Properties

Label 400.2.j.c.43.1
Level $400$
Weight $2$
Character 400.43
Analytic conductor $3.194$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,2,Mod(43,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.43");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 400.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.19401608085\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2x^{14} + 6x^{12} - 12x^{10} + 36x^{8} - 48x^{6} + 96x^{4} - 128x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 43.1
Root \(1.35949 - 0.389597i\) of defining polynomial
Character \(\chi\) \(=\) 400.43
Dual form 400.2.j.c.307.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.35949 - 0.389597i) q^{2} -0.207468i q^{3} +(1.69643 + 1.05931i) q^{4} +(-0.0808289 + 0.282051i) q^{6} +(-1.32185 + 1.32185i) q^{7} +(-1.89357 - 2.10104i) q^{8} +2.95696 q^{9} +(-2.39286 + 2.39286i) q^{11} +(0.219772 - 0.351954i) q^{12} +4.20208 q^{13} +(2.31203 - 1.28205i) q^{14} +(1.75574 + 3.59408i) q^{16} +(-3.29071 + 3.29071i) q^{17} +(-4.01995 - 1.15202i) q^{18} +(0.838342 - 0.838342i) q^{19} +(0.274241 + 0.274241i) q^{21} +(4.18531 - 2.32081i) q^{22} +(2.67277 + 2.67277i) q^{23} +(-0.435899 + 0.392856i) q^{24} +(-5.71269 - 1.63712i) q^{26} -1.23588i q^{27} +(-3.64266 + 0.842176i) q^{28} +(2.55451 + 2.55451i) q^{29} +6.23723i q^{31} +(-0.986662 - 5.57014i) q^{32} +(0.496441 + 0.496441i) q^{33} +(5.75574 - 3.19163i) q^{34} +(5.01626 + 3.13233i) q^{36} +4.29451 q^{37} +(-1.46633 + 0.813102i) q^{38} -0.871798i q^{39} -7.06598i q^{41} +(-0.265984 - 0.479671i) q^{42} +9.43258 q^{43} +(-6.59408 + 1.52454i) q^{44} +(-2.59230 - 4.67491i) q^{46} +(8.31820 + 8.31820i) q^{47} +(0.745656 - 0.364259i) q^{48} +3.50544i q^{49} +(0.682716 + 0.682716i) q^{51} +(7.12853 + 4.45130i) q^{52} +7.66672i q^{53} +(-0.481494 + 1.68016i) q^{54} +(5.28027 + 0.274241i) q^{56} +(-0.173929 - 0.173929i) q^{57} +(-2.47761 - 4.46807i) q^{58} +(-7.07557 - 7.07557i) q^{59} +(8.74267 - 8.74267i) q^{61} +(2.43001 - 8.47945i) q^{62} +(-3.90865 + 3.90865i) q^{63} +(-0.828755 + 7.95696i) q^{64} +(-0.481494 - 0.868318i) q^{66} -12.5494 q^{67} +(-9.06832 + 2.09658i) q^{68} +(0.554514 - 0.554514i) q^{69} -10.4624 q^{71} +(-5.59922 - 6.21269i) q^{72} +(4.79095 - 4.79095i) q^{73} +(-5.83834 - 1.67313i) q^{74} +(2.31025 - 0.534125i) q^{76} -6.32598i q^{77} +(-0.339650 + 1.18520i) q^{78} -8.69963 q^{79} +8.61447 q^{81} +(-2.75289 + 9.60614i) q^{82} -4.14519i q^{83} +(0.174724 + 0.755735i) q^{84} +(-12.8235 - 3.67491i) q^{86} +(0.529980 - 0.529980i) q^{87} +(9.55854 + 0.496441i) q^{88} -0.548482 q^{89} +(-5.55451 + 5.55451i) q^{91} +(1.70288 + 7.36544i) q^{92} +1.29403 q^{93} +(-8.06776 - 14.5493i) q^{94} +(-1.15563 + 0.204701i) q^{96} +(-12.2022 + 12.2022i) q^{97} +(1.36571 - 4.76561i) q^{98} +(-7.07557 + 7.07557i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{4} - 12 q^{6} - 16 q^{9} + 8 q^{11} - 20 q^{14} - 16 q^{16} - 8 q^{19} - 24 q^{24} + 16 q^{26} + 16 q^{29} + 48 q^{34} - 4 q^{36} - 40 q^{44} + 36 q^{46} - 48 q^{51} + 32 q^{54} + 64 q^{56}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.35949 0.389597i −0.961305 0.275487i
\(3\) 0.207468i 0.119782i −0.998205 0.0598908i \(-0.980925\pi\)
0.998205 0.0598908i \(-0.0190753\pi\)
\(4\) 1.69643 + 1.05931i 0.848214 + 0.529654i
\(5\) 0 0
\(6\) −0.0808289 + 0.282051i −0.0329983 + 0.115147i
\(7\) −1.32185 + 1.32185i −0.499611 + 0.499611i −0.911317 0.411706i \(-0.864933\pi\)
0.411706 + 0.911317i \(0.364933\pi\)
\(8\) −1.89357 2.10104i −0.669480 0.742831i
\(9\) 2.95696 0.985652
\(10\) 0 0
\(11\) −2.39286 + 2.39286i −0.721473 + 0.721473i −0.968905 0.247432i \(-0.920413\pi\)
0.247432 + 0.968905i \(0.420413\pi\)
\(12\) 0.219772 0.351954i 0.0634428 0.101600i
\(13\) 4.20208 1.16545 0.582724 0.812670i \(-0.301987\pi\)
0.582724 + 0.812670i \(0.301987\pi\)
\(14\) 2.31203 1.28205i 0.617915 0.342642i
\(15\) 0 0
\(16\) 1.75574 + 3.59408i 0.438934 + 0.898519i
\(17\) −3.29071 + 3.29071i −0.798114 + 0.798114i −0.982798 0.184684i \(-0.940874\pi\)
0.184684 + 0.982798i \(0.440874\pi\)
\(18\) −4.01995 1.15202i −0.947512 0.271534i
\(19\) 0.838342 0.838342i 0.192329 0.192329i −0.604373 0.796702i \(-0.706576\pi\)
0.796702 + 0.604373i \(0.206576\pi\)
\(20\) 0 0
\(21\) 0.274241 + 0.274241i 0.0598443 + 0.0598443i
\(22\) 4.18531 2.32081i 0.892312 0.494799i
\(23\) 2.67277 + 2.67277i 0.557311 + 0.557311i 0.928541 0.371230i \(-0.121064\pi\)
−0.371230 + 0.928541i \(0.621064\pi\)
\(24\) −0.435899 + 0.392856i −0.0889775 + 0.0801914i
\(25\) 0 0
\(26\) −5.71269 1.63712i −1.12035 0.321066i
\(27\) 1.23588i 0.237845i
\(28\) −3.64266 + 0.842176i −0.688398 + 0.159156i
\(29\) 2.55451 + 2.55451i 0.474361 + 0.474361i 0.903323 0.428961i \(-0.141120\pi\)
−0.428961 + 0.903323i \(0.641120\pi\)
\(30\) 0 0
\(31\) 6.23723i 1.12024i 0.828412 + 0.560120i \(0.189245\pi\)
−0.828412 + 0.560120i \(0.810755\pi\)
\(32\) −0.986662 5.57014i −0.174419 0.984672i
\(33\) 0.496441 + 0.496441i 0.0864192 + 0.0864192i
\(34\) 5.75574 3.19163i 0.987100 0.547361i
\(35\) 0 0
\(36\) 5.01626 + 3.13233i 0.836044 + 0.522054i
\(37\) 4.29451 0.706013 0.353006 0.935621i \(-0.385159\pi\)
0.353006 + 0.935621i \(0.385159\pi\)
\(38\) −1.46633 + 0.813102i −0.237871 + 0.131903i
\(39\) 0.871798i 0.139599i
\(40\) 0 0
\(41\) 7.06598i 1.10352i −0.834002 0.551761i \(-0.813956\pi\)
0.834002 0.551761i \(-0.186044\pi\)
\(42\) −0.265984 0.479671i −0.0410423 0.0740149i
\(43\) 9.43258 1.43845 0.719227 0.694775i \(-0.244496\pi\)
0.719227 + 0.694775i \(0.244496\pi\)
\(44\) −6.59408 + 1.52454i −0.994095 + 0.229833i
\(45\) 0 0
\(46\) −2.59230 4.67491i −0.382214 0.689277i
\(47\) 8.31820 + 8.31820i 1.21333 + 1.21333i 0.969923 + 0.243410i \(0.0782662\pi\)
0.243410 + 0.969923i \(0.421734\pi\)
\(48\) 0.745656 0.364259i 0.107626 0.0525762i
\(49\) 3.50544i 0.500777i
\(50\) 0 0
\(51\) 0.682716 + 0.682716i 0.0955994 + 0.0955994i
\(52\) 7.12853 + 4.45130i 0.988550 + 0.617284i
\(53\) 7.66672i 1.05311i 0.850143 + 0.526553i \(0.176516\pi\)
−0.850143 + 0.526553i \(0.823484\pi\)
\(54\) −0.481494 + 1.68016i −0.0655231 + 0.228641i
\(55\) 0 0
\(56\) 5.28027 + 0.274241i 0.705606 + 0.0366470i
\(57\) −0.173929 0.173929i −0.0230375 0.0230375i
\(58\) −2.47761 4.46807i −0.325325 0.586686i
\(59\) −7.07557 7.07557i −0.921161 0.921161i 0.0759506 0.997112i \(-0.475801\pi\)
−0.997112 + 0.0759506i \(0.975801\pi\)
\(60\) 0 0
\(61\) 8.74267 8.74267i 1.11938 1.11938i 0.127552 0.991832i \(-0.459288\pi\)
0.991832 0.127552i \(-0.0407120\pi\)
\(62\) 2.43001 8.47945i 0.308611 1.07689i
\(63\) −3.90865 + 3.90865i −0.492443 + 0.492443i
\(64\) −0.828755 + 7.95696i −0.103594 + 0.994620i
\(65\) 0 0
\(66\) −0.481494 0.868318i −0.0592679 0.106883i
