Properties

Label 400.5.p.f
Level 400400
Weight 55
Character orbit 400.p
Analytic conductor 41.34841.348
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,5,Mod(193,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 3]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.193");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: N N == 400=2452 400 = 2^{4} \cdot 5^{2}
Weight: k k == 5 5
Character orbit: [χ][\chi] == 400.p (of order 44, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 41.347985233541.3479852335
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(i)\Q(i)
Coefficient field: Q(i,61)\Q(i, \sqrt{61})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+31x2+225 x^{4} + 31x^{2} + 225 Copy content Toggle raw display
Coefficient ring: Z[a1,,a9]\Z[a_1, \ldots, a_{9}]
Coefficient ring index: 23 2^{3}
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β3+4β14)q3+(β2+12β1+12)q7+(8β3+8β273β1)q9+(8β38β2+60)q11+(12β3+96β196)q13++(1064β3+1064β219996β1)q99+O(q100) q + ( - \beta_{3} + 4 \beta_1 - 4) q^{3} + ( - \beta_{2} + 12 \beta_1 + 12) q^{7} + (8 \beta_{3} + 8 \beta_{2} - 73 \beta_1) q^{9} + (8 \beta_{3} - 8 \beta_{2} + 60) q^{11} + ( - 12 \beta_{3} + 96 \beta_1 - 96) q^{13}+ \cdots + (1064 \beta_{3} + 1064 \beta_{2} - 19996 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q16q3+48q7+240q11384q13512q17872q21+144q23+3776q273104q314864q333840q37288q41+3792q43+8528q471760q51++8448q97+O(q100) 4 q - 16 q^{3} + 48 q^{7} + 240 q^{11} - 384 q^{13} - 512 q^{17} - 872 q^{21} + 144 q^{23} + 3776 q^{27} - 3104 q^{31} - 4864 q^{33} - 3840 q^{37} - 288 q^{41} + 3792 q^{43} + 8528 q^{47} - 1760 q^{51}+ \cdots + 8448 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+31x2+225 x^{4} + 31x^{2} + 225 : Copy content Toggle raw display

β1\beta_{1}== (ν3+16ν)/15 ( \nu^{3} + 16\nu ) / 15 Copy content Toggle raw display
β2\beta_{2}== (ν3+30ν2+46ν+465)/15 ( \nu^{3} + 30\nu^{2} + 46\nu + 465 ) / 15 Copy content Toggle raw display
β3\beta_{3}== (ν330ν2+46ν465)/15 ( \nu^{3} - 30\nu^{2} + 46\nu - 465 ) / 15 Copy content Toggle raw display
ν\nu== (β3+β22β1)/4 ( \beta_{3} + \beta_{2} - 2\beta_1 ) / 4 Copy content Toggle raw display
ν2\nu^{2}== (β3+β262)/4 ( -\beta_{3} + \beta_{2} - 62 ) / 4 Copy content Toggle raw display
ν3\nu^{3}== 4β34β2+23β1 -4\beta_{3} - 4\beta_{2} + 23\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/400Z)×\left(\mathbb{Z}/400\mathbb{Z}\right)^\times.

nn 101101 177177 351351
χ(n)\chi(n) 11 β1\beta_{1} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
193.1
4.40512i
3.40512i
4.40512i
3.40512i
0 −11.8102 11.8102i 0 0 0 19.8102 19.8102i 0 197.964i 0
193.2 0 3.81025 + 3.81025i 0 0 0 4.18975 4.18975i 0 51.9640i 0
257.1 0 −11.8102 + 11.8102i 0 0 0 19.8102 + 19.8102i 0 197.964i 0
257.2 0 3.81025 3.81025i 0 0 0 4.18975 + 4.18975i 0 51.9640i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 400.5.p.f 4
4.b odd 2 1 200.5.l.d yes 4
5.b even 2 1 400.5.p.m 4
5.c odd 4 1 inner 400.5.p.f 4
5.c odd 4 1 400.5.p.m 4
20.d odd 2 1 200.5.l.b 4
20.e even 4 1 200.5.l.b 4
20.e even 4 1 200.5.l.d yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
200.5.l.b 4 20.d odd 2 1
200.5.l.b 4 20.e even 4 1
200.5.l.d yes 4 4.b odd 2 1
200.5.l.d yes 4 20.e even 4 1
400.5.p.f 4 1.a even 1 1 trivial
400.5.p.f 4 5.c odd 4 1 inner
400.5.p.m 4 5.b even 2 1
400.5.p.m 4 5.c odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T34+16T33+128T321440T3+8100 T_{3}^{4} + 16T_{3}^{3} + 128T_{3}^{2} - 1440T_{3} + 8100 acting on S5new(400,[χ])S_{5}^{\mathrm{new}}(400, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4+16T3++8100 T^{4} + 16 T^{3} + \cdots + 8100 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T448T3++27556 T^{4} - 48 T^{3} + \cdots + 27556 Copy content Toggle raw display
1111 (T2120T12016)2 (T^{2} - 120 T - 12016)^{2} Copy content Toggle raw display
1313 T4+384T3++746496 T^{4} + 384 T^{3} + \cdots + 746496 Copy content Toggle raw display
1717 T4+512T3++231040000 T^{4} + 512 T^{3} + \cdots + 231040000 Copy content Toggle raw display
1919 T4++17041735936 T^{4} + \cdots + 17041735936 Copy content Toggle raw display
2323 T4++155067413796 T^{4} + \cdots + 155067413796 Copy content Toggle raw display
2929 T4++51690750736 T^{4} + \cdots + 51690750736 Copy content Toggle raw display
3131 (T2+1552T+40000)2 (T^{2} + 1552 T + 40000)^{2} Copy content Toggle raw display
3737 T4++97863860224 T^{4} + \cdots + 97863860224 Copy content Toggle raw display
4141 (T2+144T1884352)2 (T^{2} + 144 T - 1884352)^{2} Copy content Toggle raw display
4343 T4++1398083948836 T^{4} + \cdots + 1398083948836 Copy content Toggle raw display
4747 T4++82145183306404 T^{4} + \cdots + 82145183306404 Copy content Toggle raw display
5353 T4++13008198329344 T^{4} + \cdots + 13008198329344 Copy content Toggle raw display
5959 T4++8392655352064 T^{4} + \cdots + 8392655352064 Copy content Toggle raw display
6161 (T2+5472T+6923520)2 (T^{2} + 5472 T + 6923520)^{2} Copy content Toggle raw display
6767 T4++81224687600676 T^{4} + \cdots + 81224687600676 Copy content Toggle raw display
7171 (T2+8928T+19677440)2 (T^{2} + 8928 T + 19677440)^{2} Copy content Toggle raw display
7373 T4++111331664896 T^{4} + \cdots + 111331664896 Copy content Toggle raw display
7979 T4++17 ⁣ ⁣00 T^{4} + \cdots + 17\!\cdots\!00 Copy content Toggle raw display
8383 T4++560151218940196 T^{4} + \cdots + 560151218940196 Copy content Toggle raw display
8989 T4++37 ⁣ ⁣76 T^{4} + \cdots + 37\!\cdots\!76 Copy content Toggle raw display
9797 T4++38 ⁣ ⁣44 T^{4} + \cdots + 38\!\cdots\!44 Copy content Toggle raw display
show more
show less