Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [4000,1,Mod(33,4000)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4000, base_ring=CyclotomicField(100))
chi = DirichletCharacter(H, H._module([0, 0, 83]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4000.33");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 4000 = 2^{5} \cdot 5^{3} \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 4000.cq (of order \(100\), degree \(40\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.99626005053\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Coefficient field: | \(\Q(\zeta_{100})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{40} - x^{30} + x^{20} - x^{10} + 1 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Projective image: | \(D_{100}\) |
Projective field: | Galois closure of \(\mathbb{Q}[x]/(x^{100} - \cdots)\) |
Embedding invariants
Embedding label | 33.1 | ||
Root | \(-0.368125 - 0.929776i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 4000.33 |
Dual form | 4000.1.cq.a.1697.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4000\mathbb{Z}\right)^\times\).
\(n\) | \(1377\) | \(2501\) | \(2751\) |
\(\chi(n)\) | \(e\left(\frac{83}{100}\right)\) | \(1\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | −0.562083 | − | 0.827081i | \(-0.690000\pi\) | ||||
0.562083 | + | 0.827081i | \(0.310000\pi\) | |||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0.982287 | − | 0.187381i | 0.982287 | − | 0.187381i | ||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | −0.987688 | − | 0.156434i | \(-0.950000\pi\) | ||||
0.987688 | + | 0.156434i | \(0.0500000\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | −0.368125 | + | 0.929776i | −0.368125 | + | 0.929776i | ||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 0 | 0 | 0.248690 | − | 0.968583i | \(-0.420000\pi\) | ||||
−0.248690 | + | 0.968583i | \(0.580000\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 0.269058 | + | 0.621757i | 0.269058 | + | 0.621757i | 0.998027 | − | 0.0627905i | \(-0.0200000\pi\) |
−0.728969 | + | 0.684547i | \(0.760000\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 0.512091 | − | 1.76263i | 0.512091 | − | 1.76263i | −0.125333 | − | 0.992115i | \(-0.540000\pi\) |
0.637424 | − | 0.770513i | \(-0.280000\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 0 | 0 | −0.187381 | − | 0.982287i | \(-0.560000\pi\) | ||||
0.187381 | + | 0.982287i | \(0.440000\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 0 | 0 | −0.750111 | − | 0.661312i | \(-0.770000\pi\) | ||||
0.750111 | + | 0.661312i | \(0.230000\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0.929776 | − | 0.368125i | 0.929776 | − | 0.368125i | ||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −0.211645 | − | 1.67534i | −0.211645 | − | 1.67534i | −0.637424 | − | 0.770513i | \(-0.720000\pi\) |
0.425779 | − | 0.904827i | \(-0.360000\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 0 | 0 | −0.481754 | − | 0.876307i | \(-0.660000\pi\) | ||||
0.481754 | + | 0.876307i | \(0.340000\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 1.46409 | + | 0.327263i | 1.46409 | + | 0.327263i | 0.876307 | − | 0.481754i | \(-0.160000\pi\) |
0.587785 | + | 0.809017i | \(0.300000\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −0.0604991 | + | 0.961606i | −0.0604991 | + | 0.961606i | 0.844328 | + | 0.535827i | \(0.180000\pi\) |
−0.904827 | + | 0.425779i | \(0.860000\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 0 | 0 | −0.453990 | − | 0.891007i | \(-0.650000\pi\) | ||||
0.453990 | + | 0.891007i | \(0.350000\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | −0.187381 | + | 0.982287i | −0.187381 | + | 0.982287i | ||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 0 | 0 | −0.999507 | − | 0.0314108i | \(-0.990000\pi\) | ||||
0.999507 | + | 0.0314108i | \(0.0100000\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 0.951057 | + | 0.309017i | 0.951057 | + | 0.309017i | ||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | −0.415230 | + | 1.15334i | −0.415230 | + | 1.15334i | 0.535827 | + | 0.844328i | \(0.320000\pi\) |
−0.951057 | + | 0.309017i | \(0.900000\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 0 | 0 | 0.637424 | − | 0.770513i | \(-0.280000\pi\) | ||||
−0.637424 | + | 0.770513i | \(0.720000\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 0.123357 | + | 1.96070i | 0.123357 | + | 1.96070i | 0.248690 | + | 0.968583i | \(0.420000\pi\) |
−0.125333 | + | 0.992115i | \(0.540000\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0.380798 | + | 0.560327i | 0.380798 | + | 0.560327i | ||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 0 | 0 | −0.612907 | − | 0.790155i | \(-0.710000\pi\) | ||||
0.612907 | + | 0.790155i | \(0.290000\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 0 | 0 | −0.684547 | − | 0.728969i | \(-0.740000\pi\) | ||||
