Properties

Label 720.2.bm.f.469.5
Level $720$
Weight $2$
Character 720.469
Analytic conductor $5.749$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [720,2,Mod(109,720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("720.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 720.bm (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.74922894553\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: 16.0.534694406811304329216.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2x^{14} - 2x^{12} + 4x^{10} + 4x^{8} + 16x^{6} - 32x^{4} - 128x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 469.5
Root \(1.40501 - 0.161069i\) of defining polynomial
Character \(\chi\) \(=\) 720.469
Dual form 720.2.bm.f.109.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.161069 - 1.40501i) q^{2} +(-1.94811 - 0.452606i) q^{4} +(1.17216 - 1.90421i) q^{5} +1.71452 q^{7} +(-0.949697 + 2.66422i) q^{8} +(-2.48664 - 1.95361i) q^{10} +(-2.82684 - 2.82684i) q^{11} +(-2.59462 - 2.59462i) q^{13} +(0.276156 - 2.40893i) q^{14} +(3.59030 + 1.76346i) q^{16} +1.89939i q^{17} +(2.89623 - 2.89623i) q^{19} +(-3.14537 + 3.17910i) q^{20} +(-4.42705 + 3.51643i) q^{22} -2.00613 q^{23} +(-2.25207 - 4.46410i) q^{25} +(-4.06338 + 3.22756i) q^{26} +(-3.34009 - 0.776005i) q^{28} +(6.72307 - 6.72307i) q^{29} -7.11778 q^{31} +(3.05596 - 4.76037i) q^{32} +(2.66867 + 0.305932i) q^{34} +(2.00970 - 3.26482i) q^{35} +(2.25207 - 2.25207i) q^{37} +(-3.60274 - 4.53572i) q^{38} +(3.96005 + 4.93133i) q^{40} +1.59630i q^{41} +(-8.06886 + 8.06886i) q^{43} +(4.22756 + 6.78645i) q^{44} +(-0.323124 + 2.81863i) q^{46} +4.43823i q^{47} -4.06040 q^{49} +(-6.63485 + 2.44515i) q^{50} +(3.88027 + 6.22896i) q^{52} +(-0.481758 + 0.481758i) q^{53} +(-8.69642 + 2.06939i) q^{55} +(-1.62828 + 4.56787i) q^{56} +(-8.36311 - 10.5289i) q^{58} +(-3.08580 - 3.08580i) q^{59} +(3.46410 - 3.46410i) q^{61} +(-1.14645 + 10.0006i) q^{62} +(-6.19615 - 5.06040i) q^{64} +(-7.98203 + 1.89939i) q^{65} +(1.80454 + 1.80454i) q^{67} +(0.859677 - 3.70023i) q^{68} +(-4.26341 - 3.34952i) q^{70} +0.379150i q^{71} +8.37718 q^{73} +(-2.80144 - 3.52691i) q^{74} +(-6.95303 + 4.33133i) q^{76} +(-4.84668 - 4.84668i) q^{77} +11.2566 q^{79} +(7.56641 - 4.76963i) q^{80} +(2.24282 + 0.257114i) q^{82} +(8.24890 + 8.24890i) q^{83} +(3.61685 + 2.22640i) q^{85} +(10.0372 + 12.6365i) q^{86} +(10.2160 - 4.84668i) q^{88} -11.9820i q^{89} +(-4.44854 - 4.44854i) q^{91} +(3.90816 + 0.907986i) q^{92} +(6.23577 + 0.714859i) q^{94} +(-2.12019 - 8.90989i) q^{95} -6.50543i q^{97} +(-0.654003 + 5.70491i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{4} + 8 q^{5} - 12 q^{10} - 8 q^{11} + 4 q^{14} + 16 q^{16} - 8 q^{19} + 4 q^{20} - 32 q^{26} + 16 q^{29} + 16 q^{31} + 48 q^{34} + 24 q^{35} + 24 q^{40} + 8 q^{44} - 28 q^{46} + 16 q^{49} - 24 q^{50}+ \cdots - 32 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.161069 1.40501i 0.113893 0.993493i
\(3\) 0 0
\(4\) −1.94811 0.452606i −0.974057 0.226303i
\(5\) 1.17216 1.90421i 0.524207 0.851591i
\(6\) 0 0
\(7\) 1.71452 0.648029 0.324015 0.946052i \(-0.394967\pi\)
0.324015 + 0.946052i \(0.394967\pi\)
\(8\) −0.949697 + 2.66422i −0.335768 + 0.941945i
\(9\) 0 0
\(10\) −2.48664 1.95361i −0.786346 0.617786i
\(11\) −2.82684 2.82684i −0.852324 0.852324i 0.138095 0.990419i \(-0.455902\pi\)
−0.990419 + 0.138095i \(0.955902\pi\)
\(12\) 0 0
\(13\) −2.59462 2.59462i −0.719618 0.719618i 0.248909 0.968527i \(-0.419928\pi\)
−0.968527 + 0.248909i \(0.919928\pi\)
\(14\) 0.276156 2.40893i 0.0738058 0.643813i
\(15\) 0 0
\(16\) 3.59030 + 1.76346i 0.897574 + 0.440864i
\(17\) 1.89939i 0.460671i 0.973111 + 0.230335i \(0.0739823\pi\)
−0.973111 + 0.230335i \(0.926018\pi\)
\(18\) 0 0
\(19\) 2.89623 2.89623i 0.664440 0.664440i −0.291983 0.956423i \(-0.594315\pi\)
0.956423 + 0.291983i \(0.0943151\pi\)
\(20\) −3.14537 + 3.17910i −0.703326 + 0.710868i
\(21\) 0 0
\(22\) −4.42705 + 3.51643i −0.943851 + 0.749704i
\(23\) −2.00613 −0.418306 −0.209153 0.977883i \(-0.567071\pi\)
−0.209153 + 0.977883i \(0.567071\pi\)
\(24\) 0 0
\(25\) −2.25207 4.46410i −0.450413 0.892820i
\(26\) −4.06338 + 3.22756i −0.796895 + 0.632976i
\(27\) 0 0
\(28\) −3.34009 0.776005i −0.631218 0.146651i
\(29\) 6.72307 6.72307i 1.24844 1.24844i 0.292034 0.956408i \(-0.405668\pi\)
0.956408 0.292034i \(-0.0943321\pi\)
\(30\) 0 0
\(31\) −7.11778 −1.27839 −0.639195 0.769044i \(-0.720732\pi\)
−0.639195 + 0.769044i \(0.720732\pi\)
\(32\) 3.05596 4.76037i 0.540223 0.841522i
\(33\) 0 0
\(34\) 2.66867 + 0.305932i 0.457673 + 0.0524670i
\(35\) 2.00970 3.26482i 0.339702 0.551856i
\(36\) 0 0
\(37\) 2.25207 2.25207i 0.370237 0.370237i −0.497326 0.867564i \(-0.665685\pi\)
0.867564 + 0.497326i \(0.165685\pi\)
\(38\) −3.60274 4.53572i −0.584442 0.735792i
\(39\) 0 0
\(40\) 3.96005 + 4.93133i 0.626139 + 0.779712i
\(41\) 1.59630i 0.249301i 0.992201 + 0.124650i \(0.0397809\pi\)
−0.992201 + 0.124650i \(0.960219\pi\)
\(42\) 0 0
\(43\) −8.06886 + 8.06886i −1.23049 + 1.23049i −0.266715 + 0.963776i \(0.585938\pi\)
−0.963776 + 0.266715i \(0.914062\pi\)
\(44\) 4.22756 + 6.78645i 0.637328 + 1.02310i
\(45\) 0 0
\(46\) −0.323124 + 2.81863i −0.0476420 + 0.415585i
\(47\) 4.43823i 0.647383i 0.946163 + 0.323691i \(0.104924\pi\)
−0.946163 + 0.323691i \(0.895076\pi\)
\(48\) 0 0
\(49\) −4.06040 −0.580058
\(50\) −6.63485 + 2.44515i −0.938310 + 0.345797i
\(51\) 0 0
\(52\) 3.88027 + 6.22896i 0.538097 + 0.863801i
\(53\) −0.481758 + 0.481758i −0.0661746 + 0.0661746i −0.739420 0.673245i \(-0.764900\pi\)
0.673245 + 0.739420i \(0.264900\pi\)
\(54\) 0 0
\(55\) −8.69642 + 2.06939i −1.17263 + 0.279036i
\(56\) −1.62828 + 4.56787i −0.217588 + 0.610408i
\(57\) 0 0
\(58\) −8.36311 10.5289i −1.09813 1.38251i
\(59\) −3.08580 3.08580i −0.401737 0.401737i 0.477108 0.878845i \(-0.341685\pi\)
−0.878845 + 0.477108i \(0.841685\pi\)
\(60\) 0 0
\(61\) 3.46410 3.46410i 0.443533 0.443533i −0.449665 0.893197i \(-0.648457\pi\)
0.893197 + 0.449665i \(0.148457\pi\)
\(62\) −1.14645 + 10.0006i −0.145599 + 1.27007i
\(63\) 0 0
\(64\) −6.19615 5.06040i −0.774519 0.632551i
\(65\) −7.98203 + 1.89939i −0.990049 + 0.235591i
\(66\) 0 0
\(67\) 1.80454 + 1.80454i 0.220460 + 0.220460i 0.808692 0.588232i \(-0.200176\pi\)
−0.588232 + 0.808692i \(0.700176\pi\)
