Properties

Label 400.5.p.f
Level $400$
Weight $5$
Character orbit 400.p
Analytic conductor $41.348$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,5,Mod(193,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 3]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.193");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 400.p (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.3479852335\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{61})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 31x^{2} + 225 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} + 4 \beta_1 - 4) q^{3} + ( - \beta_{2} + 12 \beta_1 + 12) q^{7} + (8 \beta_{3} + 8 \beta_{2} - 73 \beta_1) q^{9} + (8 \beta_{3} - 8 \beta_{2} + 60) q^{11} + ( - 12 \beta_{3} + 96 \beta_1 - 96) q^{13}+ \cdots + (1064 \beta_{3} + 1064 \beta_{2} - 19996 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{3} + 48 q^{7} + 240 q^{11} - 384 q^{13} - 512 q^{17} - 872 q^{21} + 144 q^{23} + 3776 q^{27} - 3104 q^{31} - 4864 q^{33} - 3840 q^{37} - 288 q^{41} + 3792 q^{43} + 8528 q^{47} - 1760 q^{51}+ \cdots + 8448 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 31x^{2} + 225 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 16\nu ) / 15 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 30\nu^{2} + 46\nu + 465 ) / 15 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - 30\nu^{2} + 46\nu - 465 ) / 15 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} - 2\beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{3} + \beta_{2} - 62 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -4\beta_{3} - 4\beta_{2} + 23\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(\beta_{1}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
193.1
4.40512i
3.40512i
4.40512i
3.40512i
0 −11.8102 11.8102i 0 0 0 19.8102 19.8102i 0 197.964i 0
193.2 0 3.81025 + 3.81025i 0 0 0 4.18975 4.18975i 0 51.9640i 0
257.1 0 −11.8102 + 11.8102i 0 0 0 19.8102 + 19.8102i 0 197.964i 0
257.2 0 3.81025 3.81025i 0 0 0 4.18975 + 4.18975i 0 51.9640i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 400.5.p.f 4
4.b odd 2 1 200.5.l.d yes 4
5.b even 2 1 400.5.p.m 4
5.c odd 4 1 inner 400.5.p.f 4
5.c odd 4 1 400.5.p.m 4
20.d odd 2 1 200.5.l.b 4
20.e even 4 1 200.5.l.b 4
20.e even 4 1 200.5.l.d yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
200.5.l.b 4 20.d odd 2 1
200.5.l.b 4 20.e even 4 1
200.5.l.d yes 4 4.b odd 2 1
200.5.l.d yes 4 20.e even 4 1
400.5.p.f 4 1.a even 1 1 trivial
400.5.p.f 4 5.c odd 4 1 inner
400.5.p.m 4 5.b even 2 1
400.5.p.m 4 5.c odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 16T_{3}^{3} + 128T_{3}^{2} - 1440T_{3} + 8100 \) acting on \(S_{5}^{\mathrm{new}}(400, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 16 T^{3} + \cdots + 8100 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 48 T^{3} + \cdots + 27556 \) Copy content Toggle raw display
$11$ \( (T^{2} - 120 T - 12016)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 384 T^{3} + \cdots + 746496 \) Copy content Toggle raw display
$17$ \( T^{4} + 512 T^{3} + \cdots + 231040000 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 17041735936 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 155067413796 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 51690750736 \) Copy content Toggle raw display
$31$ \( (T^{2} + 1552 T + 40000)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 97863860224 \) Copy content Toggle raw display
$41$ \( (T^{2} + 144 T - 1884352)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 1398083948836 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 82145183306404 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 13008198329344 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 8392655352064 \) Copy content Toggle raw display
$61$ \( (T^{2} + 5472 T + 6923520)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 81224687600676 \) Copy content Toggle raw display
$71$ \( (T^{2} + 8928 T + 19677440)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 111331664896 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 17\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 560151218940196 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 37\!\cdots\!76 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 38\!\cdots\!44 \) Copy content Toggle raw display
show more
show less