Properties

Label 400.2.bi.c.63.2
Level $400$
Weight $2$
Character 400.63
Analytic conductor $3.194$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,2,Mod(47,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([10, 0, 17]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 400.bi (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.19401608085\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{20})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 32 x^{14} - 64 x^{13} + 66 x^{12} - 28 x^{11} + 160 x^{10} - 392 x^{9} + 419 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 63.2
Root \(-0.313766 - 0.313766i\) of defining polynomial
Character \(\chi\) \(=\) 400.63
Dual form 400.2.bi.c.127.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.58417 + 1.31670i) q^{3} -2.23607 q^{5} +(1.62753 + 1.62753i) q^{7} +(3.18088 + 4.37811i) q^{9} +(-1.12460 + 1.54787i) q^{11} +(-0.951057 - 0.150633i) q^{13} +(-5.77838 - 2.94423i) q^{15} +(2.48990 + 4.88670i) q^{17} +(1.87751 - 5.77838i) q^{19} +(2.06285 + 6.34879i) q^{21} +(2.55374 - 0.404473i) q^{23} +5.00000 q^{25} +(1.09417 + 6.90832i) q^{27} +(2.65063 - 0.861243i) q^{29} +(-9.86654 - 3.20583i) q^{31} +(-4.94424 + 2.51921i) q^{33} +(-3.63927 - 3.63927i) q^{35} +(1.58628 - 10.0154i) q^{37} +(-2.25935 - 1.64152i) q^{39} +(-8.52488 + 6.19369i) q^{41} +(6.17421 - 6.17421i) q^{43} +(-7.11267 - 9.78975i) q^{45} +(0.494291 - 0.970102i) q^{47} -1.70228i q^{49} +15.9065i q^{51} +(-4.26445 + 8.36946i) q^{53} +(2.51467 - 3.46115i) q^{55} +(12.4602 - 12.4602i) q^{57} +(7.85962 - 5.71035i) q^{59} +(-0.975062 - 0.708424i) q^{61} +(-1.94852 + 12.3025i) q^{63} +(2.12663 + 0.336825i) q^{65} +(-5.77838 + 2.94423i) q^{67} +(7.13188 + 2.31729i) q^{69} +(8.83270 - 2.86992i) q^{71} +(-0.212028 - 1.33869i) q^{73} +(12.9209 + 6.58350i) q^{75} +(-4.34953 + 0.688898i) q^{77} +(2.28496 + 7.03239i) q^{79} +(-1.25180 + 3.85265i) q^{81} +(-6.97154 - 13.6824i) q^{83} +(-5.56758 - 10.9270i) q^{85} +(7.98369 + 1.26449i) q^{87} +(-1.95788 + 2.69479i) q^{89} +(-1.30272 - 1.79303i) q^{91} +(-21.2757 - 21.2757i) q^{93} +(-4.19824 + 12.9209i) q^{95} +(2.23955 + 1.14111i) q^{97} -10.3540 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 20 q^{9} + 20 q^{21} + 80 q^{25} + 20 q^{29} - 20 q^{33} - 40 q^{37} - 12 q^{41} + 20 q^{45} - 40 q^{53} + 20 q^{57} - 12 q^{61} - 60 q^{69} - 40 q^{73} - 100 q^{77} - 24 q^{81} - 60 q^{89} - 100 q^{93}+ \cdots - 80 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(e\left(\frac{19}{20}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.58417 + 1.31670i 1.49197 + 0.760198i 0.994244 0.107136i \(-0.0341681\pi\)
0.497727 + 0.867334i \(0.334168\pi\)
\(4\) 0 0
\(5\) −2.23607 −1.00000
\(6\) 0 0
\(7\) 1.62753 + 1.62753i 0.615149 + 0.615149i 0.944283 0.329134i \(-0.106757\pi\)
−0.329134 + 0.944283i \(0.606757\pi\)
\(8\) 0 0
\(9\) 3.18088 + 4.37811i 1.06029 + 1.45937i
\(10\) 0 0
\(11\) −1.12460 + 1.54787i −0.339079 + 0.466702i −0.944172 0.329453i \(-0.893136\pi\)
0.605093 + 0.796154i \(0.293136\pi\)
\(12\) 0 0
\(13\) −0.951057 0.150633i −0.263776 0.0417780i 0.0231457 0.999732i \(-0.492632\pi\)
−0.286921 + 0.957954i \(0.592632\pi\)
\(14\) 0 0
\(15\) −5.77838 2.94423i −1.49197 0.760198i
\(16\) 0 0
\(17\) 2.48990 + 4.88670i 0.603889 + 1.18520i 0.967315 + 0.253576i \(0.0816068\pi\)
−0.363426 + 0.931623i \(0.618393\pi\)
\(18\) 0 0
\(19\) 1.87751 5.77838i 0.430730 1.32565i −0.466669 0.884432i \(-0.654546\pi\)
0.897399 0.441219i \(-0.145454\pi\)
\(20\) 0 0
\(21\) 2.06285 + 6.34879i 0.450150 + 1.38542i
\(22\) 0 0
\(23\) 2.55374 0.404473i 0.532493 0.0843385i 0.115603 0.993296i \(-0.463120\pi\)
0.416890 + 0.908957i \(0.363120\pi\)
\(24\) 0 0
\(25\) 5.00000 1.00000
\(26\) 0 0
\(27\) 1.09417 + 6.90832i 0.210573 + 1.32951i
\(28\) 0 0
\(29\) 2.65063 0.861243i 0.492210 0.159929i −0.0523865 0.998627i \(-0.516683\pi\)
0.544597 + 0.838698i \(0.316683\pi\)
\(30\) 0 0
\(31\) −9.86654 3.20583i −1.77208 0.575784i −0.773749 0.633492i \(-0.781621\pi\)
−0.998334 + 0.0577079i \(0.981621\pi\)
\(32\) 0 0
\(33\) −4.94424 + 2.51921i −0.860681 + 0.438539i
\(34\) 0 0
\(35\) −3.63927 3.63927i −0.615149 0.615149i
\(36\) 0 0
\(37\) 1.58628 10.0154i 0.260782 1.64651i −0.415297 0.909686i \(-0.636322\pi\)
0.676080 0.736829i \(-0.263678\pi\)
\(38\) 0 0
\(39\) −2.25935 1.64152i −0.361786 0.262853i
\(40\) 0 0
\(41\) −8.52488 + 6.19369i −1.33136 + 0.967292i −0.331648 + 0.943403i \(0.607605\pi\)
−0.999715 + 0.0238886i \(0.992395\pi\)
\(42\) 0 0
\(43\) 6.17421 6.17421i 0.941558 0.941558i −0.0568258 0.998384i \(-0.518098\pi\)
0.998384 + 0.0568258i \(0.0180979\pi\)
\(44\) 0 0
\(45\) −7.11267 9.78975i −1.06029 1.45937i
\(46\) 0 0
\(47\) 0.494291 0.970102i 0.0720998 0.141504i −0.852143 0.523309i \(-0.824697\pi\)
0.924243 + 0.381805i \(0.124697\pi\)
\(48\) 0 0
\(49\) 1.70228i 0.243183i
\(50\) 0 0
\(51\) 15.9065i 2.22736i
\(52\) 0 0
\(53\) −4.26445 + 8.36946i −0.585768 + 1.14963i 0.387909 + 0.921698i \(0.373198\pi\)
−0.973676 + 0.227936i \(0.926802\pi\)
\(54\) 0 0
\(55\) 2.51467 3.46115i 0.339079 0.466702i
\(56\) 0 0
\(57\) 12.4602 12.4602i 1.65039 1.65039i
\(58\) 0 0
\(59\) 7.85962 5.71035i 1.02323 0.743424i 0.0562914 0.998414i \(-0.482072\pi\)
0.966944 + 0.254991i \(0.0820724\pi\)
\(60\) 0 0
\(61\) −0.975062 0.708424i −0.124844 0.0907044i 0.523611 0.851957i \(-0.324585\pi\)
−0.648455 + 0.761253i \(0.724585\pi\)
\(62\) 0 0
\(63\) −1.94852 + 12.3025i −0.245491 + 1.54997i
\(64\) 0 0
\(65\) 2.12663 + 0.336825i 0.263776 + 0.0417780i
\(66\) 0 0