\(67\) −12.5494 −1.53315 −0.766574 0.642156i \(-0.778040\pi\)
−0.766574 + 0.642156i \(0.778040\pi\)
\(68\) −9.06832 + 2.09658i −1.09970 + 0.254247i
\(69\) 0.554514 0.554514i 0.0667556 0.0667556i
\(70\) 0 0
\(71\) −10.4624 −1.24166 −0.620829 0.783946i \(-0.713204\pi\)
−0.620829 + 0.783946i \(0.713204\pi\)
\(72\) −5.59922 6.21269i −0.659874 0.732173i
\(73\) 4.79095 4.79095i 0.560738 0.560738i −0.368779 0.929517i \(-0.620224\pi\)
0.929517 + 0.368779i \(0.120224\pi\)
\(74\) −5.83834 1.67313i −0.678693 0.194497i
\(75\) 0 0
\(76\) 2.31025 0.534125i 0.265004 0.0612683i
\(77\) 6.32598i 0.720912i
\(78\) −0.339650 + 1.18520i −0.0384578 + 0.134198i
\(79\) −8.69963 −0.978784 −0.489392 0.872064i \(-0.662781\pi\)
−0.489392 + 0.872064i \(0.662781\pi\)
\(80\) 0 0
\(81\) 8.61447 0.957163
\(82\) −2.75289 + 9.60614i −0.304006 + 1.06082i
\(83\) 4.14519i 0.454993i −0.973779 0.227497i \(-0.926946\pi\)
0.973779 0.227497i \(-0.0730541\pi\)
\(84\) 0.174724 + 0.755735i 0.0190640 + 0.0824575i
\(85\) 0 0
\(86\) −12.8235 3.67491i −1.38279 0.396275i
\(87\) 0.529980 0.529980i 0.0568198 0.0568198i
\(88\) 9.55854 + 0.496441i 1.01894 + 0.0529208i
\(89\) −0.548482 −0.0581390 −0.0290695 0.999577i \(-0.509254\pi\)
−0.0290695 + 0.999577i \(0.509254\pi\)
\(90\) 0 0
\(91\) −5.55451 + 5.55451i −0.582271 + 0.582271i
\(92\) 1.70288 + 7.36544i 0.177537 + 0.767901i
\(93\) 1.29403 0.134184
\(94\) −8.06776 14.5493i −0.832126 1.50064i
\(95\) 0 0
\(96\) −1.15563 + 0.204701i −0.117946 + 0.0208922i
\(97\) −12.2022 + 12.2022i −1.23895 + 1.23895i −0.278518 + 0.960431i \(0.589843\pi\)
−0.960431 + 0.278518i \(0.910157\pi\)
\(98\) 1.36571 4.76561i 0.137957 0.481399i
\(99\) −7.07557 + 7.07557i −0.711122 + 0.711122i
\(100\) 0 0
\(101\) −6.46843 6.46843i −0.643633 0.643633i 0.307814 0.951447i \(-0.400403\pi\)
−0.951447 + 0.307814i \(0.900403\pi\)
\(102\) −0.662162 1.19413i −0.0655638 0.118237i
\(103\) −6.55234 6.55234i −0.645621 0.645621i 0.306310 0.951932i \(-0.400905\pi\)
−0.951932 + 0.306310i \(0.900905\pi\)
\(104\) −7.95696 8.82875i −0.780244 0.865731i
\(105\) 0 0
\(106\) 2.98693 10.4228i 0.290117 1.01235i
\(107\) 16.3708i 1.58262i −0.611413 0.791312i \(-0.709399\pi\)
0.611413 0.791312i \(-0.290601\pi\)
\(108\) 1.30917 2.09658i 0.125975 0.201743i
\(109\) 2.00000 + 2.00000i 0.191565 + 0.191565i 0.796372 0.604807i \(-0.206750\pi\)
−0.604807 + 0.796372i \(0.706750\pi\)
\(110\) 0 0
\(111\) 0.890973i 0.0845674i
\(112\) −7.07164 2.43001i −0.668207 0.229614i
\(113\) −11.8688 11.8688i −1.11652 1.11652i −0.992248 0.124275i \(-0.960339\pi\)
−0.124275 0.992248i \(-0.539661\pi\)
\(114\) 0.168693 + 0.304217i 0.0157995 + 0.0284926i
\(115\) 0 0
\(116\) 1.62753 + 7.03956i 0.151113 + 0.653607i
\(117\) 12.4254 1.14873
\(118\) 6.86255 + 12.3758i 0.631749 + 1.13928i
\(119\) 8.69963i 0.797493i
\(120\) 0 0
\(121\) 0.451518i 0.0410471i
\(122\) −15.2917 + 8.47945i −1.38444 + 0.767694i
\(123\) −1.46597 −0.132182
\(124\) −6.60714 + 10.5810i −0.593339 + 0.950203i
\(125\) 0 0
\(126\) 6.83656 3.79097i 0.609050 0.337726i
\(127\) 5.55946 + 5.55946i 0.493322 + 0.493322i 0.909351 0.416029i \(-0.136579\pi\)
−0.416029 + 0.909351i \(0.636579\pi\)
\(128\) 4.22669 10.4945i 0.373590 0.927594i
\(129\) 1.95696i 0.172300i
\(130\) 0 0
\(131\) 3.16166 + 3.16166i 0.276235 + 0.276235i 0.831604 0.555369i \(-0.187423\pi\)
−0.555369 + 0.831604i \(0.687423\pi\)
\(132\) 0.316293 + 1.36806i 0.0275297 + 0.119074i
\(133\) 2.21632i 0.192179i
\(134\) 17.0607 + 4.88919i 1.47382 + 0.422362i
\(135\) 0 0
\(136\) 13.1451 + 0.682716i 1.12718 + 0.0585424i
\(137\) −0.507360 0.507360i −0.0433467 0.0433467i 0.685101 0.728448i \(-0.259758\pi\)
−0.728448 + 0.685101i \(0.759758\pi\)
\(138\) −0.969893 + 0.537819i −0.0825628 + 0.0457822i
\(139\) 5.52106 + 5.52106i 0.468290 + 0.468290i 0.901360 0.433070i \(-0.142570\pi\)
−0.433070 + 0.901360i \(0.642570\pi\)
\(140\) 0 0
\(141\) 1.72576 1.72576i 0.145335 0.145335i
\(142\) 14.2235 + 4.07612i 1.19361 + 0.342060i
\(143\) −10.0550 + 10.0550i −0.840840 + 0.840840i
\(144\) 5.19163 + 10.6275i 0.432636 + 0.885628i
\(145\) 0 0
\(146\) −8.37979 + 4.64671i −0.693516 + 0.384564i
\(147\) 0.727266 0.0599839
\(148\) 7.28532 + 4.54920i 0.598850 + 0.373942i
\(149\) −2.82875 + 2.82875i −0.231741 + 0.231741i −0.813419 0.581678i \(-0.802396\pi\)
0.581678 + 0.813419i \(0.302396\pi\)
\(150\) 0 0
\(151\) 7.12820 0.580085 0.290042 0.957014i \(-0.406331\pi\)
0.290042 + 0.957014i \(0.406331\pi\)
\(152\) −3.34885 0.173929i −0.271628 0.0141075i
\(153\) −9.73048 + 9.73048i −0.786663 + 0.786663i
\(154\) −2.46458 + 8.60011i −0.198602 + 0.693017i
\(155\) 0 0
\(156\) 0.923502 1.47894i 0.0739393 0.118410i
\(157\) 20.7371i 1.65500i −0.561464 0.827501i \(-0.689762\pi\)
0.561464 0.827501i \(-0.310238\pi\)
\(158\) 11.8271 + 3.38935i 0.940910 + 0.269642i
\(159\) 1.59060 0.126143
\(160\) 0 0
\(161\) −7.06598 −0.556878
\(162\) −11.7113 3.35617i −0.920125 0.263686i
\(163\) 10.8985i 0.853640i −0.904337 0.426820i \(-0.859634\pi\)
0.904337 0.426820i \(-0.140366\pi\)
\(164\) 7.48505 11.9869i 0.584484 0.936022i
\(165\) 0 0
\(166\) −1.61495 + 5.63534i −0.125345 + 0.437387i
\(167\) −1.20680 + 1.20680i −0.0933853 + 0.0933853i −0.752256 0.658871i \(-0.771034\pi\)
0.658871 + 0.752256i \(0.271034\pi\)
\(168\) 0.0568962 1.09549i 0.00438964 0.0845187i
\(169\) 4.65751 0.358270
\(170\) 0 0
\(171\) 2.47894 2.47894i 0.189569 0.189569i
\(172\) 16.0017 + 9.99200i 1.22012 + 0.761883i
\(173\) 5.12438 0.389599 0.194800 0.980843i \(-0.437594\pi\)
0.194800 + 0.980843i \(0.437594\pi\)
\(174\) −0.926981 + 0.514024i −0.0702742 + 0.0389680i
\(175\) 0 0
\(176\) −12.8013 4.39889i −0.964937 0.331579i
\(177\) −1.46795 + 1.46795i −0.110338 + 0.110338i
\(178\) 0.745656 + 0.213687i 0.0558893 + 0.0160165i
\(179\) 12.6301 12.6301i 0.944017 0.944017i −0.0544970 0.998514i \(-0.517356\pi\)
0.998514 + 0.0544970i \(0.0173555\pi\)
\(180\) 0 0
\(181\) 8.46843 + 8.46843i 0.629453 + 0.629453i 0.947931 0.318477i \(-0.103171\pi\)
−0.318477 + 0.947931i \(0.603171\pi\)
\(182\) 9.71533 5.38728i 0.720148 0.399332i
\(183\) −1.81382 1.81382i −0.134082 0.134082i
\(184\) 0.554514 10.6767i 0.0408793 0.787096i
\(185\) 0 0
\(186\) −1.75921 0.504149i −0.128992 0.0369660i
\(187\) 15.7484i 1.15164i
\(188\) 5.29969 + 22.9228i 0.386520 + 1.67181i
\(189\) 1.63364 + 1.63364i 0.118830 + 0.118830i
\(190\) 0 0
\(191\) 11.3534i 0.821501i 0.911748 + 0.410750i \(0.134733\pi\)
−0.911748 + 0.410750i \(0.865267\pi\)
\(192\) 1.65081 + 0.171940i 0.119137 + 0.0124087i
\(193\) −11.0245 11.0245i −0.793561 0.793561i 0.188510 0.982071i \(-0.439634\pi\)
−0.982071 + 0.188510i \(0.939634\pi\)
\(194\) 21.3428 11.8349i 1.53232 0.849694i
\(195\) 0 0
