Properties

Label 400.2.l.i.301.1
Level $400$
Weight $2$
Character 400.301
Analytic conductor $3.194$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,2,Mod(101,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.101");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 400.l (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.19401608085\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: 16.0.534694406811304329216.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2x^{14} - 2x^{12} + 4x^{10} + 4x^{8} + 16x^{6} - 32x^{4} - 128x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 301.1
Root \(-1.40501 - 0.161069i\) of defining polynomial
Character \(\chi\) \(=\) 400.301
Dual form 400.2.l.i.101.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.40501 + 0.161069i) q^{2} +(0.734294 + 0.734294i) q^{3} +(1.94811 - 0.452606i) q^{4} +(-1.14996 - 0.913419i) q^{6} -1.71452i q^{7} +(-2.66422 + 0.949697i) q^{8} -1.92163i q^{9} +(2.82684 - 2.82684i) q^{11} +(1.76283 + 1.09814i) q^{12} +(-2.59462 - 2.59462i) q^{13} +(0.276156 + 2.40893i) q^{14} +(3.59030 - 1.76346i) q^{16} +1.89939 q^{17} +(0.309513 + 2.69991i) q^{18} +(-2.89623 - 2.89623i) q^{19} +(1.25896 - 1.25896i) q^{21} +(-3.51643 + 4.42705i) q^{22} +2.00613i q^{23} +(-2.65368 - 1.25896i) q^{24} +(4.06338 + 3.22756i) q^{26} +(3.61392 - 3.61392i) q^{27} +(-0.776005 - 3.34009i) q^{28} +(6.72307 + 6.72307i) q^{29} -7.11778 q^{31} +(-4.76037 + 3.05596i) q^{32} +4.15146 q^{33} +(-2.66867 + 0.305932i) q^{34} +(-0.869740 - 3.74355i) q^{36} +(2.25207 - 2.25207i) q^{37} +(4.53572 + 3.60274i) q^{38} -3.81042i q^{39} +1.59630i q^{41} +(-1.56608 + 1.97164i) q^{42} +(8.06886 - 8.06886i) q^{43} +(4.22756 - 6.78645i) q^{44} +(-0.323124 - 2.81863i) q^{46} +4.43823 q^{47} +(3.93123 + 1.34144i) q^{48} +4.06040 q^{49} +(1.39471 + 1.39471i) q^{51} +(-6.22896 - 3.88027i) q^{52} +(-0.481758 + 0.481758i) q^{53} +(-4.49551 + 5.65968i) q^{54} +(1.62828 + 4.56787i) q^{56} -4.25336i q^{57} +(-10.5289 - 8.36311i) q^{58} +(-3.08580 + 3.08580i) q^{59} +(3.46410 + 3.46410i) q^{61} +(10.0006 - 1.14645i) q^{62} -3.29468 q^{63} +(6.19615 - 5.06040i) q^{64} +(-5.83285 + 0.668669i) q^{66} +(-1.80454 - 1.80454i) q^{67} +(3.70023 - 0.859677i) q^{68} +(-1.47309 + 1.47309i) q^{69} +0.379150i q^{71} +(1.82496 + 5.11964i) q^{72} +8.37718i q^{73} +(-2.80144 + 3.52691i) q^{74} +(-6.95303 - 4.33133i) q^{76} +(-4.84668 - 4.84668i) q^{77} +(0.613739 + 5.35369i) q^{78} -11.2566 q^{79} -0.457524 q^{81} +(-0.257114 - 2.24282i) q^{82} +(-8.24890 - 8.24890i) q^{83} +(1.88279 - 3.02242i) q^{84} +(-10.0372 + 12.6365i) q^{86} +9.87341i q^{87} +(-4.84668 + 10.2160i) q^{88} +11.9820i q^{89} +(-4.44854 + 4.44854i) q^{91} +(0.907986 + 3.90816i) q^{92} +(-5.22654 - 5.22654i) q^{93} +(-6.23577 + 0.714859i) q^{94} +(-5.73948 - 1.25154i) q^{96} +6.50543 q^{97} +(-5.70491 + 0.654003i) q^{98} +(-5.43213 - 5.43213i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{4} - 4 q^{6} + 8 q^{11} + 4 q^{14} + 16 q^{16} + 8 q^{19} - 16 q^{21} + 32 q^{24} + 32 q^{26} + 16 q^{29} + 16 q^{31} - 48 q^{34} + 60 q^{36} + 8 q^{44} - 28 q^{46} - 16 q^{49} - 16 q^{51} - 40 q^{54}+ \cdots - 88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.40501 + 0.161069i −0.993493 + 0.113893i
\(3\) 0.734294 + 0.734294i 0.423945 + 0.423945i 0.886559 0.462615i \(-0.153089\pi\)
−0.462615 + 0.886559i \(0.653089\pi\)
\(4\) 1.94811 0.452606i 0.974057 0.226303i
\(5\) 0 0
\(6\) −1.14996 0.913419i −0.469470 0.372902i
\(7\) 1.71452i 0.648029i −0.946052 0.324015i \(-0.894967\pi\)
0.946052 0.324015i \(-0.105033\pi\)
\(8\) −2.66422 + 0.949697i −0.941945 + 0.335768i
\(9\) 1.92163i 0.640542i
\(10\) 0 0
\(11\) 2.82684 2.82684i 0.852324 0.852324i −0.138095 0.990419i \(-0.544098\pi\)
0.990419 + 0.138095i \(0.0440980\pi\)
\(12\) 1.76283 + 1.09814i 0.508886 + 0.317006i
\(13\) −2.59462 2.59462i −0.719618 0.719618i 0.248909 0.968527i \(-0.419928\pi\)
−0.968527 + 0.248909i \(0.919928\pi\)
\(14\) 0.276156 + 2.40893i 0.0738058 + 0.643813i
\(15\) 0 0
\(16\) 3.59030 1.76346i 0.897574 0.440864i
\(17\) 1.89939 0.460671 0.230335 0.973111i \(-0.426018\pi\)
0.230335 + 0.973111i \(0.426018\pi\)
\(18\) 0.309513 + 2.69991i 0.0729530 + 0.636374i
\(19\) −2.89623 2.89623i −0.664440 0.664440i 0.291983 0.956423i \(-0.405685\pi\)
−0.956423 + 0.291983i \(0.905685\pi\)
\(20\) 0 0
\(21\) 1.25896 1.25896i 0.274729 0.274729i
\(22\) −3.51643 + 4.42705i −0.749704 + 0.943851i
\(23\) 2.00613i 0.418306i 0.977883 + 0.209153i \(0.0670707\pi\)
−0.977883 + 0.209153i \(0.932929\pi\)
\(24\) −2.65368 1.25896i −0.541680 0.256985i
\(25\) 0 0
\(26\) 4.06338 + 3.22756i 0.796895 + 0.632976i
\(27\) 3.61392 3.61392i 0.695499 0.695499i
\(28\) −0.776005 3.34009i −0.146651 0.631218i
\(29\) 6.72307 + 6.72307i 1.24844 + 1.24844i 0.956408 + 0.292034i \(0.0943321\pi\)
0.292034 + 0.956408i \(0.405668\pi\)
\(30\) 0 0
\(31\) −7.11778 −1.27839 −0.639195 0.769044i \(-0.720732\pi\)
−0.639195 + 0.769044i \(0.720732\pi\)
\(32\) −4.76037 + 3.05596i −0.841522 + 0.540223i
\(33\) 4.15146 0.722676
\(34\) −2.66867 + 0.305932i −0.457673 + 0.0524670i
\(35\) 0 0
\(36\) −0.869740 3.74355i −0.144957 0.623924i
\(37\) 2.25207 2.25207i 0.370237 0.370237i −0.497326 0.867564i \(-0.665685\pi\)
0.867564 + 0.497326i \(0.165685\pi\)
\(38\) 4.53572 + 3.60274i 0.735792 + 0.584442i
\(39\) 3.81042i 0.610156i
\(40\) 0 0
\(41\) 1.59630i 0.249301i 0.992201 + 0.124650i \(0.0397809\pi\)
−0.992201 + 0.124650i \(0.960219\pi\)
\(42\) −1.56608 + 1.97164i −0.241651 + 0.304231i
\(43\) 8.06886 8.06886i 1.23049 1.23049i 0.266715 0.963776i \(-0.414062\pi\)
0.963776 0.266715i \(-0.0859381\pi\)
\(44\) 4.22756 6.78645i 0.637328 1.02310i
\(45\) 0 0
\(46\) −0.323124 2.81863i −0.0476420 0.415585i
\(47\) 4.43823 0.647383 0.323691 0.946163i \(-0.395076\pi\)
0.323691 + 0.946163i \(0.395076\pi\)
\(48\) 3.93123 + 1.34144i 0.567424 + 0.193620i
\(49\) 4.06040 0.580058
\(50\) 0 0
\(51\) 1.39471 + 1.39471i 0.195299 + 0.195299i
\(52\) −6.22896 3.88027i −0.863801 0.538097i
\(53\) −0.481758 + 0.481758i −0.0661746 + 0.0661746i −0.739420 0.673245i \(-0.764900\pi\)
0.673245 + 0.739420i \(0.264900\pi\)
\(54\) −4.49551 + 5.65968i −0.611761 + 0.770186i
\(55\) 0 0
\(56\) 1.62828 + 4.56787i 0.217588 + 0.610408i
\(57\) 4.25336i 0.563372i
\(58\) −10.5289 8.36311i −1.38251 1.09813i
\(59\) −3.08580 + 3.08580i −0.401737 + 0.401737i −0.878845 0.477108i \(-0.841685\pi\)
0.477108 + 0.878845i \(0.341685\pi\)
\(60\) 0 0
\(61\) 3.46410 + 3.46410i 0.443533 + 0.443533i 0.893197 0.449665i \(-0.148457\pi\)
−0.449665 + 0.893197i \(0.648457\pi\)
\(62\) 10.0006 1.14645i 1.27007 0.145599i
\(63\) −3.29468 −0.415090
\(64\) 6.19615 5.06040i 0.774519 0.632551i
\(65\) 0 0
\(66\) −5.83285 + 0.668669i −0.717974 + 0.0823075i
