Properties

Label 405.2.j.f.379.3
Level $405$
Weight $2$
Character 405.379
Analytic conductor $3.234$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,2,Mod(109,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.23394128186\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 379.3
Root \(0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 405.379
Dual form 405.2.j.f.109.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.22474 + 0.707107i) q^{2} +(-1.67303 - 1.48356i) q^{5} +(-2.59808 - 1.50000i) q^{7} -2.82843i q^{8} +O(q^{10})\) \(q+(1.22474 + 0.707107i) q^{2} +(-1.67303 - 1.48356i) q^{5} +(-2.59808 - 1.50000i) q^{7} -2.82843i q^{8} +(-1.00000 - 3.00000i) q^{10} +(2.12132 - 3.67423i) q^{11} +(-2.59808 + 1.50000i) q^{13} +(-2.12132 - 3.67423i) q^{14} +(2.00000 - 3.46410i) q^{16} +2.82843i q^{17} -1.00000 q^{19} +(5.19615 - 3.00000i) q^{22} +(6.12372 - 3.53553i) q^{23} +(0.598076 + 4.96410i) q^{25} -4.24264 q^{26} +(2.12132 - 3.67423i) q^{29} +(-1.00000 - 1.73205i) q^{31} +(-2.00000 + 3.46410i) q^{34} +(2.12132 + 6.36396i) q^{35} +9.00000i q^{37} +(-1.22474 - 0.707107i) q^{38} +(-4.19615 + 4.73205i) q^{40} +(-2.12132 - 3.67423i) q^{41} +(5.19615 + 3.00000i) q^{43} +10.0000 q^{46} +(-2.44949 - 1.41421i) q^{47} +(1.00000 + 1.73205i) q^{49} +(-2.77766 + 6.50266i) q^{50} -9.89949i q^{53} +(-9.00000 + 3.00000i) q^{55} +(-4.24264 + 7.34847i) q^{56} +(5.19615 - 3.00000i) q^{58} +(4.24264 + 7.34847i) q^{59} +(6.50000 - 11.2583i) q^{61} -2.82843i q^{62} -8.00000 q^{64} +(6.57201 + 1.34486i) q^{65} +(-2.59808 + 1.50000i) q^{67} +(-1.90192 + 9.29423i) q^{70} +12.7279 q^{71} -9.00000i q^{73} +(-6.36396 + 11.0227i) q^{74} +(-11.0227 + 6.36396i) q^{77} +(-2.50000 + 4.33013i) q^{79} +(-8.48528 + 2.82843i) q^{80} -6.00000i q^{82} +(1.22474 + 0.707107i) q^{83} +(4.19615 - 4.73205i) q^{85} +(4.24264 + 7.34847i) q^{86} +(-10.3923 - 6.00000i) q^{88} +9.00000 q^{91} +(-2.00000 - 3.46410i) q^{94} +(1.67303 + 1.48356i) q^{95} +(-2.59808 - 1.50000i) q^{97} +2.82843i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 8 q^{10} + 16 q^{16} - 8 q^{19} - 16 q^{25} - 8 q^{31} - 16 q^{34} + 8 q^{40} + 80 q^{46} + 8 q^{49} - 72 q^{55} + 52 q^{61} - 64 q^{64} - 36 q^{70} - 20 q^{79} - 8 q^{85} + 72 q^{91} - 16 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.22474 + 0.707107i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(3\) 0 0
\(4\) 0 0
\(5\) −1.67303 1.48356i −0.748203 0.663470i
\(6\) 0 0
\(7\) −2.59808 1.50000i −0.981981 0.566947i −0.0791130 0.996866i \(-0.525209\pi\)
−0.902867 + 0.429919i \(0.858542\pi\)
\(8\) 2.82843i 1.00000i
\(9\) 0 0
\(10\) −1.00000 3.00000i −0.316228 0.948683i
\(11\) 2.12132 3.67423i 0.639602 1.10782i −0.345918 0.938265i \(-0.612432\pi\)
0.985520 0.169559i \(-0.0542342\pi\)
\(12\) 0 0
\(13\) −2.59808 + 1.50000i −0.720577 + 0.416025i −0.814965 0.579510i \(-0.803244\pi\)
0.0943882 + 0.995535i \(0.469911\pi\)
\(14\) −2.12132 3.67423i −0.566947 0.981981i
\(15\) 0 0
\(16\) 2.00000 3.46410i 0.500000 0.866025i
\(17\) 2.82843i 0.685994i 0.939336 + 0.342997i \(0.111442\pi\)
−0.939336 + 0.342997i \(0.888558\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416 −0.114708 0.993399i \(-0.536593\pi\)
−0.114708 + 0.993399i \(0.536593\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 5.19615 3.00000i 1.10782 0.639602i
\(23\) 6.12372 3.53553i 1.27688 0.737210i 0.300610 0.953747i \(-0.402810\pi\)
0.976274 + 0.216537i \(0.0694763\pi\)
\(24\) 0 0
\(25\) 0.598076 + 4.96410i 0.119615 + 0.992820i
\(26\) −4.24264 −0.832050
\(27\) 0 0
\(28\) 0 0
\(29\) 2.12132 3.67423i 0.393919 0.682288i −0.599043 0.800717i \(-0.704452\pi\)
0.992963 + 0.118428i \(0.0377856\pi\)
\(30\) 0 0
\(31\) −1.00000 1.73205i −0.179605 0.311086i 0.762140 0.647412i \(-0.224149\pi\)
−0.941745 + 0.336327i \(0.890815\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) −2.00000 + 3.46410i −0.342997 + 0.594089i
\(35\) 2.12132 + 6.36396i 0.358569 + 1.07571i
\(36\) 0 0
\(37\) 9.00000i 1.47959i 0.672832 + 0.739795i \(0.265078\pi\)
−0.672832 + 0.739795i \(0.734922\pi\)
\(38\) −1.22474 0.707107i −0.198680 0.114708i
\(39\) 0 0
\(40\) −4.19615 + 4.73205i −0.663470 + 0.748203i
\(41\) −2.12132 3.67423i −0.331295 0.573819i 0.651471 0.758673i \(-0.274152\pi\)
−0.982766 + 0.184854i \(0.940819\pi\)
\(42\) 0 0
\(43\) 5.19615 + 3.00000i 0.792406 + 0.457496i 0.840809 0.541332i \(-0.182080\pi\)
−0.0484030 + 0.998828i \(0.515413\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 10.0000 1.47442
\(47\) −2.44949 1.41421i −0.357295 0.206284i 0.310599 0.950541i \(-0.399470\pi\)
−0.667893 + 0.744257i \(0.732804\pi\)
\(48\) 0 0
\(49\) 1.00000 + 1.73205i 0.142857 + 0.247436i
\(50\) −2.77766 + 6.50266i −0.392820 + 0.919615i
\(51\) 0 0
\(52\) 0 0
\(53\) 9.89949i 1.35980i −0.733305 0.679900i \(-0.762023\pi\)
0.733305 0.679900i \(-0.237977\pi\)
\(54\) 0 0
\(55\) −9.00000 + 3.00000i −1.21356 + 0.404520i
\(56\) −4.24264 + 7.34847i −0.566947 + 0.981981i
\(57\) 0 0
\(58\) 5.19615 3.00000i 0.682288 0.393919i
\(59\) 4.24264 + 7.34847i 0.552345 + 0.956689i 0.998105 + 0.0615367i \(0.0196001\pi\)
−0.445760 + 0.895152i \(0.647067\pi\)
\(60\) 0 0
\(61\) 6.50000 11.2583i 0.832240 1.44148i −0.0640184 0.997949i \(-0.520392\pi\)
0.896258 0.443533i \(-0.146275\pi\)
\(62\) 2.82843i 0.359211i
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) 6.57201 + 1.34486i 0.815158 + 0.166810i
\(66\) 0 0
\(67\) −2.59808 + 1.50000i −0.317406 + 0.183254i −0.650236 0.759733i \(-0.725330\pi\)
0.332830 + 0.942987i \(0.391996\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −1.90192 + 9.29423i −0.227323 + 1.11087i
\(71\) 12.7279 1.51053 0.755263 0.655422i \(-0.227509\pi\)