\(67\) −5.77838 + 2.94423i −0.705942 + 0.359695i −0.769819 0.638263i \(-0.779653\pi\)
0.0638771 + 0.997958i \(0.479653\pi\)
\(68\) 0 0
\(69\) 7.13188 + 2.31729i 0.858578 + 0.278969i
\(70\) 0 0
\(71\) 8.83270 2.86992i 1.04825 0.340597i 0.266268 0.963899i \(-0.414210\pi\)
0.781981 + 0.623303i \(0.214210\pi\)
\(72\) 0 0
\(73\) −0.212028 1.33869i −0.0248160 0.156682i 0.972169 0.234282i \(-0.0752741\pi\)
−0.996985 + 0.0776007i \(0.975274\pi\)
\(74\) 0 0
\(75\) 12.9209 + 6.58350i 1.49197 + 0.760198i
\(76\) 0 0
\(77\) −4.34953 + 0.688898i −0.495675 + 0.0785072i
\(78\) 0 0
\(79\) 2.28496 + 7.03239i 0.257078 + 0.791206i 0.993413 + 0.114588i \(0.0365548\pi\)
−0.736335 + 0.676617i \(0.763445\pi\)
\(80\) 0 0
\(81\) −1.25180 + 3.85265i −0.139089 + 0.428072i
\(82\) 0 0
\(83\) −6.97154 13.6824i −0.765225 1.50184i −0.862209 0.506554i \(-0.830919\pi\)
0.0969830 0.995286i \(-0.469081\pi\)
\(84\) 0 0
\(85\) −5.56758 10.9270i −0.603889 1.18520i
\(86\) 0 0
\(87\) 7.98369 + 1.26449i 0.855941 + 0.135568i
\(88\) 0 0
\(89\) −1.95788 + 2.69479i −0.207534 + 0.285647i −0.900077 0.435730i \(-0.856490\pi\)
0.692543 + 0.721377i \(0.256490\pi\)
\(90\) 0 0
\(91\) −1.30272 1.79303i −0.136562 0.187961i
\(92\) 0 0
\(93\) −21.2757 21.2757i −2.20619 2.20619i
\(94\) 0 0
\(95\) −4.19824 + 12.9209i −0.430730 + 1.32565i
\(96\) 0 0
\(97\) 2.23955 + 1.14111i 0.227392 + 0.115862i 0.563975 0.825792i \(-0.309271\pi\)
−0.336583 + 0.941654i \(0.609271\pi\)
\(98\) 0 0
\(99\) −10.3540 −1.04061
\(100\) 0 0
\(101\) 2.89806 0.288367 0.144184 0.989551i \(-0.453944\pi\)
0.144184 + 0.989551i \(0.453944\pi\)
\(102\) 0 0
\(103\) 7.80741 + 3.97807i 0.769287 + 0.391971i 0.794152 0.607720i \(-0.207916\pi\)
−0.0248649 + 0.999691i \(0.507916\pi\)
\(104\) 0 0
\(105\) −4.61267 14.1963i −0.450150 1.38542i
\(106\) 0 0
\(107\) −11.2441 11.2441i −1.08701 1.08701i −0.995835 0.0911721i \(-0.970939\pi\)
−0.0911721 0.995835i \(-0.529061\pi\)
\(108\) 0 0
\(109\) 5.03556 + 6.93085i 0.482319 + 0.663855i 0.978949 0.204107i \(-0.0654292\pi\)
−0.496629 + 0.867963i \(0.665429\pi\)
\(110\) 0 0
\(111\) 17.2864 23.7927i 1.64076 2.25831i
\(112\) 0 0
\(113\) −5.16807 0.818542i −0.486171 0.0770020i −0.0914631 0.995808i \(-0.529154\pi\)
−0.394708 + 0.918806i \(0.629154\pi\)
\(114\) 0 0
\(115\) −5.71035 + 0.904430i −0.532493 + 0.0843385i
\(116\) 0 0
\(117\) −2.36571 4.64297i −0.218710 0.429243i
\(118\) 0 0
\(119\) −3.90087 + 12.0056i −0.357592 + 1.10056i
\(120\) 0 0
\(121\) 2.26799 + 6.98015i 0.206181 + 0.634559i
\(122\) 0 0
\(123\) −30.1850 + 4.78083i −2.72169 + 0.431073i
\(124\) 0 0
\(125\) −11.1803 −1.00000
\(126\) 0 0
\(127\) −2.77391 17.5138i −0.246145 1.55410i −0.732764 0.680483i \(-0.761770\pi\)
0.486619 0.873614i \(-0.338230\pi\)
\(128\) 0 0
\(129\) 24.0848 7.82563i 2.12055 0.689008i
\(130\) 0 0
\(131\) −14.5010 4.71166i −1.26696 0.411660i −0.402989 0.915205i \(-0.632029\pi\)
−0.863969 + 0.503545i \(0.832029\pi\)
\(132\) 0 0
\(133\) 12.4602 6.34879i 1.08044 0.550510i
\(134\) 0 0
\(135\) −2.44664 15.4475i −0.210573 1.32951i
\(136\) 0 0
\(137\) 0.153395 0.968498i 0.0131054 0.0827443i −0.980269 0.197669i \(-0.936663\pi\)
0.993374 + 0.114925i \(0.0366628\pi\)
\(138\) 0 0
\(139\) 3.91731 + 2.84609i 0.332262 + 0.241403i 0.741390 0.671075i \(-0.234167\pi\)
−0.409128 + 0.912477i \(0.634167\pi\)
\(140\) 0 0
\(141\) 2.55467 1.85607i 0.215142 0.156310i
\(142\) 0 0
\(143\) 1.30272 1.30272i 0.108939 0.108939i
\(144\) 0 0
\(145\) −5.92699 + 1.92580i −0.492210 + 0.159929i
\(146\) 0 0
\(147\) 2.24140 4.39899i 0.184867 0.362822i
\(148\) 0 0
\(149\) 9.16129i 0.750522i 0.926919 + 0.375261i \(0.122447\pi\)
−0.926919 + 0.375261i \(0.877553\pi\)
\(150\) 0 0
\(151\) 15.6035i 1.26979i 0.772597 + 0.634897i \(0.218957\pi\)
−0.772597 + 0.634897i \(0.781043\pi\)
\(152\) 0 0
\(153\) −13.4744 + 26.4451i −1.08934 + 2.13796i
\(154\) 0 0
\(155\) 22.0622 + 7.16846i 1.77208 + 0.575784i
\(156\) 0 0
\(157\) −5.05644 + 5.05644i −0.403548 + 0.403548i −0.879481 0.475933i \(-0.842110\pi\)
0.475933 + 0.879481i \(0.342110\pi\)
\(158\) 0 0
\(159\) −22.0401 + 16.0131i −1.74790 + 1.26992i
\(160\) 0 0
\(161\) 4.81459 + 3.49801i 0.379443 + 0.275682i
\(162\) 0 0
\(163\) −0.542005 + 3.42208i −0.0424531 + 0.268038i −0.999780 0.0209686i \(-0.993325\pi\)
0.957327 + 0.289007i \(0.0933250\pi\)
\(164\) 0 0
\(165\) 11.0557 5.63314i 0.860681 0.438539i
\(166\) 0 0
\(167\) 12.2007 6.21658i 0.944121 0.481054i 0.0870224 0.996206i \(-0.472265\pi\)
0.857098 + 0.515153i \(0.172265\pi\)
\(168\) 0 0
\(169\) −11.4819 3.73070i −0.883224 0.286977i
\(170\) 0 0
\(171\) 31.2705 10.1604i 2.39132 0.776986i
\(172\) 0 0
\(173\) −0.0270578 0.170836i −0.00205716 0.0129884i 0.986638 0.162925i \(-0.0520930\pi\)
−0.988696 + 0.149937i \(0.952093\pi\)
\(174\) 0 0
\(175\) 8.13766 + 8.13766i 0.615149 + 0.615149i
\(176\) 0 0
\(177\) 27.8294 4.40775i 2.09179 0.331306i
\(178\) 0 0
\(179\) 3.01577 + 9.28158i 0.225409 + 0.693738i 0.998250 + 0.0591379i \(0.0188352\pi\)
−0.772841 + 0.634600i \(0.781165\pi\)
\(180\) 0 0
\(181\) −5.57180 + 17.1482i −0.414148 + 1.27462i 0.498862 + 0.866681i \(0.333751\pi\)
−0.913010 + 0.407936i \(0.866249\pi\)
\(182\) 0 0
\(183\) −1.58694 3.11455i −0.117310 0.230234i
\(184\) 0 0
\(185\) −3.54702 + 22.3950i −0.260782 + 1.64651i
\(186\) 0 0
\(187\) −10.3641 1.64152i −0.757900 0.120040i
\(188\) 0 0
\(189\) −9.46271 + 13.0243i −0.688311 + 0.947379i
\(190\) 0 0
\(191\) −3.50986 4.83091i −0.253965 0.349552i 0.662930 0.748681i \(-0.269313\pi\)
−0.916895 + 0.399129i \(0.869313\pi\)
\(192\) 0 0