\(67\) −1.80454 1.80454i −0.220460 0.220460i 0.588232 0.808692i \(-0.299824\pi\)
−0.808692 + 0.588232i \(0.799824\pi\)
\(68\) 3.70023 0.859677i 0.448719 0.104251i
\(69\) −1.47309 + 1.47309i −0.177339 + 0.177339i
\(70\) 0 0
\(71\) 0.379150i 0.0449969i 0.999747 + 0.0224984i \(0.00716208\pi\)
−0.999747 + 0.0224984i \(0.992838\pi\)
\(72\) 1.82496 + 5.11964i 0.215074 + 0.603355i
\(73\) 8.37718i 0.980475i 0.871589 + 0.490237i \(0.163090\pi\)
−0.871589 + 0.490237i \(0.836910\pi\)
\(74\) −2.80144 + 3.52691i −0.325661 + 0.409995i
\(75\) 0 0
\(76\) −6.95303 4.33133i −0.797567 0.496838i
\(77\) −4.84668 4.84668i −0.552331 0.552331i
\(78\) 0.613739 + 5.35369i 0.0694923 + 0.606186i
\(79\) −11.2566 −1.26646 −0.633231 0.773963i \(-0.718272\pi\)
−0.633231 + 0.773963i \(0.718272\pi\)
\(80\) 0 0
\(81\) −0.457524 −0.0508360
\(82\) −0.257114 2.24282i −0.0283935 0.247678i
\(83\) −8.24890 8.24890i −0.905435 0.905435i 0.0904649 0.995900i \(-0.471165\pi\)
−0.995900 + 0.0904649i \(0.971165\pi\)
\(84\) 1.88279 3.02242i 0.205429 0.329773i
\(85\) 0 0
\(86\) −10.0372 + 12.6365i −1.08234 + 1.36263i
\(87\) 9.87341i 1.05854i
\(88\) −4.84668 + 10.2160i −0.516658 + 1.08903i
\(89\) 11.9820i 1.27009i 0.772474 + 0.635046i \(0.219019\pi\)
−0.772474 + 0.635046i \(0.780981\pi\)
\(90\) 0 0
\(91\) −4.44854 + 4.44854i −0.466334 + 0.466334i
\(92\) 0.907986 + 3.90816i 0.0946640 + 0.407454i
\(93\) −5.22654 5.22654i −0.541967 0.541967i
\(94\) −6.23577 + 0.714859i −0.643170 + 0.0737321i
\(95\) 0 0
\(96\) −5.73948 1.25154i −0.585783 0.127734i
\(97\) 6.50543 0.660526 0.330263 0.943889i \(-0.392863\pi\)
0.330263 + 0.943889i \(0.392863\pi\)
\(98\) −5.70491 + 0.654003i −0.576283 + 0.0660643i
\(99\) −5.43213 5.43213i −0.545949 0.545949i
\(100\) 0 0
\(101\) −6.72307 + 6.72307i −0.668970 + 0.668970i −0.957478 0.288508i \(-0.906841\pi\)
0.288508 + 0.957478i \(0.406841\pi\)
\(102\) −2.18423 1.73494i −0.216271 0.171785i
\(103\) 15.1733i 1.49506i 0.664225 + 0.747532i \(0.268762\pi\)
−0.664225 + 0.747532i \(0.731238\pi\)
\(104\) 9.37674 + 4.44854i 0.919465 + 0.436215i
\(105\) 0 0
\(106\) 0.599280 0.754472i 0.0582072 0.0732808i
\(107\) −1.69781 + 1.69781i −0.164134 + 0.164134i −0.784395 0.620262i \(-0.787026\pi\)
0.620262 + 0.784395i \(0.287026\pi\)
\(108\) 5.40464 8.67601i 0.520062 0.834849i
\(109\) −3.11120 3.11120i −0.297999 0.297999i 0.542231 0.840230i \(-0.317580\pi\)
−0.840230 + 0.542231i \(0.817580\pi\)
\(110\) 0 0
\(111\) 3.30735 0.313920
\(112\) −3.02349 6.15565i −0.285693 0.581654i
\(113\) 15.8259 1.48877 0.744387 0.667748i \(-0.232742\pi\)
0.744387 + 0.667748i \(0.232742\pi\)
\(114\) 0.685083 + 5.97602i 0.0641639 + 0.559706i
\(115\) 0 0
\(116\) 16.1402 + 10.0544i 1.49858 + 0.933527i
\(117\) −4.98589 + 4.98589i −0.460946 + 0.460946i
\(118\) 3.83856 4.83261i 0.353368 0.444878i
\(119\) 3.25656i 0.298528i
\(120\) 0 0
\(121\) 4.98203i 0.452912i
\(122\) −5.42506 4.30914i −0.491162 0.390132i
\(123\) −1.17216 + 1.17216i −0.105690 + 0.105690i
\(124\) −13.8662 + 3.22155i −1.24523 + 0.289304i
\(125\) 0 0
\(126\) 4.62906 0.530669i 0.412389 0.0472757i
\(127\) −18.3239 −1.62598 −0.812991 0.582276i \(-0.802162\pi\)
−0.812991 + 0.582276i \(0.802162\pi\)
\(128\) −7.89059 + 8.10793i −0.697436 + 0.716647i
\(129\) 11.8498 1.04332
\(130\) 0 0
\(131\) −10.2036 10.2036i −0.891491 0.891491i 0.103172 0.994663i \(-0.467101\pi\)
−0.994663 + 0.103172i \(0.967101\pi\)
\(132\) 8.08751 1.87898i 0.703928 0.163544i
\(133\) −4.96565 + 4.96565i −0.430577 + 0.430577i
\(134\) 2.82606 + 2.24475i 0.244134 + 0.193917i
\(135\) 0 0
\(136\) −5.06040 + 1.80385i −0.433926 + 0.154679i
\(137\) 14.9845i 1.28021i 0.768286 + 0.640107i \(0.221110\pi\)
−0.768286 + 0.640107i \(0.778890\pi\)
\(138\) 1.83244 2.30697i 0.155987 0.196382i
\(139\) 8.29094 8.29094i 0.703228 0.703228i −0.261874 0.965102i \(-0.584340\pi\)
0.965102 + 0.261874i \(0.0843404\pi\)
\(140\) 0 0
\(141\) 3.25896 + 3.25896i 0.274454 + 0.274454i
\(142\) −0.0610692 0.532711i −0.00512481 0.0447041i
\(143\) −14.6691 −1.22670
\(144\) −3.38870 6.89920i −0.282392 0.574934i
\(145\) 0 0
\(146\) −1.34930 11.7700i −0.111669 0.974095i
\(147\) 2.98153 + 2.98153i 0.245912 + 0.245912i
\(148\) 3.36798 5.40658i 0.276846 0.444418i
\(149\) 7.30735 7.30735i 0.598642 0.598642i −0.341309 0.939951i \(-0.610870\pi\)
0.939951 + 0.341309i \(0.110870\pi\)
\(150\) 0 0
\(151\) 4.56873i 0.371798i −0.982569 0.185899i \(-0.940480\pi\)
0.982569 0.185899i \(-0.0595197\pi\)
\(152\) 10.4667 + 4.96565i 0.848964 + 0.402768i
\(153\) 3.64992i 0.295079i
\(154\) 7.59030 + 6.02900i 0.611643 + 0.485831i
\(155\) 0 0
\(156\) −1.72462 7.42314i −0.138080 0.594327i
\(157\) 1.52966 + 1.52966i 0.122080 + 0.122080i 0.765507 0.643427i \(-0.222488\pi\)
−0.643427 + 0.765507i \(0.722488\pi\)
\(158\) 15.8156 1.81308i 1.25822 0.144241i
\(159\) −0.707504 −0.0561087
\(160\) 0 0
\(161\) 3.43955 0.271075
\(162\) 0.642827 0.0736928i 0.0505053 0.00578985i
\(163\) 10.1361 + 10.1361i 0.793918 + 0.793918i 0.982129 0.188211i \(-0.0602689\pi\)
−0.188211 + 0.982129i \(0.560269\pi\)
\(164\) 0.722497 + 3.10978i 0.0564175 + 0.242833i
\(165\) 0 0
\(166\) 12.9184 + 10.2612i 1.00267 + 0.796421i
\(167\) 2.57967i 0.199621i −0.995006 0.0998105i \(-0.968176\pi\)
0.995006 0.0998105i \(-0.0318237\pi\)
\(168\) −2.15853 + 4.54979i −0.166534 + 0.351024i
\(169\) 0.464102i 0.0357001i
\(170\) 0 0
\(171\) −5.56547 + 5.56547i −0.425602 + 0.425602i
\(172\) 12.0670 19.3711i 0.920104 1.47703i
\(173\) −14.1773 14.1773i −1.07788 1.07788i −0.996700 0.0811779i \(-0.974132\pi\)
−0.0811779 0.996700i \(-0.525868\pi\)
\(174\) −1.59030 13.8723i −0.120560 1.05165i
\(175\) 0 0
\(176\) 5.16418 15.1342i 0.389264 1.14078i
\(177\) −4.53177 −0.340629
\(178\) −1.92993 16.8349i −0.144654 1.26183i
\(179\) 9.88067 + 9.88067i 0.738516 + 0.738516i 0.972291 0.233775i \(-0.0751079\pi\)
−0.233775 + 0.972291i \(0.575108\pi\)
\(180\) 0 0
\(181\) 6.20514 6.20514i 0.461224 0.461224i −0.437832 0.899057i \(-0.644254\pi\)
0.899057 + 0.437832i \(0.144254\pi\)
\(182\) 5.53373 6.96677i 0.410187 0.516411i
\(183\) 5.08733i 0.376067i
\(184\) −1.90521 5.34477i −0.140454 0.394021i
\(185\) 0 0
\(186\) 8.18518 + 6.50152i 0.600166 + 0.476714i
\(187\) 5.36928 5.36928i 0.392641 0.392641i
\(188\) 8.64618 2.00877i 0.630587 0.146505i
\(189\) −6.19615 6.19615i −0.450704 0.450704i
\(190\) 0 0
\(191\) 18.9282 1.36960 0.684798 0.728733i \(-0.259890\pi\)
0.684798 + 0.728733i \(0.259890\pi\)
\(192\) 8.26562 + 0.833972i 0.596520 + 0.0601868i
\(193\) 4.42987 0.318869 0.159434 0.987209i \(-0.449033\pi\)
0.159434 + 0.987209i \(0.449033\pi\)
\(194\) −9.14020 + 1.04782i −0.656228 + 0.0752291i
\(195\) 0 0
\(196\) 7.91013 1.83776i 0.565009 0.131269i
\(197\) −6.39341 + 6.39341i −0.455511 + 0.455511i −0.897179 0.441667i \(-0.854387\pi\)