0.755263 + 0.655422i \(0.227509\pi\)
\(72\) 0 0
\(73\) 9.00000i 1.05337i −0.850060 0.526685i \(-0.823435\pi\)
0.850060 0.526685i \(-0.176565\pi\)
\(74\) −6.36396 + 11.0227i −0.739795 + 1.28136i
\(75\) 0 0
\(76\) 0 0
\(77\) −11.0227 + 6.36396i −1.25615 + 0.725241i
\(78\) 0 0
\(79\) −2.50000 + 4.33013i −0.281272 + 0.487177i −0.971698 0.236225i \(-0.924090\pi\)
0.690426 + 0.723403i \(0.257423\pi\)
\(80\) −8.48528 + 2.82843i −0.948683 + 0.316228i
\(81\) 0 0
\(82\) 6.00000i 0.662589i
\(83\) 1.22474 + 0.707107i 0.134433 + 0.0776151i 0.565708 0.824605i \(-0.308603\pi\)
−0.431275 + 0.902220i \(0.641936\pi\)
\(84\) 0 0
\(85\) 4.19615 4.73205i 0.455137 0.513263i
\(86\) 4.24264 + 7.34847i 0.457496 + 0.792406i
\(87\) 0 0
\(88\) −10.3923 6.00000i −1.10782 0.639602i
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 9.00000 0.943456
\(92\) 0 0
\(93\) 0 0
\(94\) −2.00000 3.46410i −0.206284 0.357295i
\(95\) 1.67303 + 1.48356i 0.171650 + 0.152210i
\(96\) 0 0
\(97\) −2.59808 1.50000i −0.263795 0.152302i 0.362270 0.932073i \(-0.382002\pi\)
−0.626064 + 0.779771i \(0.715335\pi\)
\(98\) 2.82843i 0.285714i
\(99\) 0 0
\(100\) 0 0
\(101\) −4.24264 + 7.34847i −0.422159 + 0.731200i −0.996150 0.0876610i \(-0.972061\pi\)
0.573992 + 0.818861i \(0.305394\pi\)
\(102\) 0 0
\(103\) −2.59808 + 1.50000i −0.255996 + 0.147799i −0.622507 0.782614i \(-0.713886\pi\)
0.366511 + 0.930414i \(0.380552\pi\)
\(104\) 4.24264 + 7.34847i 0.416025 + 0.720577i
\(105\) 0 0
\(106\) 7.00000 12.1244i 0.679900 1.17762i
\(107\) 7.07107i 0.683586i 0.939775 + 0.341793i \(0.111034\pi\)
−0.939775 + 0.341793i \(0.888966\pi\)
\(108\) 0 0
\(109\) 8.00000 0.766261 0.383131 0.923694i \(-0.374846\pi\)
0.383131 + 0.923694i \(0.374846\pi\)
\(110\) −13.1440 2.68973i −1.25323 0.256455i
\(111\) 0 0
\(112\) −10.3923 + 6.00000i −0.981981 + 0.566947i
\(113\) −1.22474 + 0.707107i −0.115214 + 0.0665190i −0.556500 0.830848i \(-0.687856\pi\)
0.441285 + 0.897367i \(0.354523\pi\)
\(114\) 0 0
\(115\) −15.4904 3.16987i −1.44449 0.295592i
\(116\) 0 0
\(117\) 0 0
\(118\) 12.0000i 1.10469i
\(119\) 4.24264 7.34847i 0.388922 0.673633i
\(120\) 0 0
\(121\) −3.50000 6.06218i −0.318182 0.551107i
\(122\) 15.9217 9.19239i 1.44148 0.832240i
\(123\) 0 0
\(124\) 0 0
\(125\) 6.36396 9.19239i 0.569210 0.822192i
\(126\) 0 0
\(127\) 18.0000i 1.59724i −0.601834 0.798621i \(-0.705563\pi\)
0.601834 0.798621i \(-0.294437\pi\)
\(128\) −9.79796 5.65685i −0.866025 0.500000i
\(129\) 0 0
\(130\) 7.09808 + 6.29423i 0.622542 + 0.552040i
\(131\) 4.24264 + 7.34847i 0.370681 + 0.642039i 0.989671 0.143361i \(-0.0457909\pi\)
−0.618989 + 0.785399i \(0.712458\pi\)
\(132\) 0 0
\(133\) 2.59808 + 1.50000i 0.225282 + 0.130066i
\(134\) −4.24264 −0.366508
\(135\) 0 0
\(136\) 8.00000 0.685994
\(137\) 1.22474 + 0.707107i 0.104637 + 0.0604122i 0.551405 0.834238i \(-0.314092\pi\)
−0.446768 + 0.894650i \(0.647425\pi\)
\(138\) 0 0
\(139\) 6.50000 + 11.2583i 0.551323 + 0.954919i 0.998179 + 0.0603135i \(0.0192101\pi\)
−0.446857 + 0.894606i \(0.647457\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 15.5885 + 9.00000i 1.30815 + 0.755263i
\(143\) 12.7279i 1.06436i
\(144\) 0 0
\(145\) −9.00000 + 3.00000i −0.747409 + 0.249136i
\(146\) 6.36396 11.0227i 0.526685 0.912245i
\(147\) 0 0
\(148\) 0 0
\(149\) −8.48528 14.6969i −0.695141 1.20402i −0.970133 0.242574i \(-0.922008\pi\)
0.274992 0.961447i \(-0.411325\pi\)
\(150\) 0 0
\(151\) 0.500000 0.866025i 0.0406894 0.0704761i −0.844963 0.534824i \(-0.820378\pi\)
0.885653 + 0.464348i \(0.153711\pi\)
\(152\) 2.82843i 0.229416i
\(153\) 0 0
\(154\) −18.0000 −1.45048
\(155\) −0.896575 + 4.38134i −0.0720147 + 0.351918i
\(156\) 0 0
\(157\) 5.19615 3.00000i 0.414698 0.239426i −0.278108 0.960550i \(-0.589707\pi\)
0.692806 + 0.721124i \(0.256374\pi\)
\(158\) −6.12372 + 3.53553i −0.487177 + 0.281272i
\(159\) 0 0
\(160\) 0 0
\(161\) −21.2132 −1.67183
\(162\) 0 0
\(163\) 9.00000i 0.704934i 0.935824 + 0.352467i \(0.114657\pi\)
−0.935824 + 0.352467i \(0.885343\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 1.00000 + 1.73205i 0.0776151 + 0.134433i
\(167\) −4.89898 + 2.82843i −0.379094 + 0.218870i −0.677424 0.735593i \(-0.736904\pi\)
0.298330 + 0.954463i \(0.403570\pi\)
\(168\) 0 0
\(169\) −2.00000 + 3.46410i −0.153846 + 0.266469i
\(170\) 8.48528 2.82843i 0.650791 0.216930i
\(171\) 0 0
\(172\) 0 0
\(173\) 12.2474 + 7.07107i 0.931156 + 0.537603i 0.887177 0.461429i \(-0.152663\pi\)
0.0439792 + 0.999032i \(0.485996\pi\)
\(174\) 0 0
\(175\) 5.89230 13.7942i 0.445416 1.04275i
\(176\) −8.48528 14.6969i −0.639602 1.10782i
\(177\) 0 0
\(178\) 0 0
\(179\) 12.7279 0.951330 0.475665 0.879627i \(-0.342208\pi\)
0.475665 + 0.879627i \(0.342208\pi\)
\(180\) 0 0
\(181\) −1.00000 −0.0743294 −0.0371647 0.999309i \(-0.511833\pi\)
−0.0371647 + 0.999309i \(0.511833\pi\)
\(182\) 11.0227 + 6.36396i 0.817057 + 0.471728i
\(183\) 0 0
\(184\) −10.0000 17.3205i −0.737210 1.27688i
\(185\) 13.3521 15.0573i 0.981664 1.10703i
\(186\) 0 0
\(187\) 10.3923 + 6.00000i 0.759961 + 0.438763i
\(188\) 0 0
\(189\) 0 0
\(190\) 1.00000 + 3.00000i 0.0725476 + 0.217643i
\(191\) 8.48528 14.6969i 0.613973 1.06343i −0.376590 0.926380i \(-0.622904\pi\)
0.990564 0.137053i \(-0.0437631\pi\)
\(192\) 0 0
\(193\) −2.59808 + 1.50000i −0.187014 + 0.107972i −0.590584 0.806976i \(-0.701102\pi\)
0.403570 + 0.914949i \(0.367769\pi\)
\(194\) −2.12132 3.67423i −0.152302 0.263795i
\(195\) 0 0
\(196\) 0 0
\(197\) 22.6274i 1.61214i −0.591822 0.806068i \(-0.701591\pi\)
0.591822 0.806068i \(-0.298409\pi\)
\(198\) 0 0
\(199\) 11.0000 0.779769 0.389885 0.920864i \(-0.372515\pi\)
0.389885 + 0.920864i \(0.372515\pi\)