\(193\) 5.93294 + 5.93294i 0.427062 + 0.427062i 0.887626 0.460564i \(-0.152353\pi\)
−0.460564 + 0.887626i \(0.652353\pi\)
\(194\) 0 0
\(195\) 5.05207 + 3.67054i 0.361786 + 0.262853i
\(196\) 0 0
\(197\) 9.22957 + 4.70270i 0.657580 + 0.335054i 0.750740 0.660598i \(-0.229697\pi\)
−0.0931606 + 0.995651i \(0.529697\pi\)
\(198\) 0 0
\(199\) 12.1515 0.861397 0.430698 0.902496i \(-0.358267\pi\)
0.430698 + 0.902496i \(0.358267\pi\)
\(200\) 0 0
\(201\) −18.8090 −1.32668
\(202\) 0 0
\(203\) 5.71569 + 2.91229i 0.401163 + 0.204403i
\(204\) 0 0
\(205\) 19.0622 13.8495i 1.33136 0.967292i
\(206\) 0 0
\(207\) 9.89399 + 9.89399i 0.687680 + 0.687680i
\(208\) 0 0
\(209\) 6.83277 + 9.40450i 0.472632 + 0.650523i
\(210\) 0 0
\(211\) −0.265481 + 0.365404i −0.0182765 + 0.0251554i −0.818057 0.575137i \(-0.804949\pi\)
0.799781 + 0.600292i \(0.204949\pi\)
\(212\) 0 0
\(213\) 26.6040 + 4.21366i 1.82288 + 0.288715i
\(214\) 0 0
\(215\) −13.8060 + 13.8060i −0.941558 + 0.941558i
\(216\) 0 0
\(217\) −10.8405 21.2757i −0.735902 1.44429i
\(218\) 0 0
\(219\) 1.21474 3.73858i 0.0820844 0.252630i
\(220\) 0 0
\(221\) −1.63194 5.02259i −0.109776 0.337856i
\(222\) 0 0
\(223\) −8.45289 + 1.33881i −0.566048 + 0.0896531i −0.432898 0.901443i \(-0.642509\pi\)
−0.133149 + 0.991096i \(0.542509\pi\)
\(224\) 0 0
\(225\) 15.9044 + 21.8905i 1.06029 + 1.45937i
\(226\) 0 0
\(227\) 0.623179 + 3.93460i 0.0413619 + 0.261149i 0.999700 0.0244872i \(-0.00779528\pi\)
−0.958338 + 0.285636i \(0.907795\pi\)
\(228\) 0 0
\(229\) −6.21003 + 2.01776i −0.410371 + 0.133337i −0.506925 0.861990i \(-0.669218\pi\)
0.0965543 + 0.995328i \(0.469218\pi\)
\(230\) 0 0
\(231\) −12.1470 3.94680i −0.799214 0.259680i
\(232\) 0 0
\(233\) −12.7395 + 6.49110i −0.834592 + 0.425246i −0.818418 0.574623i \(-0.805149\pi\)
−0.0161739 + 0.999869i \(0.505149\pi\)
\(234\) 0 0
\(235\) −1.10527 + 2.16921i −0.0720998 + 0.141504i
\(236\) 0 0
\(237\) −3.35482 + 21.1815i −0.217919 + 1.37589i
\(238\) 0 0
\(239\) 6.67715 + 4.85123i 0.431909 + 0.313800i 0.782412 0.622762i \(-0.213989\pi\)
−0.350503 + 0.936562i \(0.613989\pi\)
\(240\) 0 0
\(241\) 6.93466 5.03832i 0.446700 0.324547i −0.341591 0.939849i \(-0.610966\pi\)
0.788292 + 0.615302i \(0.210966\pi\)
\(242\) 0 0
\(243\) 6.52978 6.52978i 0.418885 0.418885i
\(244\) 0 0
\(245\) 3.80642i 0.243183i
\(246\) 0 0
\(247\) −2.65603 + 5.21275i −0.168999 + 0.331680i
\(248\) 0 0
\(249\) 44.5371i 2.82242i
\(250\) 0 0
\(251\) 17.5281i 1.10636i 0.833061 + 0.553182i \(0.186586\pi\)
−0.833061 + 0.553182i \(0.813414\pi\)
\(252\) 0 0
\(253\) −2.24586 + 4.40775i −0.141196 + 0.277113i
\(254\) 0 0
\(255\) 35.5681i 2.22736i
\(256\) 0 0
\(257\) −12.1447 + 12.1447i −0.757568 + 0.757568i −0.975879 0.218311i \(-0.929945\pi\)
0.218311 + 0.975879i \(0.429945\pi\)
\(258\) 0 0
\(259\) 18.8820 13.7186i 1.17327 0.852432i
\(260\) 0 0
\(261\) 12.2020 + 8.86524i 0.755282 + 0.548745i
\(262\) 0 0
\(263\) 0.382691 2.41621i 0.0235977 0.148990i −0.973076 0.230484i \(-0.925969\pi\)
0.996674 + 0.0814938i \(0.0259691\pi\)
\(264\) 0 0
\(265\) 9.53560 18.7147i 0.585768 1.14963i
\(266\) 0 0
\(267\) −8.60771 + 4.38585i −0.526783 + 0.268410i
\(268\) 0 0
\(269\) −7.51890 2.44304i −0.458436 0.148955i 0.0706899 0.997498i \(-0.477480\pi\)
−0.529126 + 0.848544i \(0.677480\pi\)
\(270\) 0 0
\(271\) −10.8617 + 3.52919i −0.659803 + 0.214383i −0.619731 0.784814i \(-0.712758\pi\)
−0.0400712 + 0.999197i \(0.512758\pi\)
\(272\) 0 0
\(273\) −1.00555 6.34879i −0.0608586 0.384246i
\(274\) 0 0
\(275\) −5.62298 + 7.73937i −0.339079 + 0.466702i
\(276\) 0 0
\(277\) −5.09695 + 0.807278i −0.306246 + 0.0485047i −0.307666 0.951494i \(-0.599548\pi\)
0.00141993 + 0.999999i \(0.499548\pi\)
\(278\) 0 0
\(279\) −17.3488 53.3941i −1.03865 3.19662i
\(280\) 0 0
\(281\) 0.292927 0.901537i 0.0174746 0.0537812i −0.941939 0.335784i \(-0.890999\pi\)
0.959414 + 0.282003i \(0.0909988\pi\)
\(282\) 0 0
\(283\) −2.13911 4.19824i −0.127157 0.249559i 0.818648 0.574296i \(-0.194724\pi\)
−0.945804 + 0.324737i \(0.894724\pi\)
\(284\) 0 0
\(285\) −27.8619 + 27.8619i −1.65039 + 1.65039i
\(286\) 0 0
\(287\) −23.9549 3.79409i −1.41402 0.223958i
\(288\) 0 0
\(289\) −7.68790 + 10.5815i −0.452229 + 0.622440i
\(290\) 0 0
\(291\) 4.28488 + 5.89763i 0.251184 + 0.345725i
\(292\) 0 0
\(293\) −17.4021 17.4021i −1.01664 1.01664i −0.999859 0.0167798i \(-0.994659\pi\)
−0.0167798 0.999859i \(-0.505341\pi\)
\(294\) 0 0
\(295\) −17.5746 + 12.7687i −1.02323 + 0.743424i
\(296\) 0 0
\(297\) −11.9237 6.07543i −0.691884 0.352532i
\(298\) 0 0
\(299\) −2.48968 −0.143982
\(300\) 0 0
\(301\) 20.0974 1.15840
\(302\) 0 0
\(303\) 7.48907 + 3.81587i 0.430236 + 0.219216i
\(304\) 0 0
\(305\) 2.18031 + 1.58408i 0.124844 + 0.0907044i
\(306\) 0 0
\(307\) 9.15421 + 9.15421i 0.522458 + 0.522458i 0.918313 0.395855i \(-0.129552\pi\)
−0.395855 + 0.918313i \(0.629552\pi\)
\(308\) 0 0
\(309\) 14.9377 + 20.5600i 0.849778 + 1.16962i
\(310\) 0 0
\(311\) −14.5504 + 20.0269i −0.825079 + 1.13562i 0.163740 + 0.986504i \(0.447644\pi\)
−0.988819 + 0.149120i \(0.952356\pi\)
\(312\) 0 0
\(313\) 24.1995 + 3.83282i 1.36784 + 0.216644i 0.796781 0.604268i \(-0.206534\pi\)
0.571055 + 0.820912i \(0.306534\pi\)
\(314\) 0 0
\(315\) 4.35703 27.5092i 0.245491 1.54997i
\(316\) 0 0
\(317\) 5.10607 + 10.0212i 0.286785 + 0.562848i 0.988788 0.149326i \(-0.0477105\pi\)
−0.702003 + 0.712174i \(0.747711\pi\)
\(318\) 0 0
\(319\) −1.64780 + 5.07140i −0.0922589 + 0.283944i
\(320\) 0 0
\(321\) −14.2515 43.8618i −0.795444 2.44812i
\(322\) 0 0
\(323\) 32.9120 5.21275i 1.83127 0.290045i
