Properties

Label 405.3.g.d.163.1
Level $405$
Weight $3$
Character 405.163
Analytic conductor $11.035$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,3,Mod(82,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.82");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.49787136.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 163.1
Root \(1.09445 + 0.895644i\) of defining polynomial
Character \(\chi\) \(=\) 405.163
Dual form 405.3.g.d.82.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.18890 + 2.18890i) q^{2} -5.58258i q^{4} +(1.27520 - 4.83465i) q^{5} +(-8.79129 + 8.79129i) q^{7} +(3.46410 + 3.46410i) q^{8} +(7.79129 + 13.3739i) q^{10} +10.4877 q^{11} +(11.5826 + 11.5826i) q^{13} -38.4865i q^{14} +7.16515 q^{16} +(-1.17985 + 1.17985i) q^{17} +1.74773i q^{19} +(-26.9898 - 7.11890i) q^{20} +(-22.9564 + 22.9564i) q^{22} +(-13.9518 - 13.9518i) q^{23} +(-21.7477 - 12.3303i) q^{25} -50.7062 q^{26} +(49.0780 + 49.0780i) q^{28} -6.49125i q^{29} -37.0000 q^{31} +(-29.5402 + 29.5402i) q^{32} -5.16515i q^{34} +(31.2922 + 53.7135i) q^{35} +(-45.6170 + 45.6170i) q^{37} +(-3.82560 - 3.82560i) q^{38} +(21.1652 - 12.3303i) q^{40} -39.3049 q^{41} +(-25.7042 - 25.7042i) q^{43} -58.5481i q^{44} +61.0780 q^{46} +(-18.0634 + 18.0634i) q^{47} -105.573i q^{49} +(74.5934 - 20.6138i) q^{50} +(64.6606 - 64.6606i) q^{52} +(-64.6779 - 64.6779i) q^{53} +(13.3739 - 50.7042i) q^{55} -60.9078 q^{56} +(14.2087 + 14.2087i) q^{58} +52.3985i q^{59} -0.504546 q^{61} +(80.9893 - 80.9893i) q^{62} -100.661i q^{64} +(70.7678 - 41.2276i) q^{65} +(0.669697 - 0.669697i) q^{67} +(6.58660 + 6.58660i) q^{68} +(-186.069 - 49.0780i) q^{70} -60.6616 q^{71} +(25.6261 + 25.6261i) q^{73} -199.702i q^{74} +9.75682 q^{76} +(-92.2000 + 92.2000i) q^{77} +114.069i q^{79} +(9.13701 - 34.6410i) q^{80} +(86.0345 - 86.0345i) q^{82} +(90.6188 + 90.6188i) q^{83} +(4.19962 + 7.20871i) q^{85} +112.528 q^{86} +(36.3303 + 36.3303i) q^{88} -83.4245i q^{89} -203.652 q^{91} +(-77.8867 + 77.8867i) q^{92} -79.0780i q^{94} +(8.44965 + 2.22870i) q^{95} +(66.2087 - 66.2087i) q^{97} +(231.090 + 231.090i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 52 q^{7} + 44 q^{10} + 56 q^{13} - 16 q^{16} - 92 q^{22} - 64 q^{25} + 136 q^{28} - 296 q^{31} + 20 q^{37} + 96 q^{40} - 4 q^{43} + 232 q^{46} + 224 q^{52} + 52 q^{55} + 132 q^{58} - 224 q^{61} + 152 q^{67}+ \cdots + 548 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.18890 + 2.18890i −1.09445 + 1.09445i −0.0994033 + 0.995047i \(0.531693\pi\)
−0.995047 + 0.0994033i \(0.968307\pi\)
\(3\) 0 0
\(4\) 5.58258i 1.39564i
\(5\) 1.27520 4.83465i 0.255040 0.966930i
\(6\) 0 0
\(7\) −8.79129 + 8.79129i −1.25590 + 1.25590i −0.302865 + 0.953034i \(0.597943\pi\)
−0.953034 + 0.302865i \(0.902057\pi\)
\(8\) 3.46410 + 3.46410i 0.433013 + 0.433013i
\(9\) 0 0
\(10\) 7.79129 + 13.3739i 0.779129 + 1.33739i
\(11\) 10.4877 0.953423 0.476712 0.879060i \(-0.341829\pi\)
0.476712 + 0.879060i \(0.341829\pi\)