\(68\) 0.859677 3.70023i 0.104251 0.448719i
\(69\) 0 0
\(70\) −4.26341 3.34952i −0.509575 0.400344i
\(71\) 0.379150i 0.0449969i 0.999747 + 0.0224984i \(0.00716208\pi\)
−0.999747 + 0.0224984i \(0.992838\pi\)
\(72\) 0 0
\(73\) 8.37718 0.980475 0.490237 0.871589i \(-0.336910\pi\)
0.490237 + 0.871589i \(0.336910\pi\)
\(74\) −2.80144 3.52691i −0.325661 0.409995i
\(75\) 0 0
\(76\) −6.95303 + 4.33133i −0.797567 + 0.496838i
\(77\) −4.84668 4.84668i −0.552331 0.552331i
\(78\) 0 0
\(79\) 11.2566 1.26646 0.633231 0.773963i \(-0.281728\pi\)
0.633231 + 0.773963i \(0.281728\pi\)
\(80\) 7.56641 4.76963i 0.845951 0.533261i
\(81\) 0 0
\(82\) 2.24282 + 0.257114i 0.247678 + 0.0283935i
\(83\) 8.24890 + 8.24890i 0.905435 + 0.905435i 0.995900 0.0904649i \(-0.0288353\pi\)
−0.0904649 + 0.995900i \(0.528835\pi\)
\(84\) 0 0
\(85\) 3.61685 + 2.22640i 0.392303 + 0.241487i
\(86\) 10.0372 + 12.6365i 1.08234 + 1.36263i
\(87\) 0 0
\(88\) 10.2160 4.84668i 1.08903 0.516658i
\(89\) 11.9820i 1.27009i −0.772474 0.635046i \(-0.780981\pi\)
0.772474 0.635046i \(-0.219019\pi\)
\(90\) 0 0
\(91\) −4.44854 4.44854i −0.466334 0.466334i
\(92\) 3.90816 + 0.907986i 0.407454 + 0.0946640i
\(93\) 0 0
\(94\) 6.23577 + 0.714859i 0.643170 + 0.0737321i
\(95\) −2.12019 8.90989i −0.217526 0.914136i
\(96\) 0 0
\(97\) 6.50543i 0.660526i −0.943889 0.330263i \(-0.892863\pi\)
0.943889 0.330263i \(-0.107137\pi\)
\(98\) −0.654003 + 5.70491i −0.0660643 + 0.576283i
\(99\) 0 0
\(100\) 2.36680 + 9.71588i 0.236680 + 0.971588i
\(101\) 6.72307 + 6.72307i 0.668970 + 0.668970i 0.957478 0.288508i \(-0.0931590\pi\)
−0.288508 + 0.957478i \(0.593159\pi\)
\(102\) 0 0
\(103\) 15.1733 1.49506 0.747532 0.664225i \(-0.231238\pi\)
0.747532 + 0.664225i \(0.231238\pi\)
\(104\) 9.37674 4.44854i 0.919465 0.436215i
\(105\) 0 0
\(106\) 0.599280 + 0.754472i 0.0582072 + 0.0732808i
\(107\) 1.69781 1.69781i 0.164134 0.164134i −0.620262 0.784395i \(-0.712974\pi\)
0.784395 + 0.620262i \(0.212974\pi\)
\(108\) 0 0
\(109\) 3.11120 3.11120i 0.297999 0.297999i −0.542231 0.840230i \(-0.682420\pi\)
0.840230 + 0.542231i \(0.182420\pi\)
\(110\) 1.50680 + 12.5519i 0.143667 + 1.19678i
\(111\) 0 0
\(112\) 6.15565 + 3.02349i 0.581654 + 0.285693i
\(113\) 15.8259i 1.48877i −0.667748 0.744387i \(-0.732742\pi\)
0.667748 0.744387i \(-0.267258\pi\)
\(114\) 0 0
\(115\) −2.35151 + 3.82010i −0.219279 + 0.356226i
\(116\) −16.1402 + 10.0544i −1.49858 + 0.933527i
\(117\) 0 0
\(118\) −4.83261 + 3.83856i −0.444878 + 0.353368i
\(119\) 3.25656i 0.298528i
\(120\) 0 0
\(121\) 4.98203i 0.452912i
\(122\) −4.30914 5.42506i −0.390132 0.491162i
\(123\) 0 0
\(124\) 13.8662 + 3.22155i 1.24523 + 0.289304i
\(125\) −11.1404 0.944243i −0.996427 0.0844556i
\(126\) 0 0
\(127\) 18.3239i 1.62598i 0.582276 + 0.812991i \(0.302162\pi\)
−0.582276 + 0.812991i \(0.697838\pi\)
\(128\) −8.10793 + 7.89059i −0.716647 + 0.697436i
\(129\) 0 0
\(130\) 1.38302 + 11.5208i 0.121298 + 1.01044i
\(131\) 10.2036 10.2036i 0.891491 0.891491i −0.103172 0.994663i \(-0.532899\pi\)
0.994663 + 0.103172i \(0.0328994\pi\)
\(132\) 0 0
\(133\) 4.96565 4.96565i 0.430577 0.430577i
\(134\) 2.82606 2.24475i 0.244134 0.193917i
\(135\) 0 0
\(136\) −5.06040 1.80385i −0.433926 0.154679i
\(137\) 14.9845 1.28021 0.640107 0.768286i \(-0.278890\pi\)
0.640107 + 0.768286i \(0.278890\pi\)
\(138\) 0 0
\(139\) −8.29094 8.29094i −0.703228 0.703228i 0.261874 0.965102i \(-0.415660\pi\)
−0.965102 + 0.261874i \(0.915660\pi\)
\(140\) −5.39281 + 5.45064i −0.455776 + 0.460663i
\(141\) 0 0
\(142\) 0.532711 + 0.0610692i 0.0447041 + 0.00512481i
\(143\) 14.6691i 1.22670i
\(144\) 0 0
\(145\) −4.92163 20.6827i −0.408719 1.71760i
\(146\) 1.34930 11.7700i 0.111669 0.974095i
\(147\) 0 0
\(148\) −5.40658 + 3.36798i −0.444418 + 0.276846i
\(149\) 7.30735 + 7.30735i 0.598642 + 0.598642i 0.939951 0.341309i \(-0.110870\pi\)
−0.341309 + 0.939951i \(0.610870\pi\)
\(150\) 0 0
\(151\) 4.56873i 0.371798i 0.982569 + 0.185899i \(0.0595197\pi\)
−0.982569 + 0.185899i \(0.940480\pi\)
\(152\) 4.96565 + 10.4667i 0.402768 + 0.848964i
\(153\) 0 0
\(154\) −7.59030 + 6.02900i −0.611643 + 0.485831i
\(155\) −8.34320 + 13.5538i −0.670142 + 1.08867i
\(156\) 0 0
\(157\) −1.52966 1.52966i −0.122080 0.122080i 0.643427 0.765507i \(-0.277512\pi\)
−0.765507 + 0.643427i \(0.777512\pi\)
\(158\) 1.81308 15.8156i 0.144241 1.25822i
\(159\) 0 0
\(160\) −5.48268 11.3991i −0.433444 0.901181i
\(161\) −3.43955 −0.271075
\(162\) 0 0
\(163\) 10.1361 + 10.1361i 0.793918 + 0.793918i 0.982129 0.188211i \(-0.0602689\pi\)
−0.188211 + 0.982129i \(0.560269\pi\)
\(164\) 0.722497 3.10978i 0.0564175 0.242833i
\(165\) 0 0
\(166\) 12.9184 10.2612i 1.00267 0.796421i
\(167\) −2.57967 −0.199621 −0.0998105 0.995006i \(-0.531824\pi\)
−0.0998105 + 0.995006i \(0.531824\pi\)
\(168\) 0 0
\(169\) 0.464102i 0.0357001i
\(170\) 3.71068 4.72312i 0.284596 0.362246i
\(171\) 0 0
\(172\) 19.3711 12.0670i 1.47703 0.920104i
\(173\) 14.1773 + 14.1773i 1.07788 + 1.07788i 0.996700 + 0.0811779i \(0.0258682\pi\)
0.0811779 + 0.996700i \(0.474132\pi\)
\(174\) 0 0
\(175\) −3.86122 7.65381i −0.291881 0.578574i
\(176\) −5.16418 15.1342i −0.389264 1.14078i
\(177\) 0 0
\(178\) −16.8349 1.92993i −1.26183 0.144654i
\(179\) 9.88067 9.88067i 0.738516 0.738516i −0.233775 0.972291i \(-0.575108\pi\)
0.972291 + 0.233775i \(0.0751079\pi\)
\(180\) 0 0
\(181\) 6.20514 + 6.20514i 0.461224 + 0.461224i 0.899057 0.437832i \(-0.144254\pi\)
−0.437832 + 0.899057i \(0.644254\pi\)
\(182\) −6.96677 + 5.53373i −0.516411 + 0.410187i
\(183\) 0 0
\(184\) 1.90521 5.34477i 0.140454 0.394021i
\(185\) −1.64863 6.92820i −0.121209 0.509372i
\(186\) 0 0
\(187\) 5.36928 5.36928i 0.392641 0.392641i
\(188\) 2.00877 8.64618i 0.146505 0.630587i
\(189\) 0 0
\(190\) −12.8600 + 1.54378i −0.932962 + 0.111998i
\(191\) −18.9282 −1.36960 −0.684798 0.728733i \(-0.740110\pi\)
−0.684798 + 0.728733i \(0.740110\pi\)
\(192\) 0 0
\(193\) 4.42987i 0.318869i 0.987209 + 0.159434i \(0.0509670\pi\)
−0.987209 + 0.159434i \(0.949033\pi\)
\(194\) −9.14020 1.04782i −0.656228 0.0752291i
\(195\) 0 0
\(196\) 7.91013 + 1.83776i 0.565009 + 0.131269i
\(197\) 6.39341 6.39341i 0.455511 0.455511i −0.441667 0.897179i \(-0.645613\pi\)
0.897179 + 0.441667i \(0.145613\pi\)
\(198\) 0 0
\(199\) 5.85641i 0.415150i 0.978219 + 0.207575i \(0.0665570\pi\)