\(324\) 0 0
\(325\) −4.75528 0.753163i −0.263776 0.0417780i
\(326\) 0 0
\(327\) 3.88689 + 24.5408i 0.214945 + 1.35711i
\(328\) 0 0
\(329\) 2.38335 0.774396i 0.131398 0.0426938i
\(330\) 0 0
\(331\) −20.0332 6.50919i −1.10113 0.357777i −0.298590 0.954382i \(-0.596516\pi\)
−0.802536 + 0.596604i \(0.796516\pi\)
\(332\) 0 0
\(333\) 48.8941 24.9128i 2.67938 1.36521i
\(334\) 0 0
\(335\) 12.9209 6.58350i 0.705942 0.359695i
\(336\) 0 0
\(337\) −0.744661 + 4.70160i −0.0405643 + 0.256113i −0.999634 0.0270577i \(-0.991386\pi\)
0.959070 + 0.283170i \(0.0913862\pi\)
\(338\) 0 0
\(339\) −12.2774 8.92006i −0.666817 0.484471i
\(340\) 0 0
\(341\) 16.0581 11.6669i 0.869595 0.631798i
\(342\) 0 0
\(343\) 14.1632 14.1632i 0.764743 0.764743i
\(344\) 0 0
\(345\) −15.9474 5.18162i −0.858578 0.278969i
\(346\) 0 0
\(347\) −2.39689 + 4.70415i −0.128672 + 0.252532i −0.946350 0.323143i \(-0.895261\pi\)
0.817679 + 0.575675i \(0.195261\pi\)
\(348\) 0 0
\(349\) 1.87772i 0.100512i −0.998736 0.0502560i \(-0.983996\pi\)
0.998736 0.0502560i \(-0.0160037\pi\)
\(350\) 0 0
\(351\) 6.73502i 0.359489i
\(352\) 0 0
\(353\) −2.87675 + 5.64593i −0.153114 + 0.300503i −0.954804 0.297238i \(-0.903935\pi\)
0.801690 + 0.597740i \(0.203935\pi\)
\(354\) 0 0
\(355\) −19.7505 + 6.41733i −1.04825 + 0.340597i
\(356\) 0 0
\(357\) −25.8884 + 25.8884i −1.37016 + 1.37016i
\(358\) 0 0
\(359\) 9.96018 7.23649i 0.525678 0.381928i −0.293060 0.956094i \(-0.594674\pi\)
0.818739 + 0.574166i \(0.194674\pi\)
\(360\) 0 0
\(361\) −14.4933 10.5300i −0.762806 0.554211i
\(362\) 0 0
\(363\) −3.32990 + 21.0242i −0.174774 + 1.10348i
\(364\) 0 0
\(365\) 0.474108 + 2.99340i 0.0248160 + 0.156682i
\(366\) 0 0
\(367\) 8.31332 4.23585i 0.433952 0.221109i −0.223348 0.974739i \(-0.571699\pi\)
0.657300 + 0.753629i \(0.271699\pi\)
\(368\) 0 0
\(369\) −54.2333 17.6215i −2.82327 0.917336i
\(370\) 0 0
\(371\) −20.5621 + 6.68103i −1.06753 + 0.346862i
\(372\) 0 0
\(373\) −0.744661 4.70160i −0.0385571 0.243440i 0.960881 0.276962i \(-0.0893276\pi\)
−0.999438 + 0.0335221i \(0.989328\pi\)
\(374\) 0 0
\(375\) −28.8919 14.7212i −1.49197 0.760198i
\(376\) 0 0
\(377\) −2.65063 + 0.419819i −0.136515 + 0.0216218i
\(378\) 0 0
\(379\) 8.61253 + 26.5066i 0.442396 + 1.36155i 0.885314 + 0.464993i \(0.153943\pi\)
−0.442918 + 0.896562i \(0.646057\pi\)
\(380\) 0 0
\(381\) 15.8922 48.9110i 0.814180 2.50579i
\(382\) 0 0
\(383\) 5.76109 + 11.3068i 0.294378 + 0.577750i 0.990067 0.140593i \(-0.0449009\pi\)
−0.695689 + 0.718343i \(0.744901\pi\)
\(384\) 0 0
\(385\) 9.72585 1.54042i 0.495675 0.0785072i
\(386\) 0 0
\(387\) 46.6708 + 7.39193i 2.37241 + 0.375753i
\(388\) 0 0
\(389\) 3.10772 4.27741i 0.157568 0.216873i −0.722933 0.690918i \(-0.757207\pi\)
0.880501 + 0.474045i \(0.157207\pi\)
\(390\) 0 0
\(391\) 8.33510 + 11.4723i 0.421524 + 0.580178i
\(392\) 0 0
\(393\) −31.2692 31.2692i −1.57732 1.57732i
\(394\) 0 0
\(395\) −5.10933 15.7249i −0.257078 0.791206i
\(396\) 0 0
\(397\) −24.5503 12.5090i −1.23214 0.627808i −0.288091 0.957603i \(-0.593020\pi\)
−0.944053 + 0.329795i \(0.893020\pi\)
\(398\) 0 0
\(399\) 40.5588 2.03048
\(400\) 0 0
\(401\) −32.1362 −1.60481 −0.802403 0.596783i \(-0.796445\pi\)
−0.802403 + 0.596783i \(0.796445\pi\)
\(402\) 0 0
\(403\) 8.90073 + 4.53515i 0.443377 + 0.225912i
\(404\) 0 0
\(405\) 2.79911 8.61479i 0.139089 0.428072i
\(406\) 0 0
\(407\) 13.7186 + 13.7186i 0.680005 + 0.680005i
\(408\) 0 0
\(409\) −17.8888 24.6219i −0.884546 1.21747i −0.975141 0.221585i \(-0.928877\pi\)
0.0905950 0.995888i \(-0.471123\pi\)
\(410\) 0 0
\(411\) 1.67162 2.30079i 0.0824549 0.113489i
\(412\) 0 0
\(413\) 22.0855 + 3.49801i 1.08676 + 0.172126i
\(414\) 0 0
\(415\) 15.5888 + 30.5948i 0.765225 + 1.50184i
\(416\) 0 0
\(417\) 6.37555 + 12.5127i 0.312212 + 0.612751i
\(418\) 0 0
\(419\) 5.60088 17.2377i 0.273621 0.842118i −0.715960 0.698141i \(-0.754011\pi\)
0.989581 0.143977i \(-0.0459892\pi\)
\(420\) 0 0
\(421\) 8.04143 + 24.7490i 0.391915 + 1.20619i 0.931338 + 0.364156i \(0.118642\pi\)
−0.539423 + 0.842035i \(0.681358\pi\)
\(422\) 0 0
\(423\) 5.81949 0.921717i 0.282953 0.0448154i
\(424\) 0 0
\(425\) 12.4495 + 24.4335i 0.603889 + 1.18520i
\(426\) 0 0
\(427\) −0.433962 2.73993i −0.0210009 0.132594i
\(428\) 0 0
\(429\) 5.08172 1.65115i 0.245348 0.0797184i
\(430\) 0 0
\(431\) 25.3453 + 8.23518i 1.22084 + 0.396675i 0.847388 0.530975i \(-0.178174\pi\)
0.373452 + 0.927650i \(0.378174\pi\)
\(432\) 0 0
\(433\) 27.7248 14.1265i 1.33237 0.678876i 0.364706 0.931123i \(-0.381169\pi\)
0.967663 + 0.252246i \(0.0811693\pi\)
\(434\) 0 0
\(435\) −17.8521 2.82749i −0.855941 0.135568i
\(436\) 0 0
\(437\) 2.45748 15.5159i 0.117557 0.742227i
\(438\) 0 0
\(439\) −7.74387 5.62625i −0.369595 0.268526i 0.387448 0.921891i \(-0.373357\pi\)
−0.757043 + 0.653365i \(0.773357\pi\)
\(440\) 0 0
\(441\) 7.45277 5.41476i 0.354894 0.257846i
\(442\) 0 0
\(443\) −9.95720 + 9.95720i −0.473081 + 0.473081i −0.902910 0.429829i \(-0.858574\pi\)
0.429829 + 0.902910i \(0.358574\pi\)
\(444\) 0 0
\(445\) 4.37794 6.02572i 0.207534 0.285647i
\(446\) 0 0
\(447\) −12.0627 + 23.6743i −0.570545 + 1.11976i
\(448\) 0 0
\(449\) 24.2916i 1.14639i −0.819419 0.573195i \(-0.805704\pi\)
0.819419 0.573195i \(-0.194296\pi\)
\(450\) 0 0
\(451\) 20.1608i 0.949337i
\(452\) 0 0
\(453\) −20.5451 + 40.3221i −0.965294 + 1.89450i
\(454\) 0 0
\(455\) 2.91296 + 4.00935i 0.136562 + 0.187961i
\(456\) 0 0
\(457\) 19.1711 19.1711i 0.896786 0.896786i −0.0983649 0.995150i \(-0.531361\pi\)
0.995150 + 0.0983649i \(0.0313612\pi\)
