Properties

Label 4000.2.a.p.1.4
Level $4000$
Weight $2$
Character 4000.1
Self dual yes
Analytic conductor $31.940$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4000,2,Mod(1,4000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4000.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4000 = 2^{5} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4000.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9401608085\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.8.26208800000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 11x^{6} + 34x^{4} - 30x^{2} + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.53025\) of defining polynomial
Character \(\chi\) \(=\) 4000.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.420293 q^{3} -2.86781 q^{7} -2.82335 q^{9} +O(q^{10})\) \(q-0.420293 q^{3} -2.86781 q^{7} -2.82335 q^{9} -3.96815 q^{11} +3.36296 q^{13} -4.80435 q^{17} -7.66856 q^{19} +1.20532 q^{21} -8.44782 q^{23} +2.44752 q^{27} +4.18632 q^{29} +6.15286 q^{31} +1.66779 q^{33} -1.44139 q^{37} -1.41343 q^{39} +1.77568 q^{41} +7.76777 q^{43} +11.0608 q^{47} +1.22432 q^{49} +2.01923 q^{51} +10.4721 q^{53} +3.22304 q^{57} +7.19188 q^{59} -14.7546 q^{61} +8.09684 q^{63} -9.39256 q^{67} +3.55056 q^{69} -12.5735 q^{71} +16.7179 q^{73} +11.3799 q^{77} -6.42060 q^{79} +7.44139 q^{81} +4.07230 q^{83} -1.75948 q^{87} -0.854102 q^{89} -9.64433 q^{91} -2.58600 q^{93} +5.04768 q^{97} +11.2035 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 8 q^{9} + 8 q^{13} + 20 q^{17} - 12 q^{21} - 16 q^{29} + 36 q^{33} + 28 q^{37} + 8 q^{41} + 16 q^{49} + 48 q^{53} + 20 q^{57} - 28 q^{61} - 28 q^{69} + 44 q^{77} + 20 q^{81} + 20 q^{89} + 4 q^{93} + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.420293 −0.242656 −0.121328 0.992612i \(-0.538715\pi\)
−0.121328 + 0.992612i \(0.538715\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2.86781 −1.08393 −0.541965 0.840401i \(-0.682319\pi\)
−0.541965 + 0.840401i \(0.682319\pi\)
\(8\) 0 0
\(9\) −2.82335 −0.941118
\(10\) 0 0
\(11\) −3.96815 −1.19644 −0.598221 0.801331i \(-0.704126\pi\)
−0.598221 + 0.801331i \(0.704126\pi\)
\(12\) 0 0
\(13\) 3.36296 0.932718 0.466359 0.884596i \(-0.345566\pi\)
0.466359 + 0.884596i \(0.345566\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.80435 −1.16523 −0.582613 0.812750i \(-0.697970\pi\)
−0.582613 + 0.812750i \(0.697970\pi\)
\(18\) 0 0
\(19\) −7.66856 −1.75929 −0.879644 0.475633i \(-0.842219\pi\)
−0.879644 + 0.475633i \(0.842219\pi\)
\(20\) 0 0
\(21\) 1.20532 0.263022
\(22\) 0 0
\(23\) −8.44782 −1.76149 −0.880746 0.473588i \(-0.842959\pi\)
−0.880746 + 0.473588i \(0.842959\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 2.44752 0.471024
\(28\) 0 0
\(29\) 4.18632 0.777379 0.388690 0.921369i \(-0.372928\pi\)
0.388690 + 0.921369i \(0.372928\pi\)
\(30\) 0 0
\(31\) 6.15286 1.10509 0.552543 0.833484i \(-0.313658\pi\)
0.552543 + 0.833484i \(0.313658\pi\)
\(32\) 0 0
\(33\) 1.66779 0.290324
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.44139 −0.236963 −0.118481 0.992956i \(-0.537803\pi\)
−0.118481 + 0.992956i \(0.537803\pi\)
\(38\) 0 0
\(39\) −1.41343 −0.226330
\(40\) 0 0
\(41\) 1.77568 0.277314 0.138657 0.990340i \(-0.455721\pi\)
0.138657 + 0.990340i \(0.455721\pi\)
\(42\) 0 0
\(43\) 7.76777 1.18457 0.592287 0.805727i \(-0.298225\pi\)
0.592287 + 0.805727i \(0.298225\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 11.0608 1.61339 0.806693 0.590971i \(-0.201255\pi\)
0.806693 + 0.590971i \(0.201255\pi\)
\(48\) 0 0
\(49\) 1.22432 0.174903
\(50\) 0 0
\(51\) 2.01923 0.282749
\(52\) 0 0
\(53\) 10.4721 1.43846 0.719229 0.694773i \(-0.244495\pi\)
0.719229 + 0.694773i \(0.244495\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 3.22304 0.426902
\(58\) 0 0
\(59\) 7.19188 0.936303 0.468152 0.883648i \(-0.344920\pi\)
0.468152 + 0.883648i \(0.344920\pi\)
\(60\) 0 0
\(61\) −14.7546 −1.88913 −0.944566 0.328320i \(-0.893517\pi\)
−0.944566 + 0.328320i \(0.893517\pi\)
\(62\) 0 0
\(63\) 8.09684 1.02011
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −9.39256 −1.14748 −0.573742 0.819036i \(-0.694509\pi\)
−0.573742 + 0.819036i \(0.694509\pi\)
\(68\) 0 0
\(69\) 3.55056 0.427437