0.684547 | + | 0.728969i | \(0.260000\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 0.00591203 | − | 0.0625427i | 0.00591203 | − | 0.0625427i | −0.992115 | − | 0.125333i | \(-0.960000\pi\) |
0.998027 | + | 0.0627905i | \(0.0200000\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 0 | 0 | 0.187381 | − | 0.982287i | \(-0.440000\pi\) | ||||
−0.187381 | + | 0.982287i | \(0.560000\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | −0.728969 | − | 0.684547i | −0.728969 | − | 0.684547i | ||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 0 | 0 | −0.827081 | − | 0.562083i | \(-0.810000\pi\) | ||||
0.827081 | + | 0.562083i | \(0.190000\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0.172737 | − | 1.82736i | 0.172737 | − | 1.82736i | ||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 0.383238 | − | 0.317042i | 0.383238 | − | 0.317042i | −0.425779 | − | 0.904827i | \(-0.640000\pi\) |
0.809017 | + | 0.587785i | \(0.200000\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 1.22037 | − | 1.57330i | 1.22037 | − | 1.57330i | 0.535827 | − | 0.844328i | \(-0.320000\pi\) |
0.684547 | − | 0.728969i | \(-0.260000\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −1.03137 | + | 0.749337i | −1.03137 | + | 0.749337i | −0.968583 | − | 0.248690i | \(-0.920000\pi\) |
−0.0627905 | + | 0.998027i | \(0.520000\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 0 | 0 | 0.960294 | − | 0.278991i | \(-0.0900000\pi\) | ||||
−0.960294 | + | 0.278991i | \(0.910000\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 0 | 0 | −0.156434 | − | 0.987688i | \(-0.550000\pi\) | ||||
0.156434 | + | 0.987688i | \(0.450000\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −1.23098 | + | 0.781202i | −1.23098 | + | 0.781202i | −0.982287 | − | 0.187381i | \(-0.940000\pi\) |
−0.248690 | + | 0.968583i | \(0.580000\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 1.71384 | − | 0.162006i | 1.71384 | − | 0.162006i | 0.809017 | − | 0.587785i | \(-0.200000\pi\) |
0.904827 | + | 0.425779i | \(0.140000\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | −0.677142 | + | 0.0212800i | −0.677142 | + | 0.0212800i | ||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −0.876307 | − | 0.481754i | −0.876307 | − | 0.481754i | ||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0.844328 | − | 0.535827i | 0.844328 | − | 0.535827i | ||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 0 | 0 | −0.509041 | − | 0.860742i | \(-0.670000\pi\) | ||||
0.509041 | + | 0.860742i | \(0.330000\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 0 | 0 | −0.904827 | − | 0.425779i | \(-0.860000\pi\) | ||||
0.904827 | + | 0.425779i | \(0.140000\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 0.105793 | + | 1.11918i | 0.105793 | + | 1.11918i | 0.876307 | + | 0.481754i | \(0.160000\pi\) |
−0.770513 | + | 0.637424i | \(0.780000\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 0 | 0 | 0.929776 | − | 0.368125i | \(-0.120000\pi\) | ||||
−0.929776 | + | 0.368125i | \(0.880000\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | −0.521823 | − | 1.60601i | −0.521823 | − | 1.60601i | ||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −1.16630 | − | 1.60528i | −1.16630 | − | 1.60528i | −0.684547 | − | 0.728969i | \(-0.740000\pi\) |
−0.481754 | − | 0.876307i | \(-0.660000\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 0 | 0 | 0.587785 | − | 0.809017i | \(-0.300000\pi\) | ||||
−0.587785 | + | 0.809017i | \(0.700000\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 1.45034 | + | 1.12500i | 1.45034 | + | 1.12500i | ||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −0.907118 | − | 0.462200i | −0.907118 | − | 0.462200i | −0.0627905 | − | 0.998027i | \(-0.520000\pi\) |
−0.844328 | + | 0.535827i | \(0.820000\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 0 | 0 | −0.661312 | − | 0.750111i | \(-0.730000\pi\) | ||||
0.661312 | + | 0.750111i | \(0.270000\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 0 | 0 | 0.562083 | − | 0.827081i | \(-0.310000\pi\) | ||||
−0.562083 | + | 0.827081i | \(0.690000\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 0.370358 | − | 0.394391i | 0.370358 | − | 0.394391i | ||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | −0.172737 | − | 0.0747498i | −0.172737 | − | 0.0747498i | 0.309017 | − | 0.951057i | \(-0.400000\pi\) |
−0.481754 | + | 0.876307i | \(0.660000\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 0 | 0 | 0.728969 | − | 0.684547i | \(-0.240000\pi\) | ||||
−0.728969 | + | 0.684547i | \(0.760000\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −1.92189 | − | 0.242791i | −1.92189 | − | 0.242791i | −0.929776 | − | 0.368125i | \(-0.880000\pi\) |
