Properties

Label 400.6.a.m
Level $400$
Weight $6$
Character orbit 400.a
Self dual yes
Analytic conductor $64.154$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,6,Mod(1,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(64.1535279252\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 20)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 22 q^{3} + 218 q^{7} + 241 q^{9} + 480 q^{11} + 622 q^{13} - 186 q^{17} + 1204 q^{19} + 4796 q^{21} - 3186 q^{23} - 44 q^{27} + 5526 q^{29} - 9356 q^{31} + 10560 q^{33} - 5618 q^{37} + 13684 q^{39}+ \cdots + 115680 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 22.0000 0 0 0 218.000 0 241.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 400.6.a.m 1
4.b odd 2 1 100.6.a.a 1
5.b even 2 1 80.6.a.b 1
5.c odd 4 2 400.6.c.c 2
12.b even 2 1 900.6.a.b 1
15.d odd 2 1 720.6.a.l 1
20.d odd 2 1 20.6.a.a 1
20.e even 4 2 100.6.c.a 2
40.e odd 2 1 320.6.a.c 1
40.f even 2 1 320.6.a.n 1
60.h even 2 1 180.6.a.e 1
60.l odd 4 2 900.6.d.h 2
140.c even 2 1 980.6.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
20.6.a.a 1 20.d odd 2 1
80.6.a.b 1 5.b even 2 1
100.6.a.a 1 4.b odd 2 1
100.6.c.a 2 20.e even 4 2
180.6.a.e 1 60.h even 2 1
320.6.a.c 1 40.e odd 2 1
320.6.a.n 1 40.f even 2 1
400.6.a.m 1 1.a even 1 1 trivial
400.6.c.c 2 5.c odd 4 2
720.6.a.l 1 15.d odd 2 1
900.6.a.b 1 12.b even 2 1
900.6.d.h 2 60.l odd 4 2
980.6.a.b 1 140.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 22 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(400))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 22 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 218 \) Copy content Toggle raw display
$11$ \( T - 480 \) Copy content Toggle raw display
$13$ \( T - 622 \) Copy content Toggle raw display
$17$ \( T + 186 \) Copy content Toggle raw display
$19$ \( T - 1204 \) Copy content Toggle raw display
$23$ \( T + 3186 \) Copy content Toggle raw display
$29$ \( T - 5526 \) Copy content Toggle raw display
$31$ \( T + 9356 \) Copy content Toggle raw display
$37$ \( T + 5618 \) Copy content Toggle raw display
$41$ \( T + 14394 \) Copy content Toggle raw display
$43$ \( T + 370 \) Copy content Toggle raw display
$47$ \( T - 16146 \) Copy content Toggle raw display
$53$ \( T - 4374 \) Copy content Toggle raw display
$59$ \( T - 11748 \) Copy content Toggle raw display
$61$ \( T - 13202 \) Copy content Toggle raw display
$67$ \( T + 11542 \) Copy content Toggle raw display
$71$ \( T - 29532 \) Copy content Toggle raw display
$73$ \( T + 33698 \) Copy content Toggle raw display
$79$ \( T + 31208 \) Copy content Toggle raw display
$83$ \( T + 38466 \) Copy content Toggle raw display
$89$ \( T - 119514 \) Copy content Toggle raw display
$97$ \( T + 94658 \) Copy content Toggle raw display
show more
show less