Properties

Label 400.2.s.c.107.5
Level $400$
Weight $2$
Character 400.107
Analytic conductor $3.194$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,2,Mod(107,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.107");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 400.s (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.19401608085\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2x^{14} + 6x^{12} - 12x^{10} + 36x^{8} - 48x^{6} + 96x^{4} - 128x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 107.5
Root \(-1.35949 + 0.389597i\) of defining polynomial
Character \(\chi\) \(=\) 400.107
Dual form 400.2.s.c.243.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.389597 - 1.35949i) q^{2} -0.207468 q^{3} +(-1.69643 - 1.05931i) q^{4} +(-0.0808289 + 0.282051i) q^{6} +(-1.32185 - 1.32185i) q^{7} +(-2.10104 + 1.89357i) q^{8} -2.95696 q^{9} +(-2.39286 + 2.39286i) q^{11} +(0.351954 + 0.219772i) q^{12} -4.20208i q^{13} +(-2.31203 + 1.28205i) q^{14} +(1.75574 + 3.59408i) q^{16} +(-3.29071 - 3.29071i) q^{17} +(-1.15202 + 4.01995i) q^{18} +(-0.838342 + 0.838342i) q^{19} +(0.274241 + 0.274241i) q^{21} +(2.32081 + 4.18531i) q^{22} +(2.67277 - 2.67277i) q^{23} +(0.435899 - 0.392856i) q^{24} +(-5.71269 - 1.63712i) q^{26} +1.23588 q^{27} +(0.842176 + 3.64266i) q^{28} +(-2.55451 - 2.55451i) q^{29} +6.23723i q^{31} +(5.57014 - 0.986662i) q^{32} +(0.496441 - 0.496441i) q^{33} +(-5.75574 + 3.19163i) q^{34} +(5.01626 + 3.13233i) q^{36} +4.29451i q^{37} +(0.813102 + 1.46633i) q^{38} +0.871798i q^{39} -7.06598i q^{41} +(0.479671 - 0.265984i) q^{42} -9.43258i q^{43} +(6.59408 - 1.52454i) q^{44} +(-2.59230 - 4.67491i) q^{46} +(-8.31820 + 8.31820i) q^{47} +(-0.364259 - 0.745656i) q^{48} -3.50544i q^{49} +(0.682716 + 0.682716i) q^{51} +(-4.45130 + 7.12853i) q^{52} +7.66672 q^{53} +(0.481494 - 1.68016i) q^{54} +(5.28027 + 0.274241i) q^{56} +(0.173929 - 0.173929i) q^{57} +(-4.46807 + 2.47761i) q^{58} +(7.07557 + 7.07557i) q^{59} +(8.74267 - 8.74267i) q^{61} +(8.47945 + 2.43001i) q^{62} +(3.90865 + 3.90865i) q^{63} +(0.828755 - 7.95696i) q^{64} +(-0.481494 - 0.868318i) q^{66} -12.5494i q^{67} +(2.09658 + 9.06832i) q^{68} +(-0.554514 + 0.554514i) q^{69} -10.4624 q^{71} +(6.21269 - 5.59922i) q^{72} +(-4.79095 - 4.79095i) q^{73} +(5.83834 + 1.67313i) q^{74} +(2.31025 - 0.534125i) q^{76} +6.32598 q^{77} +(1.18520 + 0.339650i) q^{78} +8.69963 q^{79} +8.61447 q^{81} +(-9.60614 - 2.75289i) q^{82} -4.14519 q^{83} +(-0.174724 - 0.755735i) q^{84} +(-12.8235 - 3.67491i) q^{86} +(0.529980 + 0.529980i) q^{87} +(0.496441 - 9.55854i) q^{88} +0.548482 q^{89} +(-5.55451 + 5.55451i) q^{91} +(-7.36544 + 1.70288i) q^{92} -1.29403i q^{93} +(8.06776 + 14.5493i) q^{94} +(-1.15563 + 0.204701i) q^{96} +(-12.2022 - 12.2022i) q^{97} +(-4.76561 - 1.36571i) q^{98} +(7.07557 - 7.07557i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{4} - 12 q^{6} + 16 q^{9} + 8 q^{11} + 20 q^{14} - 16 q^{16} + 8 q^{19} + 24 q^{24} + 16 q^{26} - 16 q^{29} - 48 q^{34} - 4 q^{36} + 40 q^{44} + 36 q^{46} - 48 q^{51} - 32 q^{54} + 64 q^{56}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.389597 1.35949i 0.275487 0.961305i
\(3\) −0.207468 −0.119782 −0.0598908 0.998205i \(-0.519075\pi\)
−0.0598908 + 0.998205i \(0.519075\pi\)
\(4\) −1.69643 1.05931i −0.848214 0.529654i
\(5\) 0 0
\(6\) −0.0808289 + 0.282051i −0.0329983 + 0.115147i
\(7\) −1.32185 1.32185i −0.499611 0.499611i 0.411706 0.911317i \(-0.364933\pi\)
−0.911317 + 0.411706i \(0.864933\pi\)
\(8\) −2.10104 + 1.89357i −0.742831 + 0.669480i
\(9\) −2.95696 −0.985652
\(10\) 0 0
\(11\) −2.39286 + 2.39286i −0.721473 + 0.721473i −0.968905 0.247432i \(-0.920413\pi\)
0.247432 + 0.968905i \(0.420413\pi\)
\(12\) 0.351954 + 0.219772i 0.101600 + 0.0634428i
\(13\) 4.20208i 1.16545i −0.812670 0.582724i \(-0.801987\pi\)
0.812670 0.582724i \(-0.198013\pi\)
\(14\) −2.31203 + 1.28205i −0.617915 + 0.342642i
\(15\) 0 0
\(16\) 1.75574 + 3.59408i 0.438934 + 0.898519i
\(17\) −3.29071 3.29071i −0.798114 0.798114i 0.184684 0.982798i \(-0.440874\pi\)
−0.982798 + 0.184684i \(0.940874\pi\)
\(18\) −1.15202 + 4.01995i −0.271534 + 0.947512i
\(19\) −0.838342 + 0.838342i −0.192329 + 0.192329i −0.796702 0.604373i \(-0.793424\pi\)
0.604373 + 0.796702i \(0.293424\pi\)
\(20\) 0 0
\(21\) 0.274241 + 0.274241i 0.0598443 + 0.0598443i
\(22\) 2.32081 + 4.18531i 0.494799 + 0.892312i
\(23\) 2.67277 2.67277i 0.557311 0.557311i −0.371230 0.928541i \(-0.621064\pi\)
0.928541 + 0.371230i \(0.121064\pi\)
\(24\) 0.435899 0.392856i 0.0889775 0.0801914i
\(25\) 0 0
\(26\) −5.71269 1.63712i −1.12035 0.321066i
\(27\) 1.23588 0.237845
\(28\) 0.842176 + 3.64266i 0.159156 + 0.688398i
\(29\) −2.55451 2.55451i −0.474361 0.474361i 0.428961 0.903323i \(-0.358880\pi\)
−0.903323 + 0.428961i \(0.858880\pi\)
\(30\) 0 0
\(31\) 6.23723i 1.12024i 0.828412 + 0.560120i \(0.189245\pi\)
−0.828412 + 0.560120i \(0.810755\pi\)
\(32\) 5.57014 0.986662i 0.984672 0.174419i
\(33\) 0.496441 0.496441i 0.0864192 0.0864192i
\(34\) −5.75574 + 3.19163i −0.987100 + 0.547361i
\(35\) 0 0
\(36\) 5.01626 + 3.13233i 0.836044 + 0.522054i
\(37\) 4.29451i 0.706013i 0.935621 + 0.353006i \(0.114841\pi\)
−0.935621 + 0.353006i \(0.885159\pi\)
\(38\) 0.813102 + 1.46633i 0.131903 + 0.237871i
\(39\) 0.871798i 0.139599i
\(40\) 0 0
\(41\) 7.06598i 1.10352i −0.834002 0.551761i \(-0.813956\pi\)
0.834002 0.551761i \(-0.186044\pi\)
\(42\) 0.479671 0.265984i 0.0740149 0.0410423i
\(43\) 9.43258i 1.43845i −0.694775 0.719227i \(-0.744496\pi\)
0.694775 0.719227i \(-0.255504\pi\)
\(44\) 6.59408 1.52454i 0.994095 0.229833i
\(45\) 0 0
\(46\) −2.59230 4.67491i −0.382214 0.689277i
\(47\) −8.31820 + 8.31820i −1.21333 + 1.21333i −0.243410 + 0.969923i \(0.578266\pi\)
−0.969923 + 0.243410i \(0.921734\pi\)
\(48\) −0.364259 0.745656i −0.0525762 0.107626i
\(49\) 3.50544i 0.500777i
\(50\) 0 0
\(51\) 0.682716 + 0.682716i 0.0955994 + 0.0955994i
\(52\) −4.45130 + 7.12853i −0.617284 + 0.988550i
\(53\) 7.66672 1.05311 0.526553 0.850143i \(-0.323484\pi\)
0.526553 + 0.850143i \(0.323484\pi\)
\(54\) 0.481494 1.68016i 0.0655231 0.228641i
\(55\) 0 0
\(56\) 5.28027 + 0.274241i 0.705606 + 0.0366470i
\(57\) 0.173929 0.173929i 0.0230375 0.0230375i
\(58\) −4.46807 + 2.47761i −0.586686 + 0.325325i
\(59\) 7.07557 + 7.07557i 0.921161 + 0.921161i 0.997112 0.0759506i \(-0.0241991\pi\)
−0.0759506 + 0.997112i \(0.524199\pi\)
\(60\) 0 0
\(61\) 8.74267 8.74267i 1.11938 1.11938i 0.127552 0.991832i \(-0.459288\pi\)
0.991832 0.127552i \(-0.0407120\pi\)
\(62\) 8.47945 + 2.43001i 1.07689 + 0.308611i
\(63\) 3.90865 + 3.90865i 0.492443 + 0.492443i
\(64\) 0.828755 7.95696i 0.103594 0.994620i
\(65\) 0 0
