Properties

Label 400.6.a.j
Level 400400
Weight 66
Character orbit 400.a
Self dual yes
Analytic conductor 64.15464.154
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,6,Mod(1,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 400=2452 400 = 2^{4} \cdot 5^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 64.153527925264.1535279252
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 50)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+11q3+142q7122q9777q11+884q1327q171145q19+1562q211854q234015q274920q291802q318547q33+13178q37+9724q39++94794q99+O(q100) q + 11 q^{3} + 142 q^{7} - 122 q^{9} - 777 q^{11} + 884 q^{13} - 27 q^{17} - 1145 q^{19} + 1562 q^{21} - 1854 q^{23} - 4015 q^{27} - 4920 q^{29} - 1802 q^{31} - 8547 q^{33} + 13178 q^{37} + 9724 q^{39}+ \cdots + 94794 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 11.0000 0 0 0 142.000 0 −122.000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
55 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 400.6.a.j 1
4.b odd 2 1 50.6.a.a 1
5.b even 2 1 400.6.a.e 1
5.c odd 4 2 400.6.c.g 2
12.b even 2 1 450.6.a.n 1
20.d odd 2 1 50.6.a.f yes 1
20.e even 4 2 50.6.b.c 2
60.h even 2 1 450.6.a.j 1
60.l odd 4 2 450.6.c.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
50.6.a.a 1 4.b odd 2 1
50.6.a.f yes 1 20.d odd 2 1
50.6.b.c 2 20.e even 4 2
400.6.a.e 1 5.b even 2 1
400.6.a.j 1 1.a even 1 1 trivial
400.6.c.g 2 5.c odd 4 2
450.6.a.j 1 60.h even 2 1
450.6.a.n 1 12.b even 2 1
450.6.c.a 2 60.l odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T311 T_{3} - 11 acting on S6new(Γ0(400))S_{6}^{\mathrm{new}}(\Gamma_0(400)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T11 T - 11 Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T142 T - 142 Copy content Toggle raw display
1111 T+777 T + 777 Copy content Toggle raw display
1313 T884 T - 884 Copy content Toggle raw display
1717 T+27 T + 27 Copy content Toggle raw display
1919 T+1145 T + 1145 Copy content Toggle raw display
2323 T+1854 T + 1854 Copy content Toggle raw display
2929 T+4920 T + 4920 Copy content Toggle raw display
3131 T+1802 T + 1802 Copy content Toggle raw display
3737 T13178 T - 13178 Copy content Toggle raw display
4141 T+15123 T + 15123 Copy content Toggle raw display
4343 T+7844 T + 7844 Copy content Toggle raw display
4747 T6732 T - 6732 Copy content Toggle raw display
5353 T3414 T - 3414 Copy content Toggle raw display
5959 T+33960 T + 33960 Copy content Toggle raw display
6161 T47402 T - 47402 Copy content Toggle raw display
6767 T13177 T - 13177 Copy content Toggle raw display
7171 T7548 T - 7548 Copy content Toggle raw display
7373 T+59821 T + 59821 Copy content Toggle raw display
7979 T+75830 T + 75830 Copy content Toggle raw display
8383 T+46299 T + 46299 Copy content Toggle raw display
8989 T+30585 T + 30585 Copy content Toggle raw display
9797 T104018 T - 104018 Copy content Toggle raw display
show more
show less