−0.978219 + 0.207575i \(0.933443\pi\)
\(200\) 14.0321 1.76046i 0.992222 0.124483i
\(201\) 0 0
\(202\) 10.5289 8.36311i 0.740808 0.588426i
\(203\) 11.5269 11.5269i 0.809027 0.809027i
\(204\) 0 0
\(205\) 3.03970 + 1.87113i 0.212302 + 0.130685i
\(206\) 2.44393 21.3186i 0.170277 1.48534i
\(207\) 0 0
\(208\) −4.73995 13.8910i −0.328656 0.963164i
\(209\) −16.3743 −1.13264
\(210\) 0 0
\(211\) 7.60373 7.60373i 0.523462 0.523462i −0.395153 0.918615i \(-0.629308\pi\)
0.918615 + 0.395153i \(0.129308\pi\)
\(212\) 1.15657 0.720473i 0.0794334 0.0494823i
\(213\) 0 0
\(214\) −2.11198 2.65891i −0.144372 0.181759i
\(215\) 5.90682 + 24.8229i 0.402842 + 1.69291i
\(216\) 0 0
\(217\) −12.2036 −0.828435
\(218\) −3.87016 4.87239i −0.262120 0.330000i
\(219\) 0 0
\(220\) 17.8782 0.0953508i 1.20535 0.00642855i
\(221\) 4.92820 4.92820i 0.331507 0.331507i
\(222\) 0 0
\(223\) 9.22430i 0.617705i 0.951110 + 0.308853i \(0.0999450\pi\)
−0.951110 + 0.308853i \(0.900055\pi\)
\(224\) 5.23952 8.16177i 0.350080 0.545331i
\(225\) 0 0
\(226\) −22.2356 2.54905i −1.47909 0.169560i
\(227\) −9.21725 9.21725i −0.611770 0.611770i 0.331637 0.943407i \(-0.392399\pi\)
−0.943407 + 0.331637i \(0.892399\pi\)
\(228\) 0 0
\(229\) 1.63811 + 1.63811i 0.108250 + 0.108250i 0.759157 0.650907i \(-0.225611\pi\)
−0.650907 + 0.759157i \(0.725611\pi\)
\(230\) 4.98852 + 3.91919i 0.328934 + 0.258424i
\(231\) 0 0
\(232\) 11.5269 + 24.2966i 0.756776 + 1.59515i
\(233\) −12.3798 −0.811026 −0.405513 0.914089i \(-0.632907\pi\)
−0.405513 + 0.914089i \(0.632907\pi\)
\(234\) 0 0
\(235\) 8.45134 + 5.20233i 0.551305 + 0.339363i
\(236\) 4.61484 + 7.40815i 0.300401 + 0.482229i
\(237\) 0 0
\(238\) 4.57550 + 0.524529i 0.296586 + 0.0340002i
\(239\) 7.77449 0.502890 0.251445 0.967872i \(-0.419094\pi\)
0.251445 + 0.967872i \(0.419094\pi\)
\(240\) 0 0
\(241\) −3.47068 −0.223566 −0.111783 0.993733i \(-0.535656\pi\)
−0.111783 + 0.993733i \(0.535656\pi\)
\(242\) 6.99981 + 0.802448i 0.449965 + 0.0515833i
\(243\) 0 0
\(244\) −8.31634 + 5.18059i −0.532399 + 0.331653i
\(245\) −4.75946 + 7.73188i −0.304071 + 0.493972i
\(246\) 0 0
\(247\) −15.0292 −0.956286
\(248\) 6.75973 18.9633i 0.429243 1.20417i
\(249\) 0 0
\(250\) −3.12104 + 15.5003i −0.197392 + 0.980325i
\(251\) −8.94765 8.94765i −0.564771 0.564771i 0.365888 0.930659i \(-0.380765\pi\)
−0.930659 + 0.365888i \(0.880765\pi\)
\(252\) 0 0
\(253\) 5.67100 + 5.67100i 0.356533 + 0.356533i
\(254\) 25.7453 + 2.95140i 1.61540 + 0.185187i
\(255\) 0 0
\(256\) 9.78044 + 12.6627i 0.611277 + 0.791416i
\(257\) 3.62228i 0.225952i −0.993598 0.112976i \(-0.963962\pi\)
0.993598 0.112976i \(-0.0360383\pi\)
\(258\) 0 0
\(259\) 3.86122 3.86122i 0.239925 0.239925i
\(260\) 16.4096 0.0875179i 1.01768 0.00542763i
\(261\) 0 0
\(262\) −12.6927 15.9796i −0.784156 0.987224i
\(263\) −13.7416 −0.847345 −0.423673 0.905815i \(-0.639259\pi\)
−0.423673 + 0.905815i \(0.639259\pi\)
\(264\) 0 0
\(265\) 0.352672 + 1.48207i 0.0216644 + 0.0910429i
\(266\) −6.17699 7.77661i −0.378736 0.476815i
\(267\) 0 0
\(268\) −2.69871 4.33221i −0.164850 0.264632i
\(269\) 4.22240 4.22240i 0.257444 0.257444i −0.566570 0.824014i \(-0.691730\pi\)
0.824014 + 0.566570i \(0.191730\pi\)
\(270\) 0 0
\(271\) −5.40015 −0.328036 −0.164018 0.986457i \(-0.552445\pi\)
−0.164018 + 0.986457i \(0.552445\pi\)
\(272\) −3.34950 + 6.81938i −0.203093 + 0.413486i
\(273\) 0 0
\(274\) 2.41353 21.0534i 0.145807 1.27188i
\(275\) −6.25307 + 18.9855i −0.377074 + 1.14487i
\(276\) 0 0
\(277\) 5.08733 5.08733i 0.305668 0.305668i −0.537558 0.843227i \(-0.680653\pi\)
0.843227 + 0.537558i \(0.180653\pi\)
\(278\) −12.9843 + 10.3135i −0.778745 + 0.618560i
\(279\) 0 0
\(280\) 6.78960 + 8.45489i 0.405756 + 0.505276i
\(281\) 21.2780i 1.26934i 0.772784 + 0.634669i \(0.218864\pi\)
−0.772784 + 0.634669i \(0.781136\pi\)
\(282\) 0 0
\(283\) −4.08521 + 4.08521i −0.242840 + 0.242840i −0.818024 0.575184i \(-0.804931\pi\)
0.575184 + 0.818024i \(0.304931\pi\)
\(284\) 0.171606 0.738628i 0.0101829 0.0438295i
\(285\) 0 0
\(286\) 20.6103 + 2.36274i 1.21871 + 0.139712i
\(287\) 2.73690i 0.161554i
\(288\) 0 0
\(289\) 13.3923 0.787783
\(290\) −29.8521 + 3.58361i −1.75298 + 0.210437i
\(291\) 0 0
\(292\) −16.3197 3.79156i −0.955038 0.221884i
\(293\) −7.40400 + 7.40400i −0.432547 + 0.432547i −0.889494 0.456947i \(-0.848943\pi\)
0.456947 + 0.889494i \(0.348943\pi\)
\(294\) 0 0
\(295\) −9.49310 + 2.25896i −0.552709 + 0.131522i
\(296\) 3.86122 + 8.13878i 0.224429 + 0.473057i
\(297\) 0 0
\(298\) 11.4439 9.08993i 0.662927 0.526566i
\(299\) 5.20514 + 5.20514i 0.301021 + 0.301021i
\(300\) 0 0
\(301\) −13.8343 + 13.8343i −0.797394 + 0.797394i
\(302\) 6.41911 + 0.735878i 0.369378 + 0.0423450i
\(303\) 0 0
\(304\) 15.5057 5.29094i 0.889312 0.303456i
\(305\) −2.53590 10.6569i −0.145205 0.610212i
\(306\) 0 0
\(307\) −16.6634 16.6634i −0.951030 0.951030i 0.0478262 0.998856i \(-0.484771\pi\)
−0.998856 + 0.0478262i \(0.984771\pi\)
\(308\) 7.24825 + 11.6355i 0.413008 + 0.662996i
\(309\) 0 0
\(310\) 17.6994 + 13.9054i 1.00526 + 0.789772i
\(311\) 21.9072i 1.24224i 0.783714 + 0.621122i \(0.213323\pi\)
−0.783714 + 0.621122i \(0.786677\pi\)
\(312\) 0 0
\(313\) 12.4820 0.705525 0.352763 0.935713i \(-0.385242\pi\)
0.352763 + 0.935713i \(0.385242\pi\)
\(314\) −2.39556 + 1.90280i −0.135189 + 0.107381i
\(315\) 0 0
\(316\) −21.9291 5.09479i −1.23361 0.286604i
\(317\) 4.24325 + 4.24325i 0.238324 + 0.238324i 0.816156 0.577832i \(-0.196101\pi\)
−0.577832 + 0.816156i \(0.696101\pi\)
\(318\) 0 0
\(319\) −38.0100 −2.12815
\(320\) −16.8990 + 5.86718i −0.944683 + 0.327985i
\(321\) 0 0
\(322\) −0.554004 + 4.83261i −0.0308734 + 0.269311i
\(323\) 5.50108 + 5.50108i 0.306088 + 0.306088i
\(324\) 0 0
\(325\) −5.73939 + 17.4259i −0.318364 + 0.966615i
\(326\) 15.8739 12.6087i 0.879173 0.698330i
\(327\) 0 0
\(328\) −4.25290 1.51600i −0.234827 0.0837073i
\(329\) 7.60946i 0.419523i
\(330\) 0 0
\(331\) 1.10377 + 1.10377i 0.0606688 + 0.0606688i 0.736790 0.676121i \(-0.236341\pi\)
−0.676121 + 0.736790i \(0.736341\pi\)
\(332\) −12.3363 19.8033i −0.677042 1.08685i
\(333\) 0 0
\(334\) −0.415504 + 3.62447i −0.0227354 + 0.198322i
\(335\) 5.55146 1.32102i 0.303309 0.0721749i
\(336\) 0 0
\(337\) 7.47635i 0.407263i −0.979048 0.203631i \(-0.934726\pi\)
0.979048 0.203631i \(-0.0652744\pi\)