\(196\) −3.71334 + 5.94672i −0.265238 + 0.424766i
\(197\) 21.1953 1.51010 0.755050 0.655667i \(-0.227612\pi\)
0.755050 + 0.655667i \(0.227612\pi\)
\(198\) 12.3758 6.86255i 0.879509 0.487700i
\(199\) 8.68045i 0.615341i 0.951493 + 0.307670i \(0.0995494\pi\)
−0.951493 + 0.307670i \(0.900451\pi\)
\(200\) 0 0
\(201\) 2.60359i 0.183643i
\(202\) 6.27368 + 11.3138i 0.441415 + 0.796039i
\(203\) −6.75335 −0.473993
\(204\) 0.434972 + 1.88139i 0.0304542 + 0.131723i
\(205\) 0 0
\(206\) 6.35507 + 11.4606i 0.442779 + 0.798499i
\(207\) 7.90326 + 7.90326i 0.549315 + 0.549315i
\(208\) 7.37775 + 15.1026i 0.511555 + 1.04718i
\(209\) 4.01206i 0.277520i
\(210\) 0 0
\(211\) −6.28986 6.28986i −0.433012 0.433012i 0.456640 0.889652i \(-0.349053\pi\)
−0.889652 + 0.456640i \(0.849053\pi\)
\(212\) −8.12141 + 13.0060i −0.557781 + 0.893258i
\(213\) 2.17061i 0.148728i
\(214\) −6.37801 + 22.2559i −0.435992 + 1.52138i
\(215\) 0 0
\(216\) −2.59663 + 2.34023i −0.176678 + 0.159232i
\(217\) −8.24467 8.24467i −0.559684 0.559684i
\(218\) −1.93979 3.49818i −0.131379 0.236926i
\(219\) −0.993968 0.993968i −0.0671661 0.0671661i
\(220\) 0 0
\(221\) −13.8278 + 13.8278i −0.930160 + 0.930160i
\(222\) −0.347120 + 1.21127i −0.0232972 + 0.0812950i
\(223\) −3.50264 + 3.50264i −0.234554 + 0.234554i −0.814591 0.580036i \(-0.803038\pi\)
0.580036 + 0.814591i \(0.303038\pi\)
\(224\) 8.66710 + 6.05866i 0.579095 + 0.404811i
\(225\) 0 0
\(226\) 11.5115 + 20.7596i 0.765732 + 1.38091i
\(227\) −0.622404 −0.0413104 −0.0206552 0.999787i \(-0.506575\pi\)
−0.0206552 + 0.999787i \(0.506575\pi\)
\(228\) −0.110814 0.479303i −0.00733882 0.0317426i
\(229\) 9.35940 9.35940i 0.618487 0.618487i −0.326657 0.945143i \(-0.605922\pi\)
0.945143 + 0.326657i \(0.105922\pi\)
\(230\) 0 0
\(231\) −1.31244 −0.0863521
\(232\) 0.529980 10.2043i 0.0347949 0.669945i
\(233\) −1.79047 + 1.79047i −0.117297 + 0.117297i −0.763319 0.646022i \(-0.776432\pi\)
0.646022 + 0.763319i \(0.276432\pi\)
\(234\) −16.8922 4.84089i −1.10428 0.316459i
\(235\) 0 0
\(236\) −4.50799 19.4984i −0.293445 1.26924i
\(237\) 1.80489i 0.117240i
\(238\) −3.38935 + 11.8271i −0.219699 + 0.766634i
\(239\) 20.9056 1.35227 0.676136 0.736777i \(-0.263653\pi\)
0.676136 + 0.736777i \(0.263653\pi\)
\(240\) 0 0
\(241\) −3.70055 −0.238374 −0.119187 0.992872i \(-0.538029\pi\)
−0.119187 + 0.992872i \(0.538029\pi\)
\(242\) −0.175910 + 0.613835i −0.0113079 + 0.0394588i
\(243\) 5.49486i 0.352495i
\(244\) 24.0925 5.57013i 1.54236 0.356591i
\(245\) 0 0
\(246\) 1.99297 + 0.571136i 0.127067 + 0.0364143i
\(247\) 3.52278 3.52278i 0.224149 0.224149i
\(248\) 13.1047 11.8107i 0.832148 0.749977i
\(249\) −0.859993 −0.0544999
\(250\) 0 0
\(251\) 0.630086 0.630086i 0.0397707 0.0397707i −0.686942 0.726712i \(-0.741047\pi\)
0.726712 + 0.686942i \(0.241047\pi\)
\(252\) −10.7712 + 2.49028i −0.678521 + 0.156873i
\(253\) −12.7911 −0.804170
\(254\) −5.39208 9.72398i −0.338329 0.610137i
\(255\) 0 0
\(256\) −9.83479 + 12.6205i −0.614674 + 0.788781i
\(257\) −3.62414 + 3.62414i −0.226068 + 0.226068i −0.811048 0.584980i \(-0.801102\pi\)
0.584980 + 0.811048i \(0.301102\pi\)
\(258\) −0.762425 + 2.66046i −0.0474665 + 0.165633i
\(259\) −5.67668 + 5.67668i −0.352732 + 0.352732i
\(260\) 0 0
\(261\) 7.55359 + 7.55359i 0.467555 + 0.467555i
\(262\) −3.06647 5.53002i −0.189447 0.341646i
\(263\) 5.25957 + 5.25957i 0.324319 + 0.324319i 0.850421 0.526102i \(-0.176347\pi\)
−0.526102 + 0.850421i \(0.676347\pi\)
\(264\) 0.102996 1.98309i 0.00633894 0.122051i
\(265\) 0 0
\(266\) 0.863473 3.01307i 0.0529429 0.184743i
\(267\) 0.113792i 0.00696398i
\(268\) −21.2891 13.2936i −1.30044 0.812037i
\(269\) −8.82875 8.82875i −0.538299 0.538299i 0.384730 0.923029i \(-0.374294\pi\)
−0.923029 + 0.384730i \(0.874294\pi\)
\(270\) 0 0
\(271\) 30.9177i 1.87812i −0.343760 0.939058i \(-0.611701\pi\)
0.343760 0.939058i \(-0.388299\pi\)
\(272\) −17.6047 6.04945i −1.06744 0.366802i
\(273\) 1.15238 + 1.15238i 0.0697454 + 0.0697454i
\(274\) 0.492085 + 0.887417i 0.0297279 + 0.0536108i
\(275\) 0 0
\(276\) 1.52809 0.353292i 0.0919804 0.0212657i
\(277\) −18.9322 −1.13753 −0.568764 0.822501i \(-0.692578\pi\)
−0.568764 + 0.822501i \(0.692578\pi\)
\(278\) −5.35484 9.65681i −0.321162 0.579177i
\(279\) 18.4432i 1.10417i
\(280\) 0 0
\(281\) 6.51750i 0.388802i 0.980922 + 0.194401i \(0.0622762\pi\)
−0.980922 + 0.194401i \(0.937724\pi\)
\(282\) −3.01850 + 1.67380i −0.179749 + 0.0996734i
\(283\) 16.0721 0.955390 0.477695 0.878526i \(-0.341472\pi\)
0.477695 + 0.878526i \(0.341472\pi\)
\(284\) −17.7487 11.0829i −1.05319 0.657649i
\(285\) 0 0
\(286\) 17.5870 9.75226i 1.03994 0.576663i
\(287\) 9.34015 + 9.34015i 0.551332 + 0.551332i
\(288\) −2.91752 16.4707i −0.171916 0.970544i
\(289\) 4.65751i 0.273971i
\(290\) 0 0
\(291\) 2.53157 + 2.53157i 0.148403 + 0.148403i
\(292\) 13.2026 3.05241i 0.772623 0.178629i
\(293\) 0.829872i 0.0484816i 0.999706 + 0.0242408i \(0.00771685\pi\)
−0.999706 + 0.0242408i \(0.992283\pi\)
\(294\) −0.988711 0.283341i −0.0576628 0.0165248i
\(295\) 0 0
\(296\) −8.13197 9.02294i −0.472661 0.524448i
\(297\) 2.95728 + 2.95728i 0.171599 + 0.171599i
\(298\) 4.94774 2.74359i 0.286615 0.158932i
\(299\) 11.2312 + 11.2312i 0.649517 + 0.649517i
\(300\) 0 0
\(301\) −12.4684 + 12.4684i −0.718668 + 0.718668i
\(302\) −9.69072 2.77713i −0.557638 0.159806i
\(303\) −1.34199 + 1.34199i −0.0770954 + 0.0770954i
\(304\) 4.48497 + 1.54116i 0.257231 + 0.0883916i
\(305\) 0 0
\(306\) 17.0195 9.43753i 0.972938 0.539507i
\(307\) −28.4115 −1.62153 −0.810766 0.585371i \(-0.800949\pi\)
−0.810766 + 0.585371i \(0.800949\pi\)
\(308\) 6.70116 10.7316i 0.381834 0.611488i
\(309\) −1.35940 + 1.35940i −0.0773336 + 0.0773336i
\(310\) 0 0
\(311\) 31.8087 1.80370 0.901852 0.432046i \(-0.142208\pi\)
0.901852 + 0.432046i \(0.142208\pi\)
\(312\) −1.83168 + 1.65081i −0.103699 + 0.0934589i
\(313\) 18.7727 18.7727i 1.06110 1.06110i 0.0630896 0.998008i \(-0.479905\pi\)
0.998008 0.0630896i \(-0.0200954\pi\)
\(314\) −8.07913 + 28.1919i −0.455932 + 1.59096i
\(315\) 0 0
\(316\) −14.7583 9.21558i −0.830219 0.518417i
\(317\) 10.6205i 0.596506i 0.954487 + 0.298253i \(0.0964039\pi\)
−0.954487 + 0.298253i \(0.903596\pi\)
\(318\) −2.16240 0.619693i −0.121262 0.0347506i
\(319\) −12.2252 −0.684478
\(320\) 0 0
\(321\) −3.39641 −0.189569
\(322\) 9.60614 + 2.75289i 0.535329 + 0.153412i
\(323\) 5.51748i 0.307001i
\(324\) 14.6138 + 9.12537i 0.811879 + 0.506965i
\(325\) 0 0
\(326\) −4.24604 + 14.8165i −0.235167 + 0.820608i
\(327\) 0.414936 0.414936i 0.0229460 0.0229460i
\(328\) −14.8459 + 13.3800i −0.819729 + 0.738785i
\(329\) −21.9908 −1.21239
\(330\) 0 0
\(331\) 22.4098 22.4098i 1.23175 1.23175i 0.268462 0.963290i \(-0.413485\pi\)