−0.992115 | + | 0.125333i | \(0.960000\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 1.49948 | + | 0.0471231i | 1.49948 | + | 0.0471231i | ||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 0 | 0 | −0.770513 | − | 0.637424i | \(-0.780000\pi\) | ||||
0.770513 | + | 0.637424i | \(0.220000\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 1.16967 | + | 1.16967i | 1.16967 | + | 1.16967i | 0.982287 | + | 0.187381i | \(0.0600000\pi\) |
0.187381 | + | 0.982287i | \(0.440000\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | −1.80704 | − | 0.650576i | −1.80704 | − | 0.650576i | −0.998027 | − | 0.0627905i | \(-0.980000\pi\) |
−0.809017 | − | 0.587785i | \(-0.800000\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 0 | 0 | −0.309017 | − | 0.951057i | \(-0.600000\pi\) | ||||
0.309017 | + | 0.951057i | \(0.400000\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0.120759 | + | 0.955910i | 0.120759 | + | 0.955910i | ||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 0 | 0 | −0.844328 | − | 0.535827i | \(-0.820000\pi\) | ||||
0.844328 | + | 0.535827i | \(0.180000\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 1.23371 | − | 0.155854i | 1.23371 | − | 0.155854i | ||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 0 | 0 | −0.218143 | − | 0.975917i | \(-0.570000\pi\) | ||||
0.218143 | + | 0.975917i | \(0.430000\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 1.00000i | 1.00000i | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 0 | 0 | 0.661312 | − | 0.750111i | \(-0.270000\pi\) | ||||
−0.661312 | + | 0.750111i | \(0.730000\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −0.226810 | + | 0.106729i | −0.226810 | + | 0.106729i | −0.535827 | − | 0.844328i | \(-0.680000\pi\) |
0.309017 | + | 0.951057i | \(0.400000\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | −0.535827 | − | 0.155672i | −0.535827 | − | 0.155672i | − | 1.00000i | \(-0.5\pi\) | |
−0.535827 | + | 0.844328i | \(0.680000\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 0 | 0 | −0.968583 | − | 0.248690i | \(-0.920000\pi\) | ||||
0.968583 | + | 0.248690i | \(0.0800000\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −1.85588 | − | 0.734796i | −1.85588 | − | 0.734796i | −0.951057 | − | 0.309017i | \(-0.900000\pi\) |
−0.904827 | − | 0.425779i | \(-0.860000\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0.992115 | + | 0.125333i | 0.992115 | + | 0.125333i | ||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 0 | 0 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 0.312715 | − | 1.97440i | 0.312715 | − | 1.97440i | 0.125333 | − | 0.992115i | \(-0.460000\pi\) |
0.187381 | − | 0.982287i | \(-0.440000\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 1.63560 | + | 0.419952i | 1.63560 | + | 0.419952i | ||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 0 | 0 | 0.917755 | − | 0.397148i | \(-0.130000\pi\) | ||||
−0.917755 | + | 0.397148i | \(0.870000\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | −0.191760 | + | 1.21072i | −0.191760 | + | 1.21072i | ||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 0.368125 | − | 0.0702235i | 0.368125 | − | 0.0702235i | − | 1.00000i | \(-0.5\pi\) | |
0.368125 | + | 0.929776i | \(0.380000\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 0 | 0 | 0.904827 | − | 0.425779i | \(-0.140000\pi\) | ||||
−0.904827 | + | 0.425779i | \(0.860000\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 0.425779 | + | 1.90483i | 0.425779 | + | 1.90483i | 0.425779 | + | 0.904827i | \(0.360000\pi\) |
1.00000i | \(0.5\pi\) | |||||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −0.219661 | + | 0.120759i | −0.219661 | + | 0.120759i | −0.587785 | − | 0.809017i | \(-0.700000\pi\) |
0.368125 | + | 0.929776i | \(0.380000\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 0 | 0 | −0.338738 | − | 0.940881i | \(-0.610000\pi\) | ||||
0.338738 | + | 0.940881i | \(0.390000\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −2.00029 | − | 1.26942i | −2.00029 | − | 1.26942i | ||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 0.388734 | − | 0.198070i | 0.388734 | − | 0.198070i | −0.248690 | − | 0.968583i | \(-0.580000\pi\) |
0.637424 | + | 0.770513i | \(0.280000\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0.488570 | + | 1.90285i | 0.488570 | + | 1.90285i | ||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 0 | 0 | 0.998027 | − | 0.0627905i | \(-0.0200000\pi\) | ||||
−0.998027 | + | 0.0627905i | \(0.980000\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 1.70029 | + | 1.00555i | 1.70029 | + | 1.00555i | 0.929776 | + | 0.368125i | \(0.120000\pi\) |
0.770513 | + | 0.637424i | \(0.220000\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | −0.717446 | + | 0.556508i | −0.717446 | + | 0.556508i | −0.904827 | − | 0.425779i | \(-0.860000\pi\) |