\(12\) 0 0
\(13\) 11.5826 + 11.5826i 0.890967 + 0.890967i 0.994614 0.103647i \(-0.0330512\pi\)
−0.103647 + 0.994614i \(0.533051\pi\)
\(14\) 38.4865i 2.74904i
\(15\) 0 0
\(16\) 7.16515 0.447822
\(17\) −1.17985 + 1.17985i −0.0694030 + 0.0694030i −0.740956 0.671553i \(-0.765627\pi\)
0.671553 + 0.740956i \(0.265627\pi\)
\(18\) 0 0
\(19\) 1.74773i 0.0919856i 0.998942 + 0.0459928i \(0.0146451\pi\)
−0.998942 + 0.0459928i \(0.985355\pi\)
\(20\) −26.9898 7.11890i −1.34949 0.355945i
\(21\) 0 0
\(22\) −22.9564 + 22.9564i −1.04347 + 1.04347i
\(23\) −13.9518 13.9518i −0.606598 0.606598i 0.335457 0.942055i \(-0.391109\pi\)
−0.942055 + 0.335457i \(0.891109\pi\)
\(24\) 0 0
\(25\) −21.7477 12.3303i −0.869909 0.493212i
\(26\) −50.7062 −1.95024
\(27\) 0 0
\(28\) 49.0780 + 49.0780i 1.75279 + 1.75279i
\(29\) 6.49125i 0.223836i −0.993717 0.111918i \(-0.964301\pi\)
0.993717 0.111918i \(-0.0356995\pi\)
\(30\) 0 0
\(31\) −37.0000 −1.19355 −0.596774 0.802409i \(-0.703551\pi\)
−0.596774 + 0.802409i \(0.703551\pi\)
\(32\) −29.5402 + 29.5402i −0.923132 + 0.923132i
\(33\) 0 0
\(34\) 5.16515i 0.151916i
\(35\) 31.2922 + 53.7135i 0.894062 + 1.53467i
\(36\) 0 0
\(37\) −45.6170 + 45.6170i −1.23289 + 1.23289i −0.270046 + 0.962848i \(0.587039\pi\)
−0.962848 + 0.270046i \(0.912961\pi\)
\(38\) −3.82560 3.82560i −0.100674 0.100674i
\(39\) 0 0
\(40\) 21.1652 12.3303i 0.529129 0.308258i
\(41\) −39.3049 −0.958655 −0.479328 0.877636i \(-0.659119\pi\)
−0.479328 + 0.877636i \(0.659119\pi\)
\(42\) 0 0
\(43\) −25.7042 25.7042i −0.597771 0.597771i 0.341948 0.939719i \(-0.388913\pi\)
−0.939719 + 0.341948i \(0.888913\pi\)
\(44\) 58.5481i 1.33064i
\(45\) 0 0
\(46\) 61.0780 1.32778
\(47\) −18.0634 + 18.0634i −0.384328 + 0.384328i −0.872659 0.488331i \(-0.837606\pi\)
0.488331 + 0.872659i \(0.337606\pi\)
\(48\) 0 0
\(49\) 105.573i 2.15456i
\(50\) 74.5934 20.6138i 1.49187 0.412276i
\(51\) 0 0
\(52\) 64.6606 64.6606i 1.24347 1.24347i
\(53\) −64.6779 64.6779i −1.22034 1.22034i −0.967512 0.252825i \(-0.918640\pi\)
−0.252825 0.967512i \(-0.581360\pi\)
\(54\) 0 0
\(55\) 13.3739 50.7042i 0.243161 0.921894i
\(56\) −60.9078 −1.08764
\(57\) 0 0
\(58\) 14.2087 + 14.2087i 0.244978 + 0.244978i
\(59\) 52.3985i 0.888110i 0.896000 + 0.444055i \(0.146460\pi\)
−0.896000 + 0.444055i \(0.853540\pi\)
\(60\) 0 0
\(61\) −0.504546 −0.00827124 −0.00413562 0.999991i \(-0.501316\pi\)
−0.00413562 + 0.999991i \(0.501316\pi\)
\(62\) 80.9893 80.9893i 1.30628 1.30628i
\(63\) 0 0
\(64\) 100.661i 1.57282i
\(65\) 70.7678 41.2276i 1.08874 0.634271i
\(66\) 0 0
\(67\) 0.669697 0.669697i 0.00999548 0.00999548i −0.702091 0.712087i \(-0.747750\pi\)
0.712087 + 0.702091i \(0.247750\pi\)
\(68\) 6.58660 + 6.58660i 0.0968618 + 0.0968618i
\(69\) 0 0
\(70\) −186.069 49.0780i −2.65813 0.701115i
\(71\) −60.6616 −0.854388 −0.427194 0.904160i \(-0.640498\pi\)
−0.427194 + 0.904160i \(0.640498\pi\)
\(72\) 0 0
\(73\) 25.6261 + 25.6261i 0.351043 + 0.351043i 0.860498 0.509455i \(-0.170153\pi\)