\(70\) 0 0
\(71\) −12.5735 −1.49220 −0.746098 0.665837i \(-0.768075\pi\)
−0.746098 + 0.665837i \(0.768075\pi\)
\(72\) 0 0
\(73\) 16.7179 1.95668 0.978340 0.207006i \(-0.0663721\pi\)
0.978340 + 0.207006i \(0.0663721\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 11.3799 1.29686
\(78\) 0 0
\(79\) −6.42060 −0.722374 −0.361187 0.932493i \(-0.617628\pi\)
−0.361187 + 0.932493i \(0.617628\pi\)
\(80\) 0 0
\(81\) 7.44139 0.826821
\(82\) 0 0
\(83\) 4.07230 0.446993 0.223497 0.974705i \(-0.428253\pi\)
0.223497 + 0.974705i \(0.428253\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −1.75948 −0.188636
\(88\) 0 0
\(89\) −0.854102 −0.0905346 −0.0452673 0.998975i \(-0.514414\pi\)
−0.0452673 + 0.998975i \(0.514414\pi\)
\(90\) 0 0
\(91\) −9.64433 −1.01100
\(92\) 0 0
\(93\) −2.58600 −0.268156
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 5.04768 0.512514 0.256257 0.966609i \(-0.417511\pi\)
0.256257 + 0.966609i \(0.417511\pi\)
\(98\) 0 0
\(99\) 11.2035 1.12599
\(100\) 0 0
\(101\) −2.39499 −0.238311 −0.119155 0.992876i \(-0.538019\pi\)
−0.119155 + 0.992876i \(0.538019\pi\)
\(102\) 0 0
\(103\) 0.417242 0.0411121 0.0205561 0.999789i \(-0.493456\pi\)
0.0205561 + 0.999789i \(0.493456\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.19382 −0.308758 −0.154379 0.988012i \(-0.549338\pi\)
−0.154379 + 0.988012i \(0.549338\pi\)
\(108\) 0 0
\(109\) −12.2647 −1.17475 −0.587375 0.809315i \(-0.699838\pi\)
−0.587375 + 0.809315i \(0.699838\pi\)
\(110\) 0 0
\(111\) 0.605805 0.0575005
\(112\) 0 0
\(113\) 15.7736 1.48386 0.741928 0.670480i \(-0.233912\pi\)
0.741928 + 0.670480i \(0.233912\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −9.49483 −0.877798
\(118\) 0 0
\(119\) 13.7780 1.26302
\(120\) 0 0
\(121\) 4.74621 0.431474
\(122\) 0 0
\(123\) −0.746305 −0.0672920
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −10.2202 −0.906898 −0.453449 0.891282i \(-0.649807\pi\)
−0.453449 + 0.891282i \(0.649807\pi\)
\(128\) 0 0
\(129\) −3.26474 −0.287444
\(130\) 0 0
\(131\) 8.10177 0.707855 0.353928 0.935273i \(-0.384846\pi\)
0.353928 + 0.935273i \(0.384846\pi\)
\(132\) 0 0
\(133\) 21.9919 1.90694
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 12.3937 1.05887 0.529433 0.848352i \(-0.322405\pi\)
0.529433 + 0.848352i \(0.322405\pi\)
\(138\) 0 0
\(139\) 10.4910 0.889837 0.444918 0.895571i \(-0.353233\pi\)
0.444918 + 0.895571i \(0.353233\pi\)
\(140\) 0 0
\(141\) −4.64878 −0.391498
\(142\) 0 0
\(143\) −13.3447 −1.11594
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −0.514575 −0.0424414
\(148\) 0 0
\(149\) 4.15167 0.340118 0.170059 0.985434i \(-0.445604\pi\)
0.170059 + 0.985434i \(0.445604\pi\)
\(150\) 0 0
\(151\) 8.91651 0.725616 0.362808 0.931864i \(-0.381818\pi\)
0.362808 + 0.931864i \(0.381818\pi\)
\(152\) 0 0
\(153\) 13.5644 1.09662
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −13.7486 −1.09726 −0.548630 0.836065i \(-0.684850\pi\)
−0.548630 + 0.836065i \(0.684850\pi\)
\(158\) 0 0
\(159\) −4.40137 −0.349051
\(160\) 0 0
\(161\) 24.2267 1.90933
\(162\) 0 0
\(163\) −8.92450 −0.699021 −0.349510 0.936932i \(-0.613652\pi\)
−0.349510 + 0.936932i \(0.613652\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.91177 0.302702 0.151351 0.988480i \(-0.451638\pi\)
0.151351 + 0.988480i \(0.451638\pi\)
\(168\) 0 0
\(169\) −1.69048 −0.130037
\(170\) 0 0
\(171\) 21.6510 1.65570
\(172\) 0 0
\(173\) 10.8658 0.826115 0.413058 0.910705i \(-0.364461\pi\)
0.413058 + 0.910705i \(0.364461\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −3.02270 −0.227200
\(178\) 0 0
\(179\) −21.3833 −1.59826 −0.799132 0.601156i \(-0.794707\pi\)
−0.799132 + 0.601156i \(0.794707\pi\)
\(180\) 0 0
\(181\) −7.93253 −0.589620 −0.294810 0.955556i \(-0.595256\pi\)
−0.294810 + 0.955556i \(0.595256\pi\)
\(182\) 0 0
\(183\) 6.20126 0.458410
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 19.0644 1.39413
\(188\) 0 0
\(189\) −7.01900 −0.510557
\(190\) 0 0
\(191\) −15.4662 −1.11910 −0.559549 0.828797i \(-0.689026\pi\)
−0.559549 + 0.828797i \(0.689026\pi\)
\(192\) 0 0
\(193\) −7.37989 −0.531216 −0.265608 0.964081i \(-0.585573\pi\)
