + 0.717087i 0.997381 + 0.0723273i \(0.0230426\pi\)
−0.764385 + 0.644760i \(0.776957\pi\)
\(720\) 0 0
\(721\) 6.23236 19.1812i 0.232105 0.714347i
\(722\) 0 0
\(723\) −24.5543 3.88902i −0.913184 0.144634i
\(724\) 0 0
\(725\) 13.2532 + 4.30621i 0.492210 + 0.159929i
\(726\) 0 0
\(727\) 1.18294 7.46881i 0.0438729 0.277003i −0.955993 0.293390i \(-0.905217\pi\)
0.999866 + 0.0163874i \(0.00521652\pi\)
\(728\) 0 0
\(729\) 37.0298 + 12.0317i 1.37147 + 0.445619i
\(730\) 0 0
\(731\) −45.5447 + 14.7984i −1.68453 + 0.547337i
\(732\) 0 0
\(733\) −4.47992 2.28263i −0.165470 0.0843110i 0.369294 0.929313i \(-0.379599\pi\)
−0.534764 + 0.845002i \(0.679599\pi\)
\(734\) 0 0
\(735\) 5.01191 + 9.83643i 0.184867 + 0.362822i
\(736\) 0 0
\(737\) 1.94105 + 12.2553i 0.0714994 + 0.451429i
\(738\) 0 0
\(739\) 25.4921 18.5211i 0.937743 0.681310i −0.0101332 0.999949i \(-0.503226\pi\)
0.947876 + 0.318638i \(0.103226\pi\)
\(740\) 0 0
\(741\) −13.7273 9.97345i −0.504284 0.366384i
\(742\) 0 0
\(743\) −4.53704 4.53704i −0.166448 0.166448i 0.618968 0.785416i \(-0.287551\pi\)
−0.785416 + 0.618968i \(0.787551\pi\)
\(744\) 0 0
\(745\) 20.4853i 0.750522i
\(746\) 0 0
\(747\) −37.7274 74.0443i −1.38037 2.70914i
\(748\) 0 0
\(749\) 36.6002i 1.33734i
\(750\) 0 0
\(751\) 45.1400i 1.64718i −0.567184 0.823591i \(-0.691967\pi\)
0.567184 0.823591i \(-0.308033\pi\)
\(752\) 0 0
\(753\) −23.0793 45.2956i −0.841055 1.65066i
\(754\) 0 0
\(755\) 34.8905i 1.26979i
\(756\) 0 0
\(757\) −11.2118 11.2118i −0.407500 0.407500i 0.473366 0.880866i \(-0.343039\pi\)
−0.880866 + 0.473366i \(0.843039\pi\)
\(758\) 0 0
\(759\) 11.6074 + 8.43324i 0.421321 + 0.306107i
\(760\) 0 0
\(761\) 16.6208 12.0757i 0.602503 0.437744i −0.244263 0.969709i \(-0.578546\pi\)
0.846767 + 0.531965i \(0.178546\pi\)
\(762\) 0 0
\(763\) 3.08465 + 19.4757i 0.111672 + 0.705068i
\(764\) 0 0
\(765\) 30.1297 + 59.1329i 1.08934 + 2.13796i
\(766\) 0 0
\(767\) 8.33510 + 4.24695i 0.300963 + 0.153348i
\(768\) 0 0
\(769\) −22.0022 + 7.14894i −0.793419 + 0.257797i −0.677559 0.735468i \(-0.736962\pi\)
−0.115859 + 0.993266i \(0.536962\pi\)
\(770\) 0 0
\(771\) 47.3751 + 15.3931i 1.70617 + 0.554369i
\(772\) 0 0
\(773\) −6.27729 + 39.6333i −0.225779 + 1.42551i 0.570857 + 0.821050i \(0.306611\pi\)
−0.796635 + 0.604460i \(0.793389\pi\)
\(774\) 0 0
\(775\) 49.3327 16.0292i 1.77208 0.575784i
\(776\) 0 0
\(777\) 66.8577 + 10.5892i 2.39850 + 0.379886i
\(778\) 0 0
\(779\) −19.7839 + 60.8887i −0.708833 + 2.18157i
\(780\) 0 0
\(781\) −5.49095 16.8994i −0.196482 0.604708i
\(782\) 0 0
\(783\) −8.84998 + 17.3691i −0.316273 + 0.620720i
\(784\) 0 0
\(785\) 11.3065 + 11.3065i 0.403548 + 0.403548i
\(786\) 0 0
\(787\) −14.5622 + 2.30642i −0.519085 + 0.0822150i −0.410479 0.911870i \(-0.634639\pi\)
−0.108606 + 0.994085i \(0.534639\pi\)
\(788\) 0 0
\(789\) 4.17037 + 5.74002i 0.148469 + 0.204350i
\(790\) 0 0
\(791\) 7.07900 9.74341i 0.251700 0.346436i