0.963290 0.268462i \(-0.0865153\pi\)
\(332\) 4.39103 7.03201i 0.240989 0.385932i
\(333\) 12.6987 0.695883
\(334\) 2.11081 1.17047i 0.115498 0.0640453i
\(335\) 0 0
\(336\) −0.504149 + 1.46714i −0.0275036 + 0.0800389i
\(337\) −2.95728 + 2.95728i −0.161093 + 0.161093i −0.783051 0.621958i \(-0.786338\pi\)
0.621958 + 0.783051i \(0.286338\pi\)
\(338\) −6.33184 1.81455i −0.344407 0.0986987i
\(339\) −2.46240 + 2.46240i −0.133739 + 0.133739i
\(340\) 0 0
\(341\) −14.9248 14.9248i −0.808223 0.808223i
\(342\) −4.33589 + 2.40431i −0.234458 + 0.130010i
\(343\) −13.8866 13.8866i −0.749805 0.749805i
\(344\) −17.8613 19.8182i −0.963016 1.06853i
\(345\) 0 0
\(346\) −6.96654 1.99644i −0.374524 0.107330i
\(347\) 13.8901i 0.745659i 0.927900 + 0.372830i \(0.121612\pi\)
−0.927900 + 0.372830i \(0.878388\pi\)
\(348\) 1.46048 0.337661i 0.0782901 0.0181005i
\(349\) −13.4914 13.4914i −0.722176 0.722176i 0.246872 0.969048i \(-0.420597\pi\)
−0.969048 + 0.246872i \(0.920597\pi\)
\(350\) 0 0
\(351\) 5.19326i 0.277196i
\(352\) 15.6895 + 10.9676i 0.836253 + 0.584576i
\(353\) 15.9785 + 15.9785i 0.850448 + 0.850448i 0.990188 0.139740i \(-0.0446268\pi\)
−0.139740 + 0.990188i \(0.544627\pi\)
\(354\) 2.56758 1.42376i 0.136465 0.0756719i
\(355\) 0 0
\(356\) −0.930460 0.581011i −0.0493143 0.0307935i
\(357\) −1.80489 −0.0955251
\(358\) −22.0911 + 12.2498i −1.16755 + 0.647424i
\(359\) 28.2831i 1.49273i −0.665539 0.746363i \(-0.731798\pi\)
0.665539 0.746363i \(-0.268202\pi\)
\(360\) 0 0
\(361\) 17.5944i 0.926019i
\(362\) −8.21347 14.8120i −0.431690 0.778503i
\(363\) −0.0936755 −0.00491669
\(364\) −15.3068 + 3.53889i −0.802293 + 0.185488i
\(365\) 0 0
\(366\) 1.75921 + 3.17254i 0.0919556 + 0.165831i
\(367\) −16.8285 16.8285i −0.878439 0.878439i 0.114934 0.993373i \(-0.463334\pi\)
−0.993373 + 0.114934i \(0.963334\pi\)
\(368\) −4.91346 + 14.2988i −0.256132 + 0.745377i
\(369\) 20.8938i 1.08769i
\(370\) 0 0
\(371\) −10.1342 10.1342i −0.526143 0.526143i
\(372\) 2.19522 + 1.37077i 0.113817 + 0.0710711i
\(373\) 8.03845i 0.416215i 0.978106 + 0.208108i \(0.0667304\pi\)
−0.978106 + 0.208108i \(0.933270\pi\)
\(374\) −6.13552 + 21.4098i −0.317260 + 1.10707i
\(375\) 0 0
\(376\) 1.72576 33.2280i 0.0889992 1.71360i
\(377\) 10.7343 + 10.7343i 0.552844 + 0.552844i
\(378\) −1.58446 2.85738i −0.0814957 0.146968i
\(379\) 2.30677 + 2.30677i 0.118491 + 0.118491i 0.763866 0.645375i \(-0.223299\pi\)
−0.645375 + 0.763866i \(0.723299\pi\)
\(380\) 0 0
\(381\) 1.15341 1.15341i 0.0590910 0.0590910i
\(382\) 4.42324 15.4348i 0.226313 0.789713i
\(383\) 7.85530 7.85530i 0.401387 0.401387i −0.477335 0.878722i \(-0.658397\pi\)
0.878722 + 0.477335i \(0.158397\pi\)
\(384\) −2.17728 0.876903i −0.111109 0.0447493i
\(385\) 0 0
\(386\) 10.6926 + 19.2828i 0.544239 + 0.981470i
\(387\) 27.8917 1.41782
\(388\) −33.6261 + 7.77429i −1.70711 + 0.394680i
\(389\) −27.2171 + 27.2171i −1.37996 + 1.37996i −0.535303 + 0.844660i \(0.679803\pi\)
−0.844660 + 0.535303i \(0.820197\pi\)
\(390\) 0 0
\(391\) −17.5906 −0.889595
\(392\) 7.36507 6.63781i 0.371992 0.335260i
\(393\) 0.655943 0.655943i 0.0330879 0.0330879i
\(394\) −28.8148 8.25762i −1.45167 0.416013i
\(395\) 0 0
\(396\) −19.4984 + 4.50799i −0.979832 + 0.226535i
\(397\) 4.38693i 0.220174i −0.993922 0.110087i \(-0.964887\pi\)
0.993922 0.110087i \(-0.0351129\pi\)
\(398\) 3.38188 11.8010i 0.169518 0.591530i
\(399\) 0.459815 0.0230196
\(400\) 0 0
\(401\) −24.5944 −1.22818 −0.614092 0.789234i \(-0.710478\pi\)
−0.614092 + 0.789234i \(0.710478\pi\)
\(402\) 1.01435 3.53955i 0.0505912 0.176537i
\(403\) 26.2094i 1.30558i
\(404\) −4.12117 17.8253i −0.205036 0.886841i
\(405\) 0 0
\(406\) 9.18112 + 2.63109i 0.455651 + 0.130579i
\(407\) −10.2761 + 10.2761i −0.509369 + 0.509369i
\(408\) 0.141642 2.72719i 0.00701231 0.135016i
\(409\) −7.06598 −0.349390 −0.174695 0.984623i \(-0.555894\pi\)
−0.174695 + 0.984623i \(0.555894\pi\)
\(410\) 0 0
\(411\) −0.105261 + 0.105261i −0.00519214 + 0.00519214i
\(412\) −4.17463 18.0565i −0.205669 0.889581i
\(413\) 18.7057 0.920445
\(414\) −7.66532 13.8235i −0.376730 0.679388i
\(415\) 0 0
\(416\) −4.14604 23.4062i −0.203276 1.14758i
\(417\) 1.14544 1.14544i 0.0560926 0.0560926i
\(418\) 1.56309 5.45436i 0.0764532 0.266782i
\(419\) 4.54400 4.54400i 0.221989 0.221989i −0.587347 0.809336i \(-0.699827\pi\)
0.809336 + 0.587347i \(0.199827\pi\)
\(420\) 0 0
\(421\) 5.47539 + 5.47539i 0.266854 + 0.266854i 0.827831 0.560977i \(-0.189574\pi\)
−0.560977 + 0.827831i \(0.689574\pi\)
\(422\) 6.10049 + 11.0015i 0.296967 + 0.535545i
\(423\) 24.5966 + 24.5966i 1.19593 + 1.19593i
\(424\) 16.1081 14.5175i 0.782279 0.705032i
\(425\) 0 0
\(426\) 0.845664 2.95093i 0.0409726 0.142973i
\(427\) 23.1129i 1.11851i
\(428\) 17.3417 27.7718i 0.838242 1.34240i
\(429\) 2.08609 + 2.08609i 0.100717 + 0.100717i
\(430\) 0 0
\(431\) 12.6658i 0.610090i −0.952338 0.305045i \(-0.901328\pi\)
0.952338 0.305045i \(-0.0986716\pi\)
\(432\) 4.44184 2.16987i 0.213708 0.104398i
\(433\) 11.0499 + 11.0499i 0.531022 + 0.531022i 0.920876 0.389854i \(-0.127475\pi\)
−0.389854 + 0.920876i \(0.627475\pi\)
\(434\) 7.99644 + 14.4206i 0.383842 + 0.692213i
\(435\) 0 0
\(436\) 1.27424 + 5.51147i 0.0610251 + 0.263952i
\(437\) 4.48139 0.214374
\(438\) 0.964043 + 1.73854i 0.0460637 + 0.0830705i
\(439\) 20.4936i 0.978108i 0.872254 + 0.489054i \(0.162658\pi\)
−0.872254 + 0.489054i \(0.837342\pi\)
\(440\) 0 0
\(441\) 10.3654i 0.493592i
\(442\) 24.1861 13.4115i 1.15041 0.637921i
\(443\) 11.0123 0.523212 0.261606 0.965175i \(-0.415748\pi\)
0.261606 + 0.965175i \(0.415748\pi\)
\(444\) 0.943814 1.51147i 0.0447914 0.0717312i
\(445\) 0 0
\(446\) 6.12642 3.39719i 0.290095 0.160861i
\(447\) 0.586876 + 0.586876i 0.0277583 + 0.0277583i
\(448\) −9.42240 11.6134i −0.445166 0.548680i
\(449\) 15.4423i 0.728767i 0.931249 + 0.364383i \(0.118720\pi\)
−0.931249 + 0.364383i \(0.881280\pi\)
\(450\) 0 0
\(451\) 16.9079 + 16.9079i 0.796161 + 0.796161i
\(452\) −7.56186 32.7073i −0.355680 1.53842i
\(453\) 1.47887i 0.0694835i
\(454\) 0.846152 + 0.242487i 0.0397119 + 0.0113805i
\(455\) 0 0
\(456\) −0.0360847 + 0.694780i −0.00168982 + 0.0325361i
\(457\) 3.14212 + 3.14212i 0.146982 + 0.146982i 0.776769 0.629786i \(-0.216857\pi\)
−0.629786 + 0.776769i \(0.716857\pi\)
\(458\) −16.3704 + 9.07762i −0.764939 + 0.424169i
\(459\) 4.06691 + 4.06691i 0.189827 + 0.189827i
\(460\) 0 0
\(461\) 8.45636 8.45636i 0.393852 0.393852i −0.482206 0.876058i \(-0.660164\pi\)
0.876058 + 0.482206i \(0.160164\pi\)
\(462\) 1.78425 + 0.511322i 0.0830107 + 0.0237889i
\(463\) 21.5859 21.5859i 1.00318 1.00318i 0.00318643 0.999995i \(-0.498986\pi\)
0.999995 0.00318643i \(-0.00101428\pi\)
\(464\) −4.69607 + 13.6662i −0.218010 + 0.634436i