\(338\) 0.652068 + 0.0747522i 0.0354678 + 0.00406598i
\(339\) 0 0
\(340\) −6.03836 5.97429i −0.327476 0.324001i
\(341\) 20.1208 + 20.1208i 1.08960 + 1.08960i
\(342\) 0 0
\(343\) −18.9633 −1.02392
\(344\) −13.8343 29.1602i −0.745894 1.57221i
\(345\) 0 0
\(346\) 22.2027 17.6357i 1.19363 0.948102i
\(347\) −8.56074 + 8.56074i −0.459565 + 0.459565i −0.898512 0.438948i \(-0.855351\pi\)
0.438948 + 0.898512i \(0.355351\pi\)
\(348\) 0 0
\(349\) 7.91567 7.91567i 0.423716 0.423716i −0.462765 0.886481i \(-0.653143\pi\)
0.886481 + 0.462765i \(0.153143\pi\)
\(350\) −11.3756 + 4.19227i −0.608052 + 0.224086i
\(351\) 0 0
\(352\) −22.0955 + 4.81809i −1.17769 + 0.256805i
\(353\) 9.67314i 0.514849i 0.966298 + 0.257425i \(0.0828739\pi\)
−0.966298 + 0.257425i \(0.917126\pi\)
\(354\) 0 0
\(355\) 0.721984 + 0.444426i 0.0383189 + 0.0235877i
\(356\) −5.42314 + 23.3424i −0.287426 + 1.23714i
\(357\) 0 0
\(358\) −12.2910 15.4739i −0.649599 0.817822i
\(359\) 17.0867i 0.901799i 0.892575 + 0.450900i \(0.148897\pi\)
−0.892575 + 0.450900i \(0.851103\pi\)
\(360\) 0 0
\(361\) 2.22373i 0.117038i
\(362\) 9.71774 7.71884i 0.510753 0.405693i
\(363\) 0 0
\(364\) 6.65283 + 10.6797i 0.348703 + 0.559768i
\(365\) 9.81943 15.9519i 0.513972 0.834963i
\(366\) 0 0
\(367\) 13.4500i 0.702086i −0.936359 0.351043i \(-0.885827\pi\)
0.936359 0.351043i \(-0.114173\pi\)
\(368\) −7.20259 3.53772i −0.375461 0.184416i
\(369\) 0 0
\(370\) −9.99975 + 1.20042i −0.519862 + 0.0624070i
\(371\) −0.825987 + 0.825987i −0.0428831 + 0.0428831i
\(372\) 0 0
\(373\) −12.0271 + 12.0271i −0.622740 + 0.622740i −0.946231 0.323491i \(-0.895143\pi\)
0.323491 + 0.946231i \(0.395143\pi\)
\(374\) −6.67908 8.40872i −0.345367 0.434804i
\(375\) 0 0
\(376\) −11.8244 4.21497i −0.609798 0.217371i
\(377\) −34.8876 −1.79680
\(378\) 0 0
\(379\) 19.1552 + 19.1552i 0.983936 + 0.983936i 0.999873 0.0159369i \(-0.00507308\pi\)
−0.0159369 + 0.999873i \(0.505073\pi\)
\(380\) 0.0976914 + 18.3171i 0.00501146 + 0.939647i
\(381\) 0 0
\(382\) −3.04874 + 26.5943i −0.155987 + 1.36068i
\(383\) 17.7503i 0.907000i −0.891256 0.453500i \(-0.850175\pi\)
0.891256 0.453500i \(-0.149825\pi\)
\(384\) 0 0
\(385\) −14.9102 + 3.54802i −0.759896 + 0.180824i
\(386\) 6.22401 + 0.713512i 0.316794 + 0.0363168i
\(387\) 0 0
\(388\) −2.94440 + 12.6733i −0.149479 + 0.643390i
\(389\) 1.18654 + 1.18654i 0.0601602 + 0.0601602i 0.736547 0.676387i \(-0.236455\pi\)
−0.676387 + 0.736547i \(0.736455\pi\)
\(390\) 0 0
\(391\) 3.81042i 0.192701i
\(392\) 3.85615 10.8178i 0.194765 0.546382i
\(393\) 0 0
\(394\) −7.95303 10.0126i −0.400668 0.504427i
\(395\) 13.1945 21.4349i 0.663889 1.07851i
\(396\) 0 0
\(397\) −4.74478 4.74478i −0.238134 0.238134i 0.577943 0.816077i \(-0.303855\pi\)
−0.816077 + 0.577943i \(0.803855\pi\)
\(398\) 8.22832 + 0.943283i 0.412448 + 0.0472825i
\(399\) 0 0
\(400\) −0.213328 19.9989i −0.0106664 0.999943i
\(401\) −0.632677 −0.0315944 −0.0157972 0.999875i \(-0.505029\pi\)
−0.0157972 + 0.999875i \(0.505029\pi\)
\(402\) 0 0
\(403\) 18.4679 + 18.4679i 0.919953 + 0.919953i
\(404\) −10.0544 16.1402i −0.500225 0.803005i
\(405\) 0 0
\(406\) −14.3388 18.0520i −0.711621 0.895905i
\(407\) −12.7324 −0.631124
\(408\) 0 0
\(409\) 26.3809i 1.30445i −0.758024 0.652226i \(-0.773835\pi\)
0.758024 0.652226i \(-0.226165\pi\)
\(410\) 3.11856 3.96944i 0.154015 0.196037i
\(411\) 0 0
\(412\) −29.5592 6.86751i −1.45628 0.338338i
\(413\) −5.29069 5.29069i −0.260338 0.260338i
\(414\) 0 0
\(415\) 25.3767 6.03862i 1.24570 0.296424i
\(416\) −20.2804 + 4.42229i −0.994328 + 0.216821i
\(417\) 0 0
\(418\) −2.63739 + 23.0061i −0.128999 + 1.12527i
\(419\) 1.37589 1.37589i 0.0672167 0.0672167i −0.672699 0.739916i \(-0.734865\pi\)
0.739916 + 0.672699i \(0.234865\pi\)
\(420\) 0 0
\(421\) 6.65671 + 6.65671i 0.324428 + 0.324428i 0.850463 0.526035i \(-0.176322\pi\)
−0.526035 + 0.850463i \(0.676322\pi\)
\(422\) −9.45861 11.9081i −0.460438 0.579675i
\(423\) 0 0
\(424\) −0.825987 1.74104i −0.0401135 0.0845522i
\(425\) 8.47908 4.27756i 0.411296 0.207492i
\(426\) 0 0
\(427\) 5.93929 5.93929i 0.287422 0.287422i
\(428\) −4.07597 + 2.53909i −0.197019 + 0.122731i
\(429\) 0 0
\(430\) 35.8278 4.30096i 1.72777 0.207411i
\(431\) −4.08798 −0.196911 −0.0984556 0.995141i \(-0.531390\pi\)
−0.0984556 + 0.995141i \(0.531390\pi\)
\(432\) 0 0
\(433\) 29.2913i 1.40765i 0.710373 + 0.703826i \(0.248526\pi\)
−0.710373 + 0.703826i \(0.751474\pi\)
\(434\) −1.96562 + 17.1462i −0.0943526 + 0.823044i
\(435\) 0 0
\(436\) −7.46912 + 4.65283i −0.357706 + 0.222830i
\(437\) −5.81020 + 5.81020i −0.277940 + 0.277940i
\(438\) 0 0
\(439\) 26.9790i 1.28764i 0.765178 + 0.643819i \(0.222651\pi\)
−0.765178 + 0.643819i \(0.777349\pi\)
\(440\) 2.74565 25.1345i 0.130894 1.19824i
\(441\) 0 0
\(442\) −6.13040 7.71796i −0.291594 0.367106i
\(443\) −14.5286 + 14.5286i −0.690276 + 0.690276i −0.962293 0.272017i \(-0.912309\pi\)
0.272017 + 0.962293i \(0.412309\pi\)
\(444\) 0 0
\(445\) −22.8164 14.0449i −1.08160 0.665792i
\(446\) 12.9603 + 1.48575i 0.613686 + 0.0703521i
\(447\) 0 0
\(448\) −10.6235 8.67619i −0.501911 0.409911i
\(449\) −23.1572 −1.09286 −0.546428 0.837506i \(-0.684013\pi\)
−0.546428 + 0.837506i \(0.684013\pi\)
\(450\) 0 0
\(451\) 4.51249 4.51249i 0.212485 0.212485i
\(452\) −7.16290 + 30.8306i −0.336914 + 1.45015i
\(453\) 0 0
\(454\) −14.4349 + 11.4657i −0.677466 + 0.538113i
\(455\) −13.6854 + 3.25656i −0.641581 + 0.152670i
\(456\) 0 0
\(457\) −37.7026 −1.76365 −0.881827 0.471572i \(-0.843687\pi\)
−0.881827 + 0.471572i \(0.843687\pi\)
\(458\) 2.56542 2.03772i 0.119874 0.0952165i
\(459\) 0 0
\(460\) 6.31001 6.37768i 0.294206 0.297361i
\(461\) −11.3737 + 11.3737i −0.529727 + 0.529727i −0.920491 0.390764i \(-0.872211\pi\)
0.390764 + 0.920491i \(0.372211\pi\)
\(462\) 0 0
\(463\) 7.94895i 0.369419i −0.982793 0.184710i \(-0.940866\pi\)
0.982793 0.184710i \(-0.0591344\pi\)
\(464\) 35.9936 12.2820i 1.67096 0.570175i
\(465\) 0 0
\(466\) −1.99399 + 17.3937i −0.0923699 + 0.805749i
\(467\) −5.34999 5.34999i −0.247568 0.247568i 0.572404 0.819972i \(-0.306011\pi\)
−0.819972 + 0.572404i \(0.806011\pi\)
\(468\) 0 0
\(469\) 3.09394 + 3.09394i 0.142865 + 0.142865i
\(470\) 8.67058 11.0363i 0.399944 0.509067i
\(471\) 0 0
\(472\) 11.1518 5.29069i 0.513305 0.243524i
\(473\) 45.6187 2.09755
\(474\) 0 0