−0.509455 + 0.860498i \(0.670153\pi\)
\(74\) 199.702i 2.69868i
\(75\) 0 0
\(76\) 9.75682 0.128379
\(77\) −92.2000 + 92.2000i −1.19740 + 1.19740i
\(78\) 0 0
\(79\) 114.069i 1.44391i 0.691940 + 0.721955i \(0.256756\pi\)
−0.691940 + 0.721955i \(0.743244\pi\)
\(80\) 9.13701 34.6410i 0.114213 0.433013i
\(81\) 0 0
\(82\) 86.0345 86.0345i 1.04920 1.04920i
\(83\) 90.6188 + 90.6188i 1.09179 + 1.09179i 0.995337 + 0.0964560i \(0.0307507\pi\)
0.0964560 + 0.995337i \(0.469249\pi\)
\(84\) 0 0
\(85\) 4.19962 + 7.20871i 0.0494073 + 0.0848084i
\(86\) 112.528 1.30846
\(87\) 0 0
\(88\) 36.3303 + 36.3303i 0.412844 + 0.412844i
\(89\) 83.4245i 0.937354i −0.883370 0.468677i \(-0.844731\pi\)
0.883370 0.468677i \(-0.155269\pi\)
\(90\) 0 0
\(91\) −203.652 −2.23793
\(92\) −77.8867 + 77.8867i −0.846595 + 0.846595i
\(93\) 0 0
\(94\) 79.0780i 0.841256i
\(95\) 8.44965 + 2.22870i 0.0889437 + 0.0234600i
\(96\) 0 0
\(97\) 66.2087 66.2087i 0.682564 0.682564i −0.278013 0.960577i \(-0.589676\pi\)
0.960577 + 0.278013i \(0.0896759\pi\)
\(98\) 231.090 + 231.090i 2.35806 + 2.35806i
\(99\) 0 0
\(100\) −68.8348 + 121.408i −0.688348 + 1.21408i
\(101\) −23.4304 −0.231984 −0.115992 0.993250i \(-0.537005\pi\)
−0.115992 + 0.993250i \(0.537005\pi\)
\(102\) 0 0
\(103\) 46.8258 + 46.8258i 0.454619 + 0.454619i 0.896884 0.442265i \(-0.145825\pi\)
−0.442265 + 0.896884i \(0.645825\pi\)
\(104\) 80.2464i 0.771600i
\(105\) 0 0
\(106\) 283.147 2.67120
\(107\) −129.833 + 129.833i −1.21339 + 1.21339i −0.243483 + 0.969905i \(0.578290\pi\)
−0.969905 + 0.243483i \(0.921710\pi\)
\(108\) 0 0
\(109\) 71.5045i 0.656005i 0.944677 + 0.328003i \(0.106375\pi\)
−0.944677 + 0.328003i \(0.893625\pi\)
\(110\) 81.7123 + 140.260i 0.742839 + 1.27510i
\(111\) 0 0
\(112\) −62.9909 + 62.9909i −0.562419 + 0.562419i
\(113\) −56.0334 56.0334i −0.495871 0.495871i 0.414279 0.910150i \(-0.364034\pi\)
−0.910150 + 0.414279i \(0.864034\pi\)
\(114\) 0 0
\(115\) −85.2432 + 49.6606i −0.741245 + 0.431831i
\(116\) −36.2379 −0.312396
\(117\) 0 0
\(118\) −114.695 114.695i −0.971992 0.971992i
\(119\) 20.7448i 0.174326i
\(120\) 0 0
\(121\) −11.0091 −0.0909842
\(122\) 1.10440 1.10440i 0.00905247 0.00905247i
\(123\) 0 0
\(124\) 206.555i 1.66577i
\(125\) −87.3454 + 89.4191i −0.698764 + 0.715353i
\(126\) 0 0
\(127\) 9.86932 9.86932i 0.0777112 0.0777112i −0.667183 0.744894i \(-0.732500\pi\)
0.744894 + 0.667183i \(0.232500\pi\)
\(128\) 102.175 + 102.175i 0.798244 + 0.798244i
\(129\) 0 0
\(130\) −64.6606 + 245.147i −0.497389 + 1.88575i
\(131\) −38.8522 −0.296581 −0.148291 0.988944i \(-0.547377\pi\)
−0.148291 + 0.988944i \(0.547377\pi\)
\(132\) 0 0
\(133\) −15.3648 15.3648i −0.115525 0.115525i
\(134\) 2.93180i 0.0218791i
\(135\) 0 0
\(136\) −8.17424 −0.0601047
\(137\) −6.58660 + 6.58660i −0.0480774 + 0.0480774i −0.730737 0.682659i \(-0.760823\pi\)
0.682659 + 0.730737i \(0.260823\pi\)
\(138\) 0 0
\(139\) 51.3992i 0.369779i 0.982759 + 0.184889i \(0.0591927\pi\)