\(458\) 0 0
\(459\) −31.0345 + 22.5479i −1.44857 + 1.05245i
\(460\) 0 0
\(461\) −11.1879 8.12849i −0.521073 0.378582i 0.295935 0.955208i \(-0.404369\pi\)
−0.817008 + 0.576626i \(0.804369\pi\)
\(462\) 0 0
\(463\) 4.57144 28.8629i 0.212453 1.34137i −0.618830 0.785525i \(-0.712393\pi\)
0.831283 0.555850i \(-0.187607\pi\)
\(464\) 0 0
\(465\) 47.5739 + 47.5739i 2.20619 + 2.20619i
\(466\) 0 0
\(467\) 1.17085 0.596577i 0.0541804 0.0276063i −0.426690 0.904398i \(-0.640321\pi\)
0.480871 + 0.876791i \(0.340321\pi\)
\(468\) 0 0
\(469\) −14.1963 4.61267i −0.655526 0.212993i
\(470\) 0 0
\(471\) −19.7245 + 6.40889i −0.908858 + 0.295306i
\(472\) 0 0
\(473\) 2.61341 + 16.5004i 0.120165 + 0.758689i
\(474\) 0 0
\(475\) 9.38755 28.8919i 0.430730 1.32565i
\(476\) 0 0
\(477\) −50.2071 + 7.95202i −2.29883 + 0.364098i
\(478\) 0 0
\(479\) −1.74144 5.35960i −0.0795684 0.244886i 0.903357 0.428888i \(-0.141095\pi\)
−0.982926 + 0.184002i \(0.941095\pi\)
\(480\) 0 0
\(481\) −3.01728 + 9.28622i −0.137576 + 0.423415i
\(482\) 0 0
\(483\) 7.83590 + 15.3788i 0.356546 + 0.699761i
\(484\) 0 0
\(485\) −5.00778 2.55159i −0.227392 0.115862i
\(486\) 0 0
\(487\) −21.6062 3.42208i −0.979070 0.155069i −0.353667 0.935371i \(-0.615065\pi\)
−0.625403 + 0.780302i \(0.715065\pi\)
\(488\) 0 0
\(489\) −5.90649 + 8.12959i −0.267101 + 0.367633i
\(490\) 0 0
\(491\) −24.4969 33.7171i −1.10553 1.52163i −0.827841 0.560963i \(-0.810431\pi\)
−0.277691 0.960671i \(-0.589569\pi\)
\(492\) 0 0
\(493\) 10.8084 + 10.8084i 0.486788 + 0.486788i
\(494\) 0 0
\(495\) 23.1522 1.04061
\(496\) 0 0
\(497\) 19.0464 + 9.70461i 0.854347 + 0.435311i
\(498\) 0 0
\(499\) −31.4385 −1.40738 −0.703690 0.710508i \(-0.748465\pi\)
−0.703690 + 0.710508i \(0.748465\pi\)
\(500\) 0 0
\(501\) 39.7141 1.77430
\(502\) 0 0
\(503\) −25.4190 12.9516i −1.13338 0.577483i −0.216351 0.976316i \(-0.569416\pi\)
−0.917024 + 0.398832i \(0.869416\pi\)
\(504\) 0 0
\(505\) −6.48025 −0.288367
\(506\) 0 0
\(507\) −24.7590 24.7590i −1.09959 1.09959i
\(508\) 0 0
\(509\) −11.3987 15.6889i −0.505237 0.695400i 0.477870 0.878431i \(-0.341409\pi\)
−0.983107 + 0.183031i \(0.941409\pi\)
\(510\) 0 0
\(511\) 1.83368 2.52384i 0.0811171 0.111648i
\(512\) 0 0
\(513\) 41.9732 + 6.64791i 1.85316 + 0.293512i
\(514\) 0 0
\(515\) −17.4579 8.89524i −0.769287 0.391971i
\(516\) 0 0
\(517\) 0.945717 + 1.85607i 0.0415926 + 0.0816300i
\(518\) 0 0
\(519\) 0.155018 0.477096i 0.00680453 0.0209422i
\(520\) 0 0
\(521\) −3.07842 9.47439i −0.134868 0.415081i 0.860702 0.509110i \(-0.170025\pi\)
−0.995569 + 0.0940291i \(0.970025\pi\)
\(522\) 0 0
\(523\) 6.66792 1.05610i 0.291568 0.0461798i −0.00893708 0.999960i \(-0.502845\pi\)
0.300505 + 0.953780i \(0.402845\pi\)
\(524\) 0 0
\(525\) 10.3142 + 31.7440i 0.450150 + 1.38542i
\(526\) 0 0
\(527\) −8.90073 56.1970i −0.387722 2.44798i
\(528\) 0 0
\(529\) −15.5163 + 5.04155i −0.674621 + 0.219198i
\(530\) 0 0
\(531\) 50.0010 + 16.2463i 2.16986 + 0.705030i
\(532\) 0 0
\(533\) 9.04062 4.60642i 0.391593 0.199526i
\(534\) 0 0
\(535\) 25.1426 + 25.1426i 1.08701 + 1.08701i
\(536\) 0 0
\(537\) −4.42780 + 27.9561i −0.191074 + 1.20639i
\(538\) 0 0
\(539\) 2.63492 + 1.91438i 0.113494 + 0.0824582i
\(540\) 0 0
\(541\) −35.9536 + 26.1218i −1.54577 + 1.12306i −0.599179 + 0.800615i \(0.704506\pi\)
−0.946587 + 0.322449i \(0.895494\pi\)
\(542\) 0 0
\(543\) −36.9776 + 36.9776i −1.58686 + 1.58686i
\(544\) 0 0
\(545\) −11.2599 15.4979i −0.482319 0.663855i
\(546\) 0 0
\(547\) 13.3756 26.2510i 0.571897 1.12241i −0.406107 0.913826i \(-0.633114\pi\)
0.978004 0.208586i \(-0.0668861\pi\)
\(548\) 0 0
\(549\) 6.52234i 0.278367i
\(550\) 0 0
\(551\) 16.9334i 0.721385i
\(552\) 0 0
\(553\) −7.72659 + 15.1643i −0.328568 + 0.644851i
\(554\) 0 0
\(555\) −38.6536 + 53.2022i −1.64076 + 2.25831i
\(556\) 0 0
\(557\) 8.25814 8.25814i 0.349908 0.349908i −0.510167 0.860075i \(-0.670416\pi\)
0.860075 + 0.510167i \(0.170416\pi\)
\(558\) 0 0
\(559\) −6.80206 + 4.94199i −0.287697 + 0.209024i
\(560\) 0 0
\(561\) −24.6213 17.8884i −1.03951 0.755250i
\(562\) 0 0
\(563\) 2.84609 17.9695i 0.119949 0.757325i −0.852244 0.523144i \(-0.824759\pi\)
0.972193 0.234181i \(-0.0752410\pi\)
\(564\) 0 0
\(565\) 11.5562 + 1.83032i 0.486171 + 0.0770020i
\(566\) 0 0
\(567\) −8.30766 + 4.23296i −0.348889 + 0.177768i
\(568\) 0 0
\(569\) 22.1612 + 7.20061i 0.929046 + 0.301865i 0.734172 0.678963i \(-0.237570\pi\)
0.194873 + 0.980828i \(0.437570\pi\)
\(570\) 0 0
\(571\) 4.48095 1.45595i 0.187522 0.0609296i −0.213751 0.976888i \(-0.568568\pi\)
0.401273 + 0.915959i \(0.368568\pi\)
\(572\) 0 0
\(573\) −2.70922 17.1053i −0.113179 0.714585i
\(574\) 0 0
\(575\) 12.7687 2.02237i 0.532493 0.0843385i
\(576\) 0 0
\(577\) −25.3479 + 4.01471i −1.05525 + 0.167135i −0.659867 0.751383i \(-0.729387\pi\)
−0.395380 + 0.918517i \(0.629387\pi\)
\(578\) 0 0
\(579\) 7.51982 + 23.1436i 0.312513 + 0.961816i
\(580\) 0 0
\(581\) 10.9222 33.6149i 0.453128 1.39458i
\(582\) 0 0
\(583\) −8.15908 16.0131i −0.337915 0.663195i
\(584\) 0 0
\(585\) 5.28989 + 10.3820i 0.218710 + 0.429243i
\(586\) 0 0
\(587\) 3.46115 + 0.548193i 0.142857 + 0.0226263i 0.227453 0.973789i \(-0.426960\pi\)
−0.0845963 + 0.996415i \(0.526960\pi\)
\(588\) 0 0
\(589\) −37.0490 + 50.9936i −1.52658 + 2.10116i
\(590\) 0 0
\(591\) 17.6587 + 24.3052i 0.726383 + 0.999781i
\(592\) 0 0
\(593\) −9.16670 9.16670i −0.376431 0.376431i 0.493382 0.869813i \(-0.335761\pi\)
−0.869813 + 0.493382i \(0.835761\pi\)
\(594\) 0 0
\(595\) 8.72261 26.8454i 0.357592 1.10056i
\(596\) 0 0