\(66\) −0.481494 0.868318i −0.0592679 0.106883i
\(67\) 12.5494i 1.53315i −0.642156 0.766574i \(-0.721960\pi\)
0.642156 0.766574i \(-0.278040\pi\)
\(68\) 2.09658 + 9.06832i 0.254247 + 1.09970i
\(69\) −0.554514 + 0.554514i −0.0667556 + 0.0667556i
\(70\) 0 0
\(71\) −10.4624 −1.24166 −0.620829 0.783946i \(-0.713204\pi\)
−0.620829 + 0.783946i \(0.713204\pi\)
\(72\) 6.21269 5.59922i 0.732173 0.659874i
\(73\) −4.79095 4.79095i −0.560738 0.560738i 0.368779 0.929517i \(-0.379776\pi\)
−0.929517 + 0.368779i \(0.879776\pi\)
\(74\) 5.83834 + 1.67313i 0.678693 + 0.194497i
\(75\) 0 0
\(76\) 2.31025 0.534125i 0.265004 0.0612683i
\(77\) 6.32598 0.720912
\(78\) 1.18520 + 0.339650i 0.134198 + 0.0384578i
\(79\) 8.69963 0.978784 0.489392 0.872064i \(-0.337219\pi\)
0.489392 + 0.872064i \(0.337219\pi\)
\(80\) 0 0
\(81\) 8.61447 0.957163
\(82\) −9.60614 2.75289i −1.06082 0.304006i
\(83\) −4.14519 −0.454993 −0.227497 0.973779i \(-0.573054\pi\)
−0.227497 + 0.973779i \(0.573054\pi\)
\(84\) −0.174724 0.755735i −0.0190640 0.0824575i
\(85\) 0 0
\(86\) −12.8235 3.67491i −1.38279 0.396275i
\(87\) 0.529980 + 0.529980i 0.0568198 + 0.0568198i
\(88\) 0.496441 9.55854i 0.0529208 1.01894i
\(89\) 0.548482 0.0581390 0.0290695 0.999577i \(-0.490746\pi\)
0.0290695 + 0.999577i \(0.490746\pi\)
\(90\) 0 0
\(91\) −5.55451 + 5.55451i −0.582271 + 0.582271i
\(92\) −7.36544 + 1.70288i −0.767901 + 0.177537i
\(93\) 1.29403i 0.134184i
\(94\) 8.06776 + 14.5493i 0.832126 + 1.50064i
\(95\) 0 0
\(96\) −1.15563 + 0.204701i −0.117946 + 0.0208922i
\(97\) −12.2022 12.2022i −1.23895 1.23895i −0.960431 0.278518i \(-0.910157\pi\)
−0.278518 0.960431i \(-0.589843\pi\)
\(98\) −4.76561 1.36571i −0.481399 0.137957i
\(99\) 7.07557 7.07557i 0.711122 0.711122i
\(100\) 0 0
\(101\) −6.46843 6.46843i −0.643633 0.643633i 0.307814 0.951447i \(-0.400403\pi\)
−0.951447 + 0.307814i \(0.900403\pi\)
\(102\) 1.19413 0.662162i 0.118237 0.0655638i
\(103\) −6.55234 + 6.55234i −0.645621 + 0.645621i −0.951932 0.306310i \(-0.900905\pi\)
0.306310 + 0.951932i \(0.400905\pi\)
\(104\) 7.95696 + 8.82875i 0.780244 + 0.865731i
\(105\) 0 0
\(106\) 2.98693 10.4228i 0.290117 1.01235i
\(107\) 16.3708 1.58262 0.791312 0.611413i \(-0.209399\pi\)
0.791312 + 0.611413i \(0.209399\pi\)
\(108\) −2.09658 1.30917i −0.201743 0.125975i
\(109\) −2.00000 2.00000i −0.191565 0.191565i 0.604807 0.796372i \(-0.293250\pi\)
−0.796372 + 0.604807i \(0.793250\pi\)
\(110\) 0 0
\(111\) 0.890973i 0.0845674i
\(112\) 2.43001 7.07164i 0.229614 0.668207i
\(113\) −11.8688 + 11.8688i −1.11652 + 1.11652i −0.124275 + 0.992248i \(0.539661\pi\)
−0.992248 + 0.124275i \(0.960339\pi\)
\(114\) −0.168693 0.304217i −0.0157995 0.0284926i
\(115\) 0 0
\(116\) 1.62753 + 7.03956i 0.151113 + 0.653607i
\(117\) 12.4254i 1.14873i
\(118\) 12.3758 6.86255i 1.13928 0.631749i
\(119\) 8.69963i 0.797493i
\(120\) 0 0
\(121\) 0.451518i 0.0410471i
\(122\) −8.47945 15.2917i −0.767694 1.38444i
\(123\) 1.46597i 0.132182i
\(124\) 6.60714 10.5810i 0.593339 0.950203i
\(125\) 0 0
\(126\) 6.83656 3.79097i 0.609050 0.337726i
\(127\) −5.55946 + 5.55946i −0.493322 + 0.493322i −0.909351 0.416029i \(-0.863421\pi\)
0.416029 + 0.909351i \(0.363421\pi\)
\(128\) −10.4945 4.22669i −0.927594 0.373590i
\(129\) 1.95696i 0.172300i
\(130\) 0 0
\(131\) 3.16166 + 3.16166i 0.276235 + 0.276235i 0.831604 0.555369i \(-0.187423\pi\)
−0.555369 + 0.831604i \(0.687423\pi\)
\(132\) −1.36806 + 0.316293i −0.119074 + 0.0275297i
\(133\) 2.21632 0.192179
\(134\) −17.0607 4.88919i −1.47382 0.422362i
\(135\) 0 0
\(136\) 13.1451 + 0.682716i 1.12718 + 0.0585424i
\(137\) 0.507360 0.507360i 0.0433467 0.0433467i −0.685101 0.728448i \(-0.740242\pi\)
0.728448 + 0.685101i \(0.240242\pi\)
\(138\) 0.537819 + 0.969893i 0.0457822 + 0.0825628i
\(139\) −5.52106 5.52106i −0.468290 0.468290i 0.433070 0.901360i \(-0.357430\pi\)
−0.901360 + 0.433070i \(0.857430\pi\)
\(140\) 0 0
\(141\) 1.72576 1.72576i 0.145335 0.145335i
\(142\) −4.07612 + 14.2235i −0.342060 + 1.19361i
\(143\) 10.0550 + 10.0550i 0.840840 + 0.840840i
\(144\) −5.19163 10.6275i −0.432636 0.885628i
\(145\) 0 0
\(146\) −8.37979 + 4.64671i −0.693516 + 0.384564i
\(147\) 0.727266i 0.0599839i
\(148\) 4.54920 7.28532i 0.373942 0.598850i
\(149\) 2.82875 2.82875i 0.231741 0.231741i −0.581678 0.813419i \(-0.697604\pi\)
0.813419 + 0.581678i \(0.197604\pi\)
\(150\) 0 0
\(151\) 7.12820 0.580085 0.290042 0.957014i \(-0.406331\pi\)
0.290042 + 0.957014i \(0.406331\pi\)
\(152\) 0.173929 3.34885i 0.0141075 0.271628i
\(153\) 9.73048 + 9.73048i 0.786663 + 0.786663i
\(154\) 2.46458 8.60011i 0.198602 0.693017i
\(155\) 0 0
\(156\) 0.923502 1.47894i 0.0739393 0.118410i
\(157\) 20.7371 1.65500 0.827501 0.561464i \(-0.189762\pi\)
0.827501 + 0.561464i \(0.189762\pi\)
\(158\) 3.38935 11.8271i 0.269642 0.940910i
\(159\) −1.59060 −0.126143
\(160\) 0 0
\(161\) −7.06598 −0.556878
\(162\) 3.35617 11.7113i 0.263686 0.920125i
\(163\) −10.8985 −0.853640 −0.426820 0.904337i \(-0.640366\pi\)
−0.426820 + 0.904337i \(0.640366\pi\)
\(164\) −7.48505 + 11.9869i −0.584484 + 0.936022i
\(165\) 0 0
\(166\) −1.61495 + 5.63534i −0.125345 + 0.437387i
\(167\) −1.20680 1.20680i −0.0933853 0.0933853i 0.658871 0.752256i \(-0.271034\pi\)
−0.752256 + 0.658871i \(0.771034\pi\)
\(168\) −1.09549 0.0568962i −0.0845187 0.00438964i
\(169\) −4.65751 −0.358270
\(170\) 0 0
\(171\) 2.47894 2.47894i 0.189569 0.189569i
\(172\) −9.99200 + 16.0017i −0.761883 + 1.22012i
\(173\) 5.12438i 0.389599i −0.980843 0.194800i \(-0.937594\pi\)
0.980843 0.194800i \(-0.0624057\pi\)
\(174\) 0.926981 0.514024i 0.0702742 0.0389680i
\(175\) 0 0
\(176\) −12.8013 4.39889i −0.964937 0.331579i
\(177\) −1.46795 1.46795i −0.110338 0.110338i
\(178\) 0.213687 0.745656i 0.0160165 0.0558893i
\(179\) −12.6301 + 12.6301i −0.944017 + 0.944017i −0.998514 0.0544970i \(-0.982644\pi\)
0.0544970 + 0.998514i \(0.482644\pi\)
\(180\) 0 0
\(181\) 8.46843 + 8.46843i 0.629453 + 0.629453i 0.947931 0.318477i \(-0.103171\pi\)
−0.318477 + 0.947931i \(0.603171\pi\)
\(182\) 5.38728 + 9.71533i 0.399332 + 0.720148i
\(183\) −1.81382 + 1.81382i −0.134082 + 0.134082i
\(184\) −0.554514 + 10.6767i −0.0408793 + 0.787096i
\(185\) 0 0
\(186\) −1.75921 0.504149i −0.128992 0.0369660i
\(187\) 15.7484 1.15164
\(188\) 22.9228 5.29969i 1.67181 0.386520i
\(189\) −1.63364 1.63364i −0.118830 0.118830i
\(190\) 0 0
\(191\) 11.3534i 0.821501i 0.911748 + 0.410750i \(0.134733\pi\)
−0.911748 + 0.410750i \(0.865267\pi\)
\(192\) −0.171940 + 1.65081i −0.0124087 + 0.119137i
\(193\) −11.0245 + 11.0245i −0.793561 + 0.793561i −0.982071 0.188510i \(-0.939634\pi\)
0.188510 + 0.982071i \(0.439634\pi\)
\(194\) −21.3428 + 11.8349i −1.53232 + 0.849694i
\(195\) 0 0
\(196\) −3.71334 + 5.94672i −0.265238 + 0.424766i