0.441667 + 0.897179i \(0.354387\pi\)
\(198\) 8.50714 + 6.75725i 0.604576 + 0.480217i
\(199\) 5.85641i 0.415150i 0.978219 + 0.207575i \(0.0665570\pi\)
−0.978219 + 0.207575i \(0.933443\pi\)
\(200\) 0 0
\(201\) 2.65013i 0.186926i
\(202\) 8.36311 10.5289i 0.588426 0.740808i
\(203\) 11.5269 11.5269i 0.809027 0.809027i
\(204\) 3.34831 + 2.08580i 0.234429 + 0.146035i
\(205\) 0 0
\(206\) −2.44393 21.3186i −0.170277 1.48534i
\(207\) 3.85503 0.267943
\(208\) −13.8910 4.73995i −0.963164 0.328656i
\(209\) −16.3743 −1.13264
\(210\) 0 0
\(211\) 7.60373 + 7.60373i 0.523462 + 0.523462i 0.918615 0.395153i \(-0.129308\pi\)
−0.395153 + 0.918615i \(0.629308\pi\)
\(212\) −0.720473 + 1.15657i −0.0494823 + 0.0794334i
\(213\) −0.278408 + 0.278408i −0.0190762 + 0.0190762i
\(214\) 2.11198 2.65891i 0.144372 0.181759i
\(215\) 0 0
\(216\) −6.19615 + 13.0604i −0.421595 + 0.888648i
\(217\) 12.2036i 0.828435i
\(218\) 4.87239 + 3.87016i 0.330000 + 0.262120i
\(219\) −6.15131 + 6.15131i −0.415667 + 0.415667i
\(220\) 0 0
\(221\) −4.92820 4.92820i −0.331507 0.331507i
\(222\) −4.64687 + 0.532711i −0.311877 + 0.0357532i
\(223\) 9.22430 0.617705 0.308853 0.951110i \(-0.400055\pi\)
0.308853 + 0.951110i \(0.400055\pi\)
\(224\) 5.23952 + 8.16177i 0.350080 + 0.545331i
\(225\) 0 0
\(226\) −22.2356 + 2.54905i −1.47909 + 0.169560i
\(227\) −9.21725 9.21725i −0.611770 0.611770i 0.331637 0.943407i \(-0.392399\pi\)
−0.943407 + 0.331637i \(0.892399\pi\)
\(228\) −1.92510 8.28603i −0.127493 0.548756i
\(229\) −1.63811 + 1.63811i −0.108250 + 0.108250i −0.759157 0.650907i \(-0.774389\pi\)
0.650907 + 0.759157i \(0.274389\pi\)
\(230\) 0 0
\(231\) 7.11778i 0.468315i
\(232\) −24.2966 11.5269i −1.59515 0.756776i
\(233\) 12.3798i 0.811026i 0.914089 + 0.405513i \(0.132907\pi\)
−0.914089 + 0.405513i \(0.867093\pi\)
\(234\) 6.20216 7.80830i 0.405448 0.510445i
\(235\) 0 0
\(236\) −4.61484 + 7.40815i −0.300401 + 0.482229i
\(237\) −8.26562 8.26562i −0.536910 0.536910i
\(238\) 0.524529 + 4.57550i 0.0340002 + 0.296586i
\(239\) 7.77449 0.502890 0.251445 0.967872i \(-0.419094\pi\)
0.251445 + 0.967872i \(0.419094\pi\)
\(240\) 0 0
\(241\) −3.47068 −0.223566 −0.111783 0.993733i \(-0.535656\pi\)
−0.111783 + 0.993733i \(0.535656\pi\)
\(242\) 0.802448 + 6.99981i 0.0515833 + 0.449965i
\(243\) −11.1777 11.1777i −0.717051 0.717051i
\(244\) 8.31634 + 5.18059i 0.532399 + 0.331653i
\(245\) 0 0
\(246\) 1.45809 1.83569i 0.0929647 0.117039i
\(247\) 15.0292i 0.956286i
\(248\) 18.9633 6.75973i 1.20417 0.429243i
\(249\) 12.1142i 0.767708i
\(250\) 0 0
\(251\) 8.94765 8.94765i 0.564771 0.564771i −0.365888 0.930659i \(-0.619235\pi\)
0.930659 + 0.365888i \(0.119235\pi\)
\(252\) −6.41840 + 1.49119i −0.404321 + 0.0939362i
\(253\) 5.67100 + 5.67100i 0.356533 + 0.356533i
\(254\) 25.7453 2.95140i 1.61540 0.185187i
\(255\) 0 0
\(256\) 9.78044 12.6627i 0.611277 0.791416i
\(257\) −3.62228 −0.225952 −0.112976 0.993598i \(-0.536038\pi\)
−0.112976 + 0.993598i \(0.536038\pi\)
\(258\) −16.6491 + 1.90863i −1.03653 + 0.118826i
\(259\) −3.86122 3.86122i −0.239925 0.239925i
\(260\) 0 0
\(261\) 12.9192 12.9192i 0.799680 0.799680i
\(262\) 15.9796 + 12.6927i 0.987224 + 0.784156i
\(263\) 13.7416i 0.847345i 0.905815 + 0.423673i \(0.139259\pi\)
−0.905815 + 0.423673i \(0.860741\pi\)
\(264\) −11.0604 + 3.94263i −0.680721 + 0.242652i
\(265\) 0 0
\(266\) 6.17699 7.77661i 0.378736 0.476815i
\(267\) −8.79833 + 8.79833i −0.538449 + 0.538449i
\(268\) −4.33221 2.69871i −0.264632 0.164850i
\(269\) 4.22240 + 4.22240i 0.257444 + 0.257444i 0.824014 0.566570i \(-0.191730\pi\)
−0.566570 + 0.824014i \(0.691730\pi\)
\(270\) 0 0
\(271\) −5.40015 −0.328036 −0.164018 0.986457i \(-0.552445\pi\)
−0.164018 + 0.986457i \(0.552445\pi\)
\(272\) 6.81938 3.34950i 0.413486 0.203093i
\(273\) −6.53307 −0.395399
\(274\) −2.41353 21.0534i −0.145807 1.27188i
\(275\) 0 0
\(276\) −2.20301 + 3.53647i −0.132606 + 0.212870i
\(277\) 5.08733 5.08733i 0.305668 0.305668i −0.537558 0.843227i \(-0.680653\pi\)
0.843227 + 0.537558i \(0.180653\pi\)
\(278\) −10.3135 + 12.9843i −0.618560 + 0.778745i
\(279\) 13.6777i 0.818863i
\(280\) 0 0
\(281\) 21.2780i 1.26934i 0.772784 + 0.634669i \(0.218864\pi\)
−0.772784 + 0.634669i \(0.781136\pi\)
\(282\) −5.10380 4.05397i −0.303927 0.241410i
\(283\) 4.08521 4.08521i 0.242840 0.242840i −0.575184 0.818024i \(-0.695069\pi\)
0.818024 + 0.575184i \(0.195069\pi\)
\(284\) 0.171606 + 0.738628i 0.0101829 + 0.0438295i
\(285\) 0 0
\(286\) 20.6103 2.36274i 1.21871 0.139712i
\(287\) 2.73690 0.161554
\(288\) 5.87241 + 9.14765i 0.346035 + 0.539030i
\(289\) −13.3923 −0.787783
\(290\) 0 0
\(291\) 4.77689 + 4.77689i 0.280026 + 0.280026i
\(292\) 3.79156 + 16.3197i 0.221884 + 0.955038i
\(293\) −7.40400 + 7.40400i −0.432547 + 0.432547i −0.889494 0.456947i \(-0.848943\pi\)
0.456947 + 0.889494i \(0.348943\pi\)
\(294\) −4.66931 3.70885i −0.272320 0.216305i
\(295\) 0 0
\(296\) −3.86122 + 8.13878i −0.224429 + 0.473057i
\(297\) 20.4319i 1.18558i
\(298\) −9.08993 + 11.4439i −0.526566 + 0.662927i
\(299\) 5.20514 5.20514i 0.301021 0.301021i
\(300\) 0 0
\(301\) −13.8343 13.8343i −0.797394 0.797394i
\(302\) 0.735878 + 6.41911i 0.0423450 + 0.369378i
\(303\) −9.87341 −0.567212
\(304\) −15.5057 5.29094i −0.889312 0.303456i
\(305\) 0 0
\(306\) 0.587888 + 5.12818i 0.0336073 + 0.293159i
\(307\) 16.6634 + 16.6634i 0.951030 + 0.951030i 0.998856 0.0478262i \(-0.0152294\pi\)
−0.0478262 + 0.998856i \(0.515229\pi\)
\(308\) −11.6355 7.24825i −0.662996 0.413008i
\(309\) −11.1416 + 11.1416i −0.633825 + 0.633825i
\(310\) 0 0
\(311\) 21.9072i 1.24224i 0.783714 + 0.621122i \(0.213323\pi\)
−0.783714 + 0.621122i \(0.786677\pi\)
\(312\) 3.61875 + 10.1518i 0.204871 + 0.574733i
\(313\) 12.4820i 0.705525i 0.935713 + 0.352763i \(0.114758\pi\)
−0.935713 + 0.352763i \(0.885242\pi\)
\(314\) −2.39556 1.90280i −0.135189 0.107381i
\(315\) 0 0
\(316\) −21.9291 + 5.09479i −1.23361 + 0.286604i
\(317\) 4.24325 + 4.24325i 0.238324 + 0.238324i 0.816156 0.577832i \(-0.196101\pi\)
−0.577832 + 0.816156i \(0.696101\pi\)
\(318\) 0.994051 0.113957i 0.0557436 0.00639037i
\(319\) 38.0100 2.12815
\(320\) 0 0
\(321\) −2.49338 −0.139167
\(322\) −4.83261 + 0.554004i −0.269311 + 0.0308734i
\(323\) −5.50108 5.50108i −0.306088 0.306088i
\(324\) −0.891310 + 0.207078i −0.0495172 + 0.0115044i
\(325\) 0 0
\(326\) −15.8739 12.6087i −0.879173 0.698330i
\(327\) 4.56907i 0.252670i
\(328\) −1.51600 4.25290i −0.0837073 0.234827i
\(329\) 7.60946i 0.419523i
\(330\) 0 0
\(331\) 1.10377 1.10377i 0.0606688 0.0606688i −0.676121 0.736790i \(-0.736341\pi\)
0.736790 + 0.676121i \(0.236341\pi\)
\(332\) −19.8033 12.3363i −1.08685 0.677042i
\(333\) −4.32763 4.32763i −0.237152 0.237152i
\(334\) 0.415504 + 3.62447i 0.0227354 + 0.198322i
\(335\) 0 0
\(336\) 2.29992 6.74018i 0.125471 0.367707i