\(475\) −19.4515 6.40656i −0.892498 0.293953i
\(476\) 1.47394 6.34414i 0.0675578 0.290783i
\(477\) 0 0
\(478\) 1.25222 10.9232i 0.0572754 0.499617i
\(479\) 9.58973 0.438166 0.219083 0.975706i \(-0.429693\pi\)
0.219083 + 0.975706i \(0.429693\pi\)
\(480\) 0 0
\(481\) −11.6865 −0.532859
\(482\) −0.559017 + 4.87634i −0.0254625 + 0.222111i
\(483\) 0 0
\(484\) 2.25490 9.70556i 0.102495 0.441162i
\(485\) −12.3877 7.62543i −0.562498 0.346253i
\(486\) 0 0
\(487\) 36.6487 1.66071 0.830357 0.557232i \(-0.188137\pi\)
0.830357 + 0.557232i \(0.188137\pi\)
\(488\) 5.93929 + 12.5190i 0.268859 + 0.566708i
\(489\) 0 0
\(490\) 10.0968 + 7.93246i 0.456126 + 0.358352i
\(491\) −23.4273 23.4273i −1.05726 1.05726i −0.998258 0.0590019i \(-0.981208\pi\)
−0.0590019 0.998258i \(-0.518792\pi\)
\(492\) 0 0
\(493\) 12.7697 + 12.7697i 0.575120 + 0.575120i
\(494\) −2.42073 + 21.1162i −0.108914 + 0.950064i
\(495\) 0 0
\(496\) −25.5549 12.5519i −1.14745 0.563597i
\(497\) 0.650063i 0.0291593i
\(498\) 0 0
\(499\) −9.50152 + 9.50152i −0.425346 + 0.425346i −0.887040 0.461693i \(-0.847242\pi\)
0.461693 + 0.887040i \(0.347242\pi\)
\(500\) 21.2754 + 6.88170i 0.951464 + 0.307759i
\(501\) 0 0
\(502\) −14.0127 + 11.1304i −0.625419 + 0.496772i
\(503\) 20.6875 0.922411 0.461206 0.887293i \(-0.347417\pi\)
0.461206 + 0.887293i \(0.347417\pi\)
\(504\) 0 0
\(505\) 20.6827 4.92163i 0.920368 0.219009i
\(506\) 8.88124 7.05440i 0.394819 0.313606i
\(507\) 0 0
\(508\) 8.29351 35.6970i 0.367965 1.58380i
\(509\) −11.6381 + 11.6381i −0.515850 + 0.515850i −0.916313 0.400463i \(-0.868849\pi\)
0.400463 + 0.916313i \(0.368849\pi\)
\(510\) 0 0
\(511\) 14.3629 0.635377
\(512\) 19.3665 11.7021i 0.855887 0.517163i
\(513\) 0 0
\(514\) −5.08935 0.583436i −0.224482 0.0257343i
\(515\) 17.7855 28.8931i 0.783724 1.27318i
\(516\) 0 0
\(517\) 12.5462 12.5462i 0.551780 0.551780i
\(518\) −4.80314 6.04698i −0.211038 0.265689i
\(519\) 0 0
\(520\) 2.52010 23.0697i 0.110514 1.01168i
\(521\) 5.18654i 0.227227i −0.993525 0.113613i \(-0.963758\pi\)
0.993525 0.113613i \(-0.0362425\pi\)
\(522\) 0 0
\(523\) 26.9589 26.9589i 1.17883 1.17883i 0.198788 0.980043i \(-0.436300\pi\)
0.980043 0.198788i \(-0.0637004\pi\)
\(524\) −24.4959 + 15.2595i −1.07011 + 0.666616i
\(525\) 0 0
\(526\) −2.21334 + 19.3071i −0.0965064 + 0.841832i
\(527\) 13.5195i 0.588917i
\(528\) 0 0
\(529\) −18.9755 −0.825020
\(530\) 2.13913 0.256793i 0.0929179 0.0111544i
\(531\) 0 0
\(532\) −11.9211 + 7.42617i −0.516847 + 0.321965i
\(533\) 4.14180 4.14180i 0.179401 0.179401i
\(534\) 0 0
\(535\) −1.24288 5.22311i −0.0537345 0.225815i
\(536\) −6.52148 + 3.09394i −0.281685 + 0.133638i
\(537\) 0 0
\(538\) −5.25243 6.61262i −0.226448 0.285090i
\(539\) 11.4781 + 11.4781i 0.494397 + 0.494397i
\(540\) 0 0
\(541\) 27.4945 27.4945i 1.18208 1.18208i 0.202878 0.979204i \(-0.434971\pi\)
0.979204 0.202878i \(-0.0650294\pi\)
\(542\) −0.869794 + 7.58727i −0.0373609 + 0.325901i
\(543\) 0 0
\(544\) 9.04181 + 5.80447i 0.387664 + 0.248865i
\(545\) −2.27756 9.57123i −0.0975598 0.409986i
\(546\) 0 0
\(547\) −22.5197 22.5197i −0.962873 0.962873i 0.0364619 0.999335i \(-0.488391\pi\)
−0.999335 + 0.0364619i \(0.988391\pi\)
\(548\) −29.1915 6.78208i −1.24700 0.289716i
\(549\) 0 0
\(550\) 25.6677 + 11.8436i 1.09447 + 0.505013i
\(551\) 38.9431i 1.65903i
\(552\) 0 0
\(553\) 19.2996 0.820704
\(554\) −6.32835 7.96717i −0.268866 0.338493i
\(555\) 0 0
\(556\) 12.3992 + 19.9042i 0.525842 + 0.844127i
\(557\) 13.7333 + 13.7333i 0.581897 + 0.581897i 0.935424 0.353527i \(-0.115018\pi\)
−0.353527 + 0.935424i \(0.615018\pi\)
\(558\) 0 0
\(559\) 41.8713 1.77097
\(560\) 12.9728 8.17765i 0.548201 0.345569i
\(561\) 0 0
\(562\) 29.8958 + 3.42721i 1.26108 + 0.144568i
\(563\) −0.229223 0.229223i −0.00966061 0.00966061i 0.702260 0.711921i \(-0.252174\pi\)
−0.711921 + 0.702260i \(0.752174\pi\)
\(564\) 0 0
\(565\) −30.1359 18.5505i −1.26783 0.780427i
\(566\) 5.08177 + 6.39776i 0.213603 + 0.268918i
\(567\) 0 0
\(568\) −1.01014 0.360078i −0.0423846 0.0151085i
\(569\) 23.0376i 0.965787i −0.875679 0.482894i \(-0.839586\pi\)
0.875679 0.482894i \(-0.160414\pi\)
\(570\) 0 0
\(571\) −11.8610 11.8610i −0.496367 0.496367i 0.413938 0.910305i \(-0.364153\pi\)
−0.910305 + 0.413938i \(0.864153\pi\)
\(572\) 6.63934 28.5772i 0.277605 1.19487i
\(573\) 0 0
\(574\) 3.84538 + 0.440829i 0.160503 + 0.0183998i
\(575\) 4.51793 + 8.95556i 0.188411 + 0.373473i
\(576\) 0 0
\(577\) 39.7168i 1.65343i 0.562621 + 0.826715i \(0.309793\pi\)
−0.562621 + 0.826715i \(0.690207\pi\)
\(578\) 2.15708 18.8163i 0.0897226 0.782657i
\(579\) 0 0
\(580\) 0.226773 + 42.5198i 0.00941622 + 1.76554i
\(581\) 14.1429 + 14.1429i 0.586748 + 0.586748i
\(582\) 0 0
\(583\) 2.72371 0.112804
\(584\) −7.95578 + 22.3187i −0.329213 + 0.923553i
\(585\) 0 0
\(586\) 9.21016 + 11.5953i 0.380468 + 0.478996i
\(587\) 8.63887 8.63887i 0.356564 0.356564i −0.505980 0.862545i \(-0.668869\pi\)
0.862545 + 0.505980i \(0.168869\pi\)
\(588\) 0 0
\(589\) −20.6147 + 20.6147i −0.849414 + 0.849414i
\(590\) 1.64483 + 13.7018i 0.0677167 + 0.564092i
\(591\) 0 0
\(592\) 12.0570 4.11416i 0.495540 0.169091i
\(593\) 45.8229i 1.88172i 0.338795 + 0.940860i \(0.389981\pi\)
−0.338795 + 0.940860i \(0.610019\pi\)
\(594\) 0 0
\(595\) 6.20118 + 3.81722i 0.254224 + 0.156491i
\(596\) −10.9282 17.5429i −0.447637 0.718586i
\(597\) 0 0
\(598\) 8.15166 6.47489i 0.333346 0.264778i
\(599\) 17.0609i 0.697090i −0.937292 0.348545i \(-0.886676\pi\)
0.937292 0.348545i \(-0.113324\pi\)
\(600\) 0 0
\(601\) 38.0363i 1.55153i 0.631020 + 0.775766i \(0.282636\pi\)
−0.631020 + 0.775766i \(0.717364\pi\)
\(602\) 17.2090 + 21.6656i 0.701388 + 0.883023i
\(603\) 0 0
\(604\) 2.06783 8.90040i 0.0841390 0.362152i
\(605\) 9.48685 + 5.83975i 0.385695 + 0.237420i
\(606\) 0 0
\(607\) 8.67169i 0.351973i 0.984393 + 0.175987i \(0.0563115\pi\)
−0.984393 + 0.175987i \(0.943688\pi\)
\(608\) −4.93635 22.6379i −0.200196 0.918087i
\(609\) 0 0
\(610\) −15.3815 + 1.84648i −0.622779 + 0.0747617i
\(611\) 11.5155 11.5155i 0.465868 0.465868i
\(612\) 0 0
\(613\) −13.9739 + 13.9739i −0.564401 + 0.564401i −0.930554 0.366153i \(-0.880675\pi\)
0.366153 + 0.930554i \(0.380675\pi\)
\(614\) −26.0962 + 20.7283i −1.05316 + 0.836526i
\(615\) 0 0
\(616\) 17.5155 8.30976i 0.705720 0.334810i