0.187381 | + | 0.982287i | \(0.440000\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 0 | 0 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0.479048 | + | 0.479048i | 0.479048 | + | 0.479048i | ||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 0 | 0 | 0.684547 | − | 0.728969i | \(-0.260000\pi\) | ||||
−0.684547 | + | 0.728969i | \(0.740000\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | −0.843250 | + | 1.24080i | −0.843250 | + | 1.24080i | ||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −1.17847 | − | 1.33671i | −1.17847 | − | 1.33671i | −0.929776 | − | 0.368125i | \(-0.880000\pi\) |
−0.248690 | − | 0.968583i | \(-0.580000\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 0 | 0 | −0.790155 | − | 0.612907i | \(-0.790000\pi\) | ||||
0.790155 | + | 0.612907i | \(0.210000\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −1.17325 | + | 1.61484i | −1.17325 | + | 1.61484i | −0.535827 | + | 0.844328i | \(0.680000\pi\) |
−0.637424 | + | 0.770513i | \(0.720000\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | −0.0872876 | − | 0.300446i | −0.0872876 | − | 0.300446i | 0.904827 | − | 0.425779i | \(-0.140000\pi\) |
−0.992115 | + | 0.125333i | \(0.960000\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 0 | 0 | −0.535827 | − | 0.844328i | \(-0.680000\pi\) | ||||
0.535827 | + | 0.844328i | \(0.320000\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −0.929776 | + | 0.368125i | −0.929776 | + | 0.368125i | ||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | −0.00591203 | − | 0.0625427i | −0.00591203 | − | 0.0625427i | ||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 0 | 0 | −0.0314108 | − | 0.999507i | \(-0.510000\pi\) | ||||
0.0314108 | + | 0.999507i | \(0.490000\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | −0.871808 | − | 0.410241i | −0.871808 | − | 0.410241i | ||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −0.159263 | − | 0.269299i | −0.159263 | − | 0.269299i | 0.770513 | − | 0.637424i | \(-0.220000\pi\) |
−0.929776 | + | 0.368125i | \(0.880000\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 0.984709 | − | 0.582355i | 0.984709 | − | 0.582355i | ||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 0 | 0 | −0.876307 | − | 0.481754i | \(-0.840000\pi\) | ||||
0.876307 | + | 0.481754i | \(0.160000\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 0 | 0 | 0.999507 | − | 0.0314108i | \(-0.0100000\pi\) | ||||
−0.999507 | + | 0.0314108i | \(0.990000\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −0.645180 | − | 1.62954i | −0.645180 | − | 1.62954i | −0.770513 | − | 0.637424i | \(-0.780000\pi\) |
0.125333 | − | 0.992115i | \(-0.460000\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 1.71126 | − | 0.497166i | 1.71126 | − | 0.497166i | 0.728969 | − | 0.684547i | \(-0.240000\pi\) |
0.982287 | + | 0.187381i | \(0.0600000\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 0.303189 | + | 0.220280i | 0.303189 | + | 0.220280i | 0.728969 | − | 0.684547i | \(-0.240000\pi\) |
−0.425779 | + | 0.904827i | \(0.640000\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | −0.844328 | − | 0.535827i | −0.844328 | − | 0.535827i | ||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −0.0312307 | − | 0.121636i | −0.0312307 | − | 0.121636i | 0.951057 | − | 0.309017i | \(-0.100000\pi\) |
−0.982287 | + | 0.187381i | \(0.940000\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 0 | 0 | −0.728969 | − | 0.684547i | \(-0.760000\pi\) | ||||
0.728969 | + | 0.684547i | \(0.240000\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −0.288760 | + | 1.51373i | −0.288760 | + | 1.51373i | 0.481754 | + | 0.876307i | \(0.340000\pi\) |
−0.770513 | + | 0.637424i | \(0.780000\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | −0.172737 | − | 1.82736i | −0.172737 | − | 1.82736i | ||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 0 | 0 | 0.125333 | − | 0.992115i | \(-0.460000\pi\) | ||||
−0.125333 | + | 0.992115i | \(0.540000\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −1.17714 | − | 1.51756i | −1.17714 | − | 1.51756i | −0.809017 | − | 0.587785i | \(-0.800000\pi\) |
−0.368125 | − | 0.929776i | \(-0.620000\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 0 | 0 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 0 | 0 | −0.0627905 | − | 0.998027i | \(-0.520000\pi\) | ||||
0.0627905 | + | 0.998027i | \(0.480000\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | −0.637424 | + | 0.770513i | −0.637424 | + | 0.770513i | ||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0.317042 | − | 0.383238i | 0.317042 | − | 0.383238i | ||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −1.84235 | + | 0.598617i | −1.84235 | + | 0.598617i | −0.844328 | + | 0.535827i | \(0.820000\pi\) |
−0.998027 | + | 0.0627905i | \(0.980000\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −0.412215 | − | 0.809017i | −0.412215 | − | 0.809017i | 0.587785 | − | 0.809017i | \(-0.300000\pi\) |