\(200\) 14.0406 1.69161i 0.992820 0.119615i
\(201\) 0 0
\(202\) −10.3923 + 6.00000i −0.731200 + 0.422159i
\(203\) −11.0227 + 6.36396i −0.773642 + 0.446663i
\(204\) 0 0
\(205\) −1.90192 + 9.29423i −0.132836 + 0.649137i
\(206\) −4.24264 −0.295599
\(207\) 0 0
\(208\) 12.0000i 0.832050i
\(209\) −2.12132 + 3.67423i −0.146735 + 0.254152i
\(210\) 0 0
\(211\) 3.50000 + 6.06218i 0.240950 + 0.417338i 0.960985 0.276600i \(-0.0892077\pi\)
−0.720035 + 0.693938i \(0.755874\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −5.00000 + 8.66025i −0.341793 + 0.592003i
\(215\) −4.24264 12.7279i −0.289346 0.868037i
\(216\) 0 0
\(217\) 6.00000i 0.407307i
\(218\) 9.79796 + 5.65685i 0.663602 + 0.383131i
\(219\) 0 0
\(220\) 0 0
\(221\) −4.24264 7.34847i −0.285391 0.494312i
\(222\) 0 0
\(223\) 5.19615 + 3.00000i 0.347960 + 0.200895i 0.663786 0.747922i \(-0.268948\pi\)
−0.315826 + 0.948817i \(0.602282\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −2.00000 −0.133038
\(227\) −20.8207 12.0208i −1.38192 0.797850i −0.389530 0.921014i \(-0.627362\pi\)
−0.992386 + 0.123164i \(0.960696\pi\)
\(228\) 0 0
\(229\) 8.00000 + 13.8564i 0.528655 + 0.915657i 0.999442 + 0.0334101i \(0.0106368\pi\)
−0.470787 + 0.882247i \(0.656030\pi\)
\(230\) −16.7303 14.8356i −1.10317 0.978233i
\(231\) 0 0
\(232\) −10.3923 6.00000i −0.682288 0.393919i
\(233\) 19.7990i 1.29707i 0.761183 + 0.648537i \(0.224619\pi\)
−0.761183 + 0.648537i \(0.775381\pi\)
\(234\) 0 0
\(235\) 2.00000 + 6.00000i 0.130466 + 0.391397i
\(236\) 0 0
\(237\) 0 0
\(238\) 10.3923 6.00000i 0.673633 0.388922i
\(239\) −2.12132 3.67423i −0.137217 0.237666i 0.789225 0.614104i \(-0.210482\pi\)
−0.926442 + 0.376437i \(0.877149\pi\)
\(240\) 0 0
\(241\) −2.50000 + 4.33013i −0.161039 + 0.278928i −0.935242 0.354010i \(-0.884818\pi\)
0.774202 + 0.632938i \(0.218151\pi\)
\(242\) 9.89949i 0.636364i
\(243\) 0 0
\(244\) 0 0
\(245\) 0.896575 4.38134i 0.0572801 0.279914i
\(246\) 0 0
\(247\) 2.59808 1.50000i 0.165312 0.0954427i
\(248\) −4.89898 + 2.82843i −0.311086 + 0.179605i
\(249\) 0 0
\(250\) 14.2942 6.75833i 0.904046 0.427434i
\(251\) 12.7279 0.803379 0.401690 0.915776i \(-0.368423\pi\)
0.401690 + 0.915776i \(0.368423\pi\)
\(252\) 0 0
\(253\) 30.0000i 1.88608i
\(254\) 12.7279 22.0454i 0.798621 1.38325i
\(255\) 0 0
\(256\) 0 0
\(257\) 17.1464 9.89949i 1.06956 0.617514i 0.141502 0.989938i \(-0.454807\pi\)
0.928063 + 0.372424i \(0.121473\pi\)
\(258\) 0 0
\(259\) 13.5000 23.3827i 0.838849 1.45293i
\(260\) 0 0
\(261\) 0 0
\(262\) 12.0000i 0.741362i
\(263\) −2.44949 1.41421i −0.151042 0.0872041i 0.422574 0.906328i \(-0.361127\pi\)
−0.573616 + 0.819124i \(0.694460\pi\)
\(264\) 0 0
\(265\) −14.6865 + 16.5622i −0.902187 + 1.01741i
\(266\) 2.12132 + 3.67423i 0.130066 + 0.225282i
\(267\) 0 0
\(268\) 0 0
\(269\) −25.4558 −1.55207 −0.776035 0.630690i \(-0.782772\pi\)
−0.776035 + 0.630690i \(0.782772\pi\)
\(270\) 0 0
\(271\) −19.0000 −1.15417 −0.577084 0.816685i \(-0.695809\pi\)
−0.577084 + 0.816685i \(0.695809\pi\)
\(272\) 9.79796 + 5.65685i 0.594089 + 0.342997i
\(273\) 0 0
\(274\) 1.00000 + 1.73205i 0.0604122 + 0.104637i
\(275\) 19.5080 + 8.33298i 1.17638 + 0.502497i
\(276\) 0 0
\(277\) −10.3923 6.00000i −0.624413 0.360505i 0.154172 0.988044i \(-0.450729\pi\)
−0.778585 + 0.627539i \(0.784062\pi\)
\(278\) 18.3848i 1.10265i
\(279\) 0 0
\(280\) 18.0000 6.00000i 1.07571 0.358569i
\(281\) −4.24264 + 7.34847i −0.253095 + 0.438373i −0.964376 0.264534i \(-0.914782\pi\)
0.711282 + 0.702907i \(0.248115\pi\)
\(282\) 0 0
\(283\) 5.19615 3.00000i 0.308879 0.178331i −0.337546 0.941309i \(-0.609597\pi\)
0.646425 + 0.762978i \(0.276263\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) −9.00000 + 15.5885i −0.532181 + 0.921765i
\(287\) 12.7279i 0.751305i
\(288\) 0 0
\(289\) 9.00000 0.529412
\(290\) −13.1440 2.68973i −0.771844 0.157946i
\(291\) 0 0
\(292\) 0 0
\(293\) 6.12372 3.53553i 0.357752 0.206548i −0.310342 0.950625i \(-0.600444\pi\)
0.668094 + 0.744077i \(0.267110\pi\)
\(294\) 0 0
\(295\) 3.80385 18.5885i 0.221469 1.08226i
\(296\) 25.4558 1.47959
\(297\) 0 0
\(298\) 24.0000i 1.39028i
\(299\) −10.6066 + 18.3712i −0.613396 + 1.06243i
\(300\) 0 0
\(301\) −9.00000 15.5885i −0.518751 0.898504i
\(302\) 1.22474 0.707107i 0.0704761 0.0406894i
\(303\) 0 0
\(304\) −2.00000 + 3.46410i −0.114708 + 0.198680i
\(305\) −27.5772 + 9.19239i −1.57906 + 0.526355i
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −4.19615 + 4.73205i −0.238325 + 0.268762i
\(311\) 4.24264 + 7.34847i 0.240578 + 0.416693i 0.960879 0.276968i \(-0.0893297\pi\)
−0.720301 + 0.693662i \(0.755996\pi\)
\(312\) 0 0
\(313\) −18.1865 10.5000i −1.02796 0.593495i −0.111563 0.993757i \(-0.535586\pi\)
−0.916401 + 0.400262i \(0.868919\pi\)
\(314\) 8.48528 0.478852
\(315\) 0 0
\(316\) 0 0
\(317\) −9.79796 5.65685i −0.550308 0.317721i 0.198938 0.980012i \(-0.436251\pi\)
−0.749246 + 0.662291i \(0.769584\pi\)
\(318\) 0 0
\(319\) −9.00000 15.5885i −0.503903 0.872786i
\(320\) 13.3843 + 11.8685i 0.748203 + 0.663470i
\(321\) 0 0
\(322\) −25.9808 15.0000i −1.44785 0.835917i
\(323\) 2.82843i 0.157378i
\(324\) 0 0
\(325\) −9.00000 12.0000i −0.499230 0.665640i
\(326\) −6.36396 + 11.0227i −0.352467 + 0.610491i
\(327\) 0 0
\(328\) −10.3923 + 6.00000i −0.573819 + 0.331295i
\(329\) 4.24264 + 7.34847i 0.233904 + 0.405134i
\(330\) 0 0
\(331\) −8.50000 + 14.7224i −0.467202 + 0.809218i −0.999298 0.0374662i \(-0.988071\pi\)
0.532096 + 0.846684i \(0.321405\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −8.00000 −0.437741
\(335\) 6.57201 + 1.34486i 0.359067 + 0.0734777i
\(336\) 0 0
\(337\) 28.5788 16.5000i 1.55679 0.898812i 0.559227 0.829014i \(-0.311098\pi\)