−0.265608 + 0.964081i \(0.585573\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.13992 0.579945 0.289973 0.957035i \(-0.406354\pi\)
0.289973 + 0.957035i \(0.406354\pi\)
\(198\) 0 0
\(199\) 14.5658 1.03254 0.516272 0.856424i \(-0.327319\pi\)
0.516272 + 0.856424i \(0.327319\pi\)
\(200\) 0 0
\(201\) 3.94763 0.278444
\(202\) 0 0
\(203\) −12.0056 −0.842625
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 23.8512 1.65777
\(208\) 0 0
\(209\) 30.4300 2.10489
\(210\) 0 0
\(211\) −0.476677 −0.0328158 −0.0164079 0.999865i \(-0.505223\pi\)
−0.0164079 + 0.999865i \(0.505223\pi\)
\(212\) 0 0
\(213\) 5.28454 0.362091
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −17.6452 −1.19784
\(218\) 0 0
\(219\) −7.02641 −0.474801
\(220\) 0 0
\(221\) −16.1569 −1.08683
\(222\) 0 0
\(223\) 11.1141 0.744258 0.372129 0.928181i \(-0.378628\pi\)
0.372129 + 0.928181i \(0.378628\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.70233 −0.179360 −0.0896801 0.995971i \(-0.528584\pi\)
−0.0896801 + 0.995971i \(0.528584\pi\)
\(228\) 0 0
\(229\) 2.80563 0.185401 0.0927007 0.995694i \(-0.470450\pi\)
0.0927007 + 0.995694i \(0.470450\pi\)
\(230\) 0 0
\(231\) −4.78289 −0.314691
\(232\) 0 0
\(233\) 22.3322 1.46303 0.731516 0.681824i \(-0.238813\pi\)
0.731516 + 0.681824i \(0.238813\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 2.69853 0.175289
\(238\) 0 0
\(239\) 2.88567 0.186658 0.0933292 0.995635i \(-0.470249\pi\)
0.0933292 + 0.995635i \(0.470249\pi\)
\(240\) 0 0
\(241\) 16.7061 1.07614 0.538068 0.842901i \(-0.319154\pi\)
0.538068 + 0.842901i \(0.319154\pi\)
\(242\) 0 0
\(243\) −10.4701 −0.671658
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −25.7891 −1.64092
\(248\) 0 0
\(249\) −1.71156 −0.108466
\(250\) 0 0
\(251\) −14.1914 −0.895755 −0.447877 0.894095i \(-0.647820\pi\)
−0.447877 + 0.894095i \(0.647820\pi\)
\(252\) 0 0
\(253\) 33.5222 2.10752
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −12.0808 −0.753582 −0.376791 0.926298i \(-0.622972\pi\)
−0.376791 + 0.926298i \(0.622972\pi\)
\(258\) 0 0
\(259\) 4.13362 0.256851
\(260\) 0 0
\(261\) −11.8195 −0.731606
\(262\) 0 0
\(263\) 11.8222 0.728989 0.364495 0.931205i \(-0.381242\pi\)
0.364495 + 0.931205i \(0.381242\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0.358973 0.0219688
\(268\) 0 0
\(269\) −8.19229 −0.499493 −0.249746 0.968311i \(-0.580347\pi\)
−0.249746 + 0.968311i \(0.580347\pi\)
\(270\) 0 0
\(271\) 7.62510 0.463192 0.231596 0.972812i \(-0.425605\pi\)
0.231596 + 0.972812i \(0.425605\pi\)
\(272\) 0 0
\(273\) 4.05345 0.245326
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −0.550561 −0.0330800 −0.0165400 0.999863i \(-0.505265\pi\)
−0.0165400 + 0.999863i \(0.505265\pi\)
\(278\) 0 0
\(279\) −17.3717 −1.04002
\(280\) 0 0
\(281\) −6.84107 −0.408104 −0.204052 0.978960i \(-0.565411\pi\)
−0.204052 + 0.978960i \(0.565411\pi\)
\(282\) 0 0
\(283\) −24.1942 −1.43820 −0.719098 0.694909i \(-0.755445\pi\)
−0.719098 + 0.694909i \(0.755445\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −5.09230 −0.300589
\(288\) 0 0
\(289\) 6.08178 0.357752
\(290\) 0 0
\(291\) −2.12150 −0.124365
\(292\) 0 0
\(293\) 0.0273913 0.00160022 0.000800109 1.00000i \(-0.499745\pi\)
0.000800109 1.00000i \(0.499745\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −9.71211 −0.563554
\(298\) 0 0
\(299\) −28.4097 −1.64298
\(300\) 0 0
\(301\) −22.2765 −1.28400
\(302\) 0 0
\(303\) 1.00660 0.0578276
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −21.1076 −1.20467 −0.602337 0.798242i \(-0.705763\pi\)
−0.602337 + 0.798242i \(0.705763\pi\)
\(308\) 0 0
\(309\) −0.175364 −0.00997611
\(310\) 0 0
\(311\) 8.87305 0.503145 0.251572 0.967839i \(-0.419052\pi\)
0.251572 + 0.967839i \(0.419052\pi\)
\(312\) 0 0
\(313\) −20.3346 −1.14938 −0.574691 0.818371i \(-0.694878\pi\)
−0.574691 + 0.818371i \(0.694878\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.97502 −0.110928 −0.0554641 0.998461i \(-0.517664\pi\)
−0.0554641 + 0.998461i \(0.517664\pi\)
\(318\) 0 0
\(319\) −16.6119 −0.930089
\(320\) 0 0
\(321\) 1.34234 0.0749221
\(322\) 0 0
\(323\) 36.8424 2.04997
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 5.15479 0.285060
\(328\) 0 0
\(329\) −31.7203 −1.74880
\(330\) 0 0