\(617\) −37.3904 −1.50528 −0.752641 0.658431i \(-0.771220\pi\)
−0.752641 + 0.658431i \(0.771220\pi\)
\(618\) 0 0
\(619\) −23.2754 23.2754i −0.935516 0.935516i 0.0625269 0.998043i \(-0.480084\pi\)
−0.998043 + 0.0625269i \(0.980084\pi\)
\(620\) 22.3880 22.6281i 0.899125 0.908767i
\(621\) 0 0
\(622\) 30.7799 + 3.52856i 1.23416 + 0.141482i
\(623\) 20.5435i 0.823058i
\(624\) 0 0
\(625\) −14.8564 + 20.1069i −0.594256 + 0.804276i
\(626\) 2.01046 17.5374i 0.0803541 0.700934i
\(627\) 0 0
\(628\) 2.28761 + 3.67228i 0.0912857 + 0.146540i
\(629\) 4.27756 + 4.27756i 0.170557 + 0.170557i
\(630\) 0 0
\(631\) 19.1834i 0.763680i −0.924228 0.381840i \(-0.875290\pi\)
0.924228 0.381840i \(-0.124710\pi\)
\(632\) −10.6903 + 29.9900i −0.425238 + 1.19294i
\(633\) 0 0
\(634\) 6.64526 5.27835i 0.263917 0.209630i
\(635\) 34.8926 + 21.4786i 1.38467 + 0.852352i
\(636\) 0 0
\(637\) 10.5352 + 10.5352i 0.417420 + 0.417420i
\(638\) −6.12222 + 53.4045i −0.242381 + 2.11431i
\(639\) 0 0
\(640\) 5.52156 + 24.6883i 0.218259 + 0.975891i
\(641\) 16.1765 0.638933 0.319466 0.947598i \(-0.396496\pi\)
0.319466 + 0.947598i \(0.396496\pi\)
\(642\) 0 0
\(643\) −15.0289 15.0289i −0.592681 0.592681i 0.345674 0.938355i \(-0.387650\pi\)
−0.938355 + 0.345674i \(0.887650\pi\)
\(644\) 6.70064 + 1.55676i 0.264042 + 0.0613451i
\(645\) 0 0
\(646\) 8.61512 6.84302i 0.338958 0.269235i
\(647\) 49.3812 1.94138 0.970688 0.240345i \(-0.0772606\pi\)
0.970688 + 0.240345i \(0.0772606\pi\)
\(648\) 0 0
\(649\) 17.4461i 0.684821i
\(650\) 23.5591 + 10.8707i 0.924066 + 0.426383i
\(651\) 0 0
\(652\) −15.1586 24.3338i −0.593655 0.952987i
\(653\) −19.8685 19.8685i −0.777514 0.777514i 0.201893 0.979408i \(-0.435291\pi\)
−0.979408 + 0.201893i \(0.935291\pi\)
\(654\) 0 0
\(655\) −7.46954 31.3901i −0.291859 1.22651i
\(656\) −2.81501 + 5.73120i −0.109908 + 0.223766i
\(657\) 0 0
\(658\) 10.6914 + 1.22564i 0.416793 + 0.0477806i
\(659\) −4.94765 + 4.94765i −0.192733 + 0.192733i −0.796876 0.604143i \(-0.793516\pi\)
0.604143 + 0.796876i \(0.293516\pi\)
\(660\) 0 0
\(661\) 12.1602 + 12.1602i 0.472977 + 0.472977i 0.902877 0.429899i \(-0.141451\pi\)
−0.429899 + 0.902877i \(0.641451\pi\)
\(662\) 1.72860 1.37303i 0.0671838 0.0533643i
\(663\) 0 0
\(664\) −29.8109 + 14.1429i −1.15689 + 0.548853i
\(665\) −3.63511 15.2762i −0.140964 0.592387i
\(666\) 0 0
\(667\) −13.4873 + 13.4873i −0.522231 + 0.522231i
\(668\) 5.02550 + 1.16758i 0.194442 + 0.0451749i
\(669\) 0 0
\(670\) −0.961880 8.01264i −0.0371607 0.309555i
\(671\) −19.5849 −0.756067
\(672\) 0 0
\(673\) 32.9882i 1.27160i −0.771853 0.635801i \(-0.780670\pi\)
0.771853 0.635801i \(-0.219330\pi\)
\(674\) −10.5044 1.20420i −0.404613 0.0463842i
\(675\) 0 0
\(676\) 0.210055 0.904123i 0.00807905 0.0347740i
\(677\) 18.4610 18.4610i 0.709513 0.709513i −0.256920 0.966433i \(-0.582708\pi\)
0.966433 + 0.256920i \(0.0827076\pi\)
\(678\) 0 0
\(679\) 11.1537i 0.428040i
\(680\) −9.36653 + 7.52169i −0.359190 + 0.288444i
\(681\) 0 0
\(682\) 31.5108 25.0291i 1.20661 0.958415i
\(683\) −12.2374 + 12.2374i −0.468251 + 0.468251i −0.901347 0.433097i \(-0.857421\pi\)
0.433097 + 0.901347i \(0.357421\pi\)
\(684\) 0 0
\(685\) 17.5643 28.5337i 0.671097 1.09022i
\(686\) −3.05440 + 26.6437i −0.116617 + 1.01726i
\(687\) 0 0
\(688\) −43.1987 + 14.7405i −1.64693 + 0.561977i
\(689\) 2.49996 0.0952409
\(690\) 0 0
\(691\) −9.46014 + 9.46014i −0.359881 + 0.359881i −0.863769 0.503888i \(-0.831902\pi\)
0.503888 + 0.863769i \(0.331902\pi\)
\(692\) −21.2022 34.0356i −0.805987 1.29384i
\(693\) 0 0
\(694\) 10.6491 + 13.4068i 0.404233 + 0.508915i
\(695\) −25.5061 + 6.06939i −0.967500 + 0.230225i
\(696\) 0 0
\(697\) −3.03201 −0.114845
\(698\) −9.84664 12.3966i −0.372701 0.469217i
\(699\) 0 0
\(700\) 4.05794 + 16.6581i 0.153376 + 0.629617i
\(701\) 5.14714 5.14714i 0.194405 0.194405i −0.603192 0.797596i \(-0.706105\pi\)
0.797596 + 0.603192i \(0.206105\pi\)
\(702\) 0 0
\(703\) 13.0450i 0.492001i
\(704\) 3.21058 + 31.8205i 0.121003 + 1.19928i
\(705\) 0 0
\(706\) 13.5909 + 1.55804i 0.511499 + 0.0586375i
\(707\) 11.5269 + 11.5269i 0.433512 + 0.433512i
\(708\) 0 0
\(709\) −18.0125 18.0125i −0.676472 0.676472i 0.282728 0.959200i \(-0.408761\pi\)
−0.959200 + 0.282728i \(0.908761\pi\)
\(710\) 0.740713 0.942812i 0.0277985 0.0353831i
\(711\) 0 0
\(712\) 31.9228 + 11.3793i 1.19636 + 0.426457i
\(713\) 14.2792 0.534759
\(714\) 0 0
\(715\) 27.9332 + 17.1946i 1.04464 + 0.643043i
\(716\) −23.7207 + 14.7766i −0.886485 + 0.552228i
\(717\) 0 0
\(718\) 24.0069 + 2.75212i 0.895931 + 0.102708i
\(719\) −34.5017 −1.28669 −0.643347 0.765574i \(-0.722455\pi\)
−0.643347 + 0.765574i \(0.722455\pi\)
\(720\) 0 0
\(721\) 26.0149 0.968846
\(722\) 3.12437 + 0.358173i 0.116277 + 0.0133298i
\(723\) 0 0
\(724\) −9.27983 14.8968i −0.344882 0.553635i
\(725\) −45.1532 14.8717i −1.67695 0.552320i
\(726\) 0 0
\(727\) 12.8421 0.476288 0.238144 0.971230i \(-0.423461\pi\)
0.238144 + 0.971230i \(0.423461\pi\)
\(728\) 16.0767 7.62713i 0.595841 0.282680i
\(729\) 0 0
\(730\) −20.8311 16.3658i −0.770992 0.605724i
\(731\) −15.3259 15.3259i −0.566851 0.566851i
\(732\) 0 0
\(733\) 24.1490 + 24.1490i 0.891965 + 0.891965i 0.994708 0.102743i \(-0.0327618\pi\)
−0.102743 + 0.994708i \(0.532762\pi\)
\(734\) −18.8974 2.16638i −0.697517 0.0799624i
\(735\) 0 0
\(736\) −6.13065 + 9.54990i −0.225979 + 0.352014i
\(737\) 10.2023i 0.375807i
\(738\) 0 0
\(739\) 35.9398 35.9398i 1.32207 1.32207i 0.409966 0.912101i \(-0.365540\pi\)
0.912101 0.409966i \(-0.134460\pi\)
\(740\) 0.0759634 + 14.2431i 0.00279247 + 0.523587i
\(741\) 0 0
\(742\) 1.02748 + 1.29356i 0.0377200 + 0.0474881i
\(743\) 45.9502 1.68575 0.842875 0.538109i \(-0.180861\pi\)
0.842875 + 0.538109i \(0.180861\pi\)
\(744\) 0 0
\(745\) 22.4802 5.34935i 0.823610 0.195985i
\(746\) 14.9610 + 18.8354i 0.547762 + 0.689613i
\(747\) 0 0
\(748\) −12.8901 + 8.02980i −0.471310 + 0.293598i
\(749\) 2.91094 2.91094i 0.106363 0.106363i
\(750\) 0 0
\(751\) −24.4820 −0.893361 −0.446680 0.894694i \(-0.647394\pi\)
−0.446680 + 0.894694i \(0.647394\pi\)
\(752\) −7.82663 + 15.9346i −0.285408 + 0.581074i
\(753\) 0 0
\(754\) −5.61929 + 49.0175i −0.204643 + 1.78511i
\(755\) 8.69983 + 5.35529i 0.316619 + 0.194899i
\(756\) 0 0
\(757\) 17.0328 17.0328i 0.619067 0.619067i −0.326225 0.945292i \(-0.605777\pi\)