−0.982759 + 0.184889i \(0.940807\pi\)
\(140\) 299.860 174.691i 2.14185 1.24779i
\(141\) 0 0
\(142\) 132.782 132.782i 0.935086 0.935086i
\(143\) 121.474 + 121.474i 0.849469 + 0.849469i
\(144\) 0 0
\(145\) −31.3830 8.27765i −0.216434 0.0570872i
\(146\) −112.186 −0.768398
\(147\) 0 0
\(148\) 254.661 + 254.661i 1.72068 + 1.72068i
\(149\) 138.834i 0.931774i −0.884844 0.465887i \(-0.845735\pi\)
0.884844 0.465887i \(-0.154265\pi\)
\(150\) 0 0
\(151\) −117.243 −0.776445 −0.388222 0.921566i \(-0.626911\pi\)
−0.388222 + 0.921566i \(0.626911\pi\)
\(152\) −6.05430 + 6.05430i −0.0398309 + 0.0398309i
\(153\) 0 0
\(154\) 403.633i 2.62100i
\(155\) −47.1824 + 178.882i −0.304403 + 1.15408i
\(156\) 0 0
\(157\) 174.278 174.278i 1.11005 1.11005i 0.116906 0.993143i \(-0.462702\pi\)
0.993143 0.116906i \(-0.0372975\pi\)
\(158\) −249.686 249.686i −1.58029 1.58029i
\(159\) 0 0
\(160\) 105.147 + 180.486i 0.657169 + 1.12804i
\(161\) 245.308 1.52365
\(162\) 0 0
\(163\) 157.626 + 157.626i 0.967032 + 0.967032i 0.999474 0.0324421i \(-0.0103285\pi\)
−0.0324421 + 0.999474i \(0.510328\pi\)
\(164\) 219.422i 1.33794i
\(165\) 0 0
\(166\) −396.711 −2.38983
\(167\) 86.5669 86.5669i 0.518365 0.518365i −0.398712 0.917076i \(-0.630543\pi\)
0.917076 + 0.398712i \(0.130543\pi\)
\(168\) 0 0
\(169\) 99.3121i 0.587646i
\(170\) −24.9717 6.58660i −0.146892 0.0387447i
\(171\) 0 0
\(172\) −143.495 + 143.495i −0.834276 + 0.834276i
\(173\) −37.1757 37.1757i −0.214888 0.214888i 0.591452 0.806340i \(-0.298555\pi\)
−0.806340 + 0.591452i \(0.798555\pi\)
\(174\) 0 0
\(175\) 299.590 82.7913i 1.71194 0.473093i
\(176\) 75.1456 0.426964
\(177\) 0 0
\(178\) 182.608 + 182.608i 1.02589 + 1.02589i
\(179\) 140.296i 0.783777i −0.920013 0.391889i \(-0.871822\pi\)
0.920013 0.391889i \(-0.128178\pi\)
\(180\) 0 0
\(181\) −242.720 −1.34100 −0.670498 0.741911i \(-0.733920\pi\)
−0.670498 + 0.741911i \(0.733920\pi\)
\(182\) 445.773 445.773i 2.44930 2.44930i
\(183\) 0 0
\(184\) 96.6606i 0.525329i
\(185\) 162.372 + 278.713i 0.877685 + 1.50656i
\(186\) 0 0
\(187\) −12.3739 + 12.3739i −0.0661704 + 0.0661704i
\(188\) 100.840 + 100.840i 0.536385 + 0.536385i
\(189\) 0 0
\(190\) −23.3739 + 13.6170i −0.123020 + 0.0716687i
\(191\) −18.0676 −0.0945946 −0.0472973 0.998881i \(-0.515061\pi\)
−0.0472973 + 0.998881i \(0.515061\pi\)
\(192\) 0 0
\(193\) −191.269 191.269i −0.991029 0.991029i 0.00893131 0.999960i \(-0.497157\pi\)
−0.999960 + 0.00893131i \(0.997157\pi\)
\(194\) 289.849i 1.49407i
\(195\) 0 0
\(196\) −589.372 −3.00700
\(197\) −13.5148 + 13.5148i −0.0686031 + 0.0686031i −0.740576 0.671973i \(-0.765447\pi\)
0.671973 + 0.740576i \(0.265447\pi\)
\(198\) 0 0
\(199\) 141.964i 0.713385i 0.934222 + 0.356693i \(0.116096\pi\)
−0.934222 + 0.356693i \(0.883904\pi\)
\(200\) −32.6229 118.050i −0.163115 0.590249i
\(201\) 0 0
\(202\) 51.2867 51.2867i 0.253895 0.253895i
\(203\) 57.0665 + 57.0665i 0.281116 + 0.281116i
\(204\) 0 0