\(792\) 0 0
\(793\) 0.820627 0.820627i 0.0291413 0.0291413i
\(794\) 0 0
\(795\) −49.2833 35.8064i −1.74790 1.26992i
\(796\) 0 0
\(797\) 17.3154 8.82266i 0.613344 0.312515i −0.119580 0.992825i \(-0.538155\pi\)
0.732924 + 0.680310i \(0.238155\pi\)
\(798\) 0 0
\(799\) −5.97133 −0.211251
\(800\) 0 0
\(801\) −18.0258 −0.636911
\(802\) 0 0
\(803\) −2.31057 + 1.17729i −0.0815382 + 0.0415458i
\(804\) 0 0
\(805\) −10.7658 + 7.82178i −0.379443 + 0.275682i
\(806\) 0 0
\(807\) 16.2134 16.2134i 0.570738 0.570738i
\(808\) 0 0
\(809\) 12.0110 16.5317i 0.422284 0.581224i −0.543877 0.839165i \(-0.683044\pi\)
0.966161 + 0.257941i \(0.0830441\pi\)
\(810\) 0 0
\(811\) 7.49205 + 10.3119i 0.263081 + 0.362101i 0.920039 0.391827i \(-0.128157\pi\)
−0.656957 + 0.753928i \(0.728157\pi\)
\(812\) 0 0
\(813\) −32.7154 + 5.18162i −1.14738 + 0.181727i
\(814\) 0 0
\(815\) −1.21196 7.65201i −0.0424531 0.268038i
\(816\) 0 0
\(817\) −24.0848 + 47.2691i −0.842621 + 1.65374i
\(818\) 0 0
\(819\) −3.70631 11.4069i −0.129509 0.398588i
\(820\) 0 0
\(821\) −13.2734 + 40.8514i −0.463246 + 1.42572i 0.397929 + 0.917416i \(0.369729\pi\)
−0.861175 + 0.508309i \(0.830271\pi\)
\(822\) 0 0
\(823\) −14.1588 2.24253i −0.493545 0.0781698i −0.0952992 0.995449i \(-0.530381\pi\)
−0.398246 + 0.917279i \(0.630381\pi\)
\(824\) 0 0
\(825\) −24.7212 12.5961i −0.860681 0.438539i
\(826\) 0 0
\(827\) −3.59722 + 22.7120i −0.125088 + 0.789773i 0.842770 + 0.538274i \(0.180923\pi\)
−0.967858 + 0.251499i \(0.919077\pi\)
\(828\) 0 0
\(829\) −53.7472 17.4635i −1.86672 0.606533i −0.992695 0.120648i \(-0.961503\pi\)
−0.874022 0.485886i \(-0.838497\pi\)
\(830\) 0 0
\(831\) 14.2343 4.62502i 0.493784 0.160440i
\(832\) 0 0
\(833\) 8.31854 + 4.23851i 0.288220 + 0.146856i
\(834\) 0 0
\(835\) 27.2817 + 13.9007i 0.944121 + 0.481054i
\(836\) 0 0
\(837\) 11.3512 + 71.6689i 0.392356 + 2.47724i
\(838\) 0 0
\(839\) 45.5611 33.1021i 1.57294 1.14281i 0.648678 0.761063i \(-0.275322\pi\)
0.924266 0.381748i \(-0.124678\pi\)
\(840\) 0 0
\(841\) −17.1774 12.4801i −0.592323 0.430348i
\(842\) 0 0
\(843\) −1.94403 1.94403i −0.0669559 0.0669559i
\(844\) 0 0
\(845\) 25.6743 8.34210i 0.883224 0.286977i
\(846\) 0 0
\(847\) 7.66920 + 15.0516i 0.263517 + 0.517181i
\(848\) 0 0
\(849\) 13.6655i 0.469000i
\(850\) 0 0
\(851\) 26.2183i 0.898751i
\(852\) 0 0
\(853\) 2.05888 + 4.04078i 0.0704948 + 0.138354i 0.923564 0.383443i \(-0.125262\pi\)
−0.853070 + 0.521797i \(0.825262\pi\)
\(854\) 0 0
\(855\) 69.9230 + 22.7194i 2.39132 + 0.776986i
\(856\) 0 0
\(857\) 31.5213 + 31.5213i 1.07675 + 1.07675i 0.996799 + 0.0799464i \(0.0254749\pi\)
0.0799464 + 0.996799i \(0.474525\pi\)
\(858\) 0 0
\(859\) −44.9222 32.6379i −1.53272 1.11359i −0.954700 0.297570i \(-0.903824\pi\)
−0.578025 0.816019i \(-0.696176\pi\)
\(860\) 0 0
\(861\) −56.9080 + 41.3461i −1.93942 + 1.40907i
\(862\) 0 0