\(331\) 19.9040 1.09402 0.547010 0.837126i \(-0.315766\pi\)
0.547010 + 0.837126i \(0.315766\pi\)
\(332\) 0 0
\(333\) 4.06955 0.223010
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 21.2684 1.15857 0.579283 0.815127i \(-0.303333\pi\)
0.579283 + 0.815127i \(0.303333\pi\)
\(338\) 0 0
\(339\) −6.62954 −0.360067
\(340\) 0 0
\(341\) −24.4155 −1.32217
\(342\) 0 0
\(343\) 16.5635 0.894347
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −10.9866 −0.589790 −0.294895 0.955530i \(-0.595285\pi\)
−0.294895 + 0.955530i \(0.595285\pi\)
\(348\) 0 0
\(349\) −6.62529 −0.354644 −0.177322 0.984153i \(-0.556743\pi\)
−0.177322 + 0.984153i \(0.556743\pi\)
\(350\) 0 0
\(351\) 8.23090 0.439333
\(352\) 0 0
\(353\) 30.4026 1.61817 0.809083 0.587694i \(-0.199964\pi\)
0.809083 + 0.587694i \(0.199964\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −5.79078 −0.306480
\(358\) 0 0
\(359\) −9.68779 −0.511302 −0.255651 0.966769i \(-0.582290\pi\)
−0.255651 + 0.966769i \(0.582290\pi\)
\(360\) 0 0
\(361\) 39.8068 2.09509
\(362\) 0 0
\(363\) −1.99480 −0.104700
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 17.2186 0.898804 0.449402 0.893330i \(-0.351637\pi\)
0.449402 + 0.893330i \(0.351637\pi\)
\(368\) 0 0
\(369\) −5.01336 −0.260985
\(370\) 0 0
\(371\) −30.0321 −1.55919
\(372\) 0 0
\(373\) −10.6894 −0.553477 −0.276738 0.960945i \(-0.589254\pi\)
−0.276738 + 0.960945i \(0.589254\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 14.0784 0.725076
\(378\) 0 0
\(379\) 33.8980 1.74122 0.870611 0.491973i \(-0.163724\pi\)
0.870611 + 0.491973i \(0.163724\pi\)
\(380\) 0 0
\(381\) 4.29549 0.220065
\(382\) 0 0
\(383\) 20.6524 1.05529 0.527645 0.849465i \(-0.323075\pi\)
0.527645 + 0.849465i \(0.323075\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −21.9312 −1.11482
\(388\) 0 0
\(389\) 18.9527 0.960938 0.480469 0.877012i \(-0.340466\pi\)
0.480469 + 0.877012i \(0.340466\pi\)
\(390\) 0 0
\(391\) 40.5863 2.05254
\(392\) 0 0
\(393\) −3.40512 −0.171766
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 15.6976 0.787839 0.393920 0.919145i \(-0.371119\pi\)
0.393920 + 0.919145i \(0.371119\pi\)
\(398\) 0 0
\(399\) −9.24306 −0.462732
\(400\) 0 0
\(401\) 27.8937 1.39295 0.696473 0.717583i \(-0.254752\pi\)
0.696473 + 0.717583i \(0.254752\pi\)
\(402\) 0 0
\(403\) 20.6918 1.03073
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 5.71964 0.283512
\(408\) 0 0
\(409\) 3.12092 0.154319 0.0771597 0.997019i \(-0.475415\pi\)
0.0771597 + 0.997019i \(0.475415\pi\)
\(410\) 0 0
\(411\) −5.20899 −0.256941
\(412\) 0 0
\(413\) −20.6249 −1.01489
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −4.40930 −0.215924
\(418\) 0 0
\(419\) 33.7913 1.65081 0.825406 0.564539i \(-0.190946\pi\)
0.825406 + 0.564539i \(0.190946\pi\)
\(420\) 0 0
\(421\) 0.675381 0.0329161 0.0164580 0.999865i \(-0.494761\pi\)
0.0164580 + 0.999865i \(0.494761\pi\)
\(422\) 0 0
\(423\) −31.2286 −1.51839
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 42.3134 2.04769
\(428\) 0 0
\(429\) 5.60870 0.270791
\(430\) 0 0
\(431\) 1.65431 0.0796854 0.0398427 0.999206i \(-0.487314\pi\)
0.0398427 + 0.999206i \(0.487314\pi\)
\(432\) 0 0
\(433\) 22.6394 1.08798 0.543991 0.839091i \(-0.316912\pi\)
0.543991 + 0.839091i \(0.316912\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 64.7826 3.09897
\(438\) 0 0
\(439\) −1.41343 −0.0674593 −0.0337297 0.999431i \(-0.510739\pi\)
−0.0337297 + 0.999431i \(0.510739\pi\)
\(440\) 0 0
\(441\) −3.45670 −0.164605
\(442\) 0 0
\(443\) 2.49780 0.118674 0.0593370 0.998238i \(-0.481101\pi\)
0.0593370 + 0.998238i \(0.481101\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −1.74492 −0.0825317
\(448\) 0 0
\(449\) −27.8464 −1.31415 −0.657076 0.753824i \(-0.728207\pi\)
−0.657076 + 0.753824i \(0.728207\pi\)
\(450\) 0 0
\(451\) −7.04615 −0.331790
\(452\) 0 0
\(453\) −3.74755 −0.176075
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −26.4721 −1.23831 −0.619157 0.785267i \(-0.712526\pi\)
−0.619157 + 0.785267i \(0.712526\pi\)
\(458\) 0 0
\(459\) −11.7587 −0.548850
\(460\) 0 0
\(461\) −24.5873 −1.14514 −0.572572 0.819854i \(-0.694054\pi\)
−0.572572 + 0.819854i \(0.694054\pi\)
\(462\) 0 0
\(463\) −37.4409 −1.74003 −0.870013 0.493030i \(-0.835889\pi\)