\(197\) 21.1953i 1.51010i 0.655667 + 0.755050i \(0.272388\pi\)
−0.655667 + 0.755050i \(0.727612\pi\)
\(198\) −6.86255 12.3758i −0.487700 0.879509i
\(199\) 8.68045i 0.615341i −0.951493 0.307670i \(-0.900451\pi\)
0.951493 0.307670i \(-0.0995494\pi\)
\(200\) 0 0
\(201\) 2.60359i 0.183643i
\(202\) −11.3138 + 6.27368i −0.796039 + 0.441415i
\(203\) 6.75335i 0.473993i
\(204\) −0.434972 1.88139i −0.0304542 0.131723i
\(205\) 0 0
\(206\) 6.35507 + 11.4606i 0.442779 + 0.798499i
\(207\) −7.90326 + 7.90326i −0.549315 + 0.549315i
\(208\) 15.1026 7.37775i 1.04718 0.511555i
\(209\) 4.01206i 0.277520i
\(210\) 0 0
\(211\) −6.28986 6.28986i −0.433012 0.433012i 0.456640 0.889652i \(-0.349053\pi\)
−0.889652 + 0.456640i \(0.849053\pi\)
\(212\) −13.0060 8.12141i −0.893258 0.557781i
\(213\) 2.17061 0.148728
\(214\) 6.37801 22.2559i 0.435992 1.52138i
\(215\) 0 0
\(216\) −2.59663 + 2.34023i −0.176678 + 0.159232i
\(217\) 8.24467 8.24467i 0.559684 0.559684i
\(218\) −3.49818 + 1.93979i −0.236926 + 0.131379i
\(219\) 0.993968 + 0.993968i 0.0671661 + 0.0671661i
\(220\) 0 0
\(221\) −13.8278 + 13.8278i −0.930160 + 0.930160i
\(222\) −1.21127 0.347120i −0.0812950 0.0232972i
\(223\) 3.50264 + 3.50264i 0.234554 + 0.234554i 0.814591 0.580036i \(-0.196962\pi\)
−0.580036 + 0.814591i \(0.696962\pi\)
\(224\) −8.66710 6.05866i −0.579095 0.404811i
\(225\) 0 0
\(226\) 11.5115 + 20.7596i 0.765732 + 1.38091i
\(227\) 0.622404i 0.0413104i −0.999787 0.0206552i \(-0.993425\pi\)
0.999787 0.0206552i \(-0.00657522\pi\)
\(228\) −0.479303 + 0.110814i −0.0317426 + 0.00733882i
\(229\) −9.35940 + 9.35940i −0.618487 + 0.618487i −0.945143 0.326657i \(-0.894078\pi\)
0.326657 + 0.945143i \(0.394078\pi\)
\(230\) 0 0
\(231\) −1.31244 −0.0863521
\(232\) 10.2043 + 0.529980i 0.669945 + 0.0347949i
\(233\) 1.79047 + 1.79047i 0.117297 + 0.117297i 0.763319 0.646022i \(-0.223568\pi\)
−0.646022 + 0.763319i \(0.723568\pi\)
\(234\) 16.8922 + 4.84089i 1.10428 + 0.316459i
\(235\) 0 0
\(236\) −4.50799 19.4984i −0.293445 1.26924i
\(237\) −1.80489 −0.117240
\(238\) 11.8271 + 3.38935i 0.766634 + 0.219699i
\(239\) −20.9056 −1.35227 −0.676136 0.736777i \(-0.736347\pi\)
−0.676136 + 0.736777i \(0.736347\pi\)
\(240\) 0 0
\(241\) −3.70055 −0.238374 −0.119187 0.992872i \(-0.538029\pi\)
−0.119187 + 0.992872i \(0.538029\pi\)
\(242\) −0.613835 0.175910i −0.0394588 0.0113079i
\(243\) −5.49486 −0.352495
\(244\) −24.0925 + 5.57013i −1.54236 + 0.356591i
\(245\) 0 0
\(246\) 1.99297 + 0.571136i 0.127067 + 0.0364143i
\(247\) 3.52278 + 3.52278i 0.224149 + 0.224149i
\(248\) −11.8107 13.1047i −0.749977 0.832148i
\(249\) 0.859993 0.0544999
\(250\) 0 0
\(251\) 0.630086 0.630086i 0.0397707 0.0397707i −0.686942 0.726712i \(-0.741047\pi\)
0.726712 + 0.686942i \(0.241047\pi\)
\(252\) −2.49028 10.7712i −0.156873 0.678521i
\(253\) 12.7911i 0.804170i
\(254\) 5.39208 + 9.72398i 0.338329 + 0.610137i
\(255\) 0 0
\(256\) −9.83479 + 12.6205i −0.614674 + 0.788781i
\(257\) −3.62414 3.62414i −0.226068 0.226068i 0.584980 0.811048i \(-0.301102\pi\)
−0.811048 + 0.584980i \(0.801102\pi\)
\(258\) 2.66046 + 0.762425i 0.165633 + 0.0474665i
\(259\) 5.67668 5.67668i 0.352732 0.352732i
\(260\) 0 0
\(261\) 7.55359 + 7.55359i 0.467555 + 0.467555i
\(262\) 5.53002 3.06647i 0.341646 0.189447i
\(263\) 5.25957 5.25957i 0.324319 0.324319i −0.526102 0.850421i \(-0.676347\pi\)
0.850421 + 0.526102i \(0.176347\pi\)
\(264\) −0.102996 + 1.98309i −0.00633894 + 0.122051i
\(265\) 0 0
\(266\) 0.863473 3.01307i 0.0529429 0.184743i
\(267\) −0.113792 −0.00696398
\(268\) −13.2936 + 21.2891i −0.812037 + 1.30044i
\(269\) 8.82875 + 8.82875i 0.538299 + 0.538299i 0.923029 0.384730i \(-0.125706\pi\)
−0.384730 + 0.923029i \(0.625706\pi\)
\(270\) 0 0
\(271\) 30.9177i 1.87812i −0.343760 0.939058i \(-0.611701\pi\)
0.343760 0.939058i \(-0.388299\pi\)
\(272\) 6.04945 17.6047i 0.366802 1.06744i
\(273\) 1.15238 1.15238i 0.0697454 0.0697454i
\(274\) −0.492085 0.887417i −0.0297279 0.0536108i
\(275\) 0 0
\(276\) 1.52809 0.353292i 0.0919804 0.0212657i
\(277\) 18.9322i 1.13753i −0.822501 0.568764i \(-0.807422\pi\)
0.822501 0.568764i \(-0.192578\pi\)
\(278\) −9.65681 + 5.35484i −0.579177 + 0.321162i
\(279\) 18.4432i 1.10417i
\(280\) 0 0
\(281\) 6.51750i 0.388802i 0.980922 + 0.194401i \(0.0622762\pi\)
−0.980922 + 0.194401i \(0.937724\pi\)
\(282\) −1.67380 3.01850i −0.0996734 0.179749i
\(283\) 16.0721i 0.955390i −0.878526 0.477695i \(-0.841472\pi\)
0.878526 0.477695i \(-0.158528\pi\)
\(284\) 17.7487 + 11.0829i 1.05319 + 0.657649i
\(285\) 0 0
\(286\) 17.5870 9.75226i 1.03994 0.576663i
\(287\) −9.34015 + 9.34015i −0.551332 + 0.551332i
\(288\) −16.4707 + 2.91752i −0.970544 + 0.171916i
\(289\) 4.65751i 0.273971i
\(290\) 0 0
\(291\) 2.53157 + 2.53157i 0.148403 + 0.148403i
\(292\) 3.05241 + 13.2026i 0.178629 + 0.772623i
\(293\) 0.829872 0.0484816 0.0242408 0.999706i \(-0.492283\pi\)
0.0242408 + 0.999706i \(0.492283\pi\)
\(294\) 0.988711 + 0.283341i 0.0576628 + 0.0165248i
\(295\) 0 0
\(296\) −8.13197 9.02294i −0.472661 0.524448i
\(297\) −2.95728 + 2.95728i −0.171599 + 0.171599i
\(298\) −2.74359 4.94774i −0.158932 0.286615i
\(299\) −11.2312 11.2312i −0.649517 0.649517i
\(300\) 0 0
\(301\) −12.4684 + 12.4684i −0.718668 + 0.718668i
\(302\) 2.77713 9.69072i 0.159806 0.557638i
\(303\) 1.34199 + 1.34199i 0.0770954 + 0.0770954i
\(304\) −4.48497 1.54116i −0.257231 0.0883916i
\(305\) 0 0
\(306\) 17.0195 9.43753i 0.972938 0.539507i
\(307\) 28.4115i 1.62153i −0.585371 0.810766i \(-0.699051\pi\)
0.585371 0.810766i \(-0.300949\pi\)
\(308\) −10.7316 6.70116i −0.611488 0.381834i
\(309\) 1.35940 1.35940i 0.0773336 0.0773336i
\(310\) 0 0
\(311\) 31.8087 1.80370 0.901852 0.432046i \(-0.142208\pi\)
0.901852 + 0.432046i \(0.142208\pi\)
\(312\) −1.65081 1.83168i −0.0934589 0.103699i
\(313\) −18.7727 18.7727i −1.06110 1.06110i −0.998008 0.0630896i \(-0.979905\pi\)
−0.0630896 0.998008i \(-0.520095\pi\)
\(314\) 8.07913 28.1919i 0.455932 1.59096i
\(315\) 0 0
\(316\) −14.7583 9.21558i −0.830219 0.518417i
\(317\) −10.6205 −0.596506 −0.298253 0.954487i \(-0.596404\pi\)
−0.298253 + 0.954487i \(0.596404\pi\)
\(318\) −0.619693 + 2.16240i −0.0347506 + 0.121262i
\(319\) 12.2252 0.684478
\(320\) 0 0
\(321\) −3.39641 −0.189569
\(322\) −2.75289 + 9.60614i −0.153412 + 0.535329i
\(323\) 5.51748 0.307001
\(324\) −14.6138 9.12537i −0.811879 0.506965i
\(325\) 0 0
\(326\) −4.24604 + 14.8165i −0.235167 + 0.820608i
\(327\) 0.414936 + 0.414936i 0.0229460 + 0.0229460i
\(328\) 13.3800 + 14.8459i 0.738785 + 0.819729i
\(329\) 21.9908 1.21239
\(330\) 0 0
\(331\) 22.4098 22.4098i 1.23175 1.23175i 0.268462 0.963290i \(-0.413485\pi\)
0.963290 0.268462i \(-0.0865153\pi\)