\(597\) 31.4015 + 15.9999i 1.28518 + 0.654832i
\(598\) 0 0
\(599\) −1.02128 −0.0417284 −0.0208642 0.999782i \(-0.506642\pi\)
−0.0208642 + 0.999782i \(0.506642\pi\)
\(600\) 0 0
\(601\) 24.7175 1.00825 0.504124 0.863631i \(-0.331816\pi\)
0.504124 + 0.863631i \(0.331816\pi\)
\(602\) 0 0
\(603\) −31.2705 15.9331i −1.27343 0.648847i
\(604\) 0 0
\(605\) −5.07138 15.6081i −0.206181 0.634559i
\(606\) 0 0
\(607\) −15.6989 15.6989i −0.637199 0.637199i 0.312664 0.949864i \(-0.398778\pi\)
−0.949864 + 0.312664i \(0.898778\pi\)
\(608\) 0 0
\(609\) 10.9357 + 15.0517i 0.443137 + 0.609926i
\(610\) 0 0
\(611\) −0.616228 + 0.848165i −0.0249299 + 0.0343131i
\(612\) 0 0
\(613\) 24.4360 + 3.87028i 0.986961 + 0.156319i 0.628990 0.777413i \(-0.283469\pi\)
0.357971 + 0.933733i \(0.383469\pi\)
\(614\) 0 0
\(615\) 67.4957 10.6903i 2.72169 0.431073i
\(616\) 0 0
\(617\) 20.2483 + 39.7395i 0.815166 + 1.59985i 0.800024 + 0.599968i \(0.204820\pi\)
0.0151422 + 0.999885i \(0.495180\pi\)
\(618\) 0 0
\(619\) −5.01747 + 15.4422i −0.201669 + 0.620674i 0.798165 + 0.602439i \(0.205805\pi\)
−0.999834 + 0.0182344i \(0.994195\pi\)
\(620\) 0 0
\(621\) 5.58846 + 17.1995i 0.224257 + 0.690193i
\(622\) 0 0
\(623\) −7.57235 + 1.19934i −0.303380 + 0.0480507i
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 5.27413 + 33.2995i 0.210628 + 1.32986i
\(628\) 0 0
\(629\) 52.8917 17.1856i 2.10893 0.685233i
\(630\) 0 0
\(631\) 33.0642 + 10.7432i 1.31626 + 0.427680i 0.881210 0.472725i \(-0.156730\pi\)
0.435053 + 0.900405i \(0.356730\pi\)
\(632\) 0 0
\(633\) −1.16718 + 0.594706i −0.0463911 + 0.0236374i
\(634\) 0 0
\(635\) 6.20265 + 39.1620i 0.246145 + 1.55410i
\(636\) 0 0
\(637\) −0.256419 + 1.61897i −0.0101597 + 0.0641458i
\(638\) 0 0
\(639\) 40.6606 + 29.5416i 1.60851 + 1.16865i
\(640\) 0 0
\(641\) 24.7800 18.0037i 0.978751 0.711104i 0.0213220 0.999773i \(-0.493212\pi\)
0.957429 + 0.288668i \(0.0932125\pi\)
\(642\) 0 0
\(643\) −14.8959 + 14.8959i −0.587438 + 0.587438i −0.936937 0.349499i \(-0.886352\pi\)
0.349499 + 0.936937i \(0.386352\pi\)
\(644\) 0 0
\(645\) −53.8553 + 17.4986i −2.12055 + 0.689008i
\(646\) 0 0
\(647\) −6.63750 + 13.0268i −0.260947 + 0.512137i −0.983891 0.178769i \(-0.942788\pi\)
0.722944 + 0.690907i \(0.242788\pi\)
\(648\) 0 0
\(649\) 18.5875i 0.729625i
\(650\) 0 0
\(651\) 69.2537i 2.71427i
\(652\) 0 0
\(653\) 11.8246 23.2070i 0.462731 0.908161i −0.535253 0.844692i \(-0.679784\pi\)
0.997984 0.0634688i \(-0.0202163\pi\)
\(654\) 0 0
\(655\) 32.4252 + 10.5356i 1.26696 + 0.411660i
\(656\) 0 0
\(657\) 5.18649 5.18649i 0.202344 0.202344i
\(658\) 0 0
\(659\) 24.4969 17.7981i 0.954265 0.693314i 0.00245356 0.999997i \(-0.499219\pi\)
0.951812 + 0.306683i \(0.0992190\pi\)
\(660\) 0 0
\(661\) 22.1513 + 16.0939i 0.861587 + 0.625980i 0.928316 0.371791i \(-0.121256\pi\)
−0.0667289 + 0.997771i \(0.521256\pi\)
\(662\) 0 0
\(663\) 2.39604 15.1280i 0.0930545 0.587523i
\(664\) 0 0
\(665\) −27.8619 + 14.1963i −1.08044 + 0.550510i
\(666\) 0 0
\(667\) 6.42069 3.27150i 0.248610 0.126673i
\(668\) 0 0
\(669\) −23.6065 7.67022i −0.912681 0.296548i
\(670\) 0 0
\(671\) 2.19310 0.712582i 0.0846638 0.0275089i
\(672\) 0 0
\(673\) 2.72840 + 17.2265i 0.105172 + 0.664031i 0.982798 + 0.184684i \(0.0591263\pi\)
−0.877626 + 0.479347i \(0.840874\pi\)
\(674\) 0 0
\(675\) 5.47085 + 34.5416i 0.210573 + 1.32951i
\(676\) 0 0
\(677\) −30.9741 + 4.90581i −1.19043 + 0.188546i −0.720052 0.693920i \(-0.755882\pi\)
−0.470377 + 0.882465i \(0.655882\pi\)
\(678\) 0 0
\(679\) 1.78775 + 5.50212i 0.0686075 + 0.211152i
\(680\) 0 0
\(681\) −3.57029 + 10.9882i −0.136814 + 0.421069i
\(682\) 0 0
\(683\) 12.0790 + 23.7064i 0.462191 + 0.907101i 0.998027 + 0.0627792i \(0.0199964\pi\)
−0.535836 + 0.844322i \(0.680004\pi\)
\(684\) 0 0
\(685\) −0.343002 + 2.16563i −0.0131054 + 0.0827443i
\(686\) 0 0
\(687\) −18.7046 2.96251i −0.713624 0.113027i
\(688\) 0 0
\(689\) 5.31645 7.31746i 0.202541 0.278773i
\(690\) 0 0
\(691\) 12.0424 + 16.5750i 0.458115 + 0.630541i 0.974116 0.226047i \(-0.0725802\pi\)
−0.516002 + 0.856588i \(0.672580\pi\)
\(692\) 0 0
\(693\) −16.8514 16.8514i −0.640132 0.640132i
\(694\) 0 0
\(695\) −8.75938 6.36406i −0.332262 0.241403i
\(696\) 0 0
\(697\) −51.4928 26.2369i −1.95043 0.993793i
\(698\) 0 0
\(699\) −41.4679 −1.56846
\(700\) 0 0
\(701\) 0.0556153 0.00210056 0.00105028 0.999999i \(-0.499666\pi\)
0.00105028 + 0.999999i \(0.499666\pi\)
\(702\) 0 0
\(703\) −54.8943 27.9700i −2.07038 1.05491i
\(704\) 0 0
\(705\) −5.71241 + 4.15031i −0.215142 + 0.156310i
\(706\) 0 0
\(707\) 4.71668 + 4.71668i 0.177389 + 0.177389i
\(708\) 0 0
\(709\) 26.2864 + 36.1801i 0.987206 + 1.35877i 0.932855 + 0.360251i \(0.117309\pi\)
0.0543509 + 0.998522i \(0.482691\pi\)
\(710\) 0 0
\(711\) −23.5204 + 32.3730i −0.882082 + 1.21408i
\(712\) 0 0
\(713\) −26.4933 4.19612i −0.992181 0.157146i
\(714\) 0 0
\(715\) −2.91296 + 2.91296i −0.108939 + 0.108939i
\(716\) 0 0
\(717\) 10.8673 + 21.3282i 0.405845 + 0.796517i
\(718\) 0 0
\(719\) −6.24759 + 19.2281i −0.232996 + 0.717087i 0.764385 + 0.644760i \(0.223043\pi\)
−0.997381 + 0.0723273i \(0.976957\pi\)
\(720\) 0 0
\(721\) 6.23236 + 19.1812i 0.232105 + 0.714347i
\(722\) 0 0
\(723\) 24.5543 3.88902i 0.913184 0.144634i
\(724\) 0 0
\(725\) 13.2532 4.30621i 0.492210 0.159929i
\(726\) 0 0
\(727\) −1.18294 7.46881i −0.0438729 0.277003i 0.955993 0.293390i \(-0.0947835\pi\)
−0.999866 + 0.0163874i \(0.994783\pi\)
\(728\) 0 0
\(729\) 37.0298 12.0317i 1.37147 0.445619i
\(730\) 0 0
\(731\) 45.5447 + 14.7984i 1.68453 + 0.547337i