\(337\) 7.47635 0.407263 0.203631 0.979048i \(-0.434726\pi\)
0.203631 + 0.979048i \(0.434726\pi\)
\(338\) −0.0747522 0.652068i −0.00406598 0.0354678i
\(339\) 11.6208 + 11.6208i 0.631158 + 0.631158i
\(340\) 0 0
\(341\) −20.1208 + 20.1208i −1.08960 + 1.08960i
\(342\) 6.92312 8.71597i 0.374360 0.471305i
\(343\) 18.9633i 1.02392i
\(344\) −13.8343 + 29.1602i −0.745894 + 1.57221i
\(345\) 0 0
\(346\) 22.2027 + 17.6357i 1.19363 + 0.948102i
\(347\) 8.56074 8.56074i 0.459565 0.459565i −0.438948 0.898512i \(-0.644649\pi\)
0.898512 + 0.438948i \(0.144649\pi\)
\(348\) 4.46877 + 19.2345i 0.239551 + 1.03108i
\(349\) −7.91567 7.91567i −0.423716 0.423716i 0.462765 0.886481i \(-0.346857\pi\)
−0.886481 + 0.462765i \(0.846857\pi\)
\(350\) 0 0
\(351\) −18.7535 −1.00099
\(352\) −4.81809 + 22.0955i −0.256805 + 1.17769i
\(353\) −9.67314 −0.514849 −0.257425 0.966298i \(-0.582874\pi\)
−0.257425 + 0.966298i \(0.582874\pi\)
\(354\) 6.36719 0.729926i 0.338412 0.0387951i
\(355\) 0 0
\(356\) 5.42314 + 23.3424i 0.287426 + 1.23714i
\(357\) 2.39127 2.39127i 0.126559 0.126559i
\(358\) −15.4739 12.2910i −0.817822 0.649599i
\(359\) 17.0867i 0.901799i −0.892575 0.450900i \(-0.851103\pi\)
0.892575 0.450900i \(-0.148897\pi\)
\(360\) 0 0
\(361\) 2.22373i 0.117038i
\(362\) −7.71884 + 9.71774i −0.405693 + 0.510753i
\(363\) 3.65827 3.65827i 0.192010 0.192010i
\(364\) −6.65283 + 10.6797i −0.348703 + 0.559768i
\(365\) 0 0
\(366\) −0.819410 7.14776i −0.0428312 0.373620i
\(367\) 13.4500 0.702086 0.351043 0.936359i \(-0.385827\pi\)
0.351043 + 0.936359i \(0.385827\pi\)
\(368\) 3.53772 + 7.20259i 0.184416 + 0.375461i
\(369\) 3.06750 0.159688
\(370\) 0 0
\(371\) 0.825987 + 0.825987i 0.0428831 + 0.0428831i
\(372\) −12.5475 7.81633i −0.650555 0.405258i
\(373\) 12.0271 12.0271i 0.622740 0.622740i −0.323491 0.946231i \(-0.604857\pi\)
0.946231 + 0.323491i \(0.104857\pi\)
\(374\) −6.67908 + 8.40872i −0.345367 + 0.434804i
\(375\) 0 0
\(376\) −11.8244 + 4.21497i −0.609798 + 0.217371i
\(377\) 34.8876i 1.79680i
\(378\) 9.70367 + 7.70766i 0.499103 + 0.396439i
\(379\) −19.1552 + 19.1552i −0.983936 + 0.983936i −0.999873 0.0159369i \(-0.994927\pi\)
0.0159369 + 0.999873i \(0.494927\pi\)
\(380\) 0 0
\(381\) −13.4551 13.4551i −0.689327 0.689327i
\(382\) −26.5943 + 3.04874i −1.36068 + 0.155987i
\(383\) 17.7503 0.907000 0.453500 0.891256i \(-0.350175\pi\)
0.453500 + 0.891256i \(0.350175\pi\)
\(384\) −11.7476 + 0.159590i −0.599493 + 0.00814406i
\(385\) 0 0
\(386\) −6.22401 + 0.713512i −0.316794 + 0.0363168i
\(387\) −15.5053 15.5053i −0.788181 0.788181i
\(388\) 12.6733 2.94440i 0.643390 0.149479i
\(389\) 1.18654 1.18654i 0.0601602 0.0601602i −0.676387 0.736547i \(-0.736455\pi\)
0.736547 + 0.676387i \(0.236455\pi\)
\(390\) 0 0
\(391\) 3.81042i 0.192701i
\(392\) −10.8178 + 3.85615i −0.546382 + 0.194765i
\(393\) 14.9848i 0.755886i
\(394\) 7.95303 10.0126i 0.400668 0.504427i
\(395\) 0 0
\(396\) −13.0410 8.12379i −0.655336 0.408236i
\(397\) 4.74478 + 4.74478i 0.238134 + 0.238134i 0.816077 0.577943i \(-0.196145\pi\)
−0.577943 + 0.816077i \(0.696145\pi\)
\(398\) −0.943283 8.22832i −0.0472825 0.412448i
\(399\) −7.29250 −0.365081
\(400\) 0 0
\(401\) 0.632677 0.0315944 0.0157972 0.999875i \(-0.494971\pi\)
0.0157972 + 0.999875i \(0.494971\pi\)
\(402\) 0.426853 + 3.72346i 0.0212895 + 0.185709i
\(403\) 18.4679 + 18.4679i 0.919953 + 0.919953i
\(404\) −10.0544 + 16.1402i −0.500225 + 0.803005i
\(405\) 0 0
\(406\) −14.3388 + 18.0520i −0.711621 + 0.895905i
\(407\) 12.7324i 0.631124i
\(408\) −5.04038 2.39127i −0.249536 0.118385i
\(409\) 26.3809i 1.30445i −0.758024 0.652226i \(-0.773835\pi\)
0.758024 0.652226i \(-0.226165\pi\)
\(410\) 0 0
\(411\) −11.0030 + 11.0030i −0.542739 + 0.542739i
\(412\) 6.86751 + 29.5592i 0.338338 + 1.45628i
\(413\) 5.29069 + 5.29069i 0.260338 + 0.260338i
\(414\) −5.41636 + 0.620923i −0.266199 + 0.0305167i
\(415\) 0 0
\(416\) 20.2804 + 4.42229i 0.994328 + 0.216821i
\(417\) 12.1760 0.596260
\(418\) 23.0061 2.63739i 1.12527 0.128999i
\(419\) 1.37589 + 1.37589i 0.0672167 + 0.0672167i 0.739916 0.672699i \(-0.234865\pi\)
−0.672699 + 0.739916i \(0.734865\pi\)
\(420\) 0 0
\(421\) 6.65671 6.65671i 0.324428 0.324428i −0.526035 0.850463i \(-0.676322\pi\)
0.850463 + 0.526035i \(0.176322\pi\)
\(422\) −11.9081 9.45861i −0.579675 0.460438i
\(423\) 8.52862i 0.414676i
\(424\) 0.825987 1.74104i 0.0401135 0.0845522i
\(425\) 0 0
\(426\) 0.346323 0.436009i 0.0167794 0.0211247i
\(427\) 5.93929 5.93929i 0.287422 0.287422i
\(428\) −2.53909 + 4.07597i −0.122731 + 0.197019i
\(429\) −10.7715 10.7715i −0.520051 0.520051i
\(430\) 0 0
\(431\) 4.08798 0.196911 0.0984556 0.995141i \(-0.468610\pi\)
0.0984556 + 0.995141i \(0.468610\pi\)
\(432\) 6.60204 19.3480i 0.317641 0.930882i
\(433\) 29.2913 1.40765 0.703826 0.710373i \(-0.251474\pi\)
0.703826 + 0.710373i \(0.251474\pi\)
\(434\) −1.96562 17.1462i −0.0943526 0.823044i
\(435\) 0 0
\(436\) −7.46912 4.65283i −0.357706 0.222830i
\(437\) 5.81020 5.81020i 0.277940 0.277940i
\(438\) 7.65188 9.63344i 0.365621 0.460304i
\(439\) 26.9790i 1.28764i 0.765178 + 0.643819i \(0.222651\pi\)
−0.765178 + 0.643819i \(0.777349\pi\)
\(440\) 0 0
\(441\) 7.80258i 0.371551i
\(442\) 7.71796 + 6.13040i 0.367106 + 0.291594i
\(443\) −14.5286 + 14.5286i −0.690276 + 0.690276i −0.962293 0.272017i \(-0.912309\pi\)
0.272017 + 0.962293i \(0.412309\pi\)
\(444\) 6.44310 1.49693i 0.305776 0.0710411i
\(445\) 0 0
\(446\) −12.9603 + 1.48575i −0.613686 + 0.0703521i
\(447\) 10.7315 0.507582
\(448\) −8.67619 10.6235i −0.409911 0.501911i
\(449\) −23.1572 −1.09286 −0.546428 0.837506i \(-0.684013\pi\)
−0.546428 + 0.837506i \(0.684013\pi\)
\(450\) 0 0
\(451\) 4.51249 + 4.51249i 0.212485 + 0.212485i
\(452\) 30.8306 7.16290i 1.45015 0.336914i
\(453\) 3.35479 3.35479i 0.157622 0.157622i
\(454\) 14.4349 + 11.4657i 0.677466 + 0.538113i
\(455\) 0 0
\(456\) 4.03940 + 11.3319i 0.189162 + 0.530665i
\(457\) 37.7026i 1.76365i 0.471572 + 0.881827i \(0.343687\pi\)
−0.471572 + 0.881827i \(0.656313\pi\)
\(458\) 2.03772 2.56542i 0.0952165 0.119874i
\(459\) 6.86425 6.86425i 0.320396 0.320396i
\(460\) 0 0
\(461\) 11.3737 + 11.3737i 0.529727 + 0.529727i 0.920491 0.390764i \(-0.127789\pi\)
−0.390764 + 0.920491i \(0.627789\pi\)
\(462\) 1.14645 + 10.0006i 0.0533377 + 0.465268i
\(463\) −7.94895 −0.369419 −0.184710 0.982793i \(-0.559134\pi\)
−0.184710 + 0.982793i \(0.559134\pi\)
\(464\) 35.9936 + 12.2820i 1.67096 + 0.570175i
\(465\) 0 0
\(466\) −1.99399 17.3937i −0.0923699 0.805749i
\(467\) −5.34999 5.34999i −0.247568 0.247568i 0.572404 0.819972i \(-0.306011\pi\)
−0.819972 + 0.572404i \(0.806011\pi\)
\(468\) −7.45643 + 11.9697i −0.344674 + 0.553301i
\(469\) −3.09394 + 3.09394i −0.142865 + 0.142865i
\(470\) 0 0
\(471\) 2.24643i 0.103510i
\(472\) 5.29069 11.1518i 0.243524 0.513305i