\(332\) 7.03201 + 4.39103i 0.385932 + 0.240989i
\(333\) 12.6987i 0.695883i
\(334\) −2.11081 + 1.17047i −0.115498 + 0.0640453i
\(335\) 0 0
\(336\) −0.504149 + 1.46714i −0.0275036 + 0.0800389i
\(337\) −2.95728 2.95728i −0.161093 0.161093i 0.621958 0.783051i \(-0.286338\pi\)
−0.783051 + 0.621958i \(0.786338\pi\)
\(338\) −1.81455 + 6.33184i −0.0986987 + 0.344407i
\(339\) 2.46240 2.46240i 0.133739 0.133739i
\(340\) 0 0
\(341\) −14.9248 14.9248i −0.808223 0.808223i
\(342\) −2.40431 4.33589i −0.130010 0.234458i
\(343\) −13.8866 + 13.8866i −0.749805 + 0.749805i
\(344\) 17.8613 + 19.8182i 0.963016 + 1.06853i
\(345\) 0 0
\(346\) −6.96654 1.99644i −0.374524 0.107330i
\(347\) −13.8901 −0.745659 −0.372830 0.927900i \(-0.621612\pi\)
−0.372830 + 0.927900i \(0.621612\pi\)
\(348\) −0.337661 1.46048i −0.0181005 0.0782901i
\(349\) 13.4914 + 13.4914i 0.722176 + 0.722176i 0.969048 0.246872i \(-0.0794026\pi\)
−0.246872 + 0.969048i \(0.579403\pi\)
\(350\) 0 0
\(351\) 5.19326i 0.277196i
\(352\) −10.9676 + 15.6895i −0.584576 + 0.836253i
\(353\) 15.9785 15.9785i 0.850448 0.850448i −0.139740 0.990188i \(-0.544627\pi\)
0.990188 + 0.139740i \(0.0446268\pi\)
\(354\) −2.56758 + 1.42376i −0.136465 + 0.0756719i
\(355\) 0 0
\(356\) −0.930460 0.581011i −0.0493143 0.0307935i
\(357\) 1.80489i 0.0955251i
\(358\) 12.2498 + 22.0911i 0.647424 + 1.16755i
\(359\) 28.2831i 1.49273i 0.665539 + 0.746363i \(0.268202\pi\)
−0.665539 + 0.746363i \(0.731798\pi\)
\(360\) 0 0
\(361\) 17.5944i 0.926019i
\(362\) 14.8120 8.21347i 0.778503 0.431690i
\(363\) 0.0936755i 0.00491669i
\(364\) 15.3068 3.53889i 0.802293 0.185488i
\(365\) 0 0
\(366\) 1.75921 + 3.17254i 0.0919556 + 0.165831i
\(367\) 16.8285 16.8285i 0.878439 0.878439i −0.114934 0.993373i \(-0.536666\pi\)
0.993373 + 0.114934i \(0.0366656\pi\)
\(368\) 14.2988 + 4.91346i 0.745377 + 0.256132i
\(369\) 20.8938i 1.08769i
\(370\) 0 0
\(371\) −10.1342 10.1342i −0.526143 0.526143i
\(372\) −1.37077 + 2.19522i −0.0710711 + 0.113817i
\(373\) 8.03845 0.416215 0.208108 0.978106i \(-0.433270\pi\)
0.208108 + 0.978106i \(0.433270\pi\)
\(374\) 6.13552 21.4098i 0.317260 1.10707i
\(375\) 0 0
\(376\) 1.72576 33.2280i 0.0889992 1.71360i
\(377\) −10.7343 + 10.7343i −0.552844 + 0.552844i
\(378\) −2.85738 + 1.58446i −0.146968 + 0.0814957i
\(379\) −2.30677 2.30677i −0.118491 0.118491i 0.645375 0.763866i \(-0.276701\pi\)
−0.763866 + 0.645375i \(0.776701\pi\)
\(380\) 0 0
\(381\) 1.15341 1.15341i 0.0590910 0.0590910i
\(382\) 15.4348 + 4.42324i 0.789713 + 0.226313i
\(383\) −7.85530 7.85530i −0.401387 0.401387i 0.477335 0.878722i \(-0.341603\pi\)
−0.878722 + 0.477335i \(0.841603\pi\)
\(384\) 2.17728 + 0.876903i 0.111109 + 0.0447493i
\(385\) 0 0
\(386\) 10.6926 + 19.2828i 0.544239 + 0.981470i
\(387\) 27.8917i 1.41782i
\(388\) 7.77429 + 33.6261i 0.394680 + 1.70711i
\(389\) 27.2171 27.2171i 1.37996 1.37996i 0.535303 0.844660i \(-0.320197\pi\)
0.844660 0.535303i \(-0.179803\pi\)
\(390\) 0 0
\(391\) −17.5906 −0.889595
\(392\) 6.63781 + 7.36507i 0.335260 + 0.371992i
\(393\) −0.655943 0.655943i −0.0330879 0.0330879i
\(394\) 28.8148 + 8.25762i 1.45167 + 0.416013i
\(395\) 0 0
\(396\) −19.4984 + 4.50799i −0.979832 + 0.226535i
\(397\) 4.38693 0.220174 0.110087 0.993922i \(-0.464887\pi\)
0.110087 + 0.993922i \(0.464887\pi\)
\(398\) −11.8010 3.38188i −0.591530 0.169518i
\(399\) −0.459815 −0.0230196
\(400\) 0 0
\(401\) −24.5944 −1.22818 −0.614092 0.789234i \(-0.710478\pi\)
−0.614092 + 0.789234i \(0.710478\pi\)
\(402\) 3.53955 + 1.01435i 0.176537 + 0.0505912i
\(403\) 26.2094 1.30558
\(404\) 4.12117 + 17.8253i 0.205036 + 0.886841i
\(405\) 0 0
\(406\) 9.18112 + 2.63109i 0.455651 + 0.130579i
\(407\) −10.2761 10.2761i −0.509369 0.509369i
\(408\) −2.72719 0.141642i −0.135016 0.00701231i
\(409\) 7.06598 0.349390 0.174695 0.984623i \(-0.444106\pi\)
0.174695 + 0.984623i \(0.444106\pi\)
\(410\) 0 0
\(411\) −0.105261 + 0.105261i −0.00519214 + 0.00519214i
\(412\) 18.0565 4.17463i 0.889581 0.205669i
\(413\) 18.7057i 0.920445i
\(414\) 7.66532 + 13.8235i 0.376730 + 0.679388i
\(415\) 0 0
\(416\) −4.14604 23.4062i −0.203276 1.14758i
\(417\) 1.14544 + 1.14544i 0.0560926 + 0.0560926i
\(418\) −5.45436 1.56309i −0.266782 0.0764532i
\(419\) −4.54400 + 4.54400i −0.221989 + 0.221989i −0.809336 0.587347i \(-0.800173\pi\)
0.587347 + 0.809336i \(0.300173\pi\)
\(420\) 0 0
\(421\) 5.47539 + 5.47539i 0.266854 + 0.266854i 0.827831 0.560977i \(-0.189574\pi\)
−0.560977 + 0.827831i \(0.689574\pi\)
\(422\) −11.0015 + 6.10049i −0.535545 + 0.296967i
\(423\) 24.5966 24.5966i 1.19593 1.19593i
\(424\) −16.1081 + 14.5175i −0.782279 + 0.705032i
\(425\) 0 0
\(426\) 0.845664 2.95093i 0.0409726 0.142973i
\(427\) −23.1129 −1.11851
\(428\) −27.7718 17.3417i −1.34240 0.838242i
\(429\) −2.08609 2.08609i −0.100717 0.100717i
\(430\) 0 0
\(431\) 12.6658i 0.610090i −0.952338 0.305045i \(-0.901328\pi\)
0.952338 0.305045i \(-0.0986716\pi\)
\(432\) 2.16987 + 4.44184i 0.104398 + 0.213708i
\(433\) 11.0499 11.0499i 0.531022 0.531022i −0.389854 0.920876i \(-0.627475\pi\)
0.920876 + 0.389854i \(0.127475\pi\)
\(434\) −7.99644 14.4206i −0.383842 0.692213i
\(435\) 0 0
\(436\) 1.27424 + 5.51147i 0.0610251 + 0.263952i
\(437\) 4.48139i 0.214374i
\(438\) 1.73854 0.964043i 0.0830705 0.0460637i
\(439\) 20.4936i 0.978108i −0.872254 0.489054i \(-0.837342\pi\)
0.872254 0.489054i \(-0.162658\pi\)
\(440\) 0 0
\(441\) 10.3654i 0.493592i
\(442\) 13.4115 + 24.1861i 0.637921 + 1.15041i
\(443\) 11.0123i 0.523212i −0.965175 0.261606i \(-0.915748\pi\)
0.965175 0.261606i \(-0.0842521\pi\)
\(444\) −0.943814 + 1.51147i −0.0447914 + 0.0717312i
\(445\) 0 0
\(446\) 6.12642 3.39719i 0.290095 0.160861i
\(447\) −0.586876 + 0.586876i −0.0277583 + 0.0277583i
\(448\) −11.6134 + 9.42240i −0.548680 + 0.445166i
\(449\) 15.4423i 0.728767i −0.931249 0.364383i \(-0.881280\pi\)
0.931249 0.364383i \(-0.118720\pi\)
\(450\) 0 0
\(451\) 16.9079 + 16.9079i 0.796161 + 0.796161i
\(452\) 32.7073 7.56186i 1.53842 0.355680i
\(453\) −1.47887 −0.0694835
\(454\) −0.846152 0.242487i −0.0397119 0.0113805i
\(455\) 0 0
\(456\) −0.0360847 + 0.694780i −0.00168982 + 0.0325361i
\(457\) −3.14212 + 3.14212i −0.146982 + 0.146982i −0.776769 0.629786i \(-0.783143\pi\)
0.629786 + 0.776769i \(0.283143\pi\)
\(458\) 9.07762 + 16.3704i 0.424169 + 0.764939i
\(459\) −4.06691 4.06691i −0.189827 0.189827i
\(460\) 0 0
\(461\) 8.45636 8.45636i 0.393852 0.393852i −0.482206 0.876058i \(-0.660164\pi\)
0.876058 + 0.482206i \(0.160164\pi\)
\(462\) −0.511322 + 1.78425i −0.0237889 + 0.0830107i
\(463\) −21.5859 21.5859i −1.00318 1.00318i −0.999995 0.00318643i \(-0.998986\pi\)
−0.00318643 0.999995i \(-0.501014\pi\)
\(464\) 4.69607 13.6662i 0.218010 0.634436i