\(465\) 0 0
\(466\) 3.13168 1.73656i 0.145072 0.0804446i
\(467\) 22.4880 1.04062 0.520311 0.853977i \(-0.325816\pi\)
0.520311 + 0.853977i \(0.325816\pi\)
\(468\) 21.0788 + 13.1623i 0.974366 + 0.608428i
\(469\) 16.5883 16.5883i 0.765978 0.765978i
\(470\) 0 0
\(471\) −4.30229 −0.198239
\(472\) −1.46795 + 28.2642i −0.0675681 + 1.30096i
\(473\) −22.5708 + 22.5708i −1.03781 + 1.03781i
\(474\) 0.703181 2.45373i 0.0322982 0.112704i
\(475\) 0 0
\(476\) 9.21558 14.7583i 0.422395 0.676445i
\(477\) 22.6702i 1.03800i
\(478\) −28.4210 8.14477i −1.29995 0.372533i
\(479\) 0.852623 0.0389573 0.0194787 0.999810i \(-0.493799\pi\)
0.0194787 + 0.999810i \(0.493799\pi\)
\(480\) 0 0
\(481\) 18.0459 0.822821
\(482\) 5.03086 + 1.44173i 0.229150 + 0.0656688i
\(483\) 1.46597i 0.0667037i
\(484\) 0.478297 0.765968i 0.0217408 0.0348167i
\(485\) 0 0
\(486\) −2.14078 + 7.47021i −0.0971078 + 0.338855i
\(487\) 2.49958 2.49958i 0.113267 0.113267i −0.648202 0.761469i \(-0.724479\pi\)
0.761469 + 0.648202i \(0.224479\pi\)
\(488\) −34.9236 1.81382i −1.58092 0.0821079i
\(489\) −2.26110 −0.102250
\(490\) 0 0
\(491\) 22.1177 22.1177i 0.998157 0.998157i −0.00184099 0.999998i \(-0.500586\pi\)
0.999998 + 0.00184099i \(0.000586006\pi\)
\(492\) −2.48690 1.55291i −0.112118 0.0700105i
\(493\) −16.8123 −0.757189
\(494\) −6.16166 + 3.41672i −0.277226 + 0.153726i
\(495\) 0 0
\(496\) −22.4171 + 10.9509i −1.00656 + 0.491711i
\(497\) 13.8297 13.8297i 0.620346 0.620346i
\(498\) 1.16915 + 0.335051i 0.0523910 + 0.0150140i
\(499\) −7.73911 + 7.73911i −0.346450 + 0.346450i −0.858786 0.512335i \(-0.828781\pi\)
0.512335 + 0.858786i \(0.328781\pi\)
\(500\) 0 0
\(501\) 0.250373 + 0.250373i 0.0111858 + 0.0111858i
\(502\) −1.10208 + 0.611116i −0.0491880 + 0.0272754i
\(503\) 13.9144 + 13.9144i 0.620413 + 0.620413i 0.945637 0.325224i \(-0.105440\pi\)
−0.325224 + 0.945637i \(0.605440\pi\)
\(504\) 15.6135 + 0.810919i 0.695482 + 0.0361212i
\(505\) 0 0
\(506\) 17.3894 + 4.98338i 0.773052 + 0.221538i
\(507\) 0.966284i 0.0429142i
\(508\) 3.54205 + 15.3204i 0.157153 + 0.679733i
\(509\) 4.48049 + 4.48049i 0.198594 + 0.198594i 0.799397 0.600803i \(-0.205152\pi\)
−0.600803 + 0.799397i \(0.705152\pi\)
\(510\) 0 0
\(511\) 12.6658i 0.560302i
\(512\) 18.2872 13.3258i 0.808188 0.588924i
\(513\) −1.03609 1.03609i −0.0457444 0.0457444i
\(514\) 6.33894 3.51503i 0.279598 0.155041i
\(515\) 0 0
\(516\) 2.07302 3.31984i 0.0912596 0.146148i
\(517\) −39.8085 −1.75078
\(518\) 9.92902 5.50578i 0.436256 0.241910i
\(519\) 1.06314i 0.0466669i
\(520\) 0 0
\(521\) 3.26728i 0.143142i 0.997435 + 0.0715711i \(0.0228013\pi\)
−0.997435 + 0.0715711i \(0.977199\pi\)
\(522\) −7.32617 13.2119i −0.320658 0.578269i
\(523\) −10.1372 −0.443270 −0.221635 0.975130i \(-0.571139\pi\)
−0.221635 + 0.975130i \(0.571139\pi\)
\(524\) 2.01436 + 8.71269i 0.0879976 + 0.380616i
\(525\) 0 0
\(526\) −5.10122 9.19944i −0.222424 0.401115i
\(527\) −20.5249 20.5249i −0.894079 0.894079i
\(528\) −0.912628 + 2.65587i −0.0397170 + 0.115582i
\(529\) 8.71262i 0.378809i
\(530\) 0 0
\(531\) −20.9222 20.9222i −0.907945 0.907945i
\(532\) −2.34777 + 3.75983i −0.101789 + 0.163009i
\(533\) 29.6919i 1.28610i
\(534\) 0.0443332 0.154700i 0.00191849 0.00669451i
\(535\) 0 0
\(536\) 23.7631 + 26.3667i 1.02641 + 1.13887i
\(537\) −2.62034 2.62034i −0.113076 0.113076i
\(538\) 8.56295 + 15.4423i 0.369175 + 0.665763i
\(539\) −8.38801 8.38801i −0.361297 0.361297i
\(540\) 0 0
\(541\) −18.3823 + 18.3823i −0.790319 + 0.790319i −0.981546 0.191227i \(-0.938753\pi\)
0.191227 + 0.981546i \(0.438753\pi\)
\(542\) −12.0454 + 42.0323i −0.517396 + 1.80544i
\(543\) 1.75693 1.75693i 0.0753970 0.0753970i
\(544\) 21.5765 + 15.0829i 0.925086 + 0.646674i
\(545\) 0 0
\(546\) −1.11769 2.01562i −0.0478327 0.0862605i
\(547\) −3.60503 −0.154140 −0.0770699 0.997026i \(-0.524556\pi\)
−0.0770699 + 0.997026i \(0.524556\pi\)
\(548\) −0.323249 1.39815i −0.0138085 0.0597260i
\(549\) 25.8517 25.8517i 1.10332 1.10332i
\(550\) 0 0
\(551\) 4.28311 0.182467
\(552\) −2.21507 0.115044i −0.0942796 0.00489659i
\(553\) 11.4996 11.4996i 0.489012 0.489012i
\(554\) 25.7382 + 7.37595i 1.09351 + 0.313374i
\(555\) 0 0
\(556\) 3.51758 + 15.2146i 0.149179 + 0.645242i
\(557\) 21.5670i 0.913823i 0.889512 + 0.456911i \(0.151044\pi\)
−0.889512 + 0.456911i \(0.848956\pi\)
\(558\) 7.18543 25.0734i 0.304183 1.06144i
\(559\) 39.6365 1.67644
\(560\) 0 0
\(561\) −3.26728 −0.137945
\(562\) 2.53920 8.86048i 0.107110 0.373757i
\(563\) 26.5306i 1.11813i −0.829123 0.559066i \(-0.811160\pi\)
0.829123 0.559066i \(-0.188840\pi\)
\(564\) 4.75574 1.09952i 0.200253 0.0462980i
\(565\) 0 0
\(566\) −21.8499 6.26166i −0.918421 0.263197i
\(567\) −11.3870 + 11.3870i −0.478209 + 0.478209i
\(568\) 19.8113 + 21.9819i 0.831265 + 0.922341i
\(569\) 9.23630 0.387206 0.193603 0.981080i \(-0.437983\pi\)
0.193603 + 0.981080i \(0.437983\pi\)
\(570\) 0 0
\(571\) −31.6530 + 31.6530i −1.32464 + 1.32464i −0.414663 + 0.909975i \(0.636100\pi\)
−0.909975 + 0.414663i \(0.863900\pi\)
\(572\) −27.7089 + 6.40623i −1.15857 + 0.267858i
\(573\) 2.35546 0.0984007
\(574\) −9.05895 16.3367i −0.378113 0.681883i
\(575\) 0 0
\(576\) −2.45059 + 23.5284i −0.102108 + 0.980349i
\(577\) 23.8539 23.8539i 0.993051 0.993051i −0.00692502 0.999976i \(-0.502204\pi\)
0.999976 + 0.00692502i \(0.00220432\pi\)
\(578\) −1.81455 + 6.33184i −0.0754755 + 0.263370i
\(579\) −2.28723 + 2.28723i −0.0950541 + 0.0950541i
\(580\) 0 0
\(581\) 5.47931 + 5.47931i 0.227320 + 0.227320i
\(582\) −2.45535 4.42794i −0.101778 0.183544i
\(583\) −18.3454 18.3454i −0.759787 0.759787i
\(584\) −19.1380 0.993968i −0.791936 0.0411307i
\(585\) 0 0
\(586\) 0.323316 1.12820i 0.0133560 0.0466056i
\(587\) 24.2348i 1.00028i 0.865946 + 0.500138i \(0.166718\pi\)
−0.865946 + 0.500138i \(0.833282\pi\)
\(588\) 1.23375 + 0.770398i 0.0508792 + 0.0317707i
\(589\) 5.22893 + 5.22893i 0.215454 + 0.215454i
\(590\) 0 0
\(591\) 4.39734i 0.180882i
\(592\) 7.54002 + 15.4348i 0.309893 + 0.634366i
\(593\) 15.4929 + 15.4929i 0.636219 + 0.636219i 0.949621 0.313402i \(-0.101469\pi\)
−0.313402 + 0.949621i \(0.601469\pi\)
\(594\) −2.86824 5.17254i −0.117685 0.212232i
\(595\) 0 0
\(596\) −7.79530 + 1.80226i −0.319308 + 0.0738233i
\(597\) 1.80091 0.0737065
\(598\) −10.8931 19.6443i −0.445450 0.803317i
\(599\) 19.1812i 0.783722i 0.920024 + 0.391861i \(0.128169\pi\)
−0.920024 + 0.391861i \(0.871831\pi\)
\(600\) 0 0
\(601\) 21.7464i 0.887056i −0.896261 0.443528i \(-0.853727\pi\)
0.896261 0.443528i \(-0.146273\pi\)
\(602\) 21.8084 12.0930i 0.888843 0.492876i
\(603\) −37.1079 −1.51115
\(604\) 12.0925 + 7.55096i 0.492036 + 0.307244i
\(605\) 0 0
\(606\) 2.34726 1.30159i 0.0953509 0.0528734i