\(473\) 45.6187i 2.09755i
\(474\) 12.9446 + 10.2820i 0.594566 + 0.472266i
\(475\) 0 0
\(476\) −1.47394 6.34414i −0.0675578 0.290783i
\(477\) 0.925759 + 0.925759i 0.0423876 + 0.0423876i
\(478\) −10.9232 + 1.25222i −0.499617 + 0.0572754i
\(479\) 9.58973 0.438166 0.219083 0.975706i \(-0.429693\pi\)
0.219083 + 0.975706i \(0.429693\pi\)
\(480\) 0 0
\(481\) −11.6865 −0.532859
\(482\) 4.87634 0.559017i 0.222111 0.0254625i
\(483\) 2.52564 + 2.52564i 0.114921 + 0.114921i
\(484\) −2.25490 9.70556i −0.102495 0.441162i
\(485\) 0 0
\(486\) 17.5052 + 13.9044i 0.794052 + 0.630718i
\(487\) 36.6487i 1.66071i −0.557232 0.830357i \(-0.688137\pi\)
0.557232 0.830357i \(-0.311863\pi\)
\(488\) −12.5190 5.93929i −0.566708 0.268859i
\(489\) 14.8857i 0.673154i
\(490\) 0 0
\(491\) 23.4273 23.4273i 1.05726 1.05726i 0.0590019 0.998258i \(-0.481208\pi\)
0.998258 0.0590019i \(-0.0187918\pi\)
\(492\) −1.75297 + 2.81402i −0.0790298 + 0.126866i
\(493\) 12.7697 + 12.7697i 0.575120 + 0.575120i
\(494\) −2.42073 21.1162i −0.108914 0.950064i
\(495\) 0 0
\(496\) −25.5549 + 12.5519i −1.14745 + 0.563597i
\(497\) 0.650063 0.0291593
\(498\) 1.95122 + 17.0206i 0.0874363 + 0.762713i
\(499\) 9.50152 + 9.50152i 0.425346 + 0.425346i 0.887040 0.461693i \(-0.152758\pi\)
−0.461693 + 0.887040i \(0.652758\pi\)
\(500\) 0 0
\(501\) 1.89424 1.89424i 0.0846283 0.0846283i
\(502\) −11.1304 + 14.0127i −0.496772 + 0.625419i
\(503\) 20.6875i 0.922411i −0.887293 0.461206i \(-0.847417\pi\)
0.887293 0.461206i \(-0.152583\pi\)
\(504\) 8.77775 3.12894i 0.390992 0.139374i
\(505\) 0 0
\(506\) −8.88124 7.05440i −0.394819 0.313606i
\(507\) −0.340787 + 0.340787i −0.0151349 + 0.0151349i
\(508\) −35.6970 + 8.29351i −1.58380 + 0.367965i
\(509\) −11.6381 11.6381i −0.515850 0.515850i 0.400463 0.916313i \(-0.368849\pi\)
−0.916313 + 0.400463i \(0.868849\pi\)
\(510\) 0 0
\(511\) 14.3629 0.635377
\(512\) −11.7021 + 19.3665i −0.517163 + 0.855887i
\(513\) −20.9335 −0.924235
\(514\) 5.08935 0.583436i 0.224482 0.0257343i
\(515\) 0 0
\(516\) 23.0848 5.36331i 1.01625 0.236106i
\(517\) 12.5462 12.5462i 0.551780 0.551780i
\(518\) 6.04698 + 4.80314i 0.265689 + 0.211038i
\(519\) 20.8205i 0.913921i
\(520\) 0 0
\(521\) 5.18654i 0.227227i −0.993525 0.113613i \(-0.963758\pi\)
0.993525 0.113613i \(-0.0362425\pi\)
\(522\) −16.0708 + 20.2325i −0.703398 + 0.885554i
\(523\) −26.9589 + 26.9589i −1.17883 + 1.17883i −0.198788 + 0.980043i \(0.563700\pi\)
−0.980043 + 0.198788i \(0.936300\pi\)
\(524\) −24.4959 15.2595i −1.07011 0.666616i
\(525\) 0 0
\(526\) −2.21334 19.3071i −0.0965064 0.841832i
\(527\) −13.5195 −0.588917
\(528\) 14.9050 7.32092i 0.648655 0.318602i
\(529\) 18.9755 0.825020
\(530\) 0 0
\(531\) 5.92976 + 5.92976i 0.257330 + 0.257330i
\(532\) −7.42617 + 11.9211i −0.321965 + 0.516847i
\(533\) 4.14180 4.14180i 0.179401 0.179401i
\(534\) 10.9446 13.7789i 0.473620 0.596271i
\(535\) 0 0
\(536\) 6.52148 + 3.09394i 0.281685 + 0.133638i
\(537\) 14.5106i 0.626179i
\(538\) −6.61262 5.25243i −0.285090 0.226448i
\(539\) 11.4781 11.4781i 0.494397 0.494397i
\(540\) 0 0
\(541\) 27.4945 + 27.4945i 1.18208 + 1.18208i 0.979204 + 0.202878i \(0.0650294\pi\)
0.202878 + 0.979204i \(0.434971\pi\)
\(542\) 7.58727 0.869794i 0.325901 0.0373609i
\(543\) 9.11278 0.391067
\(544\) −9.04181 + 5.80447i −0.387664 + 0.248865i
\(545\) 0 0
\(546\) 9.17903 1.05227i 0.392826 0.0450331i
\(547\) 22.5197 + 22.5197i 0.962873 + 0.962873i 0.999335 0.0364619i \(-0.0116088\pi\)
−0.0364619 + 0.999335i \(0.511609\pi\)
\(548\) 6.78208 + 29.1915i 0.289716 + 1.24700i
\(549\) 6.65671 6.65671i 0.284101 0.284101i
\(550\) 0 0
\(551\) 38.9431i 1.65903i
\(552\) 2.52564 5.32361i 0.107499 0.226588i
\(553\) 19.2996i 0.820704i
\(554\) −6.32835 + 7.96717i −0.268866 + 0.338493i
\(555\) 0 0
\(556\) 12.3992 19.9042i 0.525842 0.844127i
\(557\) 13.7333 + 13.7333i 0.581897 + 0.581897i 0.935424 0.353527i \(-0.115018\pi\)
−0.353527 + 0.935424i \(0.615018\pi\)
\(558\) −2.20305 19.2173i −0.0932625 0.813535i
\(559\) −41.8713 −1.77097
\(560\) 0 0
\(561\) 7.88525 0.332916
\(562\) −3.42721 29.8958i −0.144568 1.26108i
\(563\) 0.229223 + 0.229223i 0.00966061 + 0.00966061i 0.711921 0.702260i \(-0.247826\pi\)
−0.702260 + 0.711921i \(0.747826\pi\)
\(564\) 7.82386 + 4.87381i 0.329444 + 0.205224i
\(565\) 0 0
\(566\) −5.08177 + 6.39776i −0.213603 + 0.268918i
\(567\) 0.784437i 0.0329433i
\(568\) −0.360078 1.01014i −0.0151085 0.0423846i
\(569\) 23.0376i 0.965787i 0.875679 + 0.482894i \(0.160414\pi\)
−0.875679 + 0.482894i \(0.839586\pi\)
\(570\) 0 0
\(571\) −11.8610 + 11.8610i −0.496367 + 0.496367i −0.910305 0.413938i \(-0.864153\pi\)
0.413938 + 0.910305i \(0.364153\pi\)
\(572\) −28.5772 + 6.63934i −1.19487 + 0.277605i
\(573\) 13.8989 + 13.8989i 0.580633 + 0.580633i
\(574\) −3.84538 + 0.440829i −0.160503 + 0.0183998i
\(575\) 0 0
\(576\) −9.72421 11.9067i −0.405175 0.496112i
\(577\) −39.7168 −1.65343 −0.826715 0.562621i \(-0.809793\pi\)
−0.826715 + 0.562621i \(0.809793\pi\)
\(578\) 18.8163 2.15708i 0.782657 0.0897226i
\(579\) 3.25282 + 3.25282i 0.135183 + 0.135183i
\(580\) 0 0
\(581\) −14.1429 + 14.1429i −0.586748 + 0.586748i
\(582\) −7.48100 5.94218i −0.310097 0.246311i
\(583\) 2.72371i 0.112804i
\(584\) −7.95578 22.3187i −0.329213 0.923553i
\(585\) 0 0
\(586\) 9.21016 11.5953i 0.380468 0.478996i
\(587\) −8.63887 + 8.63887i −0.356564 + 0.356564i −0.862545 0.505980i \(-0.831131\pi\)
0.505980 + 0.862545i \(0.331131\pi\)
\(588\) 7.15782 + 4.45890i 0.295183 + 0.183882i
\(589\) 20.6147 + 20.6147i 0.849414 + 0.849414i
\(590\) 0 0
\(591\) −9.38927 −0.386223
\(592\) 4.11416 12.0570i 0.169091 0.495540i
\(593\) −45.8229 −1.88172 −0.940860 0.338795i \(-0.889981\pi\)
−0.940860 + 0.338795i \(0.889981\pi\)
\(594\) 3.29094 + 28.7071i 0.135029 + 1.17787i
\(595\) 0 0
\(596\) 10.9282 17.5429i 0.447637 0.718586i
\(597\) −4.30032 + 4.30032i −0.176000 + 0.176000i
\(598\) −6.47489 + 8.15166i −0.264778 + 0.333346i
\(599\) 17.0609i 0.697090i 0.937292 + 0.348545i \(0.113324\pi\)
−0.937292 + 0.348545i \(0.886676\pi\)
\(600\) 0 0
\(601\) 38.0363i 1.55153i −0.631020 0.775766i \(-0.717364\pi\)
0.631020 0.775766i \(-0.282636\pi\)
\(602\) 21.6656 + 17.2090i 0.883023 + 0.701388i
\(603\) −3.46766 + 3.46766i −0.141214 + 0.141214i
\(604\) −2.06783 8.90040i −0.0841390 0.362152i
\(605\) 0 0
\(606\) 13.8723 1.59030i 0.563522 0.0646013i
\(607\) −8.67169 −0.351973 −0.175987 0.984393i \(-0.556312\pi\)
−0.175987 + 0.984393i \(0.556312\pi\)
\(608\) 22.6379 + 4.93635i 0.918087 + 0.200196i
\(609\) 16.9282 0.685965
\(610\) 0 0
\(611\) −11.5155 11.5155i −0.465868 0.465868i
\(612\) −1.65198 7.11047i −0.0667773 0.287424i
\(613\) 13.9739 13.9739i 0.564401 0.564401i −0.366153 0.930554i \(-0.619325\pi\)
0.930554 + 0.366153i \(0.119325\pi\)