−0.870013 + 0.493030i \(0.835889\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 30.3442 1.40416 0.702080 0.712098i \(-0.252255\pi\)
0.702080 + 0.712098i \(0.252255\pi\)
\(468\) 0 0
\(469\) 26.9361 1.24379
\(470\) 0 0
\(471\) 5.77845 0.266257
\(472\) 0 0
\(473\) −30.8237 −1.41727
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −29.5665 −1.35376
\(478\) 0 0
\(479\) 38.1338 1.74238 0.871190 0.490946i \(-0.163349\pi\)
0.871190 + 0.490946i \(0.163349\pi\)
\(480\) 0 0
\(481\) −4.84733 −0.221019
\(482\) 0 0
\(483\) −10.1823 −0.463312
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −7.55947 −0.342552 −0.171276 0.985223i \(-0.554789\pi\)
−0.171276 + 0.985223i \(0.554789\pi\)
\(488\) 0 0
\(489\) 3.75091 0.169622
\(490\) 0 0
\(491\) 17.7896 0.802832 0.401416 0.915896i \(-0.368518\pi\)
0.401416 + 0.915896i \(0.368518\pi\)
\(492\) 0 0
\(493\) −20.1125 −0.905823
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 36.0583 1.61743
\(498\) 0 0
\(499\) 0.598690 0.0268011 0.0134005 0.999910i \(-0.495734\pi\)
0.0134005 + 0.999910i \(0.495734\pi\)
\(500\) 0 0
\(501\) −1.64409 −0.0734524
\(502\) 0 0
\(503\) 4.41037 0.196649 0.0983243 0.995154i \(-0.468652\pi\)
0.0983243 + 0.995154i \(0.468652\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.710498 0.0315543
\(508\) 0 0
\(509\) −15.4779 −0.686046 −0.343023 0.939327i \(-0.611451\pi\)
−0.343023 + 0.939327i \(0.611451\pi\)
\(510\) 0 0
\(511\) −47.9437 −2.12090
\(512\) 0 0
\(513\) −18.7689 −0.828668
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −43.8910 −1.93032
\(518\) 0 0
\(519\) −4.56684 −0.200462
\(520\) 0 0
\(521\) 31.1710 1.36563 0.682813 0.730593i \(-0.260756\pi\)
0.682813 + 0.730593i \(0.260756\pi\)
\(522\) 0 0
\(523\) −12.1630 −0.531853 −0.265926 0.963993i \(-0.585678\pi\)
−0.265926 + 0.963993i \(0.585678\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −29.5605 −1.28768
\(528\) 0 0
\(529\) 48.3657 2.10286
\(530\) 0 0
\(531\) −20.3052 −0.881172
\(532\) 0 0
\(533\) 5.97153 0.258656
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 8.98725 0.387829
\(538\) 0 0
\(539\) −4.85830 −0.209262
\(540\) 0 0
\(541\) 21.9139 0.942150 0.471075 0.882093i \(-0.343866\pi\)
0.471075 + 0.882093i \(0.343866\pi\)
\(542\) 0 0
\(543\) 3.33399 0.143075
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 36.0638 1.54198 0.770988 0.636849i \(-0.219763\pi\)
0.770988 + 0.636849i \(0.219763\pi\)
\(548\) 0 0
\(549\) 41.6575 1.77790
\(550\) 0 0
\(551\) −32.1030 −1.36763
\(552\) 0 0
\(553\) 18.4131 0.783003
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −18.0363 −0.764221 −0.382111 0.924117i \(-0.624803\pi\)
−0.382111 + 0.924117i \(0.624803\pi\)
\(558\) 0 0
\(559\) 26.1227 1.10487
\(560\) 0 0
\(561\) −8.01263 −0.338293
\(562\) 0 0
\(563\) −21.9028 −0.923094 −0.461547 0.887116i \(-0.652705\pi\)
−0.461547 + 0.887116i \(0.652705\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −21.3405 −0.896216
\(568\) 0 0
\(569\) −29.1921 −1.22380 −0.611898 0.790937i \(-0.709594\pi\)
−0.611898 + 0.790937i \(0.709594\pi\)
\(570\) 0 0
\(571\) −2.92473 −0.122396 −0.0611981 0.998126i \(-0.519492\pi\)
−0.0611981 + 0.998126i \(0.519492\pi\)
\(572\) 0 0
\(573\) 6.50035 0.271556
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −3.13656 −0.130577 −0.0652884 0.997866i \(-0.520797\pi\)
−0.0652884 + 0.997866i \(0.520797\pi\)
\(578\) 0 0
\(579\) 3.10172 0.128903
\(580\) 0 0
\(581\) −11.6786 −0.484509
\(582\) 0 0
\(583\) −41.5550 −1.72103
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −30.9848 −1.27888 −0.639440 0.768841i \(-0.720834\pi\)
−0.639440 + 0.768841i \(0.720834\pi\)
\(588\) 0 0
\(589\) −47.1835 −1.94416
\(590\) 0 0
\(591\) −3.42115 −0.140727
\(592\) 0 0
\(593\) −43.4868 −1.78579 −0.892894 0.450267i \(-0.851329\pi\)
−0.892894 + 0.450267i \(0.851329\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −6.12192 −0.250553
\(598\) 0 0
\(599\) −2.66139 −0.108741 −0.0543706 0.998521i \(-0.517315\pi\)
−0.0543706 + 0.998521i \(0.517315\pi\)
\(600\) 0 0
\(601\) 20.5824 0.839575 0.419788 0.907622i \(-0.362105\pi\)
0.419788 + 0.907622i \(0.362105\pi\)
\(602\) 0 0
\(603\) 26.5185 1.07992
