Properties

Label 400.6.a.m
Level 400400
Weight 66
Character orbit 400.a
Self dual yes
Analytic conductor 64.15464.154
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,6,Mod(1,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 400=2452 400 = 2^{4} \cdot 5^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 64.153527925264.1535279252
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 20)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+22q3+218q7+241q9+480q11+622q13186q17+1204q19+4796q213186q2344q27+5526q299356q31+10560q335618q37+13684q39++115680q99+O(q100) q + 22 q^{3} + 218 q^{7} + 241 q^{9} + 480 q^{11} + 622 q^{13} - 186 q^{17} + 1204 q^{19} + 4796 q^{21} - 3186 q^{23} - 44 q^{27} + 5526 q^{29} - 9356 q^{31} + 10560 q^{33} - 5618 q^{37} + 13684 q^{39}+ \cdots + 115680 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 22.0000 0 0 0 218.000 0 241.000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
55 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 400.6.a.m 1
4.b odd 2 1 100.6.a.a 1
5.b even 2 1 80.6.a.b 1
5.c odd 4 2 400.6.c.c 2
12.b even 2 1 900.6.a.b 1
15.d odd 2 1 720.6.a.l 1
20.d odd 2 1 20.6.a.a 1
20.e even 4 2 100.6.c.a 2
40.e odd 2 1 320.6.a.c 1
40.f even 2 1 320.6.a.n 1
60.h even 2 1 180.6.a.e 1
60.l odd 4 2 900.6.d.h 2
140.c even 2 1 980.6.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
20.6.a.a 1 20.d odd 2 1
80.6.a.b 1 5.b even 2 1
100.6.a.a 1 4.b odd 2 1
100.6.c.a 2 20.e even 4 2
180.6.a.e 1 60.h even 2 1
320.6.a.c 1 40.e odd 2 1
320.6.a.n 1 40.f even 2 1
400.6.a.m 1 1.a even 1 1 trivial
400.6.c.c 2 5.c odd 4 2
720.6.a.l 1 15.d odd 2 1
900.6.a.b 1 12.b even 2 1
900.6.d.h 2 60.l odd 4 2
980.6.a.b 1 140.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T322 T_{3} - 22 acting on S6new(Γ0(400))S_{6}^{\mathrm{new}}(\Gamma_0(400)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T22 T - 22 Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T218 T - 218 Copy content Toggle raw display
1111 T480 T - 480 Copy content Toggle raw display
1313 T622 T - 622 Copy content Toggle raw display
1717 T+186 T + 186 Copy content Toggle raw display
1919 T1204 T - 1204 Copy content Toggle raw display
2323 T+3186 T + 3186 Copy content Toggle raw display
2929 T5526 T - 5526 Copy content Toggle raw display
3131 T+9356 T + 9356 Copy content Toggle raw display
3737 T+5618 T + 5618 Copy content Toggle raw display
4141 T+14394 T + 14394 Copy content Toggle raw display
4343 T+370 T + 370 Copy content Toggle raw display
4747 T16146 T - 16146 Copy content Toggle raw display
5353 T4374 T - 4374 Copy content Toggle raw display
5959 T11748 T - 11748 Copy content Toggle raw display
6161 T13202 T - 13202 Copy content Toggle raw display
6767 T+11542 T + 11542 Copy content Toggle raw display
7171 T29532 T - 29532 Copy content Toggle raw display
7373 T+33698 T + 33698 Copy content Toggle raw display
7979 T+31208 T + 31208 Copy content Toggle raw display
8383 T+38466 T + 38466 Copy content Toggle raw display
8989 T119514 T - 119514 Copy content Toggle raw display
9797 T+94658 T + 94658 Copy content Toggle raw display
show more
show less