Properties

Label 400.6.n.h
Level 400400
Weight 66
Character orbit 400.n
Analytic conductor 64.15464.154
Analytic rank 00
Dimension 2424
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,6,Mod(143,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 3]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.143");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 400=2452 400 = 2^{4} \cdot 5^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 400.n (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 64.153527925264.1535279252
Analytic rank: 00
Dimension: 2424
Relative dimension: 1212 over Q(i)\Q(i)
Twist minimal: yes
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 24q+19936q21+32568q41+454944q61+1059176q81+O(q100) 24 q + 19936 q^{21} + 32568 q^{41} + 454944 q^{61} + 1059176 q^{81}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
143.1 0 −13.8504 + 13.8504i 0 0 0 −156.283 156.283i 0 140.668i 0
143.2 0 −13.8504 + 13.8504i 0 0 0 −156.283 156.283i 0 140.668i 0
143.3 0 −13.2732 + 13.2732i 0 0 0 25.6490 + 25.6490i 0 109.358i 0
143.4 0 −13.2732 + 13.2732i 0 0 0 25.6490 + 25.6490i 0 109.358i 0
143.5 0 −5.78678 + 5.78678i 0 0 0 99.9080 + 99.9080i 0 176.026i 0
143.6 0 −5.78678 + 5.78678i 0 0 0 99.9080 + 99.9080i 0 176.026i 0
143.7 0 5.78678 5.78678i 0 0 0 −99.9080 99.9080i 0 176.026i 0
143.8 0 5.78678 5.78678i 0 0 0 −99.9080 99.9080i 0 176.026i 0
143.9 0 13.2732 13.2732i 0 0 0 −25.6490 25.6490i 0 109.358i 0
143.10 0 13.2732 13.2732i 0 0 0 −25.6490 25.6490i 0 109.358i 0
143.11 0 13.8504 13.8504i 0 0 0 156.283 + 156.283i 0 140.668i 0
143.12 0 13.8504 13.8504i 0 0 0 156.283 + 156.283i 0 140.668i 0
207.1 0 −13.8504 13.8504i 0 0 0 −156.283 + 156.283i 0 140.668i 0
207.2 0 −13.8504 13.8504i 0 0 0 −156.283 + 156.283i 0 140.668i 0
207.3 0 −13.2732 13.2732i 0 0 0 25.6490 25.6490i 0 109.358i 0
207.4 0 −13.2732 13.2732i 0 0 0 25.6490 25.6490i 0 109.358i 0
207.5 0 −5.78678 5.78678i 0 0 0 99.9080 99.9080i 0 176.026i 0
207.6 0 −5.78678 5.78678i 0 0 0 99.9080 99.9080i 0 176.026i 0
207.7 0 5.78678 + 5.78678i 0 0 0 −99.9080 + 99.9080i 0 176.026i 0
207.8 0 5.78678 + 5.78678i 0 0 0 −99.9080 + 99.9080i 0 176.026i 0
See all 24 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 143.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
5.b even 2 1 inner
5.c odd 4 2 inner
20.d odd 2 1 inner
20.e even 4 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 400.6.n.h 24
4.b odd 2 1 inner 400.6.n.h 24
5.b even 2 1 inner 400.6.n.h 24
5.c odd 4 2 inner 400.6.n.h 24
20.d odd 2 1 inner 400.6.n.h 24
20.e even 4 2 inner 400.6.n.h 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
400.6.n.h 24 1.a even 1 1 trivial
400.6.n.h 24 4.b odd 2 1 inner
400.6.n.h 24 5.b even 2 1 inner
400.6.n.h 24 5.c odd 4 2 inner
400.6.n.h 24 20.d odd 2 1 inner
400.6.n.h 24 20.e even 4 2 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T312+275843T38+19493123203T34+81976382754561 T_{3}^{12} + 275843T_{3}^{8} + 19493123203T_{3}^{4} + 81976382754561 acting on S6new(400,[χ])S_{6}^{\mathrm{new}}(400, [\chi]). Copy content Toggle raw display