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −18.6471 −0.756864 −0.378432 0.925629i \(-0.623537\pi\)
−0.378432 + 0.925629i \(0.623537\pi\)
\(608\) 0 0
\(609\) 5.04585 0.204468
\(610\) 0 0
\(611\) 37.1971 1.50483
\(612\) 0 0
\(613\) −43.7510 −1.76709 −0.883544 0.468349i \(-0.844849\pi\)
−0.883544 + 0.468349i \(0.844849\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 14.4891 0.583308 0.291654 0.956524i \(-0.405794\pi\)
0.291654 + 0.956524i \(0.405794\pi\)
\(618\) 0 0
\(619\) −0.566742 −0.0227793 −0.0113896 0.999935i \(-0.503626\pi\)
−0.0113896 + 0.999935i \(0.503626\pi\)
\(620\) 0 0
\(621\) −20.6762 −0.829706
\(622\) 0 0
\(623\) 2.44940 0.0981332
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −12.7895 −0.510764
\(628\) 0 0
\(629\) 6.92493 0.276115
\(630\) 0 0
\(631\) −22.2178 −0.884476 −0.442238 0.896898i \(-0.645815\pi\)
−0.442238 + 0.896898i \(0.645815\pi\)
\(632\) 0 0
\(633\) 0.200344 0.00796296
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 4.11735 0.163135
\(638\) 0 0
\(639\) 35.4993 1.40433
\(640\) 0 0
\(641\) −23.8330 −0.941348 −0.470674 0.882307i \(-0.655989\pi\)
−0.470674 + 0.882307i \(0.655989\pi\)
\(642\) 0 0
\(643\) 21.2951 0.839798 0.419899 0.907571i \(-0.362066\pi\)
0.419899 + 0.907571i \(0.362066\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 22.9099 0.900681 0.450340 0.892857i \(-0.351303\pi\)
0.450340 + 0.892857i \(0.351303\pi\)
\(648\) 0 0
\(649\) −28.5385 −1.12023
\(650\) 0 0
\(651\) 7.41616 0.290662
\(652\) 0 0
\(653\) 1.99112 0.0779186 0.0389593 0.999241i \(-0.487596\pi\)
0.0389593 + 0.999241i \(0.487596\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −47.2005 −1.84147
\(658\) 0 0
\(659\) −5.78285 −0.225268 −0.112634 0.993637i \(-0.535929\pi\)
−0.112634 + 0.993637i \(0.535929\pi\)
\(660\) 0 0
\(661\) −41.3279 −1.60747 −0.803734 0.594989i \(-0.797156\pi\)
−0.803734 + 0.594989i \(0.797156\pi\)
\(662\) 0 0
\(663\) 6.79061 0.263726
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −35.3653 −1.36935
\(668\) 0 0
\(669\) −4.67120 −0.180599
\(670\) 0 0
\(671\) 58.5485 2.26024
\(672\) 0 0
\(673\) −29.4583 −1.13553 −0.567767 0.823189i \(-0.692193\pi\)
−0.567767 + 0.823189i \(0.692193\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 2.43828 0.0937107 0.0468553 0.998902i \(-0.485080\pi\)
0.0468553 + 0.998902i \(0.485080\pi\)
\(678\) 0 0
\(679\) −14.4758 −0.555529
\(680\) 0 0
\(681\) 1.13577 0.0435229
\(682\) 0 0
\(683\) 35.7141 1.36656 0.683280 0.730156i \(-0.260553\pi\)
0.683280 + 0.730156i \(0.260553\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −1.17919 −0.0449888
\(688\) 0 0
\(689\) 35.2174 1.34168
\(690\) 0 0
\(691\) 31.7401 1.20745 0.603725 0.797192i \(-0.293682\pi\)
0.603725 + 0.797192i \(0.293682\pi\)
\(692\) 0 0
\(693\) −32.1295 −1.22050
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −8.53097 −0.323134
\(698\) 0 0
\(699\) −9.38607 −0.355014
\(700\) 0 0
\(701\) −18.4576 −0.697135 −0.348567 0.937284i \(-0.613332\pi\)
−0.348567 + 0.937284i \(0.613332\pi\)
\(702\) 0 0
\(703\) 11.0534 0.416886
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6.86838 0.258312
\(708\) 0 0
\(709\) −36.2179 −1.36019 −0.680096 0.733123i \(-0.738062\pi\)
−0.680096 + 0.733123i \(0.738062\pi\)
\(710\) 0 0
\(711\) 18.1276 0.679839
\(712\) 0 0
\(713\) −51.9783 −1.94660
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −1.21283 −0.0452938
\(718\) 0 0
\(719\) 11.3058 0.421634 0.210817 0.977526i \(-0.432388\pi\)
0.210817 + 0.977526i \(0.432388\pi\)
\(720\) 0 0
\(721\) −1.19657 −0.0445626
\(722\) 0 0
\(723\) −7.02147 −0.261131
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 29.3501 1.08854 0.544268 0.838911i \(-0.316807\pi\)
0.544268 + 0.838911i \(0.316807\pi\)
\(728\) 0 0
\(729\) −17.9236 −0.663839
\(730\) 0 0
\(731\) −37.3191 −1.38030
\(732\) 0 0
\(733\) 2.95232 0.109047 0.0545233 0.998513i \(-0.482636\pi\)
0.0545233 + 0.998513i \(0.482636\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 37.2711 1.37290
\(738\) 0 0
\(739\) −18.3954 −0.676685 −0.338342 0.941023i \(-0.609866\pi\)
−0.338342 + 0.941023i \(0.609866\pi\)
\(740\) 0 0
\(741\) 10.8390 0.398179
\(742\) 0 0
\(743\) −25.3718 −0.930802 −0.465401 0.885100i \(-0.654090\pi\)