−1.00000 | \(\pi\) | |||||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 0.996398 | − | 1.57007i | 0.996398 | − | 1.57007i | 0.187381 | − | 0.982287i | \(-0.440000\pi\) |
0.809017 | − | 0.587785i | \(-0.200000\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 0 | 0 | −0.975917 | − | 0.218143i | \(-0.930000\pi\) | ||||
0.975917 | + | 0.218143i | \(0.0700000\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 0 | 0 | 0.940881 | − | 0.338738i | \(-0.110000\pi\) | ||||
−0.940881 | + | 0.338738i | \(0.890000\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | −0.919497 | − | 0.810645i | −0.919497 | − | 0.810645i | ||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 0 | 0 | −0.425779 | − | 0.904827i | \(-0.640000\pi\) | ||||
0.425779 | + | 0.904827i | \(0.360000\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 0.190448 | + | 0.998362i | 0.190448 | + | 0.998362i | ||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0.903951 | − | 1.77410i | 0.903951 | − | 1.77410i | ||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 0 | 0 | −0.397148 | − | 0.917755i | \(-0.630000\pi\) | ||||
0.397148 | + | 0.917755i | \(0.370000\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 0 | 0 | 0.368125 | − | 0.929776i | \(-0.380000\pi\) | ||||
−0.368125 | + | 0.929776i | \(0.620000\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | −3.06138 | − | 0.484875i | −3.06138 | − | 0.484875i | ||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 0 | 0 | −0.562083 | − | 0.827081i | \(-0.690000\pi\) | ||||
0.562083 | + | 0.827081i | \(0.310000\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | −0.872693 | + | 0.929324i | −0.872693 | + | 0.929324i | ||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −0.271031 | + | 0.684547i | −0.271031 | + | 0.684547i | 0.728969 | + | 0.684547i | \(0.240000\pi\) |
−1.00000 | \(\pi\) | |||||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −0.844844 | − | 1.79538i | −0.844844 | − | 1.79538i | −0.535827 | − | 0.844328i | \(-0.680000\pi\) |
−0.309017 | − | 0.951057i | \(-0.600000\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 0 | 0 | −0.750111 | − | 0.661312i | \(-0.770000\pi\) | ||||
0.750111 | + | 0.661312i | \(0.230000\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 0.125333 | + | 0.992115i | 0.125333 | + | 0.992115i | ||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | −0.614163 | + | 0.221112i | −0.614163 | + | 0.221112i | ||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −0.0672897 | + | 1.06954i | −0.0672897 | + | 1.06954i | 0.809017 | + | 0.587785i | \(0.200000\pi\) |
−0.876307 | + | 0.481754i | \(0.840000\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | −1.06279 | + | 0.998027i | −1.06279 | + | 0.998027i | ||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 0 | 0 | −0.999507 | − | 0.0314108i | \(-0.990000\pi\) | ||||
0.999507 | + | 0.0314108i | \(0.0100000\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | −1.86842 | − | 0.607087i | −1.86842 | − | 0.607087i | ||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 0 | 0 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 1.21727 | − | 1.21727i | 1.21727 | − | 1.21727i | 0.248690 | − | 0.968583i | \(-0.420000\pi\) |
0.968583 | − | 0.248690i | \(-0.0800000\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 0 | 0 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 0 | 0 | 0.509041 | − | 0.860742i | \(-0.330000\pi\) | ||||
−0.509041 | + | 0.860742i | \(0.670000\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 1.65313 | − | 0.480279i | 1.65313 | − | 0.480279i | ||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −0.233064 | + | 1.84489i | −0.233064 | + | 1.84489i | 0.248690 | + | 0.968583i | \(0.420000\pi\) |
−0.481754 | + | 0.876307i | \(0.660000\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 0 | 0 | −0.684547 | − | 0.728969i | \(-0.740000\pi\) | ||||
0.684547 | + | 0.728969i | \(0.260000\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −0.360603 | + | 0.833304i | −0.360603 | + | 0.833304i | 0.637424 | + | 0.770513i | \(0.280000\pi\) |
−0.998027 | + | 0.0627905i | \(0.980000\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | −0.661160 | + | 0.147787i | −0.661160 | + | 0.147787i | ||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 0 | 0 | 0.750111 | − | 0.661312i | \(-0.230000\pi\) | ||||
−0.750111 | + | 0.661312i | \(0.770000\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 0 | 0 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | −0.886114 | + | 1.73910i | −0.886114 | + | 1.73910i | −0.248690 | + | 0.968583i | \(0.580000\pi\) |
−0.637424 | + | 0.770513i | \(0.720000\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 0 | 0 | −0.809017 | − | 0.587785i | \(-0.800000\pi\) | ||||
0.809017 | + | 0.587785i | \(0.200000\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −1.46404 | + | 1.06369i | −1.46404 | + | 1.06369i | −0.481754 | + | 0.876307i | \(0.660000\pi\) |