0.997561 0.0697980i \(-0.0222355\pi\)
\(338\) −4.89898 + 2.82843i −0.266469 + 0.153846i
\(339\) 0 0
\(340\) 0 0
\(341\) −8.48528 −0.459504
\(342\) 0 0
\(343\) 15.0000i 0.809924i
\(344\) 8.48528 14.6969i 0.457496 0.792406i
\(345\) 0 0
\(346\) 10.0000 + 17.3205i 0.537603 + 0.931156i
\(347\) −23.2702 + 13.4350i −1.24921 + 0.721230i −0.970951 0.239277i \(-0.923090\pi\)
−0.278256 + 0.960507i \(0.589756\pi\)
\(348\) 0 0
\(349\) −2.50000 + 4.33013i −0.133822 + 0.231786i −0.925147 0.379610i \(-0.876058\pi\)
0.791325 + 0.611396i \(0.209392\pi\)
\(350\) 16.9706 12.7279i 0.907115 0.680336i
\(351\) 0 0
\(352\) 0 0
\(353\) −24.4949 14.1421i −1.30373 0.752710i −0.322690 0.946505i \(-0.604587\pi\)
−0.981042 + 0.193795i \(0.937920\pi\)
\(354\) 0 0
\(355\) −21.2942 18.8827i −1.13018 1.00219i
\(356\) 0 0
\(357\) 0 0
\(358\) 15.5885 + 9.00000i 0.823876 + 0.475665i
\(359\) 12.7279 0.671754 0.335877 0.941906i \(-0.390967\pi\)
0.335877 + 0.941906i \(0.390967\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) −1.22474 0.707107i −0.0643712 0.0371647i
\(363\) 0 0
\(364\) 0 0
\(365\) −13.3521 + 15.0573i −0.698880 + 0.788135i
\(366\) 0 0
\(367\) 12.9904 + 7.50000i 0.678092 + 0.391497i 0.799136 0.601150i \(-0.205291\pi\)
−0.121044 + 0.992647i \(0.538624\pi\)
\(368\) 28.2843i 1.47442i
\(369\) 0 0
\(370\) 27.0000 9.00000i 1.40366 0.467888i
\(371\) −14.8492 + 25.7196i −0.770934 + 1.33530i
\(372\) 0 0
\(373\) −18.1865 + 10.5000i −0.941663 + 0.543669i −0.890481 0.455020i \(-0.849632\pi\)
−0.0511818 + 0.998689i \(0.516299\pi\)
\(374\) 8.48528 + 14.6969i 0.438763 + 0.759961i
\(375\) 0 0
\(376\) −4.00000 + 6.92820i −0.206284 + 0.357295i
\(377\) 12.7279i 0.655521i
\(378\) 0 0
\(379\) 35.0000 1.79783 0.898915 0.438124i \(-0.144357\pi\)
0.898915 + 0.438124i \(0.144357\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 20.7846 12.0000i 1.06343 0.613973i
\(383\) −4.89898 + 2.82843i −0.250326 + 0.144526i −0.619914 0.784670i \(-0.712832\pi\)
0.369587 + 0.929196i \(0.379499\pi\)
\(384\) 0 0
\(385\) 27.8827 + 5.70577i 1.42103 + 0.290793i
\(386\) −4.24264 −0.215945
\(387\) 0 0
\(388\) 0 0
\(389\) −16.9706 + 29.3939i −0.860442 + 1.49033i 0.0110615 + 0.999939i \(0.496479\pi\)
−0.871503 + 0.490390i \(0.836854\pi\)
\(390\) 0 0
\(391\) 10.0000 + 17.3205i 0.505722 + 0.875936i
\(392\) 4.89898 2.82843i 0.247436 0.142857i
\(393\) 0 0
\(394\) 16.0000 27.7128i 0.806068 1.39615i
\(395\) 10.6066 3.53553i 0.533676 0.177892i
\(396\) 0 0
\(397\) 36.0000i 1.80679i 0.428811 + 0.903394i \(0.358933\pi\)
−0.428811 + 0.903394i \(0.641067\pi\)
\(398\) 13.4722 + 7.77817i 0.675300 + 0.389885i
\(399\) 0 0
\(400\) 18.3923 + 7.85641i 0.919615 + 0.392820i
\(401\) −2.12132 3.67423i −0.105934 0.183483i 0.808186 0.588928i \(-0.200450\pi\)
−0.914119 + 0.405445i \(0.867116\pi\)
\(402\) 0 0
\(403\) 5.19615 + 3.00000i 0.258839 + 0.149441i
\(404\) 0 0
\(405\) 0 0
\(406\) −18.0000 −0.893325
\(407\) 33.0681 + 19.0919i 1.63913 + 0.946350i
\(408\) 0 0
\(409\) 12.5000 + 21.6506i 0.618085 + 1.07056i 0.989835 + 0.142222i \(0.0454247\pi\)
−0.371750 + 0.928333i \(0.621242\pi\)
\(410\) −8.90138 + 10.0382i −0.439608 + 0.495751i
\(411\) 0 0
\(412\) 0 0
\(413\) 25.4558i 1.25260i
\(414\) 0 0
\(415\) −1.00000 3.00000i −0.0490881 0.147264i
\(416\) 0 0
\(417\) 0 0
\(418\) −5.19615 + 3.00000i −0.254152 + 0.146735i
\(419\) 16.9706 + 29.3939i 0.829066 + 1.43598i 0.898772 + 0.438417i \(0.144461\pi\)
−0.0697053 + 0.997568i \(0.522206\pi\)
\(420\) 0 0
\(421\) −11.5000 + 19.9186i −0.560476 + 0.970772i 0.436979 + 0.899472i \(0.356048\pi\)
−0.997455 + 0.0713008i \(0.977285\pi\)
\(422\) 9.89949i 0.481900i
\(423\) 0 0
\(424\) −28.0000 −1.35980
\(425\) −14.0406 + 1.69161i −0.681069 + 0.0820554i
\(426\) 0 0
\(427\) −33.7750 + 19.5000i −1.63449 + 0.943671i
\(428\) 0 0
\(429\) 0 0
\(430\) 3.80385 18.5885i 0.183438 0.896415i
\(431\) −12.7279 −0.613082 −0.306541 0.951857i \(-0.599172\pi\)
−0.306541 + 0.951857i \(0.599172\pi\)
\(432\) 0 0
\(433\) 36.0000i 1.73005i 0.501729 + 0.865025i \(0.332697\pi\)
−0.501729 + 0.865025i \(0.667303\pi\)
\(434\) −4.24264 + 7.34847i −0.203653 + 0.352738i
\(435\) 0 0
\(436\) 0 0
\(437\) −6.12372 + 3.53553i −0.292937 + 0.169128i
\(438\) 0 0
\(439\) −7.00000 + 12.1244i −0.334092 + 0.578664i −0.983310 0.181938i \(-0.941763\pi\)
0.649218 + 0.760602i \(0.275096\pi\)
\(440\) 8.48528 + 25.4558i 0.404520 + 1.21356i
\(441\) 0 0
\(442\) 12.0000i 0.570782i
\(443\) 12.2474 + 7.07107i 0.581894 + 0.335957i 0.761886 0.647712i \(-0.224274\pi\)
−0.179992 + 0.983668i \(0.557607\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 4.24264 + 7.34847i 0.200895 + 0.347960i
\(447\) 0 0
\(448\) 20.7846 + 12.0000i 0.981981 + 0.566947i
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) −18.0000 −0.847587
\(452\) 0 0
\(453\) 0 0
\(454\) −17.0000 29.4449i −0.797850 1.38192i
\(455\) −15.0573 13.3521i −0.705897 0.625955i
\(456\) 0 0
\(457\) −10.3923 6.00000i −0.486132 0.280668i 0.236837 0.971549i \(-0.423889\pi\)
−0.722968 + 0.690881i \(0.757223\pi\)
\(458\) 22.6274i 1.05731i
\(459\) 0 0
\(460\) 0 0
\(461\) 8.48528 14.6969i 0.395199 0.684505i −0.597928 0.801550i \(-0.704009\pi\)
0.993127 + 0.117045i \(0.0373423\pi\)
\(462\) 0 0
\(463\) 12.9904 7.50000i 0.603714 0.348555i −0.166787 0.985993i \(-0.553339\pi\)
0.770501 + 0.637438i \(0.220006\pi\)
\(464\) −8.48528 14.6969i −0.393919 0.682288i
\(465\) 0 0
\(466\) −14.0000 + 24.2487i −0.648537 + 1.12330i
\(467\) 22.6274i 1.04707i −0.852004 0.523536i \(-0.824613\pi\)
0.852004 0.523536i \(-0.175387\pi\)
\(468\) 0 0
\(469\) 9.00000 0.415581
\(470\) −1.79315 + 8.76268i −0.0827119 + 0.404192i
\(471\) 0 0
\(472\) 20.7846 12.0000i 0.956689 0.552345i