\(863\) −5.82545 36.7804i −0.198301 1.25202i −0.863113 0.505010i \(-0.831489\pi\)
0.664813 0.747010i \(-0.268511\pi\)
\(864\) 0 0
\(865\) 0.0605030 0.382001i 0.00205716 0.0129884i
\(866\) 0 0
\(867\) 33.7995 + 17.2217i 1.14789 + 0.584880i
\(868\) 0 0
\(869\) −13.4549 + 4.37177i −0.456427 + 0.148302i
\(870\) 0 0
\(871\) −5.93906 1.92972i −0.201238 0.0653860i
\(872\) 0 0
\(873\) 2.12785 13.4347i 0.0720168 0.454696i
\(874\) 0 0
\(875\) 18.1964 18.1964i 0.615149 0.615149i
\(876\) 0 0
\(877\) 33.6877 + 5.33560i 1.13755 + 0.180170i 0.696668 0.717394i \(-0.254665\pi\)
0.440884 + 0.897564i \(0.354665\pi\)
\(878\) 0 0
\(879\) 22.0566 67.8832i 0.743950 2.28964i
\(880\) 0 0
\(881\) −10.0398 30.8993i −0.338250 1.04103i −0.965099 0.261885i \(-0.915656\pi\)
0.626849 0.779140i \(-0.284344\pi\)
\(882\) 0 0
\(883\) −19.0062 + 37.3018i −0.639611 + 1.25531i 0.312606 + 0.949883i \(0.398798\pi\)
−0.952216 + 0.305424i \(0.901202\pi\)
\(884\) 0 0
\(885\) −62.2284 9.85602i −2.09179 0.331306i
\(886\) 0 0
\(887\) −15.7111 + 2.48840i −0.527528 + 0.0835522i −0.414517 0.910042i \(-0.636049\pi\)
−0.113011 + 0.993594i \(0.536049\pi\)
\(888\) 0 0
\(889\) 23.9896 + 33.0189i 0.804586 + 1.10742i
\(890\) 0 0
\(891\) 4.55565 6.27031i 0.152620 0.210063i
\(892\) 0 0
\(893\) −4.67758 + 4.67758i −0.156529 + 0.156529i
\(894\) 0 0
\(895\) 6.74346 20.7542i 0.225409 0.693738i
\(896\) 0 0
\(897\) −6.43376 + 3.27817i −0.214817 + 0.109455i
\(898\) 0 0
\(899\) 28.9136 0.964321
\(900\) 0 0
\(901\) −51.5171 −1.71628
\(902\) 0 0
\(903\) −51.9352 + 26.4623i −1.72830 + 0.880611i
\(904\) 0 0
\(905\) 12.4589 + 38.3446i 0.414148 + 1.27462i
\(906\) 0 0
\(907\) −26.6340 + 26.6340i −0.884368 + 0.884368i −0.993975 0.109607i \(-0.965041\pi\)
0.109607 + 0.993975i \(0.465041\pi\)
\(908\) 0 0
\(909\) 9.21837 12.6880i 0.305754 0.420834i
\(910\) 0 0
\(911\) 10.7990 + 14.8635i 0.357786 + 0.492450i 0.949530 0.313676i \(-0.101560\pi\)
−0.591744 + 0.806126i \(0.701560\pi\)
\(912\) 0 0
\(913\) 29.0188 4.59613i 0.960383 0.152110i
\(914\) 0 0
\(915\) −3.54852 + 6.96435i −0.117310 + 0.230234i
\(916\) 0 0
\(917\) −15.9325 + 31.2692i −0.526136 + 1.03260i
\(918\) 0 0
\(919\) −3.79079 11.6668i −0.125047 0.384854i 0.868863 0.495053i \(-0.164851\pi\)
−0.993910 + 0.110199i \(0.964851\pi\)
\(920\) 0 0
\(921\) 11.6027 35.7094i 0.382322 1.17666i
\(922\) 0 0
\(923\) 8.83270 + 1.39896i 0.290732 + 0.0460474i
\(924\) 0 0
\(925\) 7.93138 + 50.0768i 0.260782 + 1.64651i
\(926\) 0 0
\(927\) −7.41801 + 46.8354i −0.243639 + 1.53828i
\(928\) 0 0
\(929\) −22.8891 7.43712i −0.750967 0.244004i −0.0915697 0.995799i \(-0.529188\pi\)
−0.659397 + 0.751795i \(0.729188\pi\)
\(930\) 0 0
\(931\) 9.83643 3.19605i 0.322376 0.104746i
\(932\) 0 0
\(933\) −63.9703 32.5945i −2.09429 1.06710i
\(934\) 0 0
\(935\) −23.1749 + 3.67054i −0.757900 + 0.120040i
\(936\) 0 0
\(937\) −4.35021 27.4661i −0.142115 0.897280i −0.950973 0.309275i \(-0.899914\pi\)