0.945292 + 0.326225i \(0.105777\pi\)
\(758\) 29.9986 23.8280i 1.08960 0.865471i
\(759\) 0 0
\(760\) 25.7515 + 2.81305i 0.934104 + 0.102040i
\(761\) 8.53590i 0.309426i 0.987959 + 0.154713i \(0.0494453\pi\)
−0.987959 + 0.154713i \(0.950555\pi\)
\(762\) 0 0
\(763\) 5.33423 5.33423i 0.193112 0.193112i
\(764\) 36.8743 + 8.56702i 1.33407 + 0.309944i
\(765\) 0 0
\(766\) −24.9394 2.85902i −0.901099 0.103301i
\(767\) 16.0130i 0.578195i
\(768\) 0 0
\(769\) −1.87438 −0.0675917 −0.0337959 0.999429i \(-0.510760\pi\)
−0.0337959 + 0.999429i \(0.510760\pi\)
\(770\) 2.58344 + 21.5205i 0.0931007 + 0.775546i
\(771\) 0 0
\(772\) 2.00498 8.62988i 0.0721610 0.310596i
\(773\) −21.5374 + 21.5374i −0.774645 + 0.774645i −0.978915 0.204270i \(-0.934518\pi\)
0.204270 + 0.978915i \(0.434518\pi\)
\(774\) 0 0
\(775\) 16.0297 + 31.7745i 0.575804 + 1.14137i
\(776\) 17.3319 + 6.17818i 0.622179 + 0.221784i
\(777\) 0 0
\(778\) 1.85822 1.47599i 0.0666205 0.0529169i
\(779\) 4.62326 + 4.62326i 0.165645 + 0.165645i
\(780\) 0 0
\(781\) 1.07180 1.07180i 0.0383519 0.0383519i
\(782\) −5.35369 0.613739i −0.191448 0.0219473i
\(783\) 0 0
\(784\) −14.5781 7.16035i −0.520645 0.255727i
\(785\) −4.70580 + 1.11979i −0.167957 + 0.0399669i
\(786\) 0 0
\(787\) −7.03687 7.03687i −0.250837 0.250837i 0.570477 0.821314i \(-0.306759\pi\)
−0.821314 + 0.570477i \(0.806759\pi\)
\(788\) −15.3488 + 9.56139i −0.546778 + 0.340610i
\(789\) 0 0
\(790\) −27.9911 21.9909i −0.995877 0.782403i
\(791\) 27.1339i 0.964770i
\(792\) 0 0
\(793\) −17.9761 −0.638348
\(794\) −7.43071 + 5.90224i −0.263706 + 0.209463i
\(795\) 0 0
\(796\) 2.65065 11.4089i 0.0939497 0.404379i
\(797\) 8.07933 + 8.07933i 0.286185 + 0.286185i 0.835569 0.549385i \(-0.185138\pi\)
−0.549385 + 0.835569i \(0.685138\pi\)
\(798\) 0 0
\(799\) −8.42995 −0.298230
\(800\) −28.1330 2.92146i −0.994651 0.103289i
\(801\) 0 0
\(802\) −0.101904 + 0.888918i −0.00359837 + 0.0313888i
\(803\) −23.6809 23.6809i −0.835682 0.835682i
\(804\) 0 0
\(805\) −4.03172 + 6.54965i −0.142099 + 0.230845i
\(806\) 28.9222 22.9730i 1.01874 0.809191i
\(807\) 0 0
\(808\) −24.2966 + 11.5269i −0.854752 + 0.405514i
\(809\) 5.40185i 0.189919i 0.995481 + 0.0949595i \(0.0302722\pi\)
−0.995481 + 0.0949595i \(0.969728\pi\)
\(810\) 0 0
\(811\) −10.3478 10.3478i −0.363360 0.363360i 0.501688 0.865049i \(-0.332712\pi\)
−0.865049 + 0.501688i \(0.832712\pi\)
\(812\) −27.6728 + 17.2385i −0.971124 + 0.604953i
\(813\) 0 0
\(814\) −2.05080 + 17.8892i −0.0718804 + 0.627017i
\(815\) 31.1824 7.42011i 1.09227 0.259915i
\(816\) 0 0
\(817\) 46.7385i 1.63517i
\(818\) −37.0655 4.24913i −1.29596 0.148568i
\(819\) 0 0
\(820\) −5.07480 5.02096i −0.177220 0.175340i
\(821\) −10.7321 10.7321i −0.374551 0.374551i 0.494581 0.869132i \(-0.335322\pi\)
−0.869132 + 0.494581i \(0.835322\pi\)
\(822\) 0 0
\(823\) −3.51588 −0.122556 −0.0612780 0.998121i \(-0.519518\pi\)
−0.0612780 + 0.998121i \(0.519518\pi\)
\(824\) −14.4100 + 40.4249i −0.501996 + 1.40827i
\(825\) 0 0
\(826\) −8.28564 + 6.58131i −0.288294 + 0.228993i
\(827\) 27.7375 27.7375i 0.964529 0.964529i −0.0348631 0.999392i \(-0.511100\pi\)
0.999392 + 0.0348631i \(0.0110995\pi\)
\(828\) 0 0
\(829\) −19.5849 + 19.5849i −0.680212 + 0.680212i −0.960048 0.279836i \(-0.909720\pi\)
0.279836 + 0.960048i \(0.409720\pi\)
\(830\) −4.39693 36.6272i −0.152620 1.27135i
\(831\) 0 0
\(832\) 2.94683 + 29.2065i 0.102163 + 1.01255i
\(833\) 7.71231i 0.267216i
\(834\) 0 0
\(835\) −3.02380 + 4.91225i −0.104643 + 0.169995i
\(836\) 31.8991 + 7.41113i 1.10325 + 0.256319i
\(837\) 0 0
\(838\) −1.71153 2.15476i −0.0591238 0.0744348i
\(839\) 40.0520i 1.38275i 0.722496 + 0.691375i \(0.242995\pi\)
−0.722496 + 0.691375i \(0.757005\pi\)
\(840\) 0 0
\(841\) 61.3992i 2.11722i
\(842\) 10.4249 8.28056i 0.359267 0.285367i
\(843\) 0 0
\(844\) −18.2544 + 11.3714i −0.628343 + 0.391421i
\(845\) 0.883749 + 0.544003i 0.0304019 + 0.0187143i
\(846\) 0 0
\(847\) 8.54182i 0.293500i
\(848\) −2.57922 + 0.880095i −0.0885706 + 0.0302226i
\(849\) 0 0
\(850\) −4.64430 12.6022i −0.159298 0.432252i
\(851\) −4.51793 + 4.51793i −0.154873 + 0.154873i
\(852\) 0 0
\(853\) −13.7328 + 13.7328i −0.470202 + 0.470202i −0.901980 0.431778i \(-0.857886\pi\)
0.431778 + 0.901980i \(0.357886\pi\)
\(854\) −7.38814 9.30140i −0.252817 0.318287i
\(855\) 0 0
\(856\) 2.91094 + 6.13575i 0.0994938 + 0.209716i
\(857\) 39.9485 1.36462 0.682308 0.731065i \(-0.260976\pi\)
0.682308 + 0.731065i \(0.260976\pi\)
\(858\) 0 0
\(859\) 33.6366 + 33.6366i 1.14766 + 1.14766i 0.987011 + 0.160654i \(0.0513602\pi\)
0.160654 + 0.987011i \(0.448640\pi\)
\(860\) −0.272167 51.0312i −0.00928082 1.74015i
\(861\) 0 0
\(862\) −0.658445 + 5.74366i −0.0224267 + 0.195630i
\(863\) 16.5303i 0.562697i 0.959606 + 0.281349i \(0.0907817\pi\)
−0.959606 + 0.281349i \(0.909218\pi\)
\(864\) 0 0
\(865\) 43.6146 10.3785i 1.48294 0.352879i
\(866\) 41.1546 + 4.71791i 1.39849 + 0.160321i
\(867\) 0 0
\(868\) 23.7740 + 5.52343i 0.806943 + 0.187477i
\(869\) −31.8205 31.8205i −1.07944 1.07944i
\(870\) 0 0
\(871\) 9.36421i 0.317294i
\(872\) 5.33423 + 11.2436i 0.180640 + 0.380757i
\(873\) 0 0
\(874\) 7.22756 + 9.09924i 0.244476 + 0.307786i
\(875\) −19.1005 1.61893i −0.645714 0.0547297i
\(876\) 0 0
\(877\) 9.66381 + 9.66381i 0.326324 + 0.326324i 0.851187 0.524863i \(-0.175883\pi\)
−0.524863 + 0.851187i \(0.675883\pi\)
\(878\) 37.9058 + 4.34547i 1.27926 + 0.146652i
\(879\) 0 0
\(880\) −34.8720 7.90605i −1.17554 0.266513i
\(881\) 43.4299 1.46319 0.731596 0.681739i \(-0.238776\pi\)
0.731596 + 0.681739i \(0.238776\pi\)
\(882\) 0 0
\(883\) 22.3879 + 22.3879i 0.753413 + 0.753413i 0.975115 0.221701i \(-0.0711610\pi\)
−0.221701 + 0.975115i \(0.571161\pi\)
\(884\) −11.8312 + 7.37017i −0.397928 + 0.247885i
\(885\) 0 0
\(886\) 18.0728 + 22.7530i 0.607167 + 0.764402i
\(887\) −31.6913 −1.06409 −0.532045 0.846716i \(-0.678576\pi\)
−0.532045 + 0.846716i \(0.678576\pi\)
\(888\) 0 0
\(889\) 31.4168i 1.05368i
\(890\) −23.4082 + 29.7950i −0.784646 + 0.998732i
\(891\) 0 0
\(892\) 4.17498 17.9700i 0.139789 0.601680i
\(893\) 12.8541 + 12.8541i 0.430147 + 0.430147i
\(894\) 0 0
\(895\) −7.23315 30.3967i −0.241778 1.01605i
\(896\) −13.9012 + 13.5286i −0.464408 + 0.451959i
\(897\) 0 0
\(898\) −3.72989 + 32.5361i −0.124468 + 1.08574i
\(899\) −47.8533 + 47.8533i −1.59600 + 1.59600i