−0.982287 | + | 0.187381i | \(0.940000\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | −0.951057 | − | 0.309017i | −0.951057 | − | 0.309017i | ||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 0 | 0 | −0.156434 | − | 0.987688i | \(-0.550000\pi\) | ||||
0.156434 | + | 0.987688i | \(0.450000\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | −1.31675 | + | 0.124470i | −1.31675 | + | 0.124470i | −0.728969 | − | 0.684547i | \(-0.760000\pi\) |
−0.587785 | + | 0.809017i | \(0.700000\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −1.91964 | + | 0.0603271i | −1.91964 | + | 0.0603271i | −0.968583 | − | 0.248690i | \(-0.920000\pi\) |
−0.951057 | + | 0.309017i | \(0.900000\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 0 | 0 | 0.425779 | − | 0.904827i | \(-0.360000\pi\) | ||||
−0.425779 | + | 0.904827i | \(0.640000\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0.728969 | − | 0.684547i | 0.728969 | − | 0.684547i | ||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 1.32659 | − | 2.41306i | 1.32659 | − | 2.41306i | ||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 0 | 0 | −0.904827 | − | 0.425779i | \(-0.860000\pi\) | ||||
0.904827 | + | 0.425779i | \(0.140000\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 0.0637561 | + | 0.674469i | 0.0637561 | + | 0.674469i | ||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −0.629902 | − | 0.992567i | −0.629902 | − | 0.992567i | −0.998027 | − | 0.0627905i | \(-0.980000\pi\) |
0.368125 | − | 0.929776i | \(-0.380000\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 0 | 0 | 0.987688 | − | 0.156434i | \(-0.0500000\pi\) | ||||
−0.987688 | + | 0.156434i | \(0.950000\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 0 | 0 | −0.278991 | − | 0.960294i | \(-0.590000\pi\) | ||||
0.278991 | + | 0.960294i | \(0.410000\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 1.57330 | + | 1.22037i | 1.57330 | + | 1.22037i | 0.844328 | + | 0.535827i | \(0.180000\pi\) |
0.728969 | + | 0.684547i | \(0.240000\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0.0559744 | + | 0.0285204i | 0.0559744 | + | 0.0285204i | ||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 0 | 0 | 0.968583 | − | 0.248690i | \(-0.0800000\pi\) | ||||
−0.968583 | + | 0.248690i | \(0.920000\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −0.749337 | − | 0.905793i | −0.749337 | − | 0.905793i | 0.248690 | − | 0.968583i | \(-0.420000\pi\) |
−0.998027 | + | 0.0627905i | \(0.980000\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 0.400404 | + | 0.173270i | 0.400404 | + | 0.173270i | 0.587785 | − | 0.809017i | \(-0.300000\pi\) |
−0.187381 | + | 0.982287i | \(0.560000\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | −1.77410 | − | 0.167702i | −1.77410 | − | 0.167702i | −0.844328 | − | 0.535827i | \(-0.820000\pi\) |
−0.929776 | + | 0.368125i | \(0.880000\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 0 | 0 | 0.790155 | − | 0.612907i | \(-0.210000\pi\) | ||||
−0.790155 | + | 0.612907i | \(0.790000\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0.313633 | + | 1.07953i | 0.313633 | + | 1.07953i | ||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | −0.828821 | + | 0.0521450i | −0.828821 | + | 0.0521450i | ||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 0 | 0 | −0.770513 | − | 0.637424i | \(-0.780000\pi\) | ||||
0.770513 | + | 0.637424i | \(0.220000\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 1.66397 | + | 0.599067i | 1.66397 | + | 0.599067i | ||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −0.559214 | + | 1.72108i | −0.559214 | + | 1.72108i | 0.125333 | + | 0.992115i | \(0.460000\pi\) |
−0.684547 | + | 0.728969i | \(0.740000\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 0 | 0 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 1.80608 | + | 0.113629i | 1.80608 | + | 0.113629i | 0.929776 | − | 0.368125i | \(-0.120000\pi\) |
0.876307 | + | 0.481754i | \(0.160000\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 0 | 0 | 0.876307 | − | 0.481754i | \(-0.160000\pi\) | ||||
−0.876307 | + | 0.481754i | \(0.840000\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | −0.813516 | − | 1.47978i | −0.813516 | − | 1.47978i | ||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 0 | 0 | 0.661312 | − | 0.750111i | \(-0.270000\pi\) | ||||
−0.661312 | + | 0.750111i | \(0.730000\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0.904827 | − | 0.425779i | 0.904827 | − | 0.425779i | ||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 0 | 0 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | −0.300446 | − | 0.0872876i | −0.300446 | − | 0.0872876i | 0.125333 | − | 0.992115i | \(-0.460000\pi\) |
−0.425779 | + | 0.904827i | \(0.640000\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 0 | 0 | −0.968583 | − | 0.248690i | \(-0.920000\pi\) | ||||
