Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [400,6,Mod(143,400)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(400, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 0, 3]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("400.143");
S:= CuspForms(chi, 6);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 400 = 2^{4} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 400.n (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(64.1535279252\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
143.1 | 0 | −13.8504 | + | 13.8504i | 0 | 0 | 0 | −156.283 | − | 156.283i | 0 | − | 140.668i | 0 | |||||||||||||
143.2 | 0 | −13.8504 | + | 13.8504i | 0 | 0 | 0 | −156.283 | − | 156.283i | 0 | − | 140.668i | 0 | |||||||||||||
143.3 | 0 | −13.2732 | + | 13.2732i | 0 | 0 | 0 | 25.6490 | + | 25.6490i | 0 | − | 109.358i | 0 | |||||||||||||
143.4 | 0 | −13.2732 | + | 13.2732i | 0 | 0 | 0 | 25.6490 | + | 25.6490i | 0 | − | 109.358i | 0 | |||||||||||||
143.5 | 0 | −5.78678 | + | 5.78678i | 0 | 0 | 0 | 99.9080 | + | 99.9080i | 0 | 176.026i | 0 | ||||||||||||||
143.6 | 0 | −5.78678 | + | 5.78678i | 0 | 0 | 0 | 99.9080 | + | 99.9080i | 0 | 176.026i | 0 | ||||||||||||||
143.7 | 0 | 5.78678 | − | 5.78678i | 0 | 0 | 0 | −99.9080 | − | 99.9080i | 0 | 176.026i | 0 | ||||||||||||||
143.8 | 0 | 5.78678 | − | 5.78678i | 0 | 0 | 0 | −99.9080 | − | 99.9080i | 0 | 176.026i | 0 | ||||||||||||||
143.9 | 0 | 13.2732 | − | 13.2732i | 0 | 0 | 0 | −25.6490 | − | 25.6490i | 0 | − | 109.358i | 0 | |||||||||||||
143.10 | 0 | 13.2732 | − | 13.2732i | 0 | 0 | 0 | −25.6490 | − | 25.6490i | 0 | − | 109.358i | 0 | |||||||||||||
143.11 | 0 | 13.8504 | − | 13.8504i | 0 | 0 | 0 | 156.283 | + | 156.283i | 0 | − | 140.668i | 0 | |||||||||||||
143.12 | 0 | 13.8504 | − | 13.8504i | 0 | 0 | 0 | 156.283 | + | 156.283i | 0 | − | 140.668i | 0 | |||||||||||||
207.1 | 0 | −13.8504 | − | 13.8504i | 0 | 0 | 0 | −156.283 | + | 156.283i | 0 | 140.668i | 0 | ||||||||||||||
207.2 | 0 | −13.8504 | − | 13.8504i | 0 | 0 | 0 | −156.283 | + | 156.283i | 0 | 140.668i | 0 | ||||||||||||||
207.3 | 0 | −13.2732 | − | 13.2732i | 0 | 0 | 0 | 25.6490 | − | 25.6490i | 0 | 109.358i | 0 | ||||||||||||||
207.4 | 0 | −13.2732 | − | 13.2732i | 0 | 0 | 0 | 25.6490 | − | 25.6490i | 0 | 109.358i | 0 | ||||||||||||||
207.5 | 0 | −5.78678 | − | 5.78678i | 0 | 0 | 0 | 99.9080 | − | 99.9080i | 0 | − | 176.026i | 0 | |||||||||||||
207.6 | 0 | −5.78678 | − | 5.78678i | 0 | 0 | 0 | 99.9080 | − | 99.9080i | 0 | − | 176.026i | 0 | |||||||||||||
207.7 | 0 | 5.78678 | + | 5.78678i | 0 | 0 | 0 | −99.9080 | + | 99.9080i | 0 | − | 176.026i | 0 | |||||||||||||
207.8 | 0 | 5.78678 | + | 5.78678i | 0 | 0 | 0 | −99.9080 | + | 99.9080i | 0 | − | 176.026i | 0 | |||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
5.c | odd | 4 | 2 | inner |
20.d | odd | 2 | 1 | inner |
20.e | even | 4 | 2 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 400.6.n.h | ✓ | 24 |
4.b | odd | 2 | 1 | inner | 400.6.n.h | ✓ | 24 |
5.b | even | 2 | 1 | inner | 400.6.n.h | ✓ | 24 |
5.c | odd | 4 | 2 | inner | 400.6.n.h | ✓ | 24 |
20.d | odd | 2 | 1 | inner | 400.6.n.h | ✓ | 24 |
20.e | even | 4 | 2 | inner | 400.6.n.h | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
400.6.n.h | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
400.6.n.h | ✓ | 24 | 4.b | odd | 2 | 1 | inner |
400.6.n.h | ✓ | 24 | 5.b | even | 2 | 1 | inner |
400.6.n.h | ✓ | 24 | 5.c | odd | 4 | 2 | inner |
400.6.n.h | ✓ | 24 | 20.d | odd | 2 | 1 | inner |
400.6.n.h | ✓ | 24 | 20.e | even | 4 | 2 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{12} + 275843T_{3}^{8} + 19493123203T_{3}^{4} + 81976382754561 \) acting on \(S_{6}^{\mathrm{new}}(400, [\chi])\).