\(900\) 0 0
\(901\) −0.915049 0.915049i −0.0304847 0.0304847i
\(902\) −5.61328 7.06692i −0.186902 0.235303i
\(903\) 0 0
\(904\) 42.1637 + 15.0298i 1.40234 + 0.499884i
\(905\) 19.0893 4.54248i 0.634551 0.150997i
\(906\) 0 0
\(907\) 24.9184 24.9184i 0.827401 0.827401i −0.159755 0.987157i \(-0.551071\pi\)
0.987157 + 0.159755i \(0.0510705\pi\)
\(908\) 13.7845 + 22.1280i 0.457454 + 0.734345i
\(909\) 0 0
\(910\) 2.37121 + 19.7527i 0.0786050 + 0.654794i
\(911\) 47.0459 1.55870 0.779350 0.626589i \(-0.215549\pi\)
0.779350 + 0.626589i \(0.215549\pi\)
\(912\) 0 0
\(913\) 46.6366i 1.54345i
\(914\) −6.07271 + 52.9726i −0.200867 + 1.75218i
\(915\) 0 0
\(916\) −2.44981 3.93266i −0.0809441 0.129939i
\(917\) 17.4943 17.4943i 0.577712 0.577712i
\(918\) 0 0
\(919\) 12.5442i 0.413796i −0.978362 0.206898i \(-0.933663\pi\)
0.978362 0.206898i \(-0.0663369\pi\)
\(920\) −7.94436 9.89287i −0.261918 0.326158i
\(921\) 0 0
\(922\) 14.1482 + 17.8121i 0.465948 + 0.586612i
\(923\) 0.983751 0.983751i 0.0323806 0.0323806i
\(924\) 0 0
\(925\) −15.1252 4.98165i −0.497315 0.163796i
\(926\) −11.1684 1.28033i −0.367015 0.0420741i
\(927\) 0 0
\(928\) −11.4588 52.5497i −0.376155 1.72503i
\(929\) 26.7421 0.877380 0.438690 0.898639i \(-0.355443\pi\)
0.438690 + 0.898639i \(0.355443\pi\)
\(930\) 0 0
\(931\) −11.7599 + 11.7599i −0.385414 + 0.385414i
\(932\) 24.1172 + 5.60316i 0.789986 + 0.183538i
\(933\) 0 0
\(934\) −8.37851 + 6.65508i −0.274153 + 0.217761i
\(935\) −3.93058 16.5179i −0.128544 0.540194i
\(936\) 0 0
\(937\) −3.06580 −0.100155 −0.0500777 0.998745i \(-0.515947\pi\)
−0.0500777 + 0.998745i \(0.515947\pi\)
\(938\) 4.84535 3.84868i 0.158206 0.125664i
\(939\) 0 0
\(940\) −14.1096 13.9599i −0.460203 0.455321i
\(941\) 14.6023 14.6023i 0.476020 0.476020i −0.427836 0.903856i \(-0.640724\pi\)
0.903856 + 0.427836i \(0.140724\pi\)
\(942\) 0 0
\(943\) 3.20239i 0.104284i
\(944\) −5.63726 16.5206i −0.183477 0.537701i
\(945\) 0 0
\(946\) 7.34774 64.0949i 0.238896 2.08390i
\(947\) −29.4872 29.4872i −0.958204 0.958204i 0.0409570 0.999161i \(-0.486959\pi\)
−0.999161 + 0.0409570i \(0.986959\pi\)
\(948\) 0 0
\(949\) −21.7356 21.7356i −0.705567 0.705567i
\(950\) −12.1343 + 26.2978i −0.393689 + 0.853212i
\(951\) 0 0
\(952\) −8.67619 3.09274i −0.281197 0.100236i
\(953\) −33.6807 −1.09103 −0.545513 0.838103i \(-0.683665\pi\)
−0.545513 + 0.838103i \(0.683665\pi\)
\(954\) 0 0
\(955\) −22.1870 + 36.0434i −0.717953 + 1.16634i
\(956\) −15.1456 3.51878i −0.489843 0.113805i
\(957\) 0 0
\(958\) 1.54460 13.4737i 0.0499039 0.435315i
\(959\) 25.6913 0.829616
\(960\) 0 0
\(961\) 19.6628 0.634283
\(962\) −1.88233 + 16.4197i −0.0606887 + 0.529391i
\(963\) 0 0
\(964\) 6.76128 + 1.57085i 0.217766 + 0.0505937i
\(965\) 8.43541 + 5.19253i 0.271546 + 0.167153i
\(966\) 0 0
\(967\) 8.70089 0.279802 0.139901 0.990166i \(-0.455322\pi\)
0.139901 + 0.990166i \(0.455322\pi\)
\(968\) −13.2732 4.73142i −0.426618 0.152074i
\(969\) 0 0
\(970\) −12.7091 + 16.1767i −0.408064 + 0.519402i
\(971\) 5.87523 + 5.87523i 0.188545 + 0.188545i 0.795067 0.606522i \(-0.207436\pi\)
−0.606522 + 0.795067i \(0.707436\pi\)
\(972\) 0 0
\(973\) −14.2150 14.2150i −0.455713 0.455713i
\(974\) 5.90296 51.4919i 0.189143 1.64991i
\(975\) 0 0
\(976\) 18.5459 6.32835i 0.593641 0.202566i
\(977\) 41.8541i 1.33903i 0.742798 + 0.669516i \(0.233498\pi\)
−0.742798 + 0.669516i \(0.766502\pi\)
\(978\) 0 0
\(979\) −33.8713 + 33.8713i −1.08253 + 1.08253i
\(980\) 12.7715 12.9084i 0.407969 0.412344i
\(981\) 0 0
\(982\) −36.6890 + 29.1422i −1.17079 + 0.929966i
\(983\) −57.4539 −1.83250 −0.916248 0.400612i \(-0.868797\pi\)
−0.916248 + 0.400612i \(0.868797\pi\)
\(984\) 0 0
\(985\) −4.68030 19.6685i −0.149127 0.626692i
\(986\) 19.9984 15.8848i 0.636880 0.505876i
\(987\) 0 0
\(988\) 29.2786 + 6.80232i 0.931477 + 0.216411i
\(989\) 16.1872 16.1872i 0.514722 0.514722i
\(990\) 0 0
\(991\) 12.8205 0.407258 0.203629 0.979048i \(-0.434726\pi\)
0.203629 + 0.979048i \(0.434726\pi\)
\(992\) −21.7516 + 33.8832i −0.690616 + 1.07579i
\(993\) 0 0
\(994\) 0.913345 + 0.104705i 0.0289696 + 0.00332103i
\(995\) 11.1519 + 6.86467i 0.353538 + 0.217625i
\(996\) 0 0
\(997\) 15.0860 15.0860i 0.477777 0.477777i −0.426643 0.904420i \(-0.640304\pi\)
0.904420 + 0.426643i \(0.140304\pi\)
\(998\) 11.8193 + 14.8801i 0.374135 + 0.471022i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.2.bm.f.469.5 16
3.2 odd 2 80.2.q.c.69.4 yes 16
5.4 even 2 inner 720.2.bm.f.469.4 16
12.11 even 2 320.2.q.c.49.3 16
15.2 even 4 400.2.l.i.101.1 16
15.8 even 4 400.2.l.i.101.8 16
15.14 odd 2 80.2.q.c.69.5 yes 16
16.13 even 4 inner 720.2.bm.f.109.4 16
24.5 odd 2 640.2.q.e.609.3 16
24.11 even 2 640.2.q.f.609.6 16
48.5 odd 4 640.2.q.e.289.6 16
48.11 even 4 640.2.q.f.289.3 16
48.29 odd 4 80.2.q.c.29.5 yes 16
48.35 even 4 320.2.q.c.209.6 16
60.23 odd 4 1600.2.l.h.1201.6 16
60.47 odd 4 1600.2.l.h.1201.3 16
60.59 even 2 320.2.q.c.49.6 16
80.29 even 4 inner 720.2.bm.f.109.5 16
120.29 odd 2 640.2.q.e.609.6 16
120.59 even 2 640.2.q.f.609.3 16
240.29 odd 4 80.2.q.c.29.4 16
240.59 even 4 640.2.q.f.289.6 16
240.77 even 4 400.2.l.i.301.1 16
240.83 odd 4 1600.2.l.h.401.6 16
240.149 odd 4 640.2.q.e.289.3 16
240.173 even 4 400.2.l.i.301.8 16
240.179 even 4 320.2.q.c.209.3 16
240.227 odd 4 1600.2.l.h.401.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.2.q.c.29.4 16 240.29 odd 4
80.2.q.c.29.5 yes 16 48.29 odd 4
80.2.q.c.69.4 yes 16 3.2 odd 2
80.2.q.c.69.5 yes 16 15.14 odd 2
320.2.q.c.49.3 16 12.11 even 2
320.2.q.c.49.6 16 60.59 even 2
320.2.q.c.209.3 16 240.179 even 4
320.2.q.c.209.6 16 48.35 even 4
400.2.l.i.101.1 16 15.2 even 4
400.2.l.i.101.8 16 15.8 even 4
400.2.l.i.301.1 16 240.77 even 4
400.2.l.i.301.8 16 240.173 even 4
640.2.q.e.289.3 16 240.149 odd 4
640.2.q.e.289.6 16 48.5 odd 4
640.2.q.e.609.3 16 24.5 odd 2
640.2.q.e.609.6 16 120.29 odd 2
640.2.q.f.289.3 16 48.11 even 4
640.2.q.f.289.6 16 240.59 even 4
640.2.q.f.609.3 16 120.59 even 2
640.2.q.f.609.6 16 24.11 even 2
720.2.bm.f.109.4 16 16.13 even 4 inner
720.2.bm.f.109.5 16 80.29 even 4 inner
720.2.bm.f.469.4 16 5.4 even 2 inner
720.2.bm.f.469.5 16 1.1 even 1 trivial
1600.2.l.h.401.3 16 240.227 odd 4
1600.2.l.h.401.6 16 240.83 odd 4
1600.2.l.h.1201.3 16 60.47 odd 4
1600.2.l.h.1201.6 16 60.23 odd 4