\(473\) 22.0454 12.7279i 1.01365 0.585230i
\(474\) 0 0
\(475\) −0.598076 4.96410i −0.0274416 0.227769i
\(476\) 0 0
\(477\) 0 0
\(478\) 6.00000i 0.274434i
\(479\) 2.12132 3.67423i 0.0969256 0.167880i −0.813485 0.581586i \(-0.802432\pi\)
0.910411 + 0.413706i \(0.135766\pi\)
\(480\) 0 0
\(481\) −13.5000 23.3827i −0.615547 1.06616i
\(482\) −6.12372 + 3.53553i −0.278928 + 0.161039i
\(483\) 0 0
\(484\) 0 0
\(485\) 2.12132 + 6.36396i 0.0963242 + 0.288973i
\(486\) 0 0
\(487\) 9.00000i 0.407829i −0.978989 0.203914i \(-0.934634\pi\)
0.978989 0.203914i \(-0.0653664\pi\)
\(488\) −31.8434 18.3848i −1.44148 0.832240i
\(489\) 0 0
\(490\) 4.19615 4.73205i 0.189563 0.213772i
\(491\) 10.6066 + 18.3712i 0.478669 + 0.829079i 0.999701 0.0244579i \(-0.00778598\pi\)
−0.521032 + 0.853537i \(0.674453\pi\)
\(492\) 0 0
\(493\) 10.3923 + 6.00000i 0.468046 + 0.270226i
\(494\) 4.24264 0.190885
\(495\) 0 0
\(496\) −8.00000 −0.359211
\(497\) −33.0681 19.0919i −1.48331 0.856388i
\(498\) 0 0
\(499\) 8.00000 + 13.8564i 0.358129 + 0.620298i 0.987648 0.156687i \(-0.0500814\pi\)
−0.629519 + 0.776985i \(0.716748\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 15.5885 + 9.00000i 0.695747 + 0.401690i
\(503\) 35.3553i 1.57642i −0.615409 0.788208i \(-0.711009\pi\)
0.615409 0.788208i \(-0.288991\pi\)
\(504\) 0 0
\(505\) 18.0000 6.00000i 0.800989 0.266996i
\(506\) 21.2132 36.7423i 0.943042 1.63340i
\(507\) 0 0
\(508\) 0 0
\(509\) −14.8492 25.7196i −0.658181 1.14000i −0.981086 0.193572i \(-0.937993\pi\)
0.322905 0.946431i \(-0.395341\pi\)
\(510\) 0 0
\(511\) −13.5000 + 23.3827i −0.597205 + 1.03439i
\(512\) 22.6274i 1.00000i
\(513\) 0 0
\(514\) 28.0000 1.23503
\(515\) 6.57201 + 1.34486i 0.289597 + 0.0592618i
\(516\) 0 0
\(517\) −10.3923 + 6.00000i −0.457053 + 0.263880i
\(518\) 33.0681 19.0919i 1.45293 0.838849i
\(519\) 0 0
\(520\) 3.80385 18.5885i 0.166810 0.815158i
\(521\) −12.7279 −0.557620 −0.278810 0.960346i \(-0.589940\pi\)
−0.278810 + 0.960346i \(0.589940\pi\)
\(522\) 0 0
\(523\) 9.00000i 0.393543i 0.980449 + 0.196771i \(0.0630456\pi\)
−0.980449 + 0.196771i \(0.936954\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −2.00000 3.46410i −0.0872041 0.151042i
\(527\) 4.89898 2.82843i 0.213403 0.123208i
\(528\) 0 0
\(529\) 13.5000 23.3827i 0.586957 1.01664i
\(530\) −29.6985 + 9.89949i −1.29002 + 0.430007i
\(531\) 0 0
\(532\) 0 0
\(533\) 11.0227 + 6.36396i 0.477446 + 0.275654i
\(534\) 0 0
\(535\) 10.4904 11.8301i 0.453539 0.511461i
\(536\) 4.24264 + 7.34847i 0.183254 + 0.317406i
\(537\) 0 0
\(538\) −31.1769 18.0000i −1.34413 0.776035i
\(539\) 8.48528 0.365487
\(540\) 0 0
\(541\) −25.0000 −1.07483 −0.537417 0.843317i \(-0.680600\pi\)
−0.537417 + 0.843317i \(0.680600\pi\)
\(542\) −23.2702 13.4350i −0.999539 0.577084i
\(543\) 0 0
\(544\) 0 0
\(545\) −13.3843 11.8685i −0.573319 0.508391i
\(546\) 0 0
\(547\) −2.59808 1.50000i −0.111086 0.0641354i 0.443428 0.896310i \(-0.353762\pi\)
−0.554513 + 0.832175i \(0.687096\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 18.0000 + 24.0000i 0.767523 + 1.02336i
\(551\) −2.12132 + 3.67423i −0.0903713 + 0.156528i
\(552\) 0 0
\(553\) 12.9904 7.50000i 0.552407 0.318932i
\(554\) −8.48528 14.6969i −0.360505 0.624413i
\(555\) 0 0
\(556\) 0 0
\(557\) 19.7990i 0.838910i 0.907776 + 0.419455i \(0.137779\pi\)
−0.907776 + 0.419455i \(0.862221\pi\)
\(558\) 0 0
\(559\) −18.0000 −0.761319
\(560\) 26.2880 + 5.37945i 1.11087 + 0.227323i
\(561\) 0 0
\(562\) −10.3923 + 6.00000i −0.438373 + 0.253095i
\(563\) 9.79796 5.65685i 0.412935 0.238408i −0.279115 0.960258i \(-0.590041\pi\)
0.692050 + 0.721850i \(0.256708\pi\)
\(564\) 0 0
\(565\) 3.09808 + 0.633975i 0.130337 + 0.0266715i
\(566\) 8.48528 0.356663
\(567\) 0 0
\(568\) 36.0000i 1.51053i
\(569\) 21.2132 36.7423i 0.889304 1.54032i 0.0486037 0.998818i \(-0.484523\pi\)
0.840700 0.541501i \(-0.182144\pi\)
\(570\) 0 0
\(571\) 12.5000 + 21.6506i 0.523109 + 0.906051i 0.999638 + 0.0268925i \(0.00856117\pi\)
−0.476530 + 0.879158i \(0.658105\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −9.00000 + 15.5885i −0.375653 + 0.650650i
\(575\) 21.2132 + 28.2843i 0.884652 + 1.17954i
\(576\) 0 0
\(577\) 45.0000i 1.87337i −0.350167 0.936687i \(-0.613875\pi\)
0.350167 0.936687i \(-0.386125\pi\)
\(578\) 11.0227 + 6.36396i 0.458484 + 0.264706i
\(579\) 0 0
\(580\) 0 0
\(581\) −2.12132 3.67423i −0.0880072 0.152433i
\(582\) 0 0
\(583\) −36.3731 21.0000i −1.50642 0.869731i
\(584\) −25.4558 −1.05337
\(585\) 0 0
\(586\) 10.0000 0.413096
\(587\) 23.2702 + 13.4350i 0.960462 + 0.554523i 0.896315 0.443417i \(-0.146234\pi\)
0.0641468 + 0.997940i \(0.479567\pi\)
\(588\) 0 0
\(589\) 1.00000 + 1.73205i 0.0412043 + 0.0713679i
\(590\) 17.8028 20.0764i 0.732928 0.826532i
\(591\) 0 0
\(592\) 31.1769 + 18.0000i 1.28136 + 0.739795i
\(593\) 9.89949i 0.406524i −0.979124 0.203262i \(-0.934846\pi\)
0.979124 0.203262i \(-0.0651542\pi\)
\(594\) 0 0
\(595\) −18.0000 + 6.00000i −0.737928 + 0.245976i
\(596\) 0 0
\(597\) 0 0
\(598\) −25.9808 + 15.0000i −1.06243 + 0.613396i
\(599\) −14.8492 25.7196i −0.606724 1.05088i −0.991777 0.127982i \(-0.959150\pi\)
0.385053 0.922894i \(-0.374183\pi\)
\(600\) 0 0
\(601\) 20.0000 34.6410i 0.815817 1.41304i −0.0929227 0.995673i \(-0.529621\pi\)
0.908740 0.417363i \(-0.137046\pi\)
\(602\) 25.4558i 1.03750i
\(603\) 0 0
\(604\) 0 0
\(605\) −3.13801 + 15.3347i −0.127578 + 0.623444i
\(606\) 0 0
\(607\) −33.7750 + 19.5000i −1.37088 + 0.791481i −0.991039 0.133570i \(-0.957356\pi\)
−0.379845 + 0.925050i \(0.624023\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −40.2750 8.24167i −1.63069 0.333695i
\(611\) 8.48528 0.343278
\(612\) 0 0