\(205\) −50.1216 + 190.025i −0.244496 + 0.926953i
\(206\) −204.994 −0.995116
\(207\) 0 0
\(208\) 82.9909 + 82.9909i 0.398995 + 0.398995i
\(209\) 18.3296i 0.0877012i
\(210\) 0 0
\(211\) 193.973 0.919302 0.459651 0.888100i \(-0.347975\pi\)
0.459651 + 0.888100i \(0.347975\pi\)
\(212\) −361.069 + 361.069i −1.70316 + 1.70316i
\(213\) 0 0
\(214\) 568.381i 2.65599i
\(215\) −157.049 + 91.4927i −0.730459 + 0.425548i
\(216\) 0 0
\(217\) 325.278 325.278i 1.49898 1.49898i
\(218\) −156.516 156.516i −0.717965 0.717965i
\(219\) 0 0
\(220\) −283.060 74.6606i −1.28664 0.339366i
\(221\) −27.3314 −0.123672
\(222\) 0 0
\(223\) −14.0689 14.0689i −0.0630894 0.0630894i 0.674858 0.737948i \(-0.264205\pi\)
−0.737948 + 0.674858i \(0.764205\pi\)
\(224\) 519.393i 2.31872i
\(225\) 0 0
\(226\) 245.303 1.08541
\(227\) −148.539 + 148.539i −0.654358 + 0.654358i −0.954039 0.299681i \(-0.903120\pi\)
0.299681 + 0.954039i \(0.403120\pi\)
\(228\) 0 0
\(229\) 72.3303i 0.315853i −0.987451 0.157926i \(-0.949519\pi\)
0.987451 0.157926i \(-0.0504809\pi\)
\(230\) 77.8867 295.291i 0.338638 1.28387i
\(231\) 0 0
\(232\) 22.4864 22.4864i 0.0969240 0.0969240i
\(233\) −113.160 113.160i −0.485663 0.485663i 0.421271 0.906935i \(-0.361584\pi\)
−0.906935 + 0.421271i \(0.861584\pi\)
\(234\) 0 0
\(235\) 64.2958 + 110.365i 0.273599 + 0.469637i
\(236\) 292.518 1.23948
\(237\) 0 0
\(238\) 45.4083 + 45.4083i 0.190791 + 0.190791i
\(239\) 283.484i 1.18613i 0.805156 + 0.593063i \(0.202082\pi\)
−0.805156 + 0.593063i \(0.797918\pi\)
\(240\) 0 0
\(241\) 481.711 1.99880 0.999401 0.0346023i \(-0.0110164\pi\)
0.999401 + 0.0346023i \(0.0110164\pi\)
\(242\) 24.0978 24.0978i 0.0995777 0.0995777i
\(243\) 0 0
\(244\) 2.81667i 0.0115437i
\(245\) −510.411 134.627i −2.08331 0.549499i
\(246\) 0 0
\(247\) −20.2432 + 20.2432i −0.0819562 + 0.0819562i
\(248\) −128.172 128.172i −0.516822 0.516822i
\(249\) 0 0
\(250\) −4.53901 386.920i −0.0181561 1.54768i
\(251\) 87.5245 0.348703 0.174352 0.984683i \(-0.444217\pi\)
0.174352 + 0.984683i \(0.444217\pi\)
\(252\) 0 0
\(253\) −146.321 146.321i −0.578345 0.578345i
\(254\) 43.2059i 0.170102i
\(255\) 0 0
\(256\) −44.6606 −0.174455
\(257\) −130.587 + 130.587i −0.508121 + 0.508121i −0.913949 0.405829i \(-0.866983\pi\)
0.405829 + 0.913949i \(0.366983\pi\)
\(258\) 0 0
\(259\) 802.065i 3.09678i
\(260\) −230.156 395.067i −0.885217 1.51949i
\(261\) 0 0
\(262\) 85.0436 85.0436i 0.324594 0.324594i
\(263\) −216.586 216.586i −0.823521 0.823521i 0.163090 0.986611i \(-0.447854\pi\)
−0.986611 + 0.163090i \(0.947854\pi\)
\(264\) 0 0
\(265\) −395.172 + 230.218i −1.49122 + 0.868746i
\(266\) 67.2639 0.252872
\(267\) 0 0
\(268\) −3.73864 3.73864i −0.0139501 0.0139501i
\(269\) 283.047i 1.05222i 0.850416 + 0.526110i \(0.176350\pi\)
−0.850416 + 0.526110i \(0.823650\pi\)
\(270\) 0 0
\(271\) −130.991 −0.483361 −0.241681 0.970356i \(-0.577699\pi\)
−0.241681 + 0.970356i \(0.577699\pi\)
\(272\) −8.45381 + 8.45381i −0.0310802 + 0.0310802i