\(465\) 0 0
\(466\) 3.13168 1.73656i 0.145072 0.0804446i
\(467\) 22.4880i 1.04062i 0.853977 + 0.520311i \(0.174184\pi\)
−0.853977 + 0.520311i \(0.825816\pi\)
\(468\) 13.1623 21.0788i 0.608428 0.974366i
\(469\) −16.5883 + 16.5883i −0.765978 + 0.765978i
\(470\) 0 0
\(471\) −4.30229 −0.198239
\(472\) −28.2642 1.46795i −1.30096 0.0675681i
\(473\) 22.5708 + 22.5708i 1.03781 + 1.03781i
\(474\) −0.703181 + 2.45373i −0.0322982 + 0.112704i
\(475\) 0 0
\(476\) 9.21558 14.7583i 0.422395 0.676445i
\(477\) −22.6702 −1.03800
\(478\) −8.14477 + 28.4210i −0.372533 + 1.29995i
\(479\) −0.852623 −0.0389573 −0.0194787 0.999810i \(-0.506201\pi\)
−0.0194787 + 0.999810i \(0.506201\pi\)
\(480\) 0 0
\(481\) 18.0459 0.822821
\(482\) −1.44173 + 5.03086i −0.0656688 + 0.229150i
\(483\) 1.46597 0.0667037
\(484\) −0.478297 + 0.765968i −0.0217408 + 0.0348167i
\(485\) 0 0
\(486\) −2.14078 + 7.47021i −0.0971078 + 0.338855i
\(487\) 2.49958 + 2.49958i 0.113267 + 0.113267i 0.761469 0.648202i \(-0.224479\pi\)
−0.648202 + 0.761469i \(0.724479\pi\)
\(488\) −1.81382 + 34.9236i −0.0821079 + 1.58092i
\(489\) 2.26110 0.102250
\(490\) 0 0
\(491\) 22.1177 22.1177i 0.998157 0.998157i −0.00184099 0.999998i \(-0.500586\pi\)
0.999998 + 0.00184099i \(0.000586006\pi\)
\(492\) 1.55291 2.48690i 0.0700105 0.112118i
\(493\) 16.8123i 0.757189i
\(494\) 6.16166 3.41672i 0.277226 0.153726i
\(495\) 0 0
\(496\) −22.4171 + 10.9509i −1.00656 + 0.491711i
\(497\) 13.8297 + 13.8297i 0.620346 + 0.620346i
\(498\) 0.335051 1.16915i 0.0150140 0.0523910i
\(499\) 7.73911 7.73911i 0.346450 0.346450i −0.512335 0.858786i \(-0.671219\pi\)
0.858786 + 0.512335i \(0.171219\pi\)
\(500\) 0 0
\(501\) 0.250373 + 0.250373i 0.0111858 + 0.0111858i
\(502\) −0.611116 1.10208i −0.0272754 0.0491880i
\(503\) 13.9144 13.9144i 0.620413 0.620413i −0.325224 0.945637i \(-0.605440\pi\)
0.945637 + 0.325224i \(0.105440\pi\)
\(504\) −15.6135 0.810919i −0.695482 0.0361212i
\(505\) 0 0
\(506\) 17.3894 + 4.98338i 0.773052 + 0.221538i
\(507\) 0.966284 0.0429142
\(508\) 15.3204 3.54205i 0.679733 0.157153i
\(509\) −4.48049 4.48049i −0.198594 0.198594i 0.600803 0.799397i \(-0.294848\pi\)
−0.799397 + 0.600803i \(0.794848\pi\)
\(510\) 0 0
\(511\) 12.6658i 0.560302i
\(512\) 13.3258 + 18.2872i 0.588924 + 0.808188i
\(513\) −1.03609 + 1.03609i −0.0457444 + 0.0457444i
\(514\) −6.33894 + 3.51503i −0.279598 + 0.155041i
\(515\) 0 0
\(516\) 2.07302 3.31984i 0.0912596 0.146148i
\(517\) 39.8085i 1.75078i
\(518\) −5.50578 9.92902i −0.241910 0.436256i
\(519\) 1.06314i 0.0466669i
\(520\) 0 0
\(521\) 3.26728i 0.143142i 0.997435 + 0.0715711i \(0.0228013\pi\)
−0.997435 + 0.0715711i \(0.977199\pi\)
\(522\) 13.2119 7.32617i 0.578269 0.320658i
\(523\) 10.1372i 0.443270i 0.975130 + 0.221635i \(0.0711393\pi\)
−0.975130 + 0.221635i \(0.928861\pi\)
\(524\) −2.01436 8.71269i −0.0879976 0.380616i
\(525\) 0 0
\(526\) −5.10122 9.19944i −0.222424 0.401115i
\(527\) 20.5249 20.5249i 0.894079 0.894079i
\(528\) 2.65587 + 0.912628i 0.115582 + 0.0397170i
\(529\) 8.71262i 0.378809i
\(530\) 0 0
\(531\) −20.9222 20.9222i −0.907945 0.907945i
\(532\) −3.75983 2.34777i −0.163009 0.101789i
\(533\) −29.6919 −1.28610
\(534\) −0.0443332 + 0.154700i −0.00191849 + 0.00669451i
\(535\) 0 0
\(536\) 23.7631 + 26.3667i 1.02641 + 1.13887i
\(537\) 2.62034 2.62034i 0.113076 0.113076i
\(538\) 15.4423 8.56295i 0.665763 0.369175i
\(539\) 8.38801 + 8.38801i 0.361297 + 0.361297i
\(540\) 0 0
\(541\) −18.3823 + 18.3823i −0.790319 + 0.790319i −0.981546 0.191227i \(-0.938753\pi\)
0.191227 + 0.981546i \(0.438753\pi\)
\(542\) −42.0323 12.0454i −1.80544 0.517396i
\(543\) −1.75693 1.75693i −0.0753970 0.0753970i
\(544\) −21.5765 15.0829i −0.925086 0.646674i
\(545\) 0 0
\(546\) −1.11769 2.01562i −0.0478327 0.0862605i
\(547\) 3.60503i 0.154140i −0.997026 0.0770699i \(-0.975444\pi\)
0.997026 0.0770699i \(-0.0245565\pi\)
\(548\) −1.39815 + 0.323249i −0.0597260 + 0.0138085i
\(549\) −25.8517 + 25.8517i −1.10332 + 1.10332i
\(550\) 0 0
\(551\) 4.28311 0.182467
\(552\) 0.115044 2.21507i 0.00489659 0.0942796i
\(553\) −11.4996 11.4996i −0.489012 0.489012i
\(554\) −25.7382 7.37595i −1.09351 0.313374i
\(555\) 0 0
\(556\) 3.51758 + 15.2146i 0.149179 + 0.645242i
\(557\) −21.5670 −0.913823 −0.456911 0.889512i \(-0.651044\pi\)
−0.456911 + 0.889512i \(0.651044\pi\)
\(558\) −25.0734 7.18543i −1.06144 0.304183i
\(559\) −39.6365 −1.67644
\(560\) 0 0
\(561\) −3.26728 −0.137945
\(562\) 8.86048 + 2.53920i 0.373757 + 0.107110i
\(563\) −26.5306 −1.11813 −0.559066 0.829123i \(-0.688840\pi\)
−0.559066 + 0.829123i \(0.688840\pi\)
\(564\) −4.75574 + 1.09952i −0.200253 + 0.0462980i
\(565\) 0 0
\(566\) −21.8499 6.26166i −0.918421 0.263197i
\(567\) −11.3870 11.3870i −0.478209 0.478209i
\(568\) 21.9819 19.8113i 0.922341 0.831265i
\(569\) −9.23630 −0.387206 −0.193603 0.981080i \(-0.562017\pi\)
−0.193603 + 0.981080i \(0.562017\pi\)
\(570\) 0 0
\(571\) −31.6530 + 31.6530i −1.32464 + 1.32464i −0.414663 + 0.909975i \(0.636100\pi\)
−0.909975 + 0.414663i \(0.863900\pi\)
\(572\) −6.40623 27.7089i −0.267858 1.15857i
\(573\) 2.35546i 0.0984007i
\(574\) 9.05895 + 16.3367i 0.378113 + 0.681883i
\(575\) 0 0
\(576\) −2.45059 + 23.5284i −0.102108 + 0.980349i
\(577\) 23.8539 + 23.8539i 0.993051 + 0.993051i 0.999976 0.00692502i \(-0.00220432\pi\)
−0.00692502 + 0.999976i \(0.502204\pi\)
\(578\) 6.33184 + 1.81455i 0.263370 + 0.0754755i
\(579\) 2.28723 2.28723i 0.0950541 0.0950541i
\(580\) 0 0
\(581\) 5.47931 + 5.47931i 0.227320 + 0.227320i
\(582\) 4.42794 2.45535i 0.183544 0.101778i
\(583\) −18.3454 + 18.3454i −0.759787 + 0.759787i
\(584\) 19.1380 + 0.993968i 0.791936 + 0.0411307i
\(585\) 0 0
\(586\) 0.323316 1.12820i 0.0133560 0.0466056i
\(587\) −24.2348 −1.00028 −0.500138 0.865946i \(-0.666718\pi\)
−0.500138 + 0.865946i \(0.666718\pi\)
\(588\) 0.770398 1.23375i 0.0317707 0.0508792i
\(589\) −5.22893 5.22893i −0.215454 0.215454i
\(590\) 0 0
\(591\) 4.39734i 0.180882i
\(592\) −15.4348 + 7.54002i −0.634366 + 0.309893i
\(593\) 15.4929 15.4929i 0.636219 0.636219i −0.313402 0.949621i \(-0.601469\pi\)
0.949621 + 0.313402i \(0.101469\pi\)
\(594\) 2.86824 + 5.17254i 0.117685 + 0.212232i
\(595\) 0 0
\(596\) −7.79530 + 1.80226i −0.319308 + 0.0738233i
\(597\) 1.80091i 0.0737065i
\(598\) −19.6443 + 10.8931i −0.803317 + 0.445450i
\(599\) 19.1812i 0.783722i −0.920024 0.391861i \(-0.871831\pi\)
0.920024 0.391861i \(-0.128169\pi\)
\(600\) 0 0
\(601\) 21.7464i 0.887056i −0.896261 0.443528i \(-0.853727\pi\)
0.896261 0.443528i \(-0.146273\pi\)
\(602\) 12.0930 + 21.8084i 0.492876 + 0.888843i
\(603\) 37.1079i 1.51115i
\(604\) −12.0925 7.55096i −0.492036 0.307244i
\(605\) 0 0
\(606\) 2.34726 1.30159i 0.0953509 0.0528734i