\(613\) 9.00000i 0.363507i −0.983344 0.181753i \(-0.941823\pi\)
0.983344 0.181753i \(-0.0581772\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 18.0000 + 31.1769i 0.725241 + 1.25615i
\(617\) 6.12372 3.53553i 0.246532 0.142335i −0.371643 0.928376i \(-0.621206\pi\)
0.618175 + 0.786040i \(0.287872\pi\)
\(618\) 0 0
\(619\) 9.50000 16.4545i 0.381837 0.661361i −0.609488 0.792796i \(-0.708625\pi\)
0.991325 + 0.131434i \(0.0419582\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 12.0000i 0.481156i
\(623\) 0 0
\(624\) 0 0
\(625\) −24.2846 + 5.93782i −0.971384 + 0.237513i
\(626\) −14.8492 25.7196i −0.593495 1.02796i
\(627\) 0 0
\(628\) 0 0
\(629\) −25.4558 −1.01499
\(630\) 0 0
\(631\) 17.0000 0.676759 0.338380 0.941010i \(-0.390121\pi\)
0.338380 + 0.941010i \(0.390121\pi\)
\(632\) 12.2474 + 7.07107i 0.487177 + 0.281272i
\(633\) 0 0
\(634\) −8.00000 13.8564i −0.317721 0.550308i
\(635\) −26.7042 + 30.1146i −1.05972 + 1.19506i
\(636\) 0 0
\(637\) −5.19615 3.00000i −0.205879 0.118864i
\(638\) 25.4558i 1.00781i
\(639\) 0 0
\(640\) 8.00000 + 24.0000i 0.316228 + 0.948683i
\(641\) 8.48528 14.6969i 0.335148 0.580494i −0.648365 0.761330i \(-0.724547\pi\)
0.983513 + 0.180836i \(0.0578802\pi\)
\(642\) 0 0
\(643\) 36.3731 21.0000i 1.43441 0.828159i 0.436960 0.899481i \(-0.356055\pi\)
0.997453 + 0.0713216i \(0.0227217\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 2.00000 3.46410i 0.0786889 0.136293i
\(647\) 9.89949i 0.389189i −0.980884 0.194595i \(-0.937661\pi\)
0.980884 0.194595i \(-0.0623391\pi\)
\(648\) 0 0
\(649\) 36.0000 1.41312
\(650\) −2.53742 21.0609i −0.0995259 0.826076i
\(651\) 0 0
\(652\) 0 0
\(653\) −4.89898 + 2.82843i −0.191712 + 0.110685i −0.592784 0.805362i \(-0.701971\pi\)
0.401072 + 0.916047i \(0.368638\pi\)
\(654\) 0 0
\(655\) 3.80385 18.5885i 0.148629 0.726311i
\(656\) −16.9706 −0.662589
\(657\) 0 0
\(658\) 12.0000i 0.467809i
\(659\) 8.48528 14.6969i 0.330540 0.572511i −0.652078 0.758152i \(-0.726103\pi\)
0.982618 + 0.185640i \(0.0594359\pi\)
\(660\) 0 0
\(661\) −11.5000 19.9186i −0.447298 0.774743i 0.550911 0.834564i \(-0.314280\pi\)
−0.998209 + 0.0598209i \(0.980947\pi\)
\(662\) −20.8207 + 12.0208i −0.809218 + 0.467202i
\(663\) 0 0
\(664\) 2.00000 3.46410i 0.0776151 0.134433i
\(665\) −2.12132 6.36396i −0.0822613 0.246784i
\(666\) 0 0
\(667\) 30.0000i 1.16160i
\(668\) 0 0
\(669\) 0 0
\(670\) 7.09808 + 6.29423i 0.274223 + 0.243167i
\(671\) −27.5772 47.7650i −1.06460 1.84395i
\(672\) 0 0
\(673\) 12.9904 + 7.50000i 0.500742 + 0.289104i 0.729020 0.684492i \(-0.239976\pi\)
−0.228278 + 0.973596i \(0.573309\pi\)
\(674\) 46.6690 1.79762
\(675\) 0 0
\(676\) 0 0
\(677\) 41.6413 + 24.0416i 1.60041 + 0.923995i 0.991405 + 0.130825i \(0.0417627\pi\)
0.609001 + 0.793170i \(0.291571\pi\)
\(678\) 0 0
\(679\) 4.50000 + 7.79423i 0.172694 + 0.299115i
\(680\) −13.3843 11.8685i −0.513263 0.455137i
\(681\) 0 0
\(682\) −10.3923 6.00000i −0.397942 0.229752i
\(683\) 15.5563i 0.595247i 0.954683 + 0.297624i \(0.0961940\pi\)
−0.954683 + 0.297624i \(0.903806\pi\)
\(684\) 0 0
\(685\) −1.00000 3.00000i −0.0382080 0.114624i
\(686\) −10.6066 + 18.3712i −0.404962 + 0.701415i
\(687\) 0 0
\(688\) 20.7846 12.0000i 0.792406 0.457496i
\(689\) 14.8492 + 25.7196i 0.565711 + 0.979840i
\(690\) 0 0
\(691\) −25.0000 + 43.3013i −0.951045 + 1.64726i −0.207875 + 0.978155i \(0.566655\pi\)
−0.743170 + 0.669102i \(0.766679\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −38.0000 −1.44246
\(695\) 5.82774 28.4787i 0.221059 1.08026i
\(696\) 0 0
\(697\) 10.3923 6.00000i 0.393637 0.227266i
\(698\) −6.12372 + 3.53553i −0.231786 + 0.133822i
\(699\) 0 0
\(700\) 0 0
\(701\) 38.1838 1.44218 0.721090 0.692841i \(-0.243641\pi\)
0.721090 + 0.692841i \(0.243641\pi\)
\(702\) 0 0
\(703\) 9.00000i 0.339441i
\(704\) −16.9706 + 29.3939i −0.639602 + 1.10782i
\(705\) 0 0
\(706\) −20.0000 34.6410i −0.752710 1.30373i
\(707\) 22.0454 12.7279i 0.829103 0.478683i
\(708\) 0 0
\(709\) −8.50000 + 14.7224i −0.319224 + 0.552913i −0.980326 0.197383i \(-0.936756\pi\)
0.661102 + 0.750296i \(0.270089\pi\)
\(710\) −12.7279 38.1838i −0.477670 1.43301i
\(711\) 0 0
\(712\) 0 0
\(713\) −12.2474 7.07107i −0.458671 0.264814i
\(714\) 0 0
\(715\) 18.8827 21.2942i 0.706172 0.796359i
\(716\) 0 0
\(717\) 0 0
\(718\) 15.5885 + 9.00000i 0.581756 + 0.335877i
\(719\) −12.7279 −0.474671 −0.237336 0.971428i \(-0.576274\pi\)
−0.237336 + 0.971428i \(0.576274\pi\)
\(720\) 0 0
\(721\) 9.00000 0.335178
\(722\) −22.0454 12.7279i −0.820445 0.473684i
\(723\) 0 0
\(724\) 0 0
\(725\) 19.5080 + 8.33298i 0.724508 + 0.309479i
\(726\) 0 0
\(727\) 36.3731 + 21.0000i 1.34900 + 0.778847i 0.988108 0.153760i \(-0.0491382\pi\)
0.360894 + 0.932607i \(0.382472\pi\)
\(728\) 25.4558i 0.943456i
\(729\) 0 0
\(730\) −27.0000 + 9.00000i −0.999315 + 0.333105i
\(731\) −8.48528 + 14.6969i −0.313839 + 0.543586i
\(732\) 0 0
\(733\) 20.7846 12.0000i 0.767697 0.443230i −0.0643554 0.997927i \(-0.520499\pi\)
0.832052 + 0.554697i \(0.187166\pi\)
\(734\) 10.6066 + 18.3712i 0.391497 + 0.678092i
\(735\) 0 0
\(736\) 0 0
\(737\) 12.7279i 0.468839i
\(738\) 0 0
\(739\) −10.0000 −0.367856 −0.183928 0.982940i \(-0.558881\pi\)
−0.183928 + 0.982940i \(0.558881\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −36.3731 + 21.0000i −1.33530 + 0.770934i
\(743\) −12.2474 + 7.07107i −0.449315 + 0.259412i −0.707541 0.706672i \(-0.750196\pi\)
0.258226 + 0.966085i \(0.416862\pi\)
\(744\) 0 0
\(745\) −7.60770 + 37.1769i −0.278724 + 1.36206i
\(746\) −29.6985 −1.08734
\(747\) 0 0
\(748\) 0 0
\(749\) 10.6066 18.3712i 0.387557 0.671268i
\(750\) 0 0
\(751\) 3.50000 + 6.06218i 0.127717 + 0.221212i 0.922792 0.385299i \(-0.125902\pi\)