\(732\) 0 0
\(733\) −4.47992 + 2.28263i −0.165470 + 0.0843110i −0.534764 0.845002i \(-0.679599\pi\)
0.369294 + 0.929313i \(0.379599\pi\)
\(734\) 0 0
\(735\) −5.01191 + 9.83643i −0.184867 + 0.362822i
\(736\) 0 0
\(737\) 1.94105 12.2553i 0.0714994 0.451429i
\(738\) 0 0
\(739\) −25.4921 18.5211i −0.937743 0.681310i 0.0101332 0.999949i \(-0.496774\pi\)
−0.947876 + 0.318638i \(0.896774\pi\)
\(740\) 0 0
\(741\) −13.7273 + 9.97345i −0.504284 + 0.366384i
\(742\) 0 0
\(743\) 4.53704 4.53704i 0.166448 0.166448i −0.618968 0.785416i \(-0.712449\pi\)
0.785416 + 0.618968i \(0.212449\pi\)
\(744\) 0 0
\(745\) 20.4853i 0.750522i
\(746\) 0 0
\(747\) 37.7274 74.0443i 1.38037 2.70914i
\(748\) 0 0
\(749\) 36.6002i 1.33734i
\(750\) 0 0
\(751\) 45.1400i 1.64718i −0.567184 0.823591i \(-0.691967\pi\)
0.567184 0.823591i \(-0.308033\pi\)
\(752\) 0 0
\(753\) −23.0793 + 45.2956i −0.841055 + 1.65066i
\(754\) 0 0
\(755\) 34.8905i 1.26979i
\(756\) 0 0
\(757\) −11.2118 + 11.2118i −0.407500 + 0.407500i −0.880866 0.473366i \(-0.843039\pi\)
0.473366 + 0.880866i \(0.343039\pi\)
\(758\) 0 0
\(759\) −11.6074 + 8.43324i −0.421321 + 0.306107i
\(760\) 0 0
\(761\) 16.6208 + 12.0757i 0.602503 + 0.437744i 0.846767 0.531965i \(-0.178546\pi\)
−0.244263 + 0.969709i \(0.578546\pi\)
\(762\) 0 0
\(763\) −3.08465 + 19.4757i −0.111672 + 0.705068i
\(764\) 0 0
\(765\) 30.1297 59.1329i 1.08934 2.13796i
\(766\) 0 0
\(767\) −8.33510 + 4.24695i −0.300963 + 0.153348i
\(768\) 0 0
\(769\) −22.0022 7.14894i −0.793419 0.257797i −0.115859 0.993266i \(-0.536962\pi\)
−0.677559 + 0.735468i \(0.736962\pi\)
\(770\) 0 0
\(771\) −47.3751 + 15.3931i −1.70617 + 0.554369i
\(772\) 0 0
\(773\) −6.27729 39.6333i −0.225779 1.42551i −0.796635 0.604460i \(-0.793389\pi\)
0.570857 0.821050i \(-0.306611\pi\)
\(774\) 0 0
\(775\) −49.3327 16.0292i −1.77208 0.575784i
\(776\) 0 0
\(777\) 66.8577 10.5892i 2.39850 0.379886i
\(778\) 0 0
\(779\) 19.7839 + 60.8887i 0.708833 + 2.18157i
\(780\) 0 0
\(781\) −5.49095 + 16.8994i −0.196482 + 0.604708i
\(782\) 0 0
\(783\) 8.84998 + 17.3691i 0.316273 + 0.620720i
\(784\) 0 0
\(785\) 11.3065 11.3065i 0.403548 0.403548i
\(786\) 0 0
\(787\) 14.5622 + 2.30642i 0.519085 + 0.0822150i 0.410479 0.911870i \(-0.365361\pi\)
0.108606 + 0.994085i \(0.465361\pi\)
\(788\) 0 0
\(789\) 4.17037 5.74002i 0.148469 0.204350i
\(790\) 0 0
\(791\) −7.07900 9.74341i −0.251700 0.346436i
\(792\) 0 0
\(793\) 0.820627 + 0.820627i 0.0291413 + 0.0291413i
\(794\) 0 0
\(795\) 49.2833 35.8064i 1.74790 1.26992i
\(796\) 0 0
\(797\) 17.3154 + 8.82266i 0.613344 + 0.312515i 0.732924 0.680310i \(-0.238155\pi\)
−0.119580 + 0.992825i \(0.538155\pi\)
\(798\) 0 0
\(799\) 5.97133 0.211251
\(800\) 0 0
\(801\) −18.0258 −0.636911
\(802\) 0 0
\(803\) 2.31057 + 1.17729i 0.0815382 + 0.0415458i
\(804\) 0 0
\(805\) −10.7658 7.82178i −0.379443 0.275682i
\(806\) 0 0
\(807\) −16.2134 16.2134i −0.570738 0.570738i
\(808\) 0 0
\(809\) 12.0110 + 16.5317i 0.422284 + 0.581224i 0.966161 0.257941i \(-0.0830441\pi\)
−0.543877 + 0.839165i \(0.683044\pi\)
\(810\) 0 0
\(811\) −7.49205 + 10.3119i −0.263081 + 0.362101i −0.920039 0.391827i \(-0.871843\pi\)
0.656957 + 0.753928i \(0.271843\pi\)
\(812\) 0 0
\(813\) −32.7154 5.18162i −1.14738 0.181727i
\(814\) 0 0
\(815\) 1.21196 7.65201i 0.0424531 0.268038i
\(816\) 0 0
\(817\) −24.0848 47.2691i −0.842621 1.65374i
\(818\) 0 0
\(819\) 3.70631 11.4069i 0.129509 0.398588i
\(820\) 0 0
\(821\) −13.2734 40.8514i −0.463246 1.42572i −0.861175 0.508309i \(-0.830271\pi\)
0.397929 0.917416i \(-0.369729\pi\)
\(822\) 0 0
\(823\) 14.1588 2.24253i 0.493545 0.0781698i 0.0952992 0.995449i \(-0.469619\pi\)
0.398246 + 0.917279i \(0.369619\pi\)
\(824\) 0 0
\(825\) −24.7212 + 12.5961i −0.860681 + 0.438539i
\(826\) 0 0
\(827\) 3.59722 + 22.7120i 0.125088 + 0.789773i 0.967858 + 0.251499i \(0.0809234\pi\)
−0.842770 + 0.538274i \(0.819077\pi\)
\(828\) 0 0
\(829\) −53.7472 + 17.4635i −1.86672 + 0.606533i −0.874022 + 0.485886i \(0.838497\pi\)
−0.992695 + 0.120648i \(0.961503\pi\)
\(830\) 0 0
\(831\) −14.2343 4.62502i −0.493784 0.160440i
\(832\) 0 0
\(833\) 8.31854 4.23851i 0.288220 0.146856i
\(834\) 0 0
\(835\) −27.2817 + 13.9007i −0.944121 + 0.481054i
\(836\) 0 0
\(837\) 11.3512 71.6689i 0.392356 2.47724i
\(838\) 0 0
\(839\) −45.5611 33.1021i −1.57294 1.14281i −0.924266 0.381748i \(-0.875322\pi\)
−0.648678 0.761063i \(-0.724678\pi\)
\(840\) 0 0
\(841\) −17.1774 + 12.4801i −0.592323 + 0.430348i
\(842\) 0 0
\(843\) 1.94403 1.94403i 0.0669559 0.0669559i
\(844\) 0 0
\(845\) 25.6743 + 8.34210i 0.883224 + 0.286977i
\(846\) 0 0
\(847\) −7.66920 + 15.0516i −0.263517 + 0.517181i
\(848\) 0 0
\(849\) 13.6655i 0.469000i
\(850\) 0 0
\(851\) 26.2183i 0.898751i
\(852\) 0 0
\(853\) 2.05888 4.04078i 0.0704948 0.138354i −0.853070 0.521797i \(-0.825262\pi\)
0.923564 + 0.383443i \(0.125262\pi\)
\(854\) 0 0
\(855\) −69.9230 + 22.7194i −2.39132 + 0.776986i
\(856\) 0 0
\(857\) 31.5213 31.5213i 1.07675 1.07675i 0.0799464 0.996799i \(-0.474525\pi\)
0.996799 0.0799464i \(-0.0254749\pi\)
\(858\) 0 0
\(859\) 44.9222 32.6379i 1.53272 1.11359i 0.578025 0.816019i \(-0.303824\pi\)
0.954700 0.297570i \(-0.0961763\pi\)
\(860\) 0 0
\(861\) −56.9080 41.3461i −1.93942 1.40907i
\(862\) 0 0
\(863\) 5.82545 36.7804i 0.198301 1.25202i −0.664813 0.747010i \(-0.731489\pi\)
0.863113 0.505010i \(-0.168511\pi\)
\(864\) 0 0
\(865\) 0.0605030 + 0.382001i 0.00205716 + 0.0129884i
\(866\) 0 0
\(867\) −33.7995 + 17.2217i −1.14789 + 0.584880i
\(868\) 0 0
\(869\) −13.4549 4.37177i −0.456427 0.148302i