\(614\) −26.0962 20.7283i −1.05316 0.836526i
\(615\) 0 0
\(616\) 17.5155 + 8.30976i 0.705720 + 0.334810i
\(617\) 37.3904i 1.50528i −0.658431 0.752641i \(-0.728780\pi\)
0.658431 0.752641i \(-0.271220\pi\)
\(618\) 13.8595 17.4487i 0.557512 0.701888i
\(619\) 23.2754 23.2754i 0.935516 0.935516i −0.0625269 0.998043i \(-0.519916\pi\)
0.998043 + 0.0625269i \(0.0199159\pi\)
\(620\) 0 0
\(621\) 7.24998 + 7.24998i 0.290932 + 0.290932i
\(622\) −3.52856 30.7799i −0.141482 1.23416i
\(623\) 20.5435 0.823058
\(624\) −6.71952 13.6806i −0.268996 0.547660i
\(625\) 0 0
\(626\) −2.01046 17.5374i −0.0803541 0.700934i
\(627\) −12.0236 12.0236i −0.480175 0.480175i
\(628\) 3.67228 + 2.28761i 0.146540 + 0.0912857i
\(629\) 4.27756 4.27756i 0.170557 0.170557i
\(630\) 0 0
\(631\) 19.1834i 0.763680i 0.924228 + 0.381840i \(0.124710\pi\)
−0.924228 + 0.381840i \(0.875290\pi\)
\(632\) 29.9900 10.6903i 1.19294 0.425238i
\(633\) 11.1667i 0.443838i
\(634\) −6.64526 5.27835i −0.263917 0.209630i
\(635\) 0 0
\(636\) −1.37830 + 0.320221i −0.0546531 + 0.0126976i
\(637\) −10.5352 10.5352i −0.417420 0.417420i
\(638\) −53.4045 + 6.12222i −2.11431 + 0.242381i
\(639\) 0.728585 0.0288224
\(640\) 0 0
\(641\) −16.1765 −0.638933 −0.319466 0.947598i \(-0.603504\pi\)
−0.319466 + 0.947598i \(0.603504\pi\)
\(642\) 3.50323 0.401605i 0.138261 0.0158501i
\(643\) −15.0289 15.0289i −0.592681 0.592681i 0.345674 0.938355i \(-0.387650\pi\)
−0.938355 + 0.345674i \(0.887650\pi\)
\(644\) 6.70064 1.55676i 0.264042 0.0613451i
\(645\) 0 0
\(646\) 8.61512 + 6.84302i 0.338958 + 0.269235i
\(647\) 49.3812i 1.94138i 0.240345 + 0.970688i \(0.422739\pi\)
−0.240345 + 0.970688i \(0.577261\pi\)
\(648\) 1.21895 0.434509i 0.0478847 0.0170691i
\(649\) 17.4461i 0.684821i
\(650\) 0 0
\(651\) −8.96103 + 8.96103i −0.351210 + 0.351210i
\(652\) 24.3338 + 15.1586i 0.952987 + 0.593655i
\(653\) 19.8685 + 19.8685i 0.777514 + 0.777514i 0.979408 0.201893i \(-0.0647094\pi\)
−0.201893 + 0.979408i \(0.564709\pi\)
\(654\) 0.735933 + 6.41960i 0.0287773 + 0.251026i
\(655\) 0 0
\(656\) 2.81501 + 5.73120i 0.109908 + 0.223766i
\(657\) 16.0978 0.628035
\(658\) 1.22564 + 10.6914i 0.0477806 + 0.416793i
\(659\) −4.94765 4.94765i −0.192733 0.192733i 0.604143 0.796876i \(-0.293516\pi\)
−0.796876 + 0.604143i \(0.793516\pi\)
\(660\) 0 0
\(661\) 12.1602 12.1602i 0.472977 0.472977i −0.429899 0.902877i \(-0.641451\pi\)
0.902877 + 0.429899i \(0.141451\pi\)
\(662\) −1.37303 + 1.72860i −0.0533643 + 0.0671838i
\(663\) 7.23750i 0.281081i
\(664\) 29.8109 + 14.1429i 1.15689 + 0.548853i
\(665\) 0 0
\(666\) 6.77741 + 5.38332i 0.262619 + 0.208599i
\(667\) −13.4873 + 13.4873i −0.522231 + 0.522231i
\(668\) −1.16758 5.02550i −0.0451749 0.194442i
\(669\) 6.77335 + 6.77335i 0.261873 + 0.261873i
\(670\) 0 0
\(671\) 19.5849 0.756067
\(672\) −2.14579 + 9.84048i −0.0827756 + 0.379605i
\(673\) −32.9882 −1.27160 −0.635801 0.771853i \(-0.719330\pi\)
−0.635801 + 0.771853i \(0.719330\pi\)
\(674\) −10.5044 + 1.20420i −0.404613 + 0.0463842i
\(675\) 0 0
\(676\) 0.210055 + 0.904123i 0.00807905 + 0.0347740i
\(677\) −18.4610 + 18.4610i −0.709513 + 0.709513i −0.966433 0.256920i \(-0.917292\pi\)
0.256920 + 0.966433i \(0.417292\pi\)
\(678\) −18.1992 14.4557i −0.698935 0.555167i
\(679\) 11.1537i 0.428040i
\(680\) 0 0
\(681\) 13.5363i 0.518713i
\(682\) 25.0291 31.5108i 0.958415 1.20661i
\(683\) −12.2374 + 12.2374i −0.468251 + 0.468251i −0.901347 0.433097i \(-0.857421\pi\)
0.433097 + 0.901347i \(0.357421\pi\)
\(684\) −8.32320 + 13.3611i −0.318245 + 0.510875i
\(685\) 0 0
\(686\) 3.05440 + 26.6437i 0.116617 + 1.01726i
\(687\) −2.40571 −0.0917837
\(688\) 14.7405 43.1987i 0.561977 1.64693i
\(689\) 2.49996 0.0952409
\(690\) 0 0
\(691\) −9.46014 9.46014i −0.359881 0.359881i 0.503888 0.863769i \(-0.331902\pi\)
−0.863769 + 0.503888i \(0.831902\pi\)
\(692\) −34.0356 21.2022i −1.29384 0.805987i
\(693\) −9.31352 + 9.31352i −0.353791 + 0.353791i
\(694\) −10.6491 + 13.4068i −0.404233 + 0.508915i
\(695\) 0 0
\(696\) −9.37674 26.3049i −0.355425 0.997086i
\(697\) 3.03201i 0.114845i
\(698\) 12.3966 + 9.84664i 0.469217 + 0.372701i
\(699\) −9.09039 + 9.09039i −0.343830 + 0.343830i
\(700\) 0 0
\(701\) −5.14714 5.14714i −0.194405 0.194405i 0.603192 0.797596i \(-0.293895\pi\)
−0.797596 + 0.603192i \(0.793895\pi\)
\(702\) 26.3489 3.02060i 0.994474 0.114005i
\(703\) −13.0450 −0.492001
\(704\) 3.21058 31.8205i 0.121003 1.19928i
\(705\) 0 0
\(706\) 13.5909 1.55804i 0.511499 0.0586375i
\(707\) 11.5269 + 11.5269i 0.433512 + 0.433512i
\(708\) −8.82840 + 2.05111i −0.331792 + 0.0770853i
\(709\) 18.0125 18.0125i 0.676472 0.676472i −0.282728 0.959200i \(-0.591239\pi\)
0.959200 + 0.282728i \(0.0912395\pi\)
\(710\) 0 0
\(711\) 21.6309i 0.811222i
\(712\) −11.3793 31.9228i −0.426457 1.19636i
\(713\) 14.2792i 0.534759i
\(714\) −2.97460 + 3.74492i −0.111322 + 0.140150i
\(715\) 0 0
\(716\) 23.7207 + 14.7766i 0.886485 + 0.552228i
\(717\) 5.70875 + 5.70875i 0.213197 + 0.213197i
\(718\) 2.75212 + 24.0069i 0.102708 + 0.895931i
\(719\) −34.5017 −1.28669 −0.643347 0.765574i \(-0.722455\pi\)
−0.643347 + 0.765574i \(0.722455\pi\)
\(720\) 0 0
\(721\) 26.0149 0.968846
\(722\) 0.358173 + 3.12437i 0.0133298 + 0.116277i
\(723\) −2.54850 2.54850i −0.0947796 0.0947796i
\(724\) 9.27983 14.8968i 0.344882 0.553635i
\(725\) 0 0
\(726\) −4.55068 + 5.72915i −0.168892 + 0.212629i
\(727\) 12.8421i 0.476288i −0.971230 0.238144i \(-0.923461\pi\)
0.971230 0.238144i \(-0.0765391\pi\)
\(728\) 7.62713 16.0767i 0.282680 0.595841i
\(729\) 15.0429i 0.557143i
\(730\) 0 0
\(731\) 15.3259 15.3259i 0.566851 0.566851i
\(732\) 2.30256 + 9.91071i 0.0851050 + 0.366310i
\(733\) 24.1490 + 24.1490i 0.891965 + 0.891965i 0.994708 0.102743i \(-0.0327618\pi\)
−0.102743 + 0.994708i \(0.532762\pi\)
\(734\) −18.8974 + 2.16638i −0.697517 + 0.0799624i
\(735\) 0 0
\(736\) −6.13065 9.54990i −0.225979 0.352014i
\(737\) −10.2023 −0.375807
\(738\) −4.30987 + 0.494077i −0.158648 + 0.0181872i
\(739\) −35.9398 35.9398i −1.32207 1.32207i −0.912101 0.409966i \(-0.865540\pi\)
−0.409966 0.912101i \(-0.634460\pi\)
\(740\) 0 0
\(741\) −11.0359 + 11.0359i −0.405412 + 0.405412i
\(742\) −1.29356 1.02748i −0.0474881 0.0377200i
\(743\) 45.9502i 1.68575i −0.538109 0.842875i \(-0.680861\pi\)
0.538109 0.842875i \(-0.319139\pi\)
\(744\) 18.8883 + 8.96103i 0.692478 + 0.328527i
\(745\) 0 0
\(746\) −14.9610 + 18.8354i −0.547762 + 0.689613i
\(747\) −15.8513 + 15.8513i −0.579969 + 0.579969i
\(748\) 8.02980 12.8901i 0.293598 0.471310i
\(749\) 2.91094 + 2.91094i 0.106363 + 0.106363i
\(750\) 0 0
\(751\) −24.4820 −0.893361 −0.446680 0.894694i \(-0.647394\pi\)
−0.446680 + 0.894694i \(0.647394\pi\)
\(752\) 15.9346 7.82663i 0.581074 0.285408i
\(753\) 13.1404 0.478863
\(754\) 5.61929 + 49.0175i 0.204643 + 1.78511i
\(755\) 0 0