\(607\) −20.2541 20.2541i −0.822088 0.822088i 0.164319 0.986407i \(-0.447457\pi\)
−0.986407 + 0.164319i \(0.947457\pi\)
\(608\) −5.49685 3.84253i −0.222927 0.155835i
\(609\) 1.40110i 0.0567756i
\(610\) 0 0
\(611\) 34.9538 + 34.9538i 1.41408 + 1.41408i
\(612\) −26.8146 + 6.19949i −1.08392 + 0.250599i
\(613\) 6.00698i 0.242620i −0.992615 0.121310i \(-0.961291\pi\)
0.992615 0.121310i \(-0.0387094\pi\)
\(614\) 38.6252 + 11.0691i 1.55879 + 0.446711i
\(615\) 0 0
\(616\) −13.2912 + 11.9787i −0.535516 + 0.482636i
\(617\) −20.9289 20.9289i −0.842566 0.842566i 0.146626 0.989192i \(-0.453159\pi\)
−0.989192 + 0.146626i \(0.953159\pi\)
\(618\) 2.37771 1.31847i 0.0956455 0.0530368i
\(619\) −3.30074 3.30074i −0.132668 0.132668i 0.637655 0.770322i \(-0.279905\pi\)
−0.770322 + 0.637655i \(0.779905\pi\)
\(620\) 0 0
\(621\) 3.30321 3.30321i 0.132553 0.132553i
\(622\) −43.2436 12.3926i −1.73391 0.496897i
\(623\) 0.725009 0.725009i 0.0290469 0.0290469i
\(624\) 3.13331 1.53065i 0.125433 0.0612749i
\(625\) 0 0
\(626\) −32.8352 + 18.2075i −1.31236 + 0.727720i
\(627\) 0.832374 0.0332418
\(628\) 21.9670 35.1790i 0.876578 1.40380i
\(629\) −14.1320 + 14.1320i −0.563479 + 0.563479i
\(630\) 0 0
\(631\) 4.39734 0.175055 0.0875276 0.996162i \(-0.472103\pi\)
0.0875276 + 0.996162i \(0.472103\pi\)
\(632\) 16.4734 + 18.2783i 0.655276 + 0.727071i
\(633\) −1.30494 + 1.30494i −0.0518669 + 0.0518669i
\(634\) 4.13771 14.4385i 0.164330 0.573424i
\(635\) 0 0
\(636\) 2.69834 + 1.68493i 0.106996 + 0.0668119i
\(637\) 14.7301i 0.583630i
\(638\) 16.6200 + 4.76289i 0.657992 + 0.188565i
\(639\) −30.9369 −1.22384
\(640\) 0 0
\(641\) 8.74978 0.345596 0.172798 0.984957i \(-0.444719\pi\)
0.172798 + 0.984957i \(0.444719\pi\)
\(642\) 4.61739 + 1.32323i 0.182234 + 0.0522238i
\(643\) 26.4968i 1.04493i 0.852660 + 0.522466i \(0.174988\pi\)
−0.852660 + 0.522466i \(0.825012\pi\)
\(644\) −11.9869 7.48505i −0.472351 0.294952i
\(645\) 0 0
\(646\) 2.14959 7.50096i 0.0845746 0.295121i
\(647\) 15.8343 15.8343i 0.622512 0.622512i −0.323661 0.946173i \(-0.604914\pi\)
0.946173 + 0.323661i \(0.104914\pi\)
\(648\) −16.3121 18.0994i −0.640801 0.711010i
\(649\) 33.8616 1.32919
\(650\) 0 0
\(651\) −1.71050 + 1.71050i −0.0670399 + 0.0670399i
\(652\) 11.5449 18.4886i 0.452133 0.724069i
\(653\) −26.4608 −1.03549 −0.517746 0.855534i \(-0.673229\pi\)
−0.517746 + 0.855534i \(0.673229\pi\)
\(654\) −0.725759 + 0.402443i −0.0283794 + 0.0157368i
\(655\) 0 0
\(656\) 25.3957 12.4060i 0.991535 0.484373i
\(657\) 14.1666 14.1666i 0.552693 0.552693i
\(658\) 29.8962 + 8.56755i 1.16548 + 0.333998i
\(659\) 30.5128 30.5128i 1.18861 1.18861i 0.211156 0.977452i \(-0.432277\pi\)
0.977452 0.211156i \(-0.0677228\pi\)
\(660\) 0 0
\(661\) −4.81695 4.81695i −0.187358 0.187358i 0.607195 0.794553i \(-0.292295\pi\)
−0.794553 + 0.607195i \(0.792295\pi\)
\(662\) −39.1966 + 21.7351i −1.52342 + 0.844758i
\(663\) 2.86883 + 2.86883i 0.111416 + 0.111416i
\(664\) −8.70921 + 7.84922i −0.337983 + 0.304609i
\(665\) 0 0
\(666\) −17.2637 4.94737i −0.668956 0.191707i
\(667\) 13.6552i 0.528733i
\(668\) −3.32563 + 0.768879i −0.128673 + 0.0297488i
\(669\) 0.726685 + 0.726685i 0.0280953 + 0.0280953i
\(670\) 0 0
\(671\) 41.8399i 1.61521i
\(672\) 1.25698 1.79814i 0.0484890 0.0693649i
\(673\) 2.80519 + 2.80519i 0.108132 + 0.108132i 0.759103 0.650971i \(-0.225638\pi\)
−0.650971 + 0.759103i \(0.725638\pi\)
\(674\) 5.17254 2.86824i 0.199239 0.110481i
\(675\) 0 0
\(676\) 7.90113 + 4.93373i 0.303890 + 0.189759i
\(677\) −17.5498 −0.674492 −0.337246 0.941417i \(-0.609495\pi\)
−0.337246 + 0.941417i \(0.609495\pi\)
\(678\) 4.30695 2.38826i 0.165407 0.0917206i
\(679\) 32.2590i 1.23799i
\(680\) 0 0
\(681\) 0.129129i 0.00494823i
\(682\) 14.4755 + 26.1048i 0.554294 + 0.999603i
\(683\) −21.7834 −0.833518 −0.416759 0.909017i \(-0.636834\pi\)
−0.416759 + 0.909017i \(0.636834\pi\)
\(684\) 6.83131 1.57938i 0.261202 0.0603893i
\(685\) 0 0
\(686\) 13.4685 + 24.2889i 0.514230 + 0.927353i
\(687\) −1.94178 1.94178i −0.0740833 0.0740833i
\(688\) 16.5611 + 33.9014i 0.631386 + 1.29248i
\(689\) 32.2162i 1.22734i
\(690\) 0 0
\(691\) −31.2147 31.2147i −1.18746 1.18746i −0.977767 0.209694i \(-0.932753\pi\)
−0.209694 0.977767i \(-0.567247\pi\)
\(692\) 8.69314 + 5.42829i 0.330464 + 0.206353i
\(693\) 18.7057i 0.710569i
\(694\) 5.41154 18.8835i 0.205419 0.716806i
\(695\) 0 0
\(696\) −2.11707 0.109954i −0.0802471 0.00416779i
\(697\) 23.2521 + 23.2521i 0.880736 + 0.880736i
\(698\) 13.0852 + 23.5976i 0.495282 + 0.893182i
\(699\) 0.371464 + 0.371464i 0.0140501 + 0.0140501i
\(700\) 0 0
\(701\) 20.9248 20.9248i 0.790318 0.790318i −0.191227 0.981546i \(-0.561247\pi\)
0.981546 + 0.191227i \(0.0612468\pi\)
\(702\) −2.02328 + 7.06019i −0.0763638 + 0.266470i
\(703\) 3.60027 3.60027i 0.135787 0.135787i
\(704\) −17.0568 21.0229i −0.642851 0.792332i
\(705\) 0 0
\(706\) −15.4974 27.9477i −0.583252 1.05183i
\(707\) 17.1005 0.643132
\(708\) −4.04529 + 0.935264i −0.152031 + 0.0351494i
\(709\) −26.3703 + 26.3703i −0.990357 + 0.990357i −0.999954 0.00959736i \(-0.996945\pi\)
0.00959736 + 0.999954i \(0.496945\pi\)
\(710\) 0 0
\(711\) −25.7244 −0.964741
\(712\) 1.03859 + 1.15238i 0.0389228 + 0.0431874i
\(713\) −16.6707 + 16.6707i −0.624322 + 0.624322i
\(714\) 2.45373 + 0.703181i 0.0918287 + 0.0263159i
\(715\) 0 0
\(716\) 34.8052 8.04689i 1.30073 0.300726i
\(717\) 4.33724i 0.161977i
\(718\) −11.0190 + 38.4506i −0.411226 + 1.43496i
\(719\) 2.65374 0.0989679 0.0494840 0.998775i \(-0.484242\pi\)
0.0494840 + 0.998775i \(0.484242\pi\)
\(720\) 0 0
\(721\) 17.3224 0.645119
\(722\) 6.85472 23.9194i 0.255106 0.890187i
\(723\) 0.767746i 0.0285528i
\(724\) 5.39541 + 23.3367i 0.200519 + 0.867303i
\(725\) 0 0
\(726\) 0.127351 + 0.0364957i 0.00472644 + 0.00135448i
\(727\) 30.8999 30.8999i 1.14601 1.14601i 0.158685 0.987329i \(-0.449275\pi\)
0.987329 0.158685i \(-0.0507255\pi\)
\(728\) 22.1881 + 1.15238i 0.822348 + 0.0427102i
\(729\) 24.7034 0.914940
\(730\) 0 0
\(731\) −31.0399 + 31.0399i −1.14805 + 1.14805i
\(732\) −1.15562 4.99842i −0.0427131 0.184747i
\(733\) −46.2726 −1.70912 −0.854559 0.519354i \(-0.826172\pi\)
−0.854559 + 0.519354i \(0.826172\pi\)
\(734\) 16.3218 + 29.4345i 0.602450 + 1.08645i
\(735\) 0 0
\(736\) 12.2506 17.5248i 0.451563 0.645974i
\(737\) 30.0288 30.0288i 1.10613 1.10613i
\(738\) −8.14017 + 28.4049i −0.299644 + 1.04560i
\(739\) −12.0504 + 12.0504i −0.443280 + 0.443280i −0.893113 0.449833i \(-0.851484\pi\)
0.449833 + 0.893113i \(0.351484\pi\)
\(740\) 0 0
\(741\) −0.730865 0.730865i −0.0268490 0.0268490i
\(742\) 9.82912 + 17.7257i 0.360838 + 0.650730i
\(743\) −21.4100 21.4100i −0.785456 0.785456i 0.195290 0.980746i \(-0.437435\pi\)