\(607\) 20.2541 20.2541i 0.822088 0.822088i −0.164319 0.986407i \(-0.552543\pi\)
0.986407 + 0.164319i \(0.0525428\pi\)
\(608\) −3.84253 + 5.49685i −0.155835 + 0.222927i
\(609\) 1.40110i 0.0567756i
\(610\) 0 0
\(611\) 34.9538 + 34.9538i 1.41408 + 1.41408i
\(612\) −6.19949 26.8146i −0.250599 1.08392i
\(613\) −6.00698 −0.242620 −0.121310 0.992615i \(-0.538709\pi\)
−0.121310 + 0.992615i \(0.538709\pi\)
\(614\) −38.6252 11.0691i −1.55879 0.446711i
\(615\) 0 0
\(616\) −13.2912 + 11.9787i −0.535516 + 0.482636i
\(617\) 20.9289 20.9289i 0.842566 0.842566i −0.146626 0.989192i \(-0.546841\pi\)
0.989192 + 0.146626i \(0.0468413\pi\)
\(618\) −1.31847 2.37771i −0.0530368 0.0956455i
\(619\) 3.30074 + 3.30074i 0.132668 + 0.132668i 0.770322 0.637655i \(-0.220095\pi\)
−0.637655 + 0.770322i \(0.720095\pi\)
\(620\) 0 0
\(621\) 3.30321 3.30321i 0.132553 0.132553i
\(622\) 12.3926 43.2436i 0.496897 1.73391i
\(623\) −0.725009 0.725009i −0.0290469 0.0290469i
\(624\) −3.13331 + 1.53065i −0.125433 + 0.0612749i
\(625\) 0 0
\(626\) −32.8352 + 18.2075i −1.31236 + 0.727720i
\(627\) 0.832374i 0.0332418i
\(628\) −35.1790 21.9670i −1.40380 0.876578i
\(629\) 14.1320 14.1320i 0.563479 0.563479i
\(630\) 0 0
\(631\) 4.39734 0.175055 0.0875276 0.996162i \(-0.472103\pi\)
0.0875276 + 0.996162i \(0.472103\pi\)
\(632\) −18.2783 + 16.4734i −0.727071 + 0.655276i
\(633\) 1.30494 + 1.30494i 0.0518669 + 0.0518669i
\(634\) −4.13771 + 14.4385i −0.164330 + 0.573424i
\(635\) 0 0
\(636\) 2.69834 + 1.68493i 0.106996 + 0.0668119i
\(637\) −14.7301 −0.583630
\(638\) 4.76289 16.6200i 0.188565 0.657992i
\(639\) 30.9369 1.22384
\(640\) 0 0
\(641\) 8.74978 0.345596 0.172798 0.984957i \(-0.444719\pi\)
0.172798 + 0.984957i \(0.444719\pi\)
\(642\) −1.32323 + 4.61739i −0.0522238 + 0.182234i
\(643\) 26.4968 1.04493 0.522466 0.852660i \(-0.325012\pi\)
0.522466 + 0.852660i \(0.325012\pi\)
\(644\) 11.9869 + 7.48505i 0.472351 + 0.294952i
\(645\) 0 0
\(646\) 2.14959 7.50096i 0.0845746 0.295121i
\(647\) 15.8343 + 15.8343i 0.622512 + 0.622512i 0.946173 0.323661i \(-0.104914\pi\)
−0.323661 + 0.946173i \(0.604914\pi\)
\(648\) −18.0994 + 16.3121i −0.711010 + 0.640801i
\(649\) −33.8616 −1.32919
\(650\) 0 0
\(651\) −1.71050 + 1.71050i −0.0670399 + 0.0670399i
\(652\) 18.4886 + 11.5449i 0.724069 + 0.452133i
\(653\) 26.4608i 1.03549i 0.855534 + 0.517746i \(0.173229\pi\)
−0.855534 + 0.517746i \(0.826771\pi\)
\(654\) 0.725759 0.402443i 0.0283794 0.0157368i
\(655\) 0 0
\(656\) 25.3957 12.4060i 0.991535 0.484373i
\(657\) 14.1666 + 14.1666i 0.552693 + 0.552693i
\(658\) 8.56755 29.8962i 0.333998 1.16548i
\(659\) −30.5128 + 30.5128i −1.18861 + 1.18861i −0.211156 + 0.977452i \(0.567723\pi\)
−0.977452 + 0.211156i \(0.932277\pi\)
\(660\) 0 0
\(661\) −4.81695 4.81695i −0.187358 0.187358i 0.607195 0.794553i \(-0.292295\pi\)
−0.794553 + 0.607195i \(0.792295\pi\)
\(662\) −21.7351 39.1966i −0.844758 1.52342i
\(663\) 2.86883 2.86883i 0.111416 0.111416i
\(664\) 8.70921 7.84922i 0.337983 0.304609i
\(665\) 0 0
\(666\) −17.2637 4.94737i −0.668956 0.191707i
\(667\) −13.6552 −0.528733
\(668\) 0.768879 + 3.32563i 0.0297488 + 0.128673i
\(669\) −0.726685 0.726685i −0.0280953 0.0280953i
\(670\) 0 0
\(671\) 41.8399i 1.61521i
\(672\) 1.79814 + 1.25698i 0.0693649 + 0.0484890i
\(673\) 2.80519 2.80519i 0.108132 0.108132i −0.650971 0.759103i \(-0.725638\pi\)
0.759103 + 0.650971i \(0.225638\pi\)
\(674\) −5.17254 + 2.86824i −0.199239 + 0.110481i
\(675\) 0 0
\(676\) 7.90113 + 4.93373i 0.303890 + 0.189759i
\(677\) 17.5498i 0.674492i −0.941417 0.337246i \(-0.890505\pi\)
0.941417 0.337246i \(-0.109495\pi\)
\(678\) −2.38826 4.30695i −0.0917206 0.165407i
\(679\) 32.2590i 1.23799i
\(680\) 0 0
\(681\) 0.129129i 0.00494823i
\(682\) −26.1048 + 14.4755i −0.999603 + 0.554294i
\(683\) 21.7834i 0.833518i 0.909017 + 0.416759i \(0.136834\pi\)
−0.909017 + 0.416759i \(0.863166\pi\)
\(684\) −6.83131 + 1.57938i −0.261202 + 0.0603893i
\(685\) 0 0
\(686\) 13.4685 + 24.2889i 0.514230 + 0.927353i
\(687\) 1.94178 1.94178i 0.0740833 0.0740833i
\(688\) 33.9014 16.5611i 1.29248 0.631386i
\(689\) 32.2162i 1.22734i
\(690\) 0 0
\(691\) −31.2147 31.2147i −1.18746 1.18746i −0.977767 0.209694i \(-0.932753\pi\)
−0.209694 0.977767i \(-0.567247\pi\)
\(692\) −5.42829 + 8.69314i −0.206353 + 0.330464i
\(693\) −18.7057 −0.710569
\(694\) −5.41154 + 18.8835i −0.205419 + 0.716806i
\(695\) 0 0
\(696\) −2.11707 0.109954i −0.0802471 0.00416779i
\(697\) −23.2521 + 23.2521i −0.880736 + 0.880736i
\(698\) 23.5976 13.0852i 0.893182 0.495282i
\(699\) −0.371464 0.371464i −0.0140501 0.0140501i
\(700\) 0 0
\(701\) 20.9248 20.9248i 0.790318 0.790318i −0.191227 0.981546i \(-0.561247\pi\)
0.981546 + 0.191227i \(0.0612468\pi\)
\(702\) −7.06019 2.02328i −0.266470 0.0763638i
\(703\) −3.60027 3.60027i −0.135787 0.135787i
\(704\) 17.0568 + 21.0229i 0.642851 + 0.792332i
\(705\) 0 0
\(706\) −15.4974 27.9477i −0.583252 1.05183i
\(707\) 17.1005i 0.643132i
\(708\) 0.935264 + 4.04529i 0.0351494 + 0.152031i
\(709\) 26.3703 26.3703i 0.990357 0.990357i −0.00959736 0.999954i \(-0.503055\pi\)
0.999954 + 0.00959736i \(0.00305498\pi\)
\(710\) 0 0
\(711\) −25.7244 −0.964741
\(712\) −1.15238 + 1.03859i −0.0431874 + 0.0389228i
\(713\) 16.6707 + 16.6707i 0.624322 + 0.624322i
\(714\) −2.45373 0.703181i −0.0918287 0.0263159i
\(715\) 0 0
\(716\) 34.8052 8.04689i 1.30073 0.300726i
\(717\) 4.33724 0.161977
\(718\) 38.4506 + 11.0190i 1.43496 + 0.411226i
\(719\) −2.65374 −0.0989679 −0.0494840 0.998775i \(-0.515758\pi\)
−0.0494840 + 0.998775i \(0.515758\pi\)
\(720\) 0 0
\(721\) 17.3224 0.645119
\(722\) 23.9194 + 6.85472i 0.890187 + 0.255106i
\(723\) 0.767746 0.0285528
\(724\) −5.39541 23.3367i −0.200519 0.867303i
\(725\) 0 0
\(726\) 0.127351 + 0.0364957i 0.00472644 + 0.00135448i
\(727\) 30.8999 + 30.8999i 1.14601 + 1.14601i 0.987329 + 0.158685i \(0.0507255\pi\)
0.158685 + 0.987329i \(0.449275\pi\)
\(728\) 1.15238 22.1881i 0.0427102 0.822348i
\(729\) −24.7034 −0.914940
\(730\) 0 0
\(731\) −31.0399 + 31.0399i −1.14805 + 1.14805i
\(732\) 4.99842 1.15562i 0.184747 0.0427131i
\(733\) 46.2726i 1.70912i 0.519354 + 0.854559i \(0.326172\pi\)
−0.519354 + 0.854559i \(0.673828\pi\)
\(734\) −16.3218 29.4345i −0.602450 1.08645i
\(735\) 0 0
\(736\) 12.2506 17.5248i 0.451563 0.645974i
\(737\) 30.0288 + 30.0288i 1.10613 + 1.10613i
\(738\) 28.4049 + 8.14017i 1.04560 + 0.299644i
\(739\) 12.0504 12.0504i 0.443280 0.443280i −0.449833 0.893113i \(-0.648516\pi\)
0.893113 + 0.449833i \(0.148516\pi\)
\(740\) 0 0
\(741\) −0.730865 0.730865i −0.0268490 0.0268490i
\(742\) −17.7257 + 9.82912i −0.650730 + 0.360838i
\(743\) −21.4100 + 21.4100i −0.785456 + 0.785456i −0.980746 0.195290i \(-0.937435\pi\)