\(756\) −14.8752 9.26639i −0.541007 0.337015i
\(757\) 17.0328 17.0328i 0.619067 0.619067i −0.326225 0.945292i \(-0.605777\pi\)
0.945292 + 0.326225i \(0.105777\pi\)
\(758\) 23.8280 29.9986i 0.865471 1.08960i
\(759\) 8.32835i 0.302300i
\(760\) 0 0
\(761\) 8.53590i 0.309426i 0.987959 + 0.154713i \(0.0494453\pi\)
−0.987959 + 0.154713i \(0.950555\pi\)
\(762\) 21.0718 + 16.7374i 0.763350 + 0.606332i
\(763\) −5.33423 + 5.33423i −0.193112 + 0.193112i
\(764\) 36.8743 8.56702i 1.33407 0.309944i
\(765\) 0 0
\(766\) −24.9394 + 2.85902i −0.901099 + 0.103301i
\(767\) 16.0130 0.578195
\(768\) 16.4798 2.11640i 0.594664 0.0763689i
\(769\) 1.87438 0.0675917 0.0337959 0.999429i \(-0.489240\pi\)
0.0337959 + 0.999429i \(0.489240\pi\)
\(770\) 0 0
\(771\) −2.65982 2.65982i −0.0957911 0.0957911i
\(772\) 8.62988 2.00498i 0.310596 0.0721610i
\(773\) −21.5374 + 21.5374i −0.774645 + 0.774645i −0.978915 0.204270i \(-0.934518\pi\)
0.204270 + 0.978915i \(0.434518\pi\)
\(774\) 24.2826 + 19.2878i 0.872820 + 0.693284i
\(775\) 0 0
\(776\) −17.3319 + 6.17818i −0.622179 + 0.221784i
\(777\) 5.67054i 0.203429i
\(778\) −1.47599 + 1.85822i −0.0529169 + 0.0666205i
\(779\) 4.62326 4.62326i 0.165645 0.165645i
\(780\) 0 0
\(781\) 1.07180 + 1.07180i 0.0383519 + 0.0383519i
\(782\) −0.613739 5.35369i −0.0219473 0.191448i
\(783\) 48.5932 1.73658
\(784\) 14.5781 7.16035i 0.520645 0.255727i
\(785\) 0 0
\(786\) 2.41359 + 21.0539i 0.0860898 + 0.750967i
\(787\) 7.03687 + 7.03687i 0.250837 + 0.250837i 0.821314 0.570477i \(-0.193241\pi\)
−0.570477 + 0.821314i \(0.693241\pi\)
\(788\) −9.56139 + 15.3488i −0.340610 + 0.546778i
\(789\) −10.0904 + 10.0904i −0.359227 + 0.359227i
\(790\) 0 0
\(791\) 27.1339i 0.964770i
\(792\) 19.6313 + 9.31352i 0.697566 + 0.330941i
\(793\) 17.9761i 0.638348i
\(794\) −7.43071 5.90224i −0.263706 0.209463i
\(795\) 0 0
\(796\) 2.65065 + 11.4089i 0.0939497 + 0.404379i
\(797\) 8.07933 + 8.07933i 0.286185 + 0.286185i 0.835569 0.549385i \(-0.185138\pi\)
−0.549385 + 0.835569i \(0.685138\pi\)
\(798\) 10.2460 1.17459i 0.362706 0.0415801i
\(799\) 8.42995 0.298230
\(800\) 0 0
\(801\) 23.0250 0.813548
\(802\) −0.888918 + 0.101904i −0.0313888 + 0.00359837i
\(803\) 23.6809 + 23.6809i 0.835682 + 0.835682i
\(804\) −1.19947 5.16276i −0.0423019 0.182076i
\(805\) 0 0
\(806\) −28.9222 22.9730i −1.01874 0.809191i
\(807\) 6.20097i 0.218284i
\(808\) 11.5269 24.2966i 0.405514 0.854752i
\(809\) 5.40185i 0.189919i −0.995481 0.0949595i \(-0.969728\pi\)
0.995481 0.0949595i \(-0.0302722\pi\)
\(810\) 0 0
\(811\) −10.3478 + 10.3478i −0.363360 + 0.363360i −0.865049 0.501688i \(-0.832712\pi\)
0.501688 + 0.865049i \(0.332712\pi\)
\(812\) 17.2385 27.6728i 0.604953 0.971124i
\(813\) −3.96530 3.96530i −0.139069 0.139069i
\(814\) 2.05080 + 17.8892i 0.0718804 + 0.627017i
\(815\) 0 0
\(816\) 7.46694 + 2.54791i 0.261395 + 0.0891948i
\(817\) −46.7385 −1.63517
\(818\) 4.24913 + 37.0655i 0.148568 + 1.29596i
\(819\) 8.54843 + 8.54843i 0.298706 + 0.298706i
\(820\) 0 0
\(821\) 10.7321 10.7321i 0.374551 0.374551i −0.494581 0.869132i \(-0.664678\pi\)
0.869132 + 0.494581i \(0.164678\pi\)
\(822\) 13.6871 17.2316i 0.477394 0.601022i
\(823\) 3.51588i 0.122556i −0.998121 0.0612780i \(-0.980482\pi\)
0.998121 0.0612780i \(-0.0195176\pi\)
\(824\) −14.4100 40.4249i −0.501996 1.40827i
\(825\) 0 0
\(826\) −8.28564 6.58131i −0.288294 0.228993i
\(827\) −27.7375 + 27.7375i −0.964529 + 0.964529i −0.999392 0.0348631i \(-0.988900\pi\)
0.0348631 + 0.999392i \(0.488900\pi\)
\(828\) 7.51003 1.74481i 0.260992 0.0606363i
\(829\) 19.5849 + 19.5849i 0.680212 + 0.680212i 0.960048 0.279836i \(-0.0902800\pi\)
−0.279836 + 0.960048i \(0.590280\pi\)
\(830\) 0 0
\(831\) 7.47119 0.259173
\(832\) −29.2065 2.94683i −1.01255 0.102163i
\(833\) 7.71231 0.267216
\(834\) −17.1074 + 1.96117i −0.592380 + 0.0679096i
\(835\) 0 0
\(836\) −31.8991 + 7.41113i −1.10325 + 0.256319i
\(837\) −25.7231 + 25.7231i −0.889119 + 0.889119i
\(838\) −2.15476 1.71153i −0.0744348 0.0591238i
\(839\) 40.0520i 1.38275i −0.722496 0.691375i \(-0.757005\pi\)
0.722496 0.691375i \(-0.242995\pi\)
\(840\) 0 0
\(841\) 61.3992i 2.11722i
\(842\) −8.28056 + 10.4249i −0.285367 + 0.359267i
\(843\) −15.6243 + 15.6243i −0.538129 + 0.538129i
\(844\) 18.2544 + 11.3714i 0.628343 + 0.391421i
\(845\) 0 0
\(846\) 1.37369 + 11.9828i 0.0472285 + 0.411977i
\(847\) −8.54182 −0.293500
\(848\) −0.880095 + 2.57922i −0.0302226 + 0.0885706i
\(849\) 5.99948 0.205902
\(850\) 0 0
\(851\) 4.51793 + 4.51793i 0.154873 + 0.154873i
\(852\) −0.416361 + 0.668379i −0.0142643 + 0.0228983i
\(853\) 13.7328 13.7328i 0.470202 0.470202i −0.431778 0.901980i \(-0.642114\pi\)
0.901980 + 0.431778i \(0.142114\pi\)
\(854\) −7.38814 + 9.30140i −0.252817 + 0.318287i
\(855\) 0 0
\(856\) 2.91094 6.13575i 0.0994938 0.209716i
\(857\) 39.9485i 1.36462i 0.731065 + 0.682308i \(0.239024\pi\)
−0.731065 + 0.682308i \(0.760976\pi\)
\(858\) 16.8690 + 13.3991i 0.575897 + 0.457437i
\(859\) −33.6366 + 33.6366i −1.14766 + 1.14766i −0.160654 + 0.987011i \(0.551360\pi\)
−0.987011 + 0.160654i \(0.948640\pi\)
\(860\) 0 0
\(861\) 2.00969 + 2.00969i 0.0684900 + 0.0684900i
\(862\) −5.74366 + 0.658445i −0.195630 + 0.0224267i
\(863\) −16.5303 −0.562697 −0.281349 0.959606i \(-0.590782\pi\)
−0.281349 + 0.959606i \(0.590782\pi\)
\(864\) −6.15959 + 28.2476i −0.209554 + 0.961002i
\(865\) 0 0
\(866\) −41.1546 + 4.71791i −1.39849 + 0.160321i
\(867\) −9.83388 9.83388i −0.333976 0.333976i
\(868\) 5.52343 + 23.7740i 0.187477 + 0.806943i
\(869\) −31.8205 + 31.8205i −1.07944 + 1.07944i
\(870\) 0 0
\(871\) 9.36421i 0.317294i
\(872\) 11.2436 + 5.33423i 0.380757 + 0.180640i
\(873\) 12.5010i 0.423095i
\(874\) −7.22756 + 9.09924i −0.244476 + 0.307786i
\(875\) 0 0
\(876\) −9.19933 + 14.7676i −0.310817 + 0.498950i
\(877\) −9.66381 9.66381i −0.326324 0.326324i 0.524863 0.851187i \(-0.324117\pi\)
−0.851187 + 0.524863i \(0.824117\pi\)
\(878\) −4.34547 37.9058i −0.146652 1.27926i
\(879\) −10.8734 −0.366752
\(880\) 0 0
\(881\) −43.4299 −1.46319 −0.731596 0.681739i \(-0.761224\pi\)
−0.731596 + 0.681739i \(0.761224\pi\)
\(882\) 1.25675 + 10.9627i 0.0423170 + 0.369134i
\(883\) 22.3879 + 22.3879i 0.753413 + 0.753413i 0.975115 0.221701i \(-0.0711610\pi\)
−0.221701 + 0.975115i \(0.571161\pi\)
\(884\) −11.8312 7.37017i −0.397928 0.247885i
\(885\) 0 0
\(886\) 18.0728 22.7530i 0.607167 0.764402i
\(887\) 31.6913i 1.06409i −0.846716 0.532045i \(-0.821424\pi\)
0.846716 0.532045i \(-0.178576\pi\)
\(888\) −8.81152 + 3.14098i −0.295695 + 0.105404i
\(889\) 31.4168i 1.05368i
\(890\) 0 0
\(891\) −1.29335 + 1.29335i −0.0433288 + 0.0433288i
\(892\) 17.9700 4.17498i 0.601680 0.139789i
\(893\) −12.8541 12.8541i −0.430147 0.430147i
\(894\) −15.0779 + 1.72850i −0.504279 + 0.0578098i
\(895\) 0 0