0.968583 | + | 0.248690i | \(0.0800000\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 0 | 0 | 0.156434 | − | 0.987688i | \(-0.450000\pi\) | ||||
−0.156434 | + | 0.987688i | \(0.550000\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | −1.44644 | − | 1.35830i | −1.44644 | − | 1.35830i | ||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 0.175858 | − | 1.11033i | 0.175858 | − | 1.11033i | −0.728969 | − | 0.684547i | \(-0.760000\pi\) |
0.904827 | − | 0.425779i | \(-0.140000\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 1.41213 | + | 0.362574i | 1.41213 | + | 0.362574i | 0.876307 | − | 0.481754i | \(-0.160000\pi\) |
0.535827 | + | 0.844328i | \(0.320000\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 1.63545 | + | 0.833304i | 1.63545 | + | 0.833304i | ||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 1.86842 | − | 0.356420i | 1.86842 | − | 0.356420i | 0.876307 | − | 0.481754i | \(-0.160000\pi\) |
0.992115 | + | 0.125333i | \(0.0400000\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 1.32197 | − | 1.49948i | 1.32197 | − | 1.49948i | 0.637424 | − | 0.770513i | \(-0.280000\pi\) |
0.684547 | − | 0.728969i | \(-0.260000\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 0 | 0 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | −0.977659 | − | 0.284036i | −0.977659 | − | 0.284036i | ||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 0 | 0 | 0.218143 | − | 0.975917i | \(-0.430000\pi\) | ||||
−0.218143 | + | 0.975917i | \(0.570000\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | −1.18589 | + | 0.604239i | −1.18589 | + | 0.604239i | ||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | −0.0175266 | + | 0.557707i | −0.0175266 | + | 0.557707i | 0.951057 | + | 0.309017i | \(0.100000\pi\) |
−0.968583 | + | 0.248690i | \(0.920000\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 0 | 0 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0.153699 | + | 0.473036i | 0.153699 | + | 0.473036i | ||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 | 0 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −0.567290 | − | 0.469303i | −0.567290 | − | 0.469303i | 0.309017 | − | 0.951057i | \(-0.400000\pi\) |
−0.876307 | + | 0.481754i | \(0.840000\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 0 | 0 | 0.998027 | − | 0.0627905i | \(-0.0200000\pi\) | ||||
−0.998027 | + | 0.0627905i | \(0.980000\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 0 | 0 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 0.856954 | − | 0.804733i | 0.856954 | − | 0.804733i | −0.125333 | − | 0.992115i | \(-0.540000\pi\) |
0.982287 | + | 0.187381i | \(0.0600000\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 0 | 0 | −0.995562 | − | 0.0941083i | \(-0.970000\pi\) | ||||
0.995562 | + | 0.0941083i | \(0.0300000\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 0 | 0 | −0.917755 | − | 0.397148i | \(-0.870000\pi\) | ||||
0.917755 | + | 0.397148i | \(0.130000\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −0.836475 | − | 0.159566i | −0.836475 | − | 0.159566i | −0.248690 | − | 0.968583i | \(-0.580000\pi\) |
−0.587785 | + | 0.809017i | \(0.700000\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 1.03171 | − | 1.51811i | 1.03171 | − | 1.51811i | ||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 0 | 0 | −0.637424 | − | 0.770513i | \(-0.720000\pi\) | ||||
0.637424 | + | 0.770513i | \(0.280000\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −1.79339 | + | 0.460464i | −1.79339 | + | 0.460464i | ||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0.289896 | − | 0.456804i | 0.289896 | − | 0.456804i | ||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0 | 0 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 0 | 0 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 0.440892 | + | 1.51756i | 0.440892 | + | 1.51756i | 0.809017 | + | 0.587785i | \(0.200000\pi\) |
−0.368125 | + | 0.929776i | \(0.620000\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | −1.76007 | + | 0.278768i | −1.76007 | + | 0.278768i | −0.951057 | − | 0.309017i | \(-0.900000\pi\) |
−0.809017 | + | 0.587785i | \(0.800000\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 0 | 0 | −0.535827 | − | 0.844328i | \(-0.680000\pi\) | ||||
0.535827 | + | 0.844328i | \(0.320000\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 0 | 0 | −0.0941083 | − | 0.995562i | \(-0.530000\pi\) | ||||
0.0941083 | + | 0.995562i | \(0.470000\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | −0.183684 | − | 0.0410582i | −0.183684 | − | 0.0410582i | ||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 0 | 0 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 1.01356 | + | 1.71384i | 1.01356 | + | 1.71384i | ||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | −0.0540731 | + | 0.0319788i | −0.0540731 | + | 0.0319788i | −0.535827 | − | 0.844328i | \(-0.680000\pi\) |