−0.980746 + 0.195290i \(0.937435\pi\)
\(744\) −2.45033 2.71880i −0.0898335 0.0996761i
\(745\) 0 0
\(746\) 3.13176 10.9282i 0.114662 0.400110i
\(747\) 12.2571i 0.448465i
\(748\) 16.6824 26.7160i 0.609968 0.976833i
\(749\) 21.6397 + 21.6397i 0.790696 + 0.790696i
\(750\) 0 0
\(751\) 8.50828i 0.310472i 0.987877 + 0.155236i \(0.0496137\pi\)
−0.987877 + 0.155236i \(0.950386\pi\)
\(752\) −15.2917 + 44.5008i −0.557631 + 1.62278i
\(753\) −0.130723 0.130723i −0.00476379 0.00476379i
\(754\) −10.4111 18.7752i −0.379150 0.683752i
\(755\) 0 0
\(756\) 1.04083 + 4.50188i 0.0378545 + 0.163732i
\(757\) −29.2794 −1.06418 −0.532089 0.846688i \(-0.678593\pi\)
−0.532089 + 0.846688i \(0.678593\pi\)
\(758\) −2.23732 4.03474i −0.0812631 0.146548i
\(759\) 2.65374i 0.0963248i
\(760\) 0 0
\(761\) 39.3132i 1.42510i −0.701621 0.712551i \(-0.747540\pi\)
0.701621 0.712551i \(-0.252460\pi\)
\(762\) −2.01741 + 1.11868i −0.0730832 + 0.0405256i
\(763\) −5.28739 −0.191416
\(764\) −12.0267 + 19.2602i −0.435111 + 0.696809i
\(765\) 0 0
\(766\) −13.7396 + 7.61880i −0.496432 + 0.275278i
\(767\) −29.7321 29.7321i −1.07357 1.07357i
\(768\) 2.61835 + 2.04040i 0.0944815 + 0.0736267i
\(769\) 26.4222i 0.952809i −0.879226 0.476404i \(-0.841940\pi\)
0.879226 0.476404i \(-0.158060\pi\)
\(770\) 0 0
\(771\) 0.751892 + 0.751892i 0.0270787 + 0.0270787i
\(772\) −7.02394 30.3806i −0.252797 1.09342i
\(773\) 8.08416i 0.290767i −0.989375 0.145383i \(-0.953558\pi\)
0.989375 0.145383i \(-0.0464416\pi\)
\(774\) −37.9185 10.8665i −1.36295 0.390590i
\(775\) 0 0
\(776\) 48.7432 + 2.53157i 1.74978 + 0.0908781i
\(777\) 1.17773 + 1.17773i 0.0422508 + 0.0422508i
\(778\) 47.6051 26.3977i 1.70673 0.946404i
\(779\) −5.92371 5.92371i −0.212239 0.212239i
\(780\) 0 0
\(781\) 25.0350 25.0350i 0.895823 0.895823i
\(782\) 23.9142 + 6.85325i 0.855172 + 0.245072i
\(783\) 3.15707 3.15707i 0.112824 0.112824i
\(784\) −12.5988 + 6.15462i −0.449958 + 0.219808i
\(785\) 0 0
\(786\) −1.14730 + 0.636194i −0.0409229 + 0.0226923i
\(787\) 40.5596 1.44579 0.722897 0.690955i \(-0.242810\pi\)
0.722897 + 0.690955i \(0.242810\pi\)
\(788\) 35.9562 + 22.4523i 1.28089 + 0.799830i
\(789\) 1.09119 1.09119i 0.0388474 0.0388474i
\(790\) 0 0
\(791\) 31.3775 1.11566
\(792\) 28.2642 + 1.46795i 1.00432 + 0.0521615i
\(793\) 36.7374 36.7374i 1.30458 1.30458i
\(794\) −1.70914 + 5.96399i −0.0606550 + 0.211654i
\(795\) 0 0
\(796\) −9.19527 + 14.7258i −0.325918 + 0.521941i
\(797\) 1.85060i 0.0655517i 0.999463 + 0.0327759i \(0.0104347\pi\)
−0.999463 + 0.0327759i \(0.989565\pi\)
\(798\) −0.625115 0.179143i −0.0221288 0.00634159i
\(799\) −54.7455 −1.93676
\(800\) 0 0
\(801\) −1.62184 −0.0573048
\(802\) 33.4358 + 9.58190i 1.18066 + 0.338349i
\(803\) 22.9281i 0.809115i
\(804\) −2.75800 + 4.41680i −0.0972672 + 0.155769i
\(805\) 0 0
\(806\) 10.2111 35.6314i 0.359671 1.25506i
\(807\) −1.83168 + 1.83168i −0.0644783 + 0.0644783i
\(808\) −1.34199 + 25.8389i −0.0472111 + 0.909009i
\(809\) −26.5823 −0.934584 −0.467292 0.884103i \(-0.654770\pi\)
−0.467292 + 0.884103i \(0.654770\pi\)
\(810\) 0 0
\(811\) 6.49812 6.49812i 0.228180 0.228180i −0.583752 0.811932i \(-0.698416\pi\)
0.811932 + 0.583752i \(0.198416\pi\)
\(812\) −11.4566 7.15388i −0.402047 0.251052i
\(813\) −6.41443 −0.224964
\(814\) 17.9739 9.96676i 0.629984 0.349335i
\(815\) 0 0
\(816\) −1.25507 + 3.65240i −0.0439361 + 0.127860i
\(817\) 7.90773 7.90773i 0.276656 0.276656i
\(818\) 9.60614 + 2.75289i 0.335871 + 0.0962525i
\(819\) −16.4245 + 16.4245i −0.573917 + 0.573917i
\(820\) 0 0
\(821\) 6.00000 + 6.00000i 0.209401 + 0.209401i 0.804013 0.594612i \(-0.202694\pi\)
−0.594612 + 0.804013i \(0.702694\pi\)
\(822\) 0.184111 0.102092i 0.00642159 0.00356086i
\(823\) −15.1106 15.1106i −0.526722 0.526722i 0.392871 0.919593i \(-0.371482\pi\)
−0.919593 + 0.392871i \(0.871482\pi\)
\(824\) −1.35940 + 26.1741i −0.0473570 + 0.911817i
\(825\) 0 0
\(826\) −25.4302 7.28767i −0.884828 0.253571i
\(827\) 13.3792i 0.465241i 0.972568 + 0.232621i \(0.0747301\pi\)
−0.972568 + 0.232621i \(0.925270\pi\)
\(828\) 5.03533 + 21.7793i 0.174990 + 0.756883i
\(829\) −5.81788 5.81788i −0.202063 0.202063i 0.598820 0.800883i \(-0.295636\pi\)
−0.800883 + 0.598820i \(0.795636\pi\)
\(830\) 0 0
\(831\) 3.92783i 0.136255i
\(832\) −3.48250 + 33.4358i −0.120734 + 1.15918i
\(833\) −11.5354 11.5354i −0.399677 0.399677i
\(834\) −2.00348 + 1.11096i −0.0693748 + 0.0384693i
\(835\) 0 0
\(836\) −4.25001 + 6.80618i −0.146990 + 0.235397i
\(837\) 7.70845 0.266443
\(838\) −7.94785 + 4.40719i −0.274554 + 0.152244i
\(839\) 27.4305i 0.947006i −0.880792 0.473503i \(-0.842989\pi\)
0.880792 0.473503i \(-0.157011\pi\)
\(840\) 0 0
\(841\) 15.9489i 0.549963i
\(842\) −5.31054 9.57693i −0.183013 0.330043i
\(843\) 1.35217 0.0465713
\(844\) −4.00740 17.3332i −0.137940 0.596633i
\(845\) 0 0
\(846\) −23.8560 43.0215i −0.820187 1.47911i
\(847\) 0.596838 + 0.596838i 0.0205076 + 0.0205076i
\(848\) −27.5548 + 13.4607i −0.946235 + 0.462243i
\(849\) 3.33445i 0.114438i
\(850\) 0 0
\(851\) 11.4782 + 11.4782i 0.393469 + 0.393469i
\(852\) −2.29934 + 3.68229i −0.0787743 + 0.126153i
\(853\) 16.6692i 0.570742i 0.958417 + 0.285371i \(0.0921169\pi\)
−0.958417 + 0.285371i \(0.907883\pi\)
\(854\) 9.00474 31.4218i 0.308136 1.07523i
\(855\) 0 0
\(856\) −34.3957 + 30.9993i −1.17562 + 1.05953i
\(857\) −4.73331 4.73331i −0.161687 0.161687i 0.621627 0.783314i \(-0.286472\pi\)
−0.783314 + 0.621627i \(0.786472\pi\)
\(858\) −2.02328 3.64875i −0.0690736 0.124566i
\(859\) −26.3237 26.3237i −0.898152 0.898152i 0.0971203 0.995273i \(-0.469037\pi\)
−0.995273 + 0.0971203i \(0.969037\pi\)
\(860\) 0 0
\(861\) 1.93778 1.93778i 0.0660394 0.0660394i
\(862\) −4.93456 + 17.2190i −0.168072 + 0.586483i
\(863\) 8.71130 8.71130i 0.296536 0.296536i −0.543119 0.839655i \(-0.682757\pi\)
0.839655 + 0.543119i \(0.182757\pi\)
\(864\) −6.88401 + 1.21939i −0.234199 + 0.0414846i
\(865\) 0 0
\(866\) −10.7172 19.3272i −0.364184 0.656764i
\(867\) −0.966284 −0.0328167
\(868\) −5.25285 22.7201i −0.178293 0.771171i
\(869\) 20.8170 20.8170i 0.706167 0.706167i
\(870\) 0 0
\(871\) −52.7334 −1.78680
\(872\) 0.414936 7.98923i 0.0140515 0.270550i
\(873\) −36.0815 + 36.0815i −1.22117 + 1.22117i
\(874\) −6.09241 1.74594i −0.206079 0.0590572i
\(875\) 0 0
\(876\) −0.633277 2.73911i −0.0213965 0.0925461i
\(877\) 33.6674i 1.13687i −0.822730 0.568433i \(-0.807550\pi\)
0.822730 0.568433i \(-0.192450\pi\)
\(878\) 7.98426 27.8609i 0.269456 0.940260i
\(879\) 0.172172 0.00580721
\(880\) 0 0
\(881\) 27.3058 0.919956 0.459978 0.887930i \(-0.347857\pi\)
0.459978 + 0.887930i \(0.347857\pi\)
\(882\) 4.03834 14.0917i 0.135978 0.474492i
\(883\) 27.9628i 0.941023i 0.882394 + 0.470511i \(0.155930\pi\)