\(896\) 13.9012 + 13.5286i 0.464408 + 0.451959i
\(897\) 7.64420 0.255232
\(898\) 32.5361 3.72989i 1.08574 0.124468i
\(899\) −47.8533 47.8533i −1.59600 1.59600i
\(900\) 0 0
\(901\) −0.915049 + 0.915049i −0.0304847 + 0.0304847i
\(902\) −7.06692 5.61328i −0.235303 0.186902i
\(903\) 20.3168i 0.676102i
\(904\) −42.1637 + 15.0298i −1.40234 + 0.499884i
\(905\) 0 0
\(906\) −4.17316 + 5.25386i −0.138644 + 0.174548i
\(907\) 24.9184 24.9184i 0.827401 0.827401i −0.159755 0.987157i \(-0.551071\pi\)
0.987157 + 0.159755i \(0.0510705\pi\)
\(908\) −22.1280 13.7845i −0.734345 0.457454i
\(909\) 12.9192 + 12.9192i 0.428503 + 0.428503i
\(910\) 0 0
\(911\) −47.0459 −1.55870 −0.779350 0.626589i \(-0.784451\pi\)
−0.779350 + 0.626589i \(0.784451\pi\)
\(912\) −7.50062 15.2708i −0.248370 0.505668i
\(913\) −46.6366 −1.54345
\(914\) −6.07271 52.9726i −0.200867 1.75218i
\(915\) 0 0
\(916\) −2.44981 + 3.93266i −0.0809441 + 0.129939i
\(917\) −17.4943 + 17.4943i −0.577712 + 0.577712i
\(918\) −8.53874 + 10.7500i −0.281820 + 0.354802i
\(919\) 12.5442i 0.413796i −0.978362 0.206898i \(-0.933663\pi\)
0.978362 0.206898i \(-0.0663369\pi\)
\(920\) 0 0
\(921\) 24.4716i 0.806368i
\(922\) −17.8121 14.1482i −0.586612 0.465948i
\(923\) 0.983751 0.983751i 0.0323806 0.0323806i
\(924\) −3.22155 13.8662i −0.105981 0.456166i
\(925\) 0 0
\(926\) 11.1684 1.28033i 0.367015 0.0420741i
\(927\) 29.1573 0.957652
\(928\) −52.5497 11.4588i −1.72503 0.376155i
\(929\) 26.7421 0.877380 0.438690 0.898639i \(-0.355443\pi\)
0.438690 + 0.898639i \(0.355443\pi\)
\(930\) 0 0
\(931\) −11.7599 11.7599i −0.385414 0.385414i
\(932\) 5.60316 + 24.1172i 0.183538 + 0.789986i
\(933\) −16.0863 + 16.0863i −0.526642 + 0.526642i
\(934\) 8.37851 + 6.65508i 0.274153 + 0.217761i
\(935\) 0 0
\(936\) 8.54843 18.0186i 0.279414 0.588956i
\(937\) 3.06580i 0.100155i 0.998745 + 0.0500777i \(0.0159469\pi\)
−0.998745 + 0.0500777i \(0.984053\pi\)
\(938\) 3.84868 4.84535i 0.125664 0.158206i
\(939\) −9.16546 + 9.16546i −0.299104 + 0.299104i
\(940\) 0 0
\(941\) −14.6023 14.6023i −0.476020 0.476020i 0.427836 0.903856i \(-0.359276\pi\)
−0.903856 + 0.427836i \(0.859276\pi\)
\(942\) −0.361830 3.15626i −0.0117890 0.102837i
\(943\) −3.20239 −0.104284
\(944\) −5.63726 + 16.5206i −0.183477 + 0.537701i
\(945\) 0 0
\(946\) 7.34774 + 64.0949i 0.238896 + 2.08390i
\(947\) −29.4872 29.4872i −0.958204 0.958204i 0.0409570 0.999161i \(-0.486959\pi\)
−0.999161 + 0.0409570i \(0.986959\pi\)
\(948\) −19.8434 12.3613i −0.644485 0.401476i
\(949\) 21.7356 21.7356i 0.705567 0.705567i
\(950\) 0 0
\(951\) 6.23158i 0.202073i
\(952\) 3.09274 + 8.67619i 0.100236 + 0.281197i
\(953\) 33.6807i 1.09103i 0.838103 + 0.545513i \(0.183665\pi\)
−0.838103 + 0.545513i \(0.816335\pi\)
\(954\) −1.44981 1.15159i −0.0469394 0.0372842i
\(955\) 0 0
\(956\) 15.1456 3.51878i 0.489843 0.113805i
\(957\) 27.9105 + 27.9105i 0.902219 + 0.902219i
\(958\) −13.4737 + 1.54460i −0.435315 + 0.0499039i
\(959\) 25.6913 0.829616
\(960\) 0 0
\(961\) 19.6628 0.634283
\(962\) 16.4197 1.88233i 0.529391 0.0606887i
\(963\) 3.26256 + 3.26256i 0.105134 + 0.105134i
\(964\) −6.76128 + 1.57085i −0.217766 + 0.0505937i
\(965\) 0 0
\(966\) −3.95536 3.14176i −0.127262 0.101084i
\(967\) 8.70089i 0.279802i −0.990166 0.139901i \(-0.955322\pi\)
0.990166 0.139901i \(-0.0446784\pi\)
\(968\) 4.73142 + 13.2732i 0.152074 + 0.426618i
\(969\) 8.07881i 0.259529i
\(970\) 0 0
\(971\) −5.87523 + 5.87523i −0.188545 + 0.188545i −0.795067 0.606522i \(-0.792564\pi\)
0.606522 + 0.795067i \(0.292564\pi\)
\(972\) −26.8346 16.7164i −0.860719 0.536177i
\(973\) −14.2150 14.2150i −0.455713 0.455713i
\(974\) 5.90296 + 51.4919i 0.189143 + 1.64991i
\(975\) 0 0
\(976\) 18.5459 + 6.32835i 0.593641 + 0.202566i
\(977\) 41.8541 1.33903 0.669516 0.742798i \(-0.266502\pi\)
0.669516 + 0.742798i \(0.266502\pi\)
\(978\) −2.39762 20.9146i −0.0766673 0.668774i
\(979\) 33.8713 + 33.8713i 1.08253 + 1.08253i
\(980\) 0 0
\(981\) −5.97856 + 5.97856i −0.190881 + 0.190881i
\(982\) −29.1422 + 36.6890i −0.929966 + 1.17079i
\(983\) 57.4539i 1.83250i 0.400612 + 0.916248i \(0.368797\pi\)
−0.400612 + 0.916248i \(0.631203\pi\)
\(984\) 2.00969 4.23607i 0.0640665 0.135041i
\(985\) 0 0
\(986\) −19.9984 15.8848i −0.636880 0.505876i
\(987\) 5.58758 5.58758i 0.177854 0.177854i
\(988\) 6.80232 + 29.2786i 0.216411 + 0.931477i
\(989\) 16.1872 + 16.1872i 0.514722 + 0.514722i
\(990\) 0 0
\(991\) 12.8205 0.407258 0.203629 0.979048i \(-0.434726\pi\)
0.203629 + 0.979048i \(0.434726\pi\)
\(992\) 33.8832 21.7516i 1.07579 0.690616i
\(993\) 1.62099 0.0514404
\(994\) −0.913345 + 0.104705i −0.0289696 + 0.00332103i
\(995\) 0 0
\(996\) −5.48298 23.5999i −0.173735 0.747792i
\(997\) 15.0860 15.0860i 0.477777 0.477777i −0.426643 0.904420i \(-0.640304\pi\)
0.904420 + 0.426643i \(0.140304\pi\)
\(998\) −14.8801 11.8193i −0.471022 0.374135i
\(999\) 16.2776i 0.514999i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.2.l.i.301.1 16
4.3 odd 2 1600.2.l.h.401.3 16
5.2 odd 4 80.2.q.c.29.4 16
5.3 odd 4 80.2.q.c.29.5 yes 16
5.4 even 2 inner 400.2.l.i.301.8 16
15.2 even 4 720.2.bm.f.109.5 16
15.8 even 4 720.2.bm.f.109.4 16
16.5 even 4 inner 400.2.l.i.101.1 16
16.11 odd 4 1600.2.l.h.1201.3 16
20.3 even 4 320.2.q.c.209.6 16
20.7 even 4 320.2.q.c.209.3 16
20.19 odd 2 1600.2.l.h.401.6 16
40.3 even 4 640.2.q.f.289.3 16
40.13 odd 4 640.2.q.e.289.6 16
40.27 even 4 640.2.q.f.289.6 16
40.37 odd 4 640.2.q.e.289.3 16
80.3 even 4 640.2.q.f.609.6 16
80.13 odd 4 640.2.q.e.609.3 16
80.27 even 4 320.2.q.c.49.6 16
80.37 odd 4 80.2.q.c.69.5 yes 16
80.43 even 4 320.2.q.c.49.3 16
80.53 odd 4 80.2.q.c.69.4 yes 16
80.59 odd 4 1600.2.l.h.1201.6 16
80.67 even 4 640.2.q.f.609.3 16
80.69 even 4 inner 400.2.l.i.101.8 16
80.77 odd 4 640.2.q.e.609.6 16
240.53 even 4 720.2.bm.f.469.5 16
240.197 even 4 720.2.bm.f.469.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.2.q.c.29.4 16 5.2 odd 4
80.2.q.c.29.5 yes 16 5.3 odd 4
80.2.q.c.69.4 yes 16 80.53 odd 4
80.2.q.c.69.5 yes 16 80.37 odd 4
320.2.q.c.49.3 16 80.43 even 4
320.2.q.c.49.6 16 80.27 even 4
320.2.q.c.209.3 16 20.7 even 4
320.2.q.c.209.6 16 20.3 even 4
400.2.l.i.101.1 16 16.5 even 4 inner
400.2.l.i.101.8 16 80.69 even 4 inner
400.2.l.i.301.1 16 1.1 even 1 trivial
400.2.l.i.301.8 16 5.4 even 2 inner
640.2.q.e.289.3 16 40.37 odd 4
640.2.q.e.289.6 16 40.13 odd 4
640.2.q.e.609.3 16 80.13 odd 4
640.2.q.e.609.6 16 80.77 odd 4
640.2.q.f.289.3 16 40.3 even 4
640.2.q.f.289.6 16 40.27 even 4
640.2.q.f.609.3 16 80.67 even 4
640.2.q.f.609.6 16 80.3 even 4
720.2.bm.f.109.4 16 15.8 even 4
720.2.bm.f.109.5 16 15.2 even 4
720.2.bm.f.469.4 16 240.197 even 4
720.2.bm.f.469.5 16 240.53 even 4
1600.2.l.h.401.3 16 4.3 odd 2
1600.2.l.h.401.6 16 20.19 odd 2
1600.2.l.h.1201.3 16 16.11 odd 4
1600.2.l.h.1201.6 16 80.59 odd 4