−0.795075 + 0.606511i \(0.792568\pi\)
\(752\) −9.79796 + 5.65685i −0.357295 + 0.206284i
\(753\) 0 0
\(754\) −9.00000 + 15.5885i −0.327761 + 0.567698i
\(755\) −2.12132 + 0.707107i −0.0772028 + 0.0257343i
\(756\) 0 0
\(757\) 27.0000i 0.981332i 0.871348 + 0.490666i \(0.163246\pi\)
−0.871348 + 0.490666i \(0.836754\pi\)
\(758\) 42.8661 + 24.7487i 1.55697 + 0.898915i
\(759\) 0 0
\(760\) 4.19615 4.73205i 0.152210 0.171650i
\(761\) −2.12132 3.67423i −0.0768978 0.133191i 0.825012 0.565115i \(-0.191168\pi\)
−0.901910 + 0.431924i \(0.857835\pi\)
\(762\) 0 0
\(763\) −20.7846 12.0000i −0.752453 0.434429i
\(764\) 0 0
\(765\) 0 0
\(766\) −8.00000 −0.289052
\(767\) −22.0454 12.7279i −0.796014 0.459579i
\(768\) 0 0
\(769\) −5.50000 9.52628i −0.198335 0.343526i 0.749654 0.661830i \(-0.230220\pi\)
−0.947989 + 0.318304i \(0.896887\pi\)
\(770\) 30.1146 + 26.7042i 1.08525 + 0.962351i
\(771\) 0 0
\(772\) 0 0
\(773\) 41.0122i 1.47511i 0.675289 + 0.737553i \(0.264019\pi\)
−0.675289 + 0.737553i \(0.735981\pi\)
\(774\) 0 0
\(775\) 8.00000 6.00000i 0.287368 0.215526i
\(776\) −4.24264 + 7.34847i −0.152302 + 0.263795i
\(777\) 0 0
\(778\) −41.5692 + 24.0000i −1.49033 + 0.860442i
\(779\) 2.12132 + 3.67423i 0.0760042 + 0.131643i
\(780\) 0 0
\(781\) 27.0000 46.7654i 0.966136 1.67340i
\(782\) 28.2843i 1.01144i
\(783\) 0 0
\(784\) 8.00000 0.285714
\(785\) −13.1440 2.68973i −0.469130 0.0960005i
\(786\) 0 0
\(787\) 12.9904 7.50000i 0.463057 0.267346i −0.250272 0.968176i \(-0.580520\pi\)
0.713329 + 0.700830i \(0.247187\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 15.4904 + 3.16987i 0.551123 + 0.112779i
\(791\) 4.24264 0.150851
\(792\) 0 0
\(793\) 39.0000i 1.38493i
\(794\) −25.4558 + 44.0908i −0.903394 + 1.56472i
\(795\) 0 0
\(796\) 0 0
\(797\) 17.1464 9.89949i 0.607358 0.350658i −0.164573 0.986365i \(-0.552625\pi\)
0.771931 + 0.635707i \(0.219291\pi\)
\(798\) 0 0
\(799\) 4.00000 6.92820i 0.141510 0.245102i
\(800\) 0 0
\(801\) 0 0
\(802\) 6.00000i 0.211867i
\(803\) −33.0681 19.0919i −1.16695 0.673738i
\(804\) 0 0
\(805\) 35.4904 + 31.4711i 1.25087 + 1.10921i
\(806\) 4.24264 + 7.34847i 0.149441 + 0.258839i
\(807\) 0 0
\(808\) 20.7846 + 12.0000i 0.731200 + 0.422159i
\(809\) 25.4558 0.894980 0.447490 0.894289i \(-0.352318\pi\)
0.447490 + 0.894289i \(0.352318\pi\)
\(810\) 0 0
\(811\) 2.00000 0.0702295 0.0351147 0.999383i \(-0.488820\pi\)
0.0351147 + 0.999383i \(0.488820\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 27.0000 + 46.7654i 0.946350 + 1.63913i
\(815\) 13.3521 15.0573i 0.467703 0.527434i
\(816\) 0 0
\(817\) −5.19615 3.00000i −0.181790 0.104957i
\(818\) 35.3553i 1.23617i
\(819\) 0 0
\(820\) 0 0
\(821\) −4.24264 + 7.34847i −0.148069 + 0.256463i −0.930514 0.366257i \(-0.880639\pi\)
0.782445 + 0.622720i \(0.213972\pi\)
\(822\) 0 0
\(823\) −33.7750 + 19.5000i −1.17732 + 0.679727i −0.955394 0.295336i \(-0.904569\pi\)
−0.221929 + 0.975063i \(0.571235\pi\)
\(824\) 4.24264 + 7.34847i 0.147799 + 0.255996i
\(825\) 0 0
\(826\) 18.0000 31.1769i 0.626300 1.08478i
\(827\) 2.82843i 0.0983540i 0.998790 + 0.0491770i \(0.0156598\pi\)
−0.998790 + 0.0491770i \(0.984340\pi\)
\(828\) 0 0
\(829\) −7.00000 −0.243120 −0.121560 0.992584i \(-0.538790\pi\)
−0.121560 + 0.992584i \(0.538790\pi\)
\(830\) 0.896575 4.38134i 0.0311206 0.152079i
\(831\) 0 0
\(832\) 20.7846 12.0000i 0.720577 0.416025i
\(833\) −4.89898 + 2.82843i −0.169740 + 0.0979992i
\(834\) 0 0
\(835\) 12.3923 + 2.53590i 0.428853 + 0.0877584i
\(836\) 0 0
\(837\) 0 0
\(838\) 48.0000i 1.65813i
\(839\) 21.2132 36.7423i 0.732361 1.26849i −0.223510 0.974702i \(-0.571752\pi\)
0.955871 0.293785i \(-0.0949150\pi\)
\(840\) 0 0
\(841\) 5.50000 + 9.52628i 0.189655 + 0.328492i
\(842\) −28.1691 + 16.2635i −0.970772 + 0.560476i
\(843\) 0 0
\(844\) 0 0
\(845\) 8.48528 2.82843i 0.291903 0.0973009i
\(846\) 0 0
\(847\) 21.0000i 0.721569i
\(848\) −34.2929 19.7990i −1.17762 0.679900i
\(849\) 0 0
\(850\) −18.3923 7.85641i −0.630851 0.269473i
\(851\) 31.8198 + 55.1135i 1.09077 + 1.88927i
\(852\) 0 0
\(853\) 28.5788 + 16.5000i 0.978521 + 0.564949i 0.901823 0.432105i \(-0.142229\pi\)
0.0766976 + 0.997054i \(0.475562\pi\)
\(854\) −55.1543 −1.88734
\(855\) 0 0
\(856\) 20.0000 0.683586
\(857\) 23.2702 + 13.4350i 0.794893 + 0.458932i 0.841682 0.539973i \(-0.181566\pi\)
−0.0467891 + 0.998905i \(0.514899\pi\)
\(858\) 0 0
\(859\) −23.5000 40.7032i −0.801810 1.38878i −0.918424 0.395598i \(-0.870537\pi\)
0.116614 0.993177i \(-0.462796\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −15.5885 9.00000i −0.530945 0.306541i
\(863\) 28.2843i 0.962808i 0.876499 + 0.481404i \(0.159873\pi\)
−0.876499 + 0.481404i \(0.840127\pi\)
\(864\) 0 0
\(865\) −10.0000 30.0000i −0.340010 1.02003i
\(866\) −25.4558 + 44.0908i −0.865025 + 1.49827i
\(867\) 0 0
\(868\) 0 0
\(869\) 10.6066 + 18.3712i 0.359804 + 0.623199i
\(870\) 0 0
\(871\) 4.50000 7.79423i 0.152477 0.264097i
\(872\) 22.6274i 0.766261i
\(873\) 0 0
\(874\) −10.0000 −0.338255
\(875\) −30.3226 + 14.3366i −1.02509 + 0.484665i
\(876\) 0 0
\(877\) 12.9904 7.50000i 0.438654 0.253257i −0.264373 0.964421i \(-0.585165\pi\)
0.703027 + 0.711164i \(0.251832\pi\)
\(878\) −17.1464 + 9.89949i −0.578664 + 0.334092i
\(879\) 0 0
\(880\) −7.60770 + 37.1769i −0.256455 + 1.25323i
\(881\) 38.1838 1.28644 0.643222 0.765680i \(-0.277597\pi\)
0.643222 + 0.765680i \(0.277597\pi\)
\(882\) 0 0
\(883\) 27.0000i 0.908622i −0.890843 0.454311i \(-0.849885\pi\)
0.890843 0.454311i \(-0.150115\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 10.0000 + 17.3205i 0.335957 + 0.581894i
\(887\) 39.1918 22.6274i 1.31593 0.759754i 0.332861 0.942976i \(-0.391986\pi\)
0.983072 + 0.183221i \(0.0586525\pi\)