\(870\) 0 0
\(871\) 5.93906 1.92972i 0.201238 0.0653860i
\(872\) 0 0
\(873\) 2.12785 + 13.4347i 0.0720168 + 0.454696i
\(874\) 0 0
\(875\) −18.1964 18.1964i −0.615149 0.615149i
\(876\) 0 0
\(877\) 33.6877 5.33560i 1.13755 0.180170i 0.440884 0.897564i \(-0.354665\pi\)
0.696668 + 0.717394i \(0.254665\pi\)
\(878\) 0 0
\(879\) −22.0566 67.8832i −0.743950 2.28964i
\(880\) 0 0
\(881\) −10.0398 + 30.8993i −0.338250 + 1.04103i 0.626849 + 0.779140i \(0.284344\pi\)
−0.965099 + 0.261885i \(0.915656\pi\)
\(882\) 0 0
\(883\) 19.0062 + 37.3018i 0.639611 + 1.25531i 0.952216 + 0.305424i \(0.0987982\pi\)
−0.312606 + 0.949883i \(0.601202\pi\)
\(884\) 0 0
\(885\) −62.2284 + 9.85602i −2.09179 + 0.331306i
\(886\) 0 0
\(887\) 15.7111 + 2.48840i 0.527528 + 0.0835522i 0.414517 0.910042i \(-0.363951\pi\)
0.113011 + 0.993594i \(0.463951\pi\)
\(888\) 0 0
\(889\) 23.9896 33.0189i 0.804586 1.10742i
\(890\) 0 0
\(891\) −4.55565 6.27031i −0.152620 0.210063i
\(892\) 0 0
\(893\) −4.67758 4.67758i −0.156529 0.156529i
\(894\) 0 0
\(895\) −6.74346 20.7542i −0.225409 0.693738i
\(896\) 0 0
\(897\) −6.43376 3.27817i −0.214817 0.109455i
\(898\) 0 0
\(899\) −28.9136 −0.964321
\(900\) 0 0
\(901\) −51.5171 −1.71628
\(902\) 0 0
\(903\) 51.9352 + 26.4623i 1.72830 + 0.880611i
\(904\) 0 0
\(905\) 12.4589 38.3446i 0.414148 1.27462i
\(906\) 0 0
\(907\) 26.6340 + 26.6340i 0.884368 + 0.884368i 0.993975 0.109607i \(-0.0349593\pi\)
−0.109607 + 0.993975i \(0.534959\pi\)
\(908\) 0 0
\(909\) 9.21837 + 12.6880i 0.305754 + 0.420834i
\(910\) 0 0
\(911\) −10.7990 + 14.8635i −0.357786 + 0.492450i −0.949530 0.313676i \(-0.898440\pi\)
0.591744 + 0.806126i \(0.298440\pi\)
\(912\) 0 0
\(913\) 29.0188 + 4.59613i 0.960383 + 0.152110i
\(914\) 0 0
\(915\) 3.54852 + 6.96435i 0.117310 + 0.230234i
\(916\) 0 0
\(917\) −15.9325 31.2692i −0.526136 1.03260i
\(918\) 0 0
\(919\) 3.79079 11.6668i 0.125047 0.384854i −0.868863 0.495053i \(-0.835149\pi\)
0.993910 + 0.110199i \(0.0351488\pi\)
\(920\) 0 0
\(921\) 11.6027 + 35.7094i 0.382322 + 1.17666i
\(922\) 0 0
\(923\) −8.83270 + 1.39896i −0.290732 + 0.0460474i
\(924\) 0 0
\(925\) 7.93138 50.0768i 0.260782 1.64651i
\(926\) 0 0
\(927\) 7.41801 + 46.8354i 0.243639 + 1.53828i
\(928\) 0 0
\(929\) −22.8891 + 7.43712i −0.750967 + 0.244004i −0.659397 0.751795i \(-0.729188\pi\)
−0.0915697 + 0.995799i \(0.529188\pi\)
\(930\) 0 0
\(931\) −9.83643 3.19605i −0.322376 0.104746i
\(932\) 0 0
\(933\) −63.9703 + 32.5945i −2.09429 + 1.06710i
\(934\) 0 0
\(935\) 23.1749 + 3.67054i 0.757900 + 0.120040i
\(936\) 0 0
\(937\) −4.35021 + 27.4661i −0.142115 + 0.897280i 0.808858 + 0.588005i \(0.200086\pi\)
−0.950973 + 0.309275i \(0.899914\pi\)
\(938\) 0 0
\(939\) 57.4889 + 41.7682i 1.87608 + 1.36305i
\(940\) 0 0
\(941\) 26.2811 19.0943i 0.856739 0.622458i −0.0702566 0.997529i \(-0.522382\pi\)
0.926996 + 0.375071i \(0.122382\pi\)
\(942\) 0 0
\(943\) −19.2652 + 19.2652i −0.627361 + 0.627361i
\(944\) 0 0
\(945\) 21.1593 29.1232i 0.688311 0.947379i
\(946\) 0 0
\(947\) −19.6510 + 38.5672i −0.638570 + 1.25327i 0.314137 + 0.949378i \(0.398285\pi\)
−0.952708 + 0.303888i \(0.901715\pi\)
\(948\) 0 0
\(949\) 1.30511i 0.0423656i
\(950\) 0 0
\(951\) 32.6197i 1.05777i
\(952\) 0 0
\(953\) −17.2271 + 33.8100i −0.558039 + 1.09521i 0.423845 + 0.905735i \(0.360680\pi\)
−0.981885 + 0.189479i \(0.939320\pi\)
\(954\) 0 0
\(955\) 7.84829 + 10.8022i 0.253965 + 0.349552i
\(956\) 0 0
\(957\) −10.9357 + 10.9357i −0.353501 + 0.353501i
\(958\) 0 0
\(959\) 1.82592 1.32661i 0.0589619 0.0428383i
\(960\) 0 0
\(961\) 61.9917 + 45.0396i 1.99973 + 1.45289i
\(962\) 0 0
\(963\) 13.4617 84.9940i 0.433798 2.73889i
\(964\) 0 0
\(965\) −13.2665 13.2665i −0.427062 0.427062i
\(966\) 0 0
\(967\) 34.9580 17.8120i 1.12417 0.572795i 0.209832 0.977738i \(-0.432708\pi\)
0.914342 + 0.404942i \(0.132708\pi\)
\(968\) 0 0
\(969\) 91.9139 + 29.8646i 2.95270 + 0.959391i
\(970\) 0 0
\(971\) −17.7840 + 5.77838i −0.570717 + 0.185437i −0.580138 0.814519i \(-0.697001\pi\)
0.00942088 + 0.999956i \(0.497001\pi\)
\(972\) 0 0
\(973\) 1.74344 + 11.0077i 0.0558922 + 0.352889i
\(974\) 0 0
\(975\) −11.2968 8.20758i −0.361786 0.262853i
\(976\) 0 0
\(977\) 39.6220 6.27550i 1.26762 0.200771i 0.513832 0.857891i \(-0.328225\pi\)
0.753786 + 0.657119i \(0.228225\pi\)
\(978\) 0 0
\(979\) −1.96937 6.06109i −0.0629413 0.193713i
\(980\) 0 0
\(981\) −14.3265 + 44.0924i −0.457410 + 1.40776i
\(982\) 0 0
\(983\) 14.9499 + 29.3408i 0.476827 + 0.935826i 0.996668 + 0.0815629i \(0.0259912\pi\)
−0.519841 + 0.854263i \(0.674009\pi\)
\(984\) 0 0
\(985\) −20.6379 10.5156i −0.657580 0.335054i
\(986\) 0 0
\(987\) 7.17862 + 1.13698i 0.228498 + 0.0361905i
\(988\) 0 0
\(989\) 13.2701 18.2647i 0.421963 0.580782i
\(990\) 0 0
\(991\) 5.75905 + 7.92666i 0.182942 + 0.251799i 0.890632 0.454725i \(-0.150262\pi\)
−0.707690 + 0.706524i \(0.750262\pi\)
\(992\) 0 0
\(993\) −43.1986 43.1986i −1.37087 1.37087i
\(994\) 0 0
\(995\) −27.1716 −0.861397
\(996\) 0 0
\(997\) 19.0371 + 9.69989i 0.602911 + 0.307198i 0.728673 0.684862i \(-0.240138\pi\)
−0.125762 + 0.992060i \(0.540138\pi\)
\(998\) 0 0
\(999\) 70.9249 2.24397
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.2.bi.c.63.2 yes 16
4.3 odd 2 inner 400.2.bi.c.63.1 16
25.2 odd 20 inner 400.2.bi.c.127.1 yes 16
100.27 even 20 inner 400.2.bi.c.127.2 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
400.2.bi.c.63.1 16 4.3 odd 2 inner
400.2.bi.c.63.2 yes 16 1.1 even 1 trivial
400.2.bi.c.127.1 yes 16 25.2 odd 20 inner
400.2.bi.c.127.2 yes 16 100.27 even 20 inner