0.195290 + 0.980746i \(0.437435\pi\)
\(744\) 2.45033 + 2.71880i 0.0898335 + 0.0996761i
\(745\) 0 0
\(746\) 3.13176 10.9282i 0.114662 0.400110i
\(747\) 12.2571 0.448465
\(748\) −26.7160 16.6824i −0.976833 0.609968i
\(749\) −21.6397 21.6397i −0.790696 0.790696i
\(750\) 0 0
\(751\) 8.50828i 0.310472i 0.987877 + 0.155236i \(0.0496137\pi\)
−0.987877 + 0.155236i \(0.950386\pi\)
\(752\) −44.5008 15.2917i −1.62278 0.557631i
\(753\) −0.130723 + 0.130723i −0.00476379 + 0.00476379i
\(754\) 10.4111 + 18.7752i 0.379150 + 0.683752i
\(755\) 0 0
\(756\) 1.04083 + 4.50188i 0.0378545 + 0.163732i
\(757\) 29.2794i 1.06418i −0.846688 0.532089i \(-0.821407\pi\)
0.846688 0.532089i \(-0.178593\pi\)
\(758\) −4.03474 + 2.23732i −0.146548 + 0.0812631i
\(759\) 2.65374i 0.0963248i
\(760\) 0 0
\(761\) 39.3132i 1.42510i −0.701621 0.712551i \(-0.747540\pi\)
0.701621 0.712551i \(-0.252460\pi\)
\(762\) −1.11868 2.01741i −0.0405256 0.0730832i
\(763\) 5.28739i 0.191416i
\(764\) 12.0267 19.2602i 0.435111 0.696809i
\(765\) 0 0
\(766\) −13.7396 + 7.61880i −0.496432 + 0.275278i
\(767\) 29.7321 29.7321i 1.07357 1.07357i
\(768\) 2.04040 2.61835i 0.0736267 0.0944815i
\(769\) 26.4222i 0.952809i 0.879226 + 0.476404i \(0.158060\pi\)
−0.879226 + 0.476404i \(0.841940\pi\)
\(770\) 0 0
\(771\) 0.751892 + 0.751892i 0.0270787 + 0.0270787i
\(772\) 30.3806 7.02394i 1.09342 0.252797i
\(773\) −8.08416 −0.290767 −0.145383 0.989375i \(-0.546442\pi\)
−0.145383 + 0.989375i \(0.546442\pi\)
\(774\) 37.9185 + 10.8665i 1.36295 + 0.390590i
\(775\) 0 0
\(776\) 48.7432 + 2.53157i 1.74978 + 0.0908781i
\(777\) −1.17773 + 1.17773i −0.0422508 + 0.0422508i
\(778\) −26.3977 47.6051i −0.946404 1.70673i
\(779\) 5.92371 + 5.92371i 0.212239 + 0.212239i
\(780\) 0 0
\(781\) 25.0350 25.0350i 0.895823 0.895823i
\(782\) −6.85325 + 23.9142i −0.245072 + 0.855172i
\(783\) −3.15707 3.15707i −0.112824 0.112824i
\(784\) 12.5988 6.15462i 0.449958 0.219808i
\(785\) 0 0
\(786\) −1.14730 + 0.636194i −0.0409229 + 0.0226923i
\(787\) 40.5596i 1.44579i 0.690955 + 0.722897i \(0.257190\pi\)
−0.690955 + 0.722897i \(0.742810\pi\)
\(788\) 22.4523 35.9562i 0.799830 1.28089i
\(789\) −1.09119 + 1.09119i −0.0388474 + 0.0388474i
\(790\) 0 0
\(791\) 31.3775 1.11566
\(792\) −1.46795 + 28.2642i −0.0521615 + 1.00432i
\(793\) −36.7374 36.7374i −1.30458 1.30458i
\(794\) 1.70914 5.96399i 0.0606550 0.211654i
\(795\) 0 0
\(796\) −9.19527 + 14.7258i −0.325918 + 0.521941i
\(797\) −1.85060 −0.0655517 −0.0327759 0.999463i \(-0.510435\pi\)
−0.0327759 + 0.999463i \(0.510435\pi\)
\(798\) −0.179143 + 0.625115i −0.00634159 + 0.0221288i
\(799\) 54.7455 1.93676
\(800\) 0 0
\(801\) −1.62184 −0.0573048
\(802\) −9.58190 + 33.4358i −0.338349 + 1.18066i
\(803\) 22.9281 0.809115
\(804\) 2.75800 4.41680i 0.0972672 0.155769i
\(805\) 0 0
\(806\) 10.2111 35.6314i 0.359671 1.25506i
\(807\) −1.83168 1.83168i −0.0644783 0.0644783i
\(808\) 25.8389 + 1.34199i 0.909009 + 0.0472111i
\(809\) 26.5823 0.934584 0.467292 0.884103i \(-0.345230\pi\)
0.467292 + 0.884103i \(0.345230\pi\)
\(810\) 0 0
\(811\) 6.49812 6.49812i 0.228180 0.228180i −0.583752 0.811932i \(-0.698416\pi\)
0.811932 + 0.583752i \(0.198416\pi\)
\(812\) 7.15388 11.4566i 0.251052 0.402047i
\(813\) 6.41443i 0.224964i
\(814\) −17.9739 + 9.96676i −0.629984 + 0.349335i
\(815\) 0 0
\(816\) −1.25507 + 3.65240i −0.0439361 + 0.127860i
\(817\) 7.90773 + 7.90773i 0.276656 + 0.276656i
\(818\) 2.75289 9.60614i 0.0962525 0.335871i
\(819\) 16.4245 16.4245i 0.573917 0.573917i
\(820\) 0 0
\(821\) 6.00000 + 6.00000i 0.209401 + 0.209401i 0.804013 0.594612i \(-0.202694\pi\)
−0.594612 + 0.804013i \(0.702694\pi\)
\(822\) 0.102092 + 0.184111i 0.00356086 + 0.00642159i
\(823\) −15.1106 + 15.1106i −0.526722 + 0.526722i −0.919593 0.392871i \(-0.871482\pi\)
0.392871 + 0.919593i \(0.371482\pi\)
\(824\) 1.35940 26.1741i 0.0473570 0.911817i
\(825\) 0 0
\(826\) −25.4302 7.28767i −0.884828 0.253571i
\(827\) −13.3792 −0.465241 −0.232621 0.972568i \(-0.574730\pi\)
−0.232621 + 0.972568i \(0.574730\pi\)
\(828\) 21.7793 5.03533i 0.756883 0.174990i
\(829\) 5.81788 + 5.81788i 0.202063 + 0.202063i 0.800883 0.598820i \(-0.204364\pi\)
−0.598820 + 0.800883i \(0.704364\pi\)
\(830\) 0 0
\(831\) 3.92783i 0.136255i
\(832\) −33.4358 3.48250i −1.15918 0.120734i
\(833\) −11.5354 + 11.5354i −0.399677 + 0.399677i
\(834\) 2.00348 1.11096i 0.0693748 0.0384693i
\(835\) 0 0
\(836\) −4.25001 + 6.80618i −0.146990 + 0.235397i
\(837\) 7.70845i 0.266443i
\(838\) 4.40719 + 7.94785i 0.152244 + 0.274554i
\(839\) 27.4305i 0.947006i 0.880792 + 0.473503i \(0.157011\pi\)
−0.880792 + 0.473503i \(0.842989\pi\)
\(840\) 0 0
\(841\) 15.9489i 0.549963i
\(842\) 9.57693 5.31054i 0.330043 0.183013i
\(843\) 1.35217i 0.0465713i
\(844\) 4.00740 + 17.3332i 0.137940 + 0.596633i
\(845\) 0 0
\(846\) −23.8560 43.0215i −0.820187 1.47911i
\(847\) −0.596838 + 0.596838i −0.0205076 + 0.0205076i
\(848\) 13.4607 + 27.5548i 0.462243 + 0.946235i
\(849\) 3.33445i 0.114438i
\(850\) 0 0
\(851\) 11.4782 + 11.4782i 0.393469 + 0.393469i
\(852\) −3.68229 2.29934i −0.126153 0.0787743i
\(853\) 16.6692 0.570742 0.285371 0.958417i \(-0.407883\pi\)
0.285371 + 0.958417i \(0.407883\pi\)
\(854\) −9.00474 + 31.4218i −0.308136 + 1.07523i
\(855\) 0 0
\(856\) −34.3957 + 30.9993i −1.17562 + 1.05953i
\(857\) 4.73331 4.73331i 0.161687 0.161687i −0.621627 0.783314i \(-0.713528\pi\)
0.783314 + 0.621627i \(0.213528\pi\)
\(858\) −3.64875 + 2.02328i −0.124566 + 0.0690736i
\(859\) 26.3237 + 26.3237i 0.898152 + 0.898152i 0.995273 0.0971203i \(-0.0309632\pi\)
−0.0971203 + 0.995273i \(0.530963\pi\)
\(860\) 0 0
\(861\) 1.93778 1.93778i 0.0660394 0.0660394i
\(862\) −17.2190 4.93456i −0.586483 0.168072i
\(863\) −8.71130 8.71130i −0.296536 0.296536i 0.543119 0.839655i \(-0.317243\pi\)
−0.839655 + 0.543119i \(0.817243\pi\)
\(864\) 6.88401 1.21939i 0.234199 0.0414846i
\(865\) 0 0
\(866\) −10.7172 19.3272i −0.364184 0.656764i
\(867\) 0.966284i 0.0328167i
\(868\) −22.7201 + 5.25285i −0.771171 + 0.178293i
\(869\) −20.8170 + 20.8170i −0.706167 + 0.706167i
\(870\) 0 0
\(871\) −52.7334 −1.78680
\(872\) 7.98923 + 0.414936i 0.270550 + 0.0140515i
\(873\) 36.0815 + 36.0815i 1.22117 + 1.22117i
\(874\) 6.09241 + 1.74594i 0.206079 + 0.0590572i
\(875\) 0 0
\(876\) −0.633277 2.73911i −0.0213965 0.0925461i
\(877\) 33.6674 1.13687 0.568433 0.822730i \(-0.307550\pi\)
0.568433 + 0.822730i \(0.307550\pi\)
\(878\) −27.8609 7.98426i −0.940260 0.269456i
\(879\) −0.172172 −0.00580721
\(880\) 0 0
\(881\) 27.3058 0.919956 0.459978 0.887930i \(-0.347857\pi\)
0.459978 + 0.887930i \(0.347857\pi\)
\(882\) 14.0917 + 4.03834i 0.474492 + 0.135978i
\(883\) 27.9628 0.941023 0.470511 0.882394i \(-0.344070\pi\)