\(888\) 0 0
\(889\) −27.0000 + 46.7654i −0.905551 + 1.56846i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.44949 + 1.41421i 0.0819690 + 0.0473249i
\(894\) 0 0
\(895\) −21.2942 18.8827i −0.711788 0.631179i
\(896\) 16.9706 + 29.3939i 0.566947 + 0.981981i
\(897\) 0 0
\(898\) 0 0
\(899\) −8.48528 −0.283000
\(900\) 0 0
\(901\) 28.0000 0.932815
\(902\) −22.0454 12.7279i −0.734032 0.423793i
\(903\) 0 0
\(904\) 2.00000 + 3.46410i 0.0665190 + 0.115214i
\(905\) 1.67303 + 1.48356i 0.0556135 + 0.0493153i
\(906\) 0 0
\(907\) −2.59808 1.50000i −0.0862677 0.0498067i 0.456246 0.889854i \(-0.349194\pi\)
−0.542513 + 0.840047i \(0.682527\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) −9.00000 27.0000i −0.298347 0.895041i
\(911\) 21.2132 36.7423i 0.702825 1.21733i −0.264646 0.964346i \(-0.585255\pi\)
0.967471 0.252983i \(-0.0814115\pi\)
\(912\) 0 0
\(913\) 5.19615 3.00000i 0.171968 0.0992855i
\(914\) −8.48528 14.6969i −0.280668 0.486132i
\(915\) 0 0
\(916\) 0 0
\(917\) 25.4558i 0.840626i
\(918\) 0 0
\(919\) 2.00000 0.0659739 0.0329870 0.999456i \(-0.489498\pi\)
0.0329870 + 0.999456i \(0.489498\pi\)
\(920\) −8.96575 + 43.8134i −0.295592 + 1.44449i
\(921\) 0 0
\(922\) 20.7846 12.0000i 0.684505 0.395199i
\(923\) −33.0681 + 19.0919i −1.08845 + 0.628417i
\(924\) 0 0
\(925\) −44.6769 + 5.38269i −1.46897 + 0.176982i
\(926\) 21.2132 0.697109
\(927\) 0 0
\(928\) 0 0
\(929\) −23.3345 + 40.4166i −0.765581 + 1.32603i 0.174358 + 0.984682i \(0.444215\pi\)
−0.939939 + 0.341343i \(0.889118\pi\)
\(930\) 0 0
\(931\) −1.00000 1.73205i −0.0327737 0.0567657i
\(932\) 0 0
\(933\) 0 0
\(934\) 16.0000 27.7128i 0.523536 0.906791i
\(935\) −8.48528 25.4558i −0.277498 0.832495i
\(936\) 0 0
\(937\) 9.00000i 0.294017i −0.989135 0.147009i \(-0.953036\pi\)
0.989135 0.147009i \(-0.0469645\pi\)
\(938\) 11.0227 + 6.36396i 0.359904 + 0.207791i
\(939\) 0 0
\(940\) 0 0
\(941\) 10.6066 + 18.3712i 0.345765 + 0.598883i 0.985493 0.169719i \(-0.0542860\pi\)
−0.639727 + 0.768602i \(0.720953\pi\)
\(942\) 0 0
\(943\) −25.9808 15.0000i −0.846050 0.488467i
\(944\) 33.9411 1.10469
\(945\) 0 0
\(946\) 36.0000 1.17046
\(947\) −31.8434 18.3848i −1.03477 0.597425i −0.116423 0.993200i \(-0.537143\pi\)
−0.918348 + 0.395775i \(0.870476\pi\)
\(948\) 0 0
\(949\) 13.5000 + 23.3827i 0.438229 + 0.759034i
\(950\) 2.77766 6.50266i 0.0901192 0.210974i
\(951\) 0 0
\(952\) −20.7846 12.0000i −0.673633 0.388922i
\(953\) 5.65685i 0.183243i −0.995794 0.0916217i \(-0.970795\pi\)
0.995794 0.0916217i \(-0.0292051\pi\)
\(954\) 0 0
\(955\) −36.0000 + 12.0000i −1.16493 + 0.388311i
\(956\) 0 0
\(957\) 0 0
\(958\) 5.19615 3.00000i 0.167880 0.0969256i
\(959\) −2.12132 3.67423i −0.0685010 0.118647i
\(960\) 0 0
\(961\) 13.5000 23.3827i 0.435484 0.754280i
\(962\) 38.1838i 1.23109i
\(963\) 0 0
\(964\) 0 0
\(965\) 6.57201 + 1.34486i 0.211561 + 0.0432927i
\(966\) 0 0
\(967\) 28.5788 16.5000i 0.919033 0.530604i 0.0357069 0.999362i \(-0.488632\pi\)
0.883327 + 0.468758i \(0.155298\pi\)
\(968\) −17.1464 + 9.89949i −0.551107 + 0.318182i
\(969\) 0 0
\(970\) −1.90192 + 9.29423i −0.0610671 + 0.298420i
\(971\) −25.4558 −0.816917 −0.408458 0.912777i \(-0.633934\pi\)
−0.408458 + 0.912777i \(0.633934\pi\)
\(972\) 0 0
\(973\) 39.0000i 1.25028i
\(974\) 6.36396 11.0227i 0.203914 0.353190i
\(975\) 0 0
\(976\) −26.0000 45.0333i −0.832240 1.44148i
\(977\) −1.22474 + 0.707107i −0.0391831 + 0.0226224i −0.519464 0.854493i \(-0.673868\pi\)
0.480281 + 0.877115i \(0.340535\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 30.0000i 0.957338i
\(983\) 45.3156 + 26.1630i 1.44534 + 0.834469i 0.998199 0.0599939i \(-0.0191081\pi\)
0.447143 + 0.894462i \(0.352441\pi\)
\(984\) 0 0
\(985\) −33.5692 + 37.8564i −1.06960 + 1.20621i
\(986\) 8.48528 + 14.6969i 0.270226 + 0.468046i
\(987\) 0 0
\(988\) 0 0
\(989\) 42.4264 1.34908
\(990\) 0 0
\(991\) 53.0000 1.68360 0.841800 0.539789i \(-0.181496\pi\)
0.841800 + 0.539789i \(0.181496\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −27.0000 46.7654i −0.856388 1.48331i
\(995\) −18.4034 16.3192i −0.583426 0.517354i
\(996\) 0 0
\(997\) −41.5692 24.0000i −1.31651 0.760088i −0.333345 0.942805i \(-0.608177\pi\)
−0.983165 + 0.182717i \(0.941511\pi\)
\(998\) 22.6274i 0.716258i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.2.j.f.379.3 8
3.2 odd 2 inner 405.2.j.f.379.2 8
5.4 even 2 inner 405.2.j.f.379.1 8
9.2 odd 6 135.2.b.b.109.3 yes 4
9.4 even 3 inner 405.2.j.f.109.1 8
9.5 odd 6 inner 405.2.j.f.109.4 8
9.7 even 3 135.2.b.b.109.2 yes 4
15.14 odd 2 inner 405.2.j.f.379.4 8
36.7 odd 6 2160.2.f.k.1729.3 4
36.11 even 6 2160.2.f.k.1729.2 4
45.2 even 12 675.2.a.l.1.1 2
45.4 even 6 inner 405.2.j.f.109.3 8
45.7 odd 12 675.2.a.l.1.2 2
45.14 odd 6 inner 405.2.j.f.109.2 8
45.29 odd 6 135.2.b.b.109.1 4
45.34 even 6 135.2.b.b.109.4 yes 4
45.38 even 12 675.2.a.m.1.2 2
45.43 odd 12 675.2.a.m.1.1 2
180.79 odd 6 2160.2.f.k.1729.4 4
180.119 even 6 2160.2.f.k.1729.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.b.b.109.1 4 45.29 odd 6
135.2.b.b.109.2 yes 4 9.7 even 3
135.2.b.b.109.3 yes 4 9.2 odd 6
135.2.b.b.109.4 yes 4 45.34 even 6
405.2.j.f.109.1 8 9.4 even 3 inner
405.2.j.f.109.2 8 45.14 odd 6 inner
405.2.j.f.109.3 8 45.4 even 6 inner
405.2.j.f.109.4 8 9.5 odd 6 inner
405.2.j.f.379.1 8 5.4 even 2 inner
405.2.j.f.379.2 8 3.2 odd 2 inner
405.2.j.f.379.3 8 1.1 even 1 trivial
405.2.j.f.379.4 8 15.14 odd 2 inner
675.2.a.l.1.1 2 45.2 even 12
675.2.a.l.1.2 2 45.7 odd 12
675.2.a.m.1.1 2 45.43 odd 12
675.2.a.m.1.2 2 45.38 even 12
2160.2.f.k.1729.1 4 180.119 even 6
2160.2.f.k.1729.2 4 36.11 even 6
2160.2.f.k.1729.3 4 36.7 odd 6
2160.2.f.k.1729.4 4 180.79 odd 6