−0.465401 + 0.885100i \(0.654090\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −11.4976 −0.420673
\(748\) 0 0
\(749\) 9.15926 0.334672
\(750\) 0 0
\(751\) −36.3460 −1.32628 −0.663142 0.748493i \(-0.730778\pi\)
−0.663142 + 0.748493i \(0.730778\pi\)
\(752\) 0 0
\(753\) 5.96456 0.217361
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −23.7736 −0.864066 −0.432033 0.901858i \(-0.642204\pi\)
−0.432033 + 0.901858i \(0.642204\pi\)
\(758\) 0 0
\(759\) −14.0892 −0.511404
\(760\) 0 0
\(761\) 5.83223 0.211418 0.105709 0.994397i \(-0.466289\pi\)
0.105709 + 0.994397i \(0.466289\pi\)
\(762\) 0 0
\(763\) 35.1729 1.27335
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 24.1860 0.873307
\(768\) 0 0
\(769\) 29.7572 1.07307 0.536535 0.843878i \(-0.319733\pi\)
0.536535 + 0.843878i \(0.319733\pi\)
\(770\) 0 0
\(771\) 5.07749 0.182861
\(772\) 0 0
\(773\) −8.27984 −0.297805 −0.148903 0.988852i \(-0.547574\pi\)
−0.148903 + 0.988852i \(0.547574\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −1.73733 −0.0623265
\(778\) 0 0
\(779\) −13.6169 −0.487875
\(780\) 0 0
\(781\) 49.8934 1.78533
\(782\) 0 0
\(783\) 10.2461 0.366165
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 47.8995 1.70743 0.853716 0.520739i \(-0.174344\pi\)
0.853716 + 0.520739i \(0.174344\pi\)
\(788\) 0 0
\(789\) −4.96880 −0.176894
\(790\) 0 0
\(791\) −45.2357 −1.60840
\(792\) 0 0
\(793\) −49.6192 −1.76203
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 17.5313 0.620992 0.310496 0.950575i \(-0.399505\pi\)
0.310496 + 0.950575i \(0.399505\pi\)
\(798\) 0 0
\(799\) −53.1400 −1.87996
\(800\) 0 0
\(801\) 2.41143 0.0852038
\(802\) 0 0
\(803\) −66.3390 −2.34105
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 3.44316 0.121205
\(808\) 0 0
\(809\) −26.5936 −0.934981 −0.467491 0.883998i \(-0.654842\pi\)
−0.467491 + 0.883998i \(0.654842\pi\)
\(810\) 0 0
\(811\) −19.1666 −0.673032 −0.336516 0.941678i \(-0.609249\pi\)
−0.336516 + 0.941678i \(0.609249\pi\)
\(812\) 0 0
\(813\) −3.20477 −0.112396
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −59.5676 −2.08401
\(818\) 0 0
\(819\) 27.2294 0.951471
\(820\) 0 0
\(821\) 14.2705 0.498044 0.249022 0.968498i \(-0.419891\pi\)
0.249022 + 0.968498i \(0.419891\pi\)
\(822\) 0 0
\(823\) 22.6319 0.788898 0.394449 0.918918i \(-0.370935\pi\)
0.394449 + 0.918918i \(0.370935\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −28.2844 −0.983543 −0.491772 0.870724i \(-0.663651\pi\)
−0.491772 + 0.870724i \(0.663651\pi\)
\(828\) 0 0
\(829\) −23.4274 −0.813666 −0.406833 0.913503i \(-0.633367\pi\)
−0.406833 + 0.913503i \(0.633367\pi\)
\(830\) 0 0
\(831\) 0.231397 0.00802707
\(832\) 0 0
\(833\) −5.88208 −0.203802
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 15.0592 0.520523
\(838\) 0 0
\(839\) −23.1936 −0.800732 −0.400366 0.916355i \(-0.631117\pi\)
−0.400366 + 0.916355i \(0.631117\pi\)
\(840\) 0 0
\(841\) −11.4748 −0.395681
\(842\) 0 0
\(843\) 2.87526 0.0990291
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −13.6112 −0.467687
\(848\) 0 0
\(849\) 10.1687 0.348987
\(850\) 0 0
\(851\) 12.1766 0.417408
\(852\) 0 0
\(853\) −5.65086 −0.193482 −0.0967408 0.995310i \(-0.530842\pi\)
−0.0967408 + 0.995310i \(0.530842\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 20.8747 0.713067 0.356534 0.934283i \(-0.383959\pi\)
0.356534 + 0.934283i \(0.383959\pi\)
\(858\) 0 0
\(859\) −37.1536 −1.26767 −0.633833 0.773470i \(-0.718519\pi\)
−0.633833 + 0.773470i \(0.718519\pi\)
\(860\) 0 0
\(861\) 2.14026 0.0729398
\(862\) 0 0
\(863\) 52.5025 1.78721 0.893603 0.448858i \(-0.148169\pi\)
0.893603 + 0.448858i \(0.148169\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −2.55613 −0.0868107
\(868\) 0 0
\(869\) 25.4779 0.864279
\(870\) 0 0
\(871\) −31.5868 −1.07028
\(872\) 0 0
\(873\) −14.2514 −0.482336
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 36.6926 1.23902 0.619511 0.784988i \(-0.287331\pi\)
0.619511 + 0.784988i \(0.287331\pi\)
\(878\) 0 0
\(879\) −0.0115124 −0.000388303 0
\(880\) 0 0
\(881\) −4.64878 −0.156621 −0.0783107 0.996929i \(-0.524953\pi\)
−0.0783107 + 0.996929i \(0.524953\pi\)
\(882\) 0 0
\(883\) 44.3640 1.49297 0.746484 0.665404i \(-0.231741\pi\)