\(273\) 0 0
\(274\) 28.8348i 0.105237i
\(275\) −228.083 129.316i −0.829391 0.470240i
\(276\) 0 0
\(277\) −114.259 + 114.259i −0.412489 + 0.412489i −0.882605 0.470116i \(-0.844212\pi\)
0.470116 + 0.882605i \(0.344212\pi\)
\(278\) −112.508 112.508i −0.404705 0.404705i
\(279\) 0 0
\(280\) −77.6697 + 294.468i −0.277392 + 1.05167i
\(281\) −24.7412 −0.0880470 −0.0440235 0.999030i \(-0.514018\pi\)
−0.0440235 + 0.999030i \(0.514018\pi\)
\(282\) 0 0
\(283\) −83.3992 83.3992i −0.294697 0.294697i 0.544236 0.838932i \(-0.316820\pi\)
−0.838932 + 0.544236i \(0.816820\pi\)
\(284\) 338.648i 1.19242i
\(285\) 0 0
\(286\) −531.789 −1.85940
\(287\) 345.540 345.540i 1.20397 1.20397i
\(288\) 0 0
\(289\) 286.216i 0.990366i
\(290\) 86.8131 50.5752i 0.299356 0.174397i
\(291\) 0 0
\(292\) 143.060 143.060i 0.489931 0.489931i
\(293\) −205.816 205.816i −0.702445 0.702445i 0.262490 0.964935i \(-0.415456\pi\)
−0.964935 + 0.262490i \(0.915456\pi\)
\(294\) 0 0
\(295\) 253.328 + 66.8186i 0.858740 + 0.226504i
\(296\) −316.044 −1.06772
\(297\) 0 0
\(298\) 303.895 + 303.895i 1.01978 + 1.01978i
\(299\) 323.195i 1.08092i
\(300\) 0 0
\(301\) 451.945 1.50148
\(302\) 256.634 256.634i 0.849781 0.849781i
\(303\) 0 0
\(304\) 12.5227i 0.0411932i
\(305\) −0.643397 + 2.43930i −0.00210950 + 0.00799772i
\(306\) 0 0
\(307\) 61.6534 61.6534i 0.200825 0.200825i −0.599528 0.800354i \(-0.704645\pi\)
0.800354 + 0.599528i \(0.204645\pi\)
\(308\) 514.713 + 514.713i 1.67115 + 1.67115i
\(309\) 0 0
\(310\) −288.278 494.833i −0.929928 1.59624i
\(311\) 612.455 1.96931 0.984655 0.174513i \(-0.0558351\pi\)
0.984655 + 0.174513i \(0.0558351\pi\)
\(312\) 0 0
\(313\) 73.8947 + 73.8947i 0.236085 + 0.236085i 0.815227 0.579142i \(-0.196612\pi\)
−0.579142 + 0.815227i \(0.696612\pi\)
\(314\) 762.953i 2.42979i
\(315\) 0 0
\(316\) 636.798 2.01519
\(317\) −295.915 + 295.915i −0.933484 + 0.933484i −0.997922 0.0644374i \(-0.979475\pi\)
0.0644374 + 0.997922i \(0.479475\pi\)
\(318\) 0 0
\(319\) 68.0780i 0.213411i
\(320\) −486.659 128.362i −1.52081 0.401133i
\(321\) 0 0
\(322\) −536.955 + 536.955i −1.66756 + 1.66756i
\(323\) −2.06206 2.06206i −0.00638408 0.00638408i
\(324\) 0 0
\(325\) −109.078 394.711i −0.335625 1.21450i
\(326\) −690.056 −2.11674
\(327\) 0 0
\(328\) −136.156 136.156i −0.415110 0.415110i
\(329\) 317.601i 0.965353i
\(330\) 0 0
\(331\) −220.757 −0.666939 −0.333470 0.942761i \(-0.608219\pi\)
−0.333470 + 0.942761i \(0.608219\pi\)
\(332\) 505.887 505.887i 1.52375 1.52375i
\(333\) 0 0
\(334\) 378.973i 1.13465i
\(335\) −2.38375 4.09175i −0.00711569 0.0122142i
\(336\) 0 0
\(337\) 61.1652 61.1652i 0.181499 0.181499i −0.610510 0.792009i \(-0.709035\pi\)
0.792009 + 0.610510i \(0.209035\pi\)
\(338\) −217.384 217.384i −0.643149 0.643149i
\(339\) 0 0
\(340\) 40.2432 23.4447i 0.118362 0.0689550i
\(341\) −388.043 −1.13796
\(342\) 0 0
\(343\) 497.354 + 497.354i 1.45001 + 1.45001i
\(344\) 178.084i 0.517685i
\(345\) 0 0
\(346\) 162.748 0.470369