0.808858 0.588005i \(-0.200086\pi\)
\(938\) 0 0
\(939\) −57.4889 + 41.7682i −1.87608 + 1.36305i
\(940\) 0 0
\(941\) 26.2811 + 19.0943i 0.856739 + 0.622458i 0.926996 0.375071i \(-0.122382\pi\)
−0.0702566 + 0.997529i \(0.522382\pi\)
\(942\) 0 0
\(943\) 19.2652 + 19.2652i 0.627361 + 0.627361i
\(944\) 0 0
\(945\) 21.1593 + 29.1232i 0.688311 + 0.947379i
\(946\) 0 0
\(947\) 19.6510 + 38.5672i 0.638570 + 1.25327i 0.952708 + 0.303888i \(0.0982847\pi\)
−0.314137 + 0.949378i \(0.601715\pi\)
\(948\) 0 0
\(949\) 1.30511i 0.0423656i
\(950\) 0 0
\(951\) 32.6197i 1.05777i
\(952\) 0 0
\(953\) −17.2271 33.8100i −0.558039 1.09521i −0.981885 0.189479i \(-0.939320\pi\)
0.423845 0.905735i \(-0.360680\pi\)
\(954\) 0 0
\(955\) −7.84829 + 10.8022i −0.253965 + 0.349552i
\(956\) 0 0
\(957\) −10.9357 10.9357i −0.353501 0.353501i
\(958\) 0 0
\(959\) −1.82592 1.32661i −0.0589619 0.0428383i
\(960\) 0 0
\(961\) 61.9917 45.0396i 1.99973 1.45289i
\(962\) 0 0
\(963\) −13.4617 84.9940i −0.433798 2.73889i
\(964\) 0 0
\(965\) −13.2665 + 13.2665i −0.427062 + 0.427062i
\(966\) 0 0
\(967\) −34.9580 17.8120i −1.12417 0.572795i −0.209832 0.977738i \(-0.567292\pi\)
−0.914342 + 0.404942i \(0.867292\pi\)
\(968\) 0 0
\(969\) 91.9139 29.8646i 2.95270 0.959391i
\(970\) 0 0
\(971\) 17.7840 + 5.77838i 0.570717 + 0.185437i 0.580138 0.814519i \(-0.302999\pi\)
−0.00942088 + 0.999956i \(0.502999\pi\)
\(972\) 0 0
\(973\) 1.74344 11.0077i 0.0558922 0.352889i
\(974\) 0 0
\(975\) 11.2968 8.20758i 0.361786 0.262853i
\(976\) 0 0
\(977\) 39.6220 + 6.27550i 1.26762 + 0.200771i 0.753786 0.657119i \(-0.228225\pi\)
0.513832 + 0.857891i \(0.328225\pi\)
\(978\) 0 0
\(979\) 1.96937 6.06109i 0.0629413 0.193713i
\(980\) 0 0
\(981\) −14.3265 44.0924i −0.457410 1.40776i
\(982\) 0 0
\(983\) −14.9499 + 29.3408i −0.476827 + 0.935826i 0.519841 + 0.854263i \(0.325991\pi\)
−0.996668 + 0.0815629i \(0.974009\pi\)
\(984\) 0 0
\(985\) −20.6379 + 10.5156i −0.657580 + 0.335054i
\(986\) 0 0
\(987\) −7.17862 + 1.13698i −0.228498 + 0.0361905i
\(988\) 0 0
\(989\) 13.2701 + 18.2647i 0.421963 + 0.580782i
\(990\) 0 0
\(991\) −5.75905 + 7.92666i −0.182942 + 0.251799i −0.890632 0.454725i \(-0.849738\pi\)
0.707690 + 0.706524i \(0.249738\pi\)
\(992\) 0 0
\(993\) −43.1986 + 43.1986i −1.37087 + 1.37087i
\(994\) 0 0
\(995\) 27.1716 0.861397
\(996\) 0 0
\(997\) 19.0371 9.69989i 0.602911 0.307198i −0.125762 0.992060i \(-0.540138\pi\)
0.728673 + 0.684862i \(0.240138\pi\)
\(998\) 0 0
\(999\) −70.9249 −2.24397
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.2.bi.c.127.1 yes 16
4.3 odd 2 inner 400.2.bi.c.127.2 yes 16
25.13 odd 20 inner 400.2.bi.c.63.2 yes 16
100.63 even 20 inner 400.2.bi.c.63.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
400.2.bi.c.63.1 16 100.63 even 20 inner
400.2.bi.c.63.2 yes 16 25.13 odd 20 inner
400.2.bi.c.127.1 yes 16 1.1 even 1 trivial
400.2.bi.c.127.2 yes 16 4.3 odd 2 inner