0.746484 + 0.665404i \(0.231741\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 33.4881 1.12442 0.562210 0.826995i \(-0.309951\pi\)
0.562210 + 0.826995i \(0.309951\pi\)
\(888\) 0 0
\(889\) 29.3096 0.983014
\(890\) 0 0
\(891\) −29.5285 −0.989243
\(892\) 0 0
\(893\) −84.8205 −2.83841
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 11.9404 0.398678
\(898\) 0 0
\(899\) 25.7578 0.859071
\(900\) 0 0
\(901\) −50.3118 −1.67613
\(902\) 0 0
\(903\) 9.36265 0.311570
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 49.9807 1.65958 0.829792 0.558073i \(-0.188459\pi\)
0.829792 + 0.558073i \(0.188459\pi\)
\(908\) 0 0
\(909\) 6.76191 0.224278
\(910\) 0 0
\(911\) 48.7149 1.61400 0.806999 0.590553i \(-0.201090\pi\)
0.806999 + 0.590553i \(0.201090\pi\)
\(912\) 0 0
\(913\) −16.1595 −0.534802
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −23.2343 −0.767265
\(918\) 0 0
\(919\) 10.0578 0.331776 0.165888 0.986145i \(-0.446951\pi\)
0.165888 + 0.986145i \(0.446951\pi\)
\(920\) 0 0
\(921\) 8.87137 0.292321
\(922\) 0 0
\(923\) −42.2841 −1.39180
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −1.17802 −0.0386913
\(928\) 0 0
\(929\) 19.8662 0.651788 0.325894 0.945406i \(-0.394335\pi\)
0.325894 + 0.945406i \(0.394335\pi\)
\(930\) 0 0
\(931\) −9.38879 −0.307705
\(932\) 0 0
\(933\) −3.72928 −0.122091
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 12.4155 0.405595 0.202798 0.979221i \(-0.434997\pi\)
0.202798 + 0.979221i \(0.434997\pi\)
\(938\) 0 0
\(939\) 8.54650 0.278905
\(940\) 0 0
\(941\) 49.8818 1.62610 0.813051 0.582193i \(-0.197805\pi\)
0.813051 + 0.582193i \(0.197805\pi\)
\(942\) 0 0
\(943\) −15.0006 −0.488487
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −15.9361 −0.517854 −0.258927 0.965897i \(-0.583369\pi\)
−0.258927 + 0.965897i \(0.583369\pi\)
\(948\) 0 0
\(949\) 56.2216 1.82503
\(950\) 0 0
\(951\) 0.830087 0.0269174
\(952\) 0 0
\(953\) 19.3904 0.628115 0.314058 0.949404i \(-0.398311\pi\)
0.314058 + 0.949404i \(0.398311\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 6.98188 0.225692
\(958\) 0 0
\(959\) −35.5428 −1.14774
\(960\) 0 0
\(961\) 6.85767 0.221215
\(962\) 0 0
\(963\) 9.01728 0.290578
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −38.6503 −1.24291 −0.621455 0.783450i \(-0.713458\pi\)
−0.621455 + 0.783450i \(0.713458\pi\)
\(968\) 0 0
\(969\) −15.4846 −0.497438
\(970\) 0 0
\(971\) 8.27436 0.265537 0.132768 0.991147i \(-0.457613\pi\)
0.132768 + 0.991147i \(0.457613\pi\)
\(972\) 0 0
\(973\) −30.0862 −0.964520
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 38.0832 1.21839 0.609196 0.793020i \(-0.291492\pi\)
0.609196 + 0.793020i \(0.291492\pi\)
\(978\) 0 0
\(979\) 3.38920 0.108319
\(980\) 0 0
\(981\) 34.6277 1.10558
\(982\) 0 0
\(983\) −28.2844 −0.902131 −0.451065 0.892491i \(-0.648956\pi\)
−0.451065 + 0.892491i \(0.648956\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 13.3318 0.424356
\(988\) 0 0
\(989\) −65.6208 −2.08662
\(990\) 0 0
\(991\) 29.7331 0.944502 0.472251 0.881464i \(-0.343442\pi\)
0.472251 + 0.881464i \(0.343442\pi\)
\(992\) 0 0
\(993\) −8.36549 −0.265471
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 21.3219 0.675271 0.337635 0.941277i \(-0.390373\pi\)
0.337635 + 0.941277i \(0.390373\pi\)
\(998\) 0 0
\(999\) −3.52782 −0.111615
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4000.2.a.p.1.4 yes 8
4.3 odd 2 inner 4000.2.a.p.1.5 yes 8
5.2 odd 4 4000.2.c.i.1249.9 16
5.3 odd 4 4000.2.c.i.1249.7 16
5.4 even 2 4000.2.a.o.1.5 yes 8
8.3 odd 2 8000.2.a.by.1.4 8
8.5 even 2 8000.2.a.by.1.5 8
20.3 even 4 4000.2.c.i.1249.10 16
20.7 even 4 4000.2.c.i.1249.8 16
20.19 odd 2 4000.2.a.o.1.4 8
40.19 odd 2 8000.2.a.bz.1.5 8
40.29 even 2 8000.2.a.bz.1.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4000.2.a.o.1.4 8 20.19 odd 2
4000.2.a.o.1.5 yes 8 5.4 even 2
4000.2.a.p.1.4 yes 8 1.1 even 1 trivial
4000.2.a.p.1.5 yes 8 4.3 odd 2 inner
4000.2.c.i.1249.7 16 5.3 odd 4
4000.2.c.i.1249.8 16 20.7 even 4
4000.2.c.i.1249.9 16 5.2 odd 4
4000.2.c.i.1249.10 16 20.3 even 4
8000.2.a.by.1.4 8 8.3 odd 2
8000.2.a.by.1.5 8 8.5 even 2
8000.2.a.bz.1.4 8 40.29 even 2
8000.2.a.bz.1.5 8 40.19 odd 2