\(347\) 307.427 307.427i 0.885957 0.885957i −0.108175 0.994132i \(-0.534501\pi\)
0.994132 + 0.108175i \(0.0345007\pi\)
\(348\) 0 0
\(349\) 388.789i 1.11401i 0.830509 + 0.557005i \(0.188050\pi\)
−0.830509 + 0.557005i \(0.811950\pi\)
\(350\) −474.550 + 836.994i −1.35586 + 2.39141i
\(351\) 0 0
\(352\) −309.808 + 309.808i −0.880135 + 0.880135i
\(353\) 16.1564 + 16.1564i 0.0457689 + 0.0457689i 0.729621 0.683852i \(-0.239697\pi\)
−0.683852 + 0.729621i \(0.739697\pi\)
\(354\) 0 0
\(355\) −77.3557 + 293.278i −0.217903 + 0.826134i
\(356\) −465.724 −1.30821
\(357\) 0 0
\(358\) 307.094 + 307.094i 0.857805 + 0.857805i
\(359\) 105.473i 0.293796i 0.989152 + 0.146898i \(0.0469289\pi\)
−0.989152 + 0.146898i \(0.953071\pi\)
\(360\) 0 0
\(361\) 357.945 0.991539
\(362\) 531.291 531.291i 1.46765 1.46765i
\(363\) 0 0
\(364\) 1136.90i 3.12335i
\(365\) 156.572 91.2150i 0.428964 0.249904i
\(366\) 0 0
\(367\) −130.670 + 130.670i −0.356048 + 0.356048i −0.862354 0.506306i \(-0.831011\pi\)
0.506306 + 0.862354i \(0.331011\pi\)
\(368\) −99.9664 99.9664i −0.271648 0.271648i
\(369\) 0 0
\(370\) −965.492 254.661i −2.60944 0.688272i
\(371\) 1137.20 3.06524
\(372\) 0 0
\(373\) 213.677 + 213.677i 0.572860 + 0.572860i 0.932927 0.360066i \(-0.117246\pi\)
−0.360066 + 0.932927i \(0.617246\pi\)
\(374\) 54.1703i 0.144840i
\(375\) 0 0
\(376\) −125.147 −0.332838
\(377\) 75.1854 75.1854i 0.199431 0.199431i
\(378\) 0 0
\(379\) 142.748i 0.376643i 0.982107 + 0.188322i \(0.0603047\pi\)
−0.982107 + 0.188322i \(0.939695\pi\)
\(380\) 12.4419 47.1708i 0.0327418 0.124134i
\(381\) 0 0
\(382\) 39.5481 39.5481i 0.103529 0.103529i
\(383\) −225.850 225.850i −0.589686 0.589686i 0.347860 0.937546i \(-0.386908\pi\)
−0.937546 + 0.347860i \(0.886908\pi\)
\(384\) 0 0
\(385\) 328.181 + 563.328i 0.852419 + 1.46319i
\(386\) 837.336 2.16926
\(387\) 0 0
\(388\) −369.615 369.615i −0.952616 0.952616i
\(389\) 78.1968i 0.201020i 0.994936 + 0.100510i \(0.0320475\pi\)
−0.994936 + 0.100510i \(0.967953\pi\)
\(390\) 0 0
\(391\) 32.9220 0.0841994
\(392\) 365.717 365.717i 0.932952 0.932952i
\(393\) 0 0
\(394\) 59.1652i 0.150165i
\(395\) 551.484 + 145.461i 1.39616 + 0.368255i
\(396\) 0 0
\(397\) −140.027 + 140.027i −0.352714 + 0.352714i −0.861118 0.508405i \(-0.830235\pi\)
0.508405 + 0.861118i \(0.330235\pi\)
\(398\) −310.744 310.744i −0.780765 0.780765i
\(399\) 0 0
\(400\) −155.826 88.3485i −0.389564 0.220871i
\(401\) 345.163 0.860756 0.430378 0.902649i \(-0.358380\pi\)
0.430378 + 0.902649i \(0.358380\pi\)
\(402\) 0 0
\(403\) −428.555 428.555i −1.06341 1.06341i
\(404\) 130.802i 0.323767i
\(405\) 0 0
\(406\) −249.826 −0.615334
\(407\) −478.416 + 478.416i −1.17547 + 1.17547i
\(408\) 0 0
\(409\) 280.679i 0.686256i 0.939289 + 0.343128i \(0.111487\pi\)
−0.939289 + 0.343128i \(0.888513\pi\)
\(410\) −306.236 525.658i −0.746916 1.28209i
\(411\) 0 0
\(412\) 261.408 261.408i 0.634486 0.634486i
\(413\) −460.650 460.650i −1.11538 1.11538i