0.481754 | + | 0.876307i | \(0.340000\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 0.500534 | − | 1.06369i | 0.500534 | − | 1.06369i | −0.481754 | − | 0.876307i | \(-0.660000\pi\) |
0.982287 | − | 0.187381i | \(-0.0600000\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 0 | 0 | 0.999507 | − | 0.0314108i | \(-0.0100000\pi\) | ||||
−0.999507 | + | 0.0314108i | \(0.990000\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 0 | 0 | 0.995562 | − | 0.0941083i | \(-0.0300000\pi\) | ||||
−0.995562 | + | 0.0941083i | \(0.970000\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 0 | 0 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 0 | 0 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 1.82028 | + | 1.32251i | 1.82028 | + | 1.32251i | ||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | −1.93334 | + | 0.121636i | −1.93334 | + | 0.121636i | ||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 0 | 0 | 0.453990 | − | 0.891007i | \(-0.350000\pi\) | ||||
−0.453990 | + | 0.891007i | \(0.650000\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | −0.317042 | − | 1.23480i | −0.317042 | − | 1.23480i | ||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 0 | 0 | 0.770513 | − | 0.637424i | \(-0.220000\pi\) | ||||
−0.770513 | + | 0.637424i | \(0.780000\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 0 | 0 | −0.728969 | − | 0.684547i | \(-0.760000\pi\) | ||||
0.728969 | + | 0.684547i | \(0.240000\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 1.48175 | − | 0.234686i | 1.48175 | − | 0.234686i | ||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 0.872693 | + | 0.929324i | 0.872693 | + | 0.929324i | 0.998027 | − | 0.0627905i | \(-0.0200000\pi\) |
−0.125333 | + | 0.992115i | \(0.540000\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 0 | 0 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 0.673270 | − | 1.13844i | 0.673270 | − | 1.13844i | −0.309017 | − | 0.951057i | \(-0.600000\pi\) |
0.982287 | − | 0.187381i | \(-0.0600000\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −0.683098 | + | 0.825723i | −0.683098 | + | 0.825723i | −0.992115 | − | 0.125333i | \(-0.960000\pi\) |
0.309017 | + | 0.951057i | \(0.400000\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 0 | 0 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 0 | 0 | 0.338738 | − | 0.940881i | \(-0.390000\pi\) | ||||
−0.338738 | + | 0.940881i | \(0.610000\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 0.0404770 | − | 0.0131518i | 0.0404770 | − | 0.0131518i | ||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 0.793904 | + | 0.0249494i | 0.793904 | + | 0.0249494i | 0.425779 | − | 0.904827i | \(-0.360000\pi\) |
0.368125 | + | 0.929776i | \(0.380000\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −0.535827 | + | 0.844328i | −0.535827 | + | 0.844328i | ||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 1.36812 | + | 0.929776i | 1.36812 | + | 0.929776i | ||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 0 | 0 | 0.940881 | − | 0.338738i | \(-0.110000\pi\) | ||||
−0.940881 | + | 0.338738i | \(0.890000\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 0 | 0 | −0.125333 | − | 0.992115i | \(-0.540000\pi\) | ||||
0.125333 | + | 0.992115i | \(0.460000\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 1.49948 | + | 1.32197i | 1.49948 | + | 1.32197i | 0.770513 | + | 0.637424i | \(0.220000\pi\) |
0.728969 | + | 0.684547i | \(0.240000\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | −0.273190 | − | 1.43211i | −0.273190 | − | 1.43211i | ||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 0 | 0 | 0.278991 | − | 0.960294i | \(-0.410000\pi\) | ||||
−0.278991 | + | 0.960294i | \(0.590000\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | −1.89694 | − | 0.300446i | −1.89694 | − | 0.300446i | ||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 0 | 0 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 0 | 0 | 0.368125 | − | 0.929776i | \(-0.380000\pi\) | ||||
−0.368125 | + | 0.929776i | \(0.620000\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 0.510361 | + | 0.750973i | 0.510361 | + | 0.750973i | 0.992115 | − | 0.125333i | \(-0.0400000\pi\) |
−0.481754 | + | 0.876307i | \(0.660000\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 4000.1.cq.a.33.1 | ✓ | 40 | |
4.3 | odd | 2 | CM | 4000.1.cq.a.33.1 | ✓ | 40 | |
125.72 | odd | 100 | inner | 4000.1.cq.a.1697.1 | yes | 40 | |
500.447 | even | 100 | inner | 4000.1.cq.a.1697.1 | yes | 40 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
4000.1.cq.a.33.1 | ✓ | 40 | 1.1 | even | 1 | trivial | |
4000.1.cq.a.33.1 | ✓ | 40 | 4.3 | odd | 2 | CM | |
4000.1.cq.a.1697.1 | yes | 40 | 125.72 | odd | 100 | inner | |
4000.1.cq.a.1697.1 | yes | 40 | 500.447 | even | 100 | inner |