0.470511 + 0.882394i \(0.344070\pi\)
\(884\) 38.1058 8.80999i 1.28164 0.296312i
\(885\) 0 0
\(886\) −14.9712 4.29038i −0.502966 0.144138i
\(887\) −12.4497 12.4497i −0.418020 0.418020i 0.466501 0.884521i \(-0.345514\pi\)
−0.884521 + 0.466501i \(0.845514\pi\)
\(888\) 1.68712 + 1.87197i 0.0566161 + 0.0628192i
\(889\) 14.6975 0.492939
\(890\) 0 0
\(891\) −20.6132 + 20.6132i −0.690567 + 0.690567i
\(892\) −2.23160 9.65235i −0.0747196 0.323185i
\(893\) 13.9470i 0.466718i
\(894\) 0.569207 + 1.02650i 0.0190371 + 0.0343312i
\(895\) 0 0
\(896\) 8.28512 + 19.4592i 0.276786 + 0.650086i
\(897\) 2.33011 + 2.33011i 0.0778002 + 0.0778002i
\(898\) −20.9937 6.01628i −0.700567 0.200766i
\(899\) 15.9331 15.9331i 0.531398 0.531398i
\(900\) 0 0
\(901\) −25.2289 25.2289i −0.840498 0.840498i
\(902\) 29.5734 16.3988i 0.984685 0.546022i
\(903\) 2.58680 2.58680i 0.0860833 0.0860833i
\(904\) 2.46240 47.4113i 0.0818981 1.57688i
\(905\) 0 0
\(906\) −0.576165 + 2.01051i −0.0191418 + 0.0667948i
\(907\) −38.3527 −1.27348 −0.636740 0.771078i \(-0.719718\pi\)
−0.636740 + 0.771078i \(0.719718\pi\)
\(908\) −0.659317 + 1.05586i −0.0218802 + 0.0350400i
\(909\) 19.1269 + 19.1269i 0.634398 + 0.634398i
\(910\) 0 0
\(911\) 24.0192i 0.795791i −0.917431 0.397895i \(-0.869741\pi\)
0.917431 0.397895i \(-0.130259\pi\)
\(912\) 0.930488 + 0.319741i 0.0308115 + 0.0105877i
\(913\) 9.91884 9.91884i 0.328266 0.328266i
\(914\) 3.04752 + 5.49585i 0.100803 + 0.181787i
\(915\) 0 0
\(916\) 25.7920 5.96307i 0.852193 0.197025i
\(917\) 8.35846i 0.276021i
\(918\) −7.11338 + 3.94447i −0.234777 + 0.130187i
\(919\) 25.1211i 0.828668i −0.910125 0.414334i \(-0.864014\pi\)
0.910125 0.414334i \(-0.135986\pi\)
\(920\) 0 0
\(921\) 5.89448i 0.194230i
\(922\) −8.20177 14.7909i −0.270111 0.487113i
\(923\) 43.9639i 1.44709i
\(924\) 2.22646 + 1.39028i 0.0732450 + 0.0457367i
\(925\) 0 0
\(926\) −37.7556 + 20.9360i −1.24073 + 0.688000i
\(927\) 19.3750 19.3750i 0.636358 0.636358i
\(928\) −16.7495 11.7086i −0.549828 0.384352i
\(929\) 39.8307i 1.30680i −0.757012 0.653401i \(-0.773342\pi\)
0.757012 0.653401i \(-0.226658\pi\)
\(930\) 0 0
\(931\) 2.93876 + 2.93876i 0.0963139 + 0.0963139i
\(932\) −1.14074 4.93405i −0.0373663 0.161620i
\(933\) −6.59927 −0.216051
\(934\) 30.5723 + 8.76128i 1.00036 + 0.286678i
\(935\) 0 0
\(936\) −23.5284 26.1062i −0.769049 0.853309i
\(937\) −18.2763 + 18.2763i −0.597060 + 0.597060i −0.939529 0.342469i \(-0.888737\pi\)
0.342469 + 0.939529i \(0.388737\pi\)
\(938\) 16.0889 + 29.0144i 0.525321 + 0.947355i
\(939\) 3.89474 + 3.89474i 0.127100 + 0.127100i
\(940\) 0 0
\(941\) −2.34852 + 2.34852i −0.0765597 + 0.0765597i −0.744350 0.667790i \(-0.767240\pi\)
0.667790 + 0.744350i \(0.267240\pi\)
\(942\) −1.67616 + 5.84892i −0.0546122 + 0.190568i
\(943\) −18.8857 18.8857i −0.615004 0.615004i
\(944\) −13.0073 + 37.8530i −0.423352 + 1.23201i
\(945\) 0 0
\(946\) 39.4783 21.8913i 1.28355 0.711746i
\(947\) 18.7829i 0.610363i 0.952294 + 0.305181i \(0.0987171\pi\)
−0.952294 + 0.305181i \(0.901283\pi\)
\(948\) 3.06187 + 1.91194i 0.0994450 + 0.0620968i
\(949\) −20.1320 + 20.1320i −0.653511 + 0.653511i
\(950\) 0 0
\(951\) 2.20341 0.0714505
\(952\) −16.4734 18.2783i −0.533905 0.592402i
\(953\) 9.07454 + 9.07454i 0.293953 + 0.293953i 0.838640 0.544687i \(-0.183351\pi\)
−0.544687 + 0.838640i \(0.683351\pi\)
\(954\) −8.83223 + 30.8199i −0.285954 + 0.997830i
\(955\) 0 0
\(956\) 35.4649 + 22.1455i 1.14702 + 0.716236i
\(957\) −2.53633 −0.0819879
\(958\) −0.332179 + 1.15913i −0.0107322 + 0.0374499i
\(959\) −1.34130 −0.0433130
\(960\) 0 0
\(961\) −7.90304 −0.254937
\(962\) 7.03063 24.5332i 0.226677 0.790982i
\(963\) −48.4077 −1.55992
\(964\) 6.27772 + 3.92002i 0.202192 + 0.126255i
\(965\) 0 0
\(966\) 0.571136 1.99297i 0.0183760 0.0641226i
\(967\) −13.3057 13.3057i −0.427882 0.427882i 0.460024 0.887906i \(-0.347841\pi\)
−0.887906 + 0.460024i \(0.847841\pi\)
\(968\) 0.854983 + 0.948659i 0.0274802 + 0.0304910i
\(969\) −1.14470 −0.0367730
\(970\) 0 0
\(971\) 18.6349 18.6349i 0.598023 0.598023i −0.341763 0.939786i \(-0.611024\pi\)
0.939786 + 0.341763i \(0.111024\pi\)
\(972\) 9.32163 + 5.82074i 0.298991 + 0.186700i
\(973\) 14.5960i 0.467926i
\(974\) 4.37198 2.42432i 0.140087 0.0776803i
\(975\) 0 0
\(976\) 46.7716 + 16.0720i 1.49712 + 0.514453i
\(977\) −7.28407 7.28407i −0.233038 0.233038i 0.580921 0.813960i \(-0.302692\pi\)
−0.813960 + 0.580921i \(0.802692\pi\)
\(978\) 0.880918 3.07394i 0.0281686 0.0982938i
\(979\) −1.31244 + 1.31244i −0.0419457 + 0.0419457i
\(980\) 0 0
\(981\) 5.91391 + 5.91391i 0.188817 + 0.188817i
\(982\) −21.4518 38.6858i −0.684554 1.23451i
\(983\) 31.0322 31.0322i 0.989772 0.989772i −0.0101761 0.999948i \(-0.503239\pi\)
0.999948 + 0.0101761i \(0.00323922\pi\)
\(984\) −2.77591 3.08005i −0.0884929 0.0981885i
\(985\) 0 0
\(986\) 22.8562 + 6.55003i 0.727889 + 0.208596i
\(987\) −4.56238 −0.145222
\(988\) −2.24444 9.70786i −0.0714051 0.308848i
\(989\) −25.2111 25.2111i −0.801666 0.801666i
\(990\) 0 0
\(991\) 40.1060i 1.27401i 0.770860 + 0.637004i \(0.219827\pi\)
−0.770860 + 0.637004i \(0.780173\pi\)
\(992\) 6.15404 + 34.7423i 0.195391 + 1.10307i
\(993\) −4.64931 + 4.64931i −0.147541 + 0.147541i
\(994\) 24.1893 13.4133i 0.767239 0.425445i
\(995\) 0 0
\(996\) −1.45892 0.910997i −0.0462275 0.0288661i
\(997\) 2.58204i 0.0817740i −0.999164 0.0408870i \(-0.986982\pi\)
0.999164 0.0408870i \(-0.0130184\pi\)
\(998\) −7.50611 13.5364i −0.237602 0.428487i
\(999\) 5.30749i 0.167921i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.2.s.c.107.5 yes 16
4.3 odd 2 1600.2.s.c.207.5 16
5.2 odd 4 400.2.j.c.43.8 yes 16
5.3 odd 4 400.2.j.c.43.1 16
5.4 even 2 inner 400.2.s.c.107.4 yes 16
16.3 odd 4 400.2.j.c.307.1 yes 16
16.13 even 4 1600.2.j.c.1007.4 16
20.3 even 4 1600.2.j.c.143.5 16
20.7 even 4 1600.2.j.c.143.4 16
20.19 odd 2 1600.2.s.c.207.4 16
80.3 even 4 inner 400.2.s.c.243.5 yes 16
80.13 odd 4 1600.2.s.c.943.5 16
80.19 odd 4 400.2.j.c.307.8 yes 16
80.29 even 4 1600.2.j.c.1007.5 16
80.67 even 4 inner 400.2.s.c.243.4 yes 16
80.77 odd 4 1600.2.s.c.943.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
400.2.j.c.43.1 16 5.3 odd 4
400.2.j.c.43.8 yes 16 5.2 odd 4
400.2.j.c.307.1 yes 16 16.3 odd 4
400.2.j.c.307.8 yes 16 80.19 odd 4
400.2.s.c.107.4 yes 16 5.4 even 2 inner
400.2.s.c.107.5 yes 16 1.1 even 1 trivial
400.2.s.c.243.4 yes 16 80.67 even 4 inner
400.2.s.c.243.5 yes 16 80.3 even 4 inner
1600.2.j.c.143.4 16 20.7 even 4
1600.2.j.c.143.5 16 20.3 even 4
1600.2.j.c.1007.4 16 16.13 even 4
1600.2.j.c.1007.5 16 80.29 even 4
1600.2.s.c.207.4 16 20.19 odd 2
1600.2.s.c.207.5 16 4.3 odd 2
1600.2.s.c.943.4 16 80.77 odd 4
1600.2.s.c.943.5 16 80.13 odd 4