−0.882394 + 0.470511i \(0.844070\pi\)
\(884\) −38.1058 + 8.80999i −1.28164 + 0.296312i
\(885\) 0 0
\(886\) −14.9712 4.29038i −0.502966 0.144138i
\(887\) −12.4497 + 12.4497i −0.418020 + 0.418020i −0.884521 0.466501i \(-0.845514\pi\)
0.466501 + 0.884521i \(0.345514\pi\)
\(888\) −1.87197 + 1.68712i −0.0628192 + 0.0566161i
\(889\) −14.6975 −0.492939
\(890\) 0 0
\(891\) −20.6132 + 20.6132i −0.690567 + 0.690567i
\(892\) −9.65235 + 2.23160i −0.323185 + 0.0747196i
\(893\) 13.9470 0.466718
\(894\) −0.569207 1.02650i −0.0190371 0.0343312i
\(895\) 0 0
\(896\) 8.28512 + 19.4592i 0.276786 + 0.650086i
\(897\) 2.33011 2.33011i 0.0778002 0.0778002i
\(898\) 6.01628 20.9937i 0.200766 0.700567i
\(899\) −15.9331 + 15.9331i −0.531398 + 0.531398i
\(900\) 0 0
\(901\) −25.2289 25.2289i −0.840498 0.840498i
\(902\) −16.3988 29.5734i −0.546022 0.984685i
\(903\) 2.58680 + 2.58680i 0.0860833 + 0.0860833i
\(904\) −2.46240 + 47.4113i −0.0818981 + 1.57688i
\(905\) 0 0
\(906\) −0.576165 + 2.01051i −0.0191418 + 0.0667948i
\(907\) 38.3527i 1.27348i 0.771078 + 0.636740i \(0.219718\pi\)
−0.771078 + 0.636740i \(0.780282\pi\)
\(908\) −1.05586 0.659317i −0.0350400 0.0218802i
\(909\) −19.1269 19.1269i −0.634398 0.634398i
\(910\) 0 0
\(911\) 24.0192i 0.795791i −0.917431 0.397895i \(-0.869741\pi\)
0.917431 0.397895i \(-0.130259\pi\)
\(912\) 0.319741 0.930488i 0.0105877 0.0308115i
\(913\) 9.91884 + 9.91884i 0.328266 + 0.328266i
\(914\) −3.04752 5.49585i −0.100803 0.181787i
\(915\) 0 0
\(916\) 25.7920 5.96307i 0.852193 0.197025i
\(917\) −8.35846 −0.276021
\(918\) −3.94447 7.11338i −0.130187 0.234777i
\(919\) 25.1211i 0.828668i 0.910125 + 0.414334i \(0.135986\pi\)
−0.910125 + 0.414334i \(0.864014\pi\)
\(920\) 0 0
\(921\) 5.89448i 0.194230i
\(922\) −14.7909 + 8.20177i −0.487113 + 0.270111i
\(923\) −43.9639 −1.44709
\(924\) −2.22646 1.39028i −0.0732450 0.0457367i
\(925\) 0 0
\(926\) −37.7556 + 20.9360i −1.24073 + 0.688000i
\(927\) −19.3750 19.3750i −0.636358 0.636358i
\(928\) 11.7086 16.7495i 0.384352 0.549828i
\(929\) 39.8307i 1.30680i 0.757012 + 0.653401i \(0.226658\pi\)
−0.757012 + 0.653401i \(0.773342\pi\)
\(930\) 0 0
\(931\) 2.93876 + 2.93876i 0.0963139 + 0.0963139i
\(932\) −4.93405 + 1.14074i −0.161620 + 0.0373663i
\(933\) 6.59927i 0.216051i
\(934\) −30.5723 8.76128i −1.00036 0.286678i
\(935\) 0 0
\(936\) −23.5284 26.1062i −0.769049 0.853309i
\(937\) 18.2763 + 18.2763i 0.597060 + 0.597060i 0.939529 0.342469i \(-0.111263\pi\)
−0.342469 + 0.939529i \(0.611263\pi\)
\(938\) −29.0144 + 16.0889i −0.947355 + 0.525321i
\(939\) −3.89474 3.89474i −0.127100 0.127100i
\(940\) 0 0
\(941\) −2.34852 + 2.34852i −0.0765597 + 0.0765597i −0.744350 0.667790i \(-0.767240\pi\)
0.667790 + 0.744350i \(0.267240\pi\)
\(942\) 5.84892 + 1.67616i 0.190568 + 0.0546122i
\(943\) 18.8857 18.8857i 0.615004 0.615004i
\(944\) 13.0073 37.8530i 0.423352 1.23201i
\(945\) 0 0
\(946\) 39.4783 21.8913i 1.28355 0.711746i
\(947\) 18.7829 0.610363 0.305181 0.952294i \(-0.401283\pi\)
0.305181 + 0.952294i \(0.401283\pi\)
\(948\) −1.91194 + 3.06187i −0.0620968 + 0.0994450i
\(949\) 20.1320 20.1320i 0.653511 0.653511i
\(950\) 0 0
\(951\) 2.20341 0.0714505
\(952\) −18.2783 + 16.4734i −0.592402 + 0.533905i
\(953\) −9.07454 + 9.07454i −0.293953 + 0.293953i −0.838640 0.544687i \(-0.816649\pi\)
0.544687 + 0.838640i \(0.316649\pi\)
\(954\) 8.83223 30.8199i 0.285954 0.997830i
\(955\) 0 0
\(956\) 35.4649 + 22.1455i 1.14702 + 0.716236i
\(957\) 2.53633i 0.0819879i
\(958\) −1.15913 0.332179i −0.0374499 0.0107322i
\(959\) 1.34130 0.0433130
\(960\) 0 0
\(961\) −7.90304 −0.254937
\(962\) −24.5332 7.03063i −0.790982 0.226677i
\(963\) 48.4077i 1.55992i
\(964\) −6.27772 3.92002i −0.202192 0.126255i
\(965\) 0 0
\(966\) 0.571136 1.99297i 0.0183760 0.0641226i
\(967\) −13.3057 + 13.3057i −0.427882 + 0.427882i −0.887906 0.460024i \(-0.847841\pi\)
0.460024 + 0.887906i \(0.347841\pi\)
\(968\) −0.948659 + 0.854983i −0.0304910 + 0.0274802i
\(969\) 1.14470 0.0367730
\(970\) 0 0
\(971\) 18.6349 18.6349i 0.598023 0.598023i −0.341763 0.939786i \(-0.611024\pi\)
0.939786 + 0.341763i \(0.111024\pi\)
\(972\) 5.82074 9.32163i 0.186700 0.298991i
\(973\) −14.5960 −0.467926
\(974\) −4.37198 + 2.42432i −0.140087 + 0.0776803i
\(975\) 0 0
\(976\) 46.7716 + 16.0720i 1.49712 + 0.514453i
\(977\) −7.28407 + 7.28407i −0.233038 + 0.233038i −0.813960 0.580921i \(-0.802692\pi\)
0.580921 + 0.813960i \(0.302692\pi\)
\(978\) 3.07394 + 0.880918i 0.0982938 + 0.0281686i
\(979\) 1.31244 1.31244i 0.0419457 0.0419457i
\(980\) 0 0
\(981\) 5.91391 + 5.91391i 0.188817 + 0.188817i
\(982\) −38.6858 + 21.4518i −1.23451 + 0.684554i
\(983\) 31.0322 + 31.0322i 0.989772 + 0.989772i 0.999948 0.0101761i \(-0.00323922\pi\)
−0.0101761 + 0.999948i \(0.503239\pi\)
\(984\) 2.77591 + 3.08005i 0.0884929 + 0.0981885i
\(985\) 0 0
\(986\) 22.8562 + 6.55003i 0.727889 + 0.208596i
\(987\) 4.56238i 0.145222i
\(988\) 9.70786 2.24444i 0.308848 0.0714051i
\(989\) 25.2111 + 25.2111i 0.801666 + 0.801666i
\(990\) 0 0
\(991\) 40.1060i 1.27401i 0.770860 + 0.637004i \(0.219827\pi\)
−0.770860 + 0.637004i \(0.780173\pi\)
\(992\) 34.7423 6.15404i 1.10307 0.195391i
\(993\) −4.64931 4.64931i −0.147541 0.147541i
\(994\) −24.1893 + 13.4133i −0.767239 + 0.425445i
\(995\) 0 0
\(996\) −1.45892 0.910997i −0.0462275 0.0288661i
\(997\) −2.58204 −0.0817740 −0.0408870 0.999164i \(-0.513018\pi\)
−0.0408870 + 0.999164i \(0.513018\pi\)
\(998\) 13.5364 7.50611i 0.428487 0.237602i
\(999\) 5.30749i 0.167921i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.2.j.c.43.1 16
4.3 odd 2 1600.2.j.c.143.5 16
5.2 odd 4 400.2.s.c.107.5 yes 16
5.3 odd 4 400.2.s.c.107.4 yes 16
5.4 even 2 inner 400.2.j.c.43.8 yes 16
16.3 odd 4 400.2.s.c.243.5 yes 16
16.13 even 4 1600.2.s.c.943.5 16
20.3 even 4 1600.2.s.c.207.4 16
20.7 even 4 1600.2.s.c.207.5 16
20.19 odd 2 1600.2.j.c.143.4 16
80.3 even 4 inner 400.2.j.c.307.8 yes 16
80.13 odd 4 1600.2.j.c.1007.5 16
80.19 odd 4 400.2.s.c.243.4 yes 16
80.29 even 4 1600.2.s.c.943.4 16
80.67 even 4 inner 400.2.j.c.307.1 yes 16
80.77 odd 4 1600.2.j.c.1007.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
400.2.j.c.43.1 16 1.1 even 1 trivial
400.2.j.c.43.8 yes 16 5.4 even 2 inner
400.2.j.c.307.1 yes 16 80.67 even 4 inner
400.2.j.c.307.8 yes 16 80.3 even 4 inner
400.2.s.c.107.4 yes 16 5.3 odd 4
400.2.s.c.107.5 yes 16 5.2 odd 4
400.2.s.c.243.4 yes 16 80.19 odd 4
400.2.s.c.243.5 yes 16 16.3 odd 4
1600.2.j.c.143.4 16 20.19 odd 2
1600.2.j.c.143.5 16 4.3 odd 2
1600.2.j.c.1007.4 16 80.77 odd 4
1600.2.j.c.1007.5 16 80.13 odd 4
1600.2.s.c.207.4 16 20.3 even 4
1600.2.s.c.207.5 16 20.7 even 4
1600.2.s.c.943.4 16 80.29 even 4
1600.2.s.c.943.5 16 16.13 even 4