\(414\) 0 0
\(415\) 553.668 322.553i 1.33414 0.777237i
\(416\) −684.304 −1.64496
\(417\) 0 0
\(418\) −40.1216 40.1216i −0.0959847 0.0959847i
\(419\) 493.405i 1.17758i 0.808287 + 0.588789i \(0.200395\pi\)
−0.808287 + 0.588789i \(0.799605\pi\)
\(420\) 0 0
\(421\) 395.000 0.938242 0.469121 0.883134i \(-0.344571\pi\)
0.469121 + 0.883134i \(0.344571\pi\)
\(422\) −424.587 + 424.587i −1.00613 + 1.00613i
\(423\) 0 0
\(424\) 448.102i 1.05684i
\(425\) 40.2070 11.1112i 0.0946046 0.0261439i
\(426\) 0 0
\(427\) 4.43561 4.43561i 0.0103878 0.0103878i
\(428\) 724.800 + 724.800i 1.69346 + 1.69346i
\(429\) 0 0
\(430\) 143.495 544.033i 0.333710 1.26519i
\(431\) 23.0490 0.0534779 0.0267389 0.999642i \(-0.491488\pi\)
0.0267389 + 0.999642i \(0.491488\pi\)
\(432\) 0 0
\(433\) −357.486 357.486i −0.825604 0.825604i 0.161302 0.986905i \(-0.448431\pi\)
−0.986905 + 0.161302i \(0.948431\pi\)
\(434\) 1424.00i 3.28111i
\(435\) 0 0
\(436\) 399.180 0.915549
\(437\) 24.3839 24.3839i 0.0557983 0.0557983i
\(438\) 0 0
\(439\) 688.336i 1.56796i −0.620784 0.783981i \(-0.713186\pi\)
0.620784 0.783981i \(-0.286814\pi\)
\(440\) 221.973 129.316i 0.504484 0.293900i
\(441\) 0 0
\(442\) 59.8258 59.8258i 0.135352 0.135352i
\(443\) 237.947 + 237.947i 0.537126 + 0.537126i 0.922684 0.385558i \(-0.125991\pi\)
−0.385558 + 0.922684i \(0.625991\pi\)
\(444\) 0 0
\(445\) −403.328 106.383i −0.906356 0.239063i
\(446\) 61.5910 0.138096
\(447\) 0 0
\(448\) 884.936 + 884.936i 1.97530 + 1.97530i
\(449\) 387.090i 0.862115i 0.902324 + 0.431058i \(0.141859\pi\)
−0.902324 + 0.431058i \(0.858141\pi\)
\(450\) 0 0
\(451\) −412.216 −0.914004
\(452\) −312.811 + 312.811i −0.692059 + 0.692059i
\(453\) 0 0
\(454\) 650.276i 1.43233i
\(455\) −259.697 + 984.584i −0.570762 + 2.16392i
\(456\) 0 0
\(457\) −141.494 + 141.494i −0.309614 + 0.309614i −0.844760 0.535146i \(-0.820257\pi\)
0.535146 + 0.844760i \(0.320257\pi\)
\(458\) 158.324 + 158.324i 0.345685 + 0.345685i
\(459\) 0 0
\(460\) 277.234 + 475.877i 0.602683 + 1.03451i
\(461\) 705.175 1.52966 0.764832 0.644230i \(-0.222822\pi\)
0.764832 + 0.644230i \(0.222822\pi\)
\(462\) 0 0
\(463\) 119.817 + 119.817i 0.258783 + 0.258783i 0.824559 0.565776i \(-0.191423\pi\)
−0.565776 + 0.824559i \(0.691423\pi\)
\(464\) 46.5108i 0.100239i
\(465\) 0 0
\(466\) 495.390 1.06307
\(467\) −47.2065 + 47.2065i −0.101085 + 0.101085i −0.755840 0.654756i \(-0.772771\pi\)
0.654756 + 0.755840i \(0.272771\pi\)
\(468\) 0 0
\(469\) 11.7750i 0.0251066i
\(470\) −382.315 100.840i −0.813436 0.214554i
\(471\) 0 0
\(472\) −181.514 + 181.514i −0.384563 + 0.384563i
\(473\) −269.576 269.576i −0.569929 0.569929i
\(474\) 0 0
\(475\) 21.5500 38.0091i 0.0453684 0.0800191i
\(476\) −115.809 −0.243297
\(477\) 0 0
\(478\) −620.519 620.519i −1.29816 1.29816i
\(479\) 534.902i 1.11671i −0.829604 0.558353i \(-0.811434\pi\)
0.829604 0.558353i \(-0.188566\pi\)
\(480\) 0 0
\(481\) −1056.73 −2.19694
\(482\) −1054.42 + 1054.42i −2.18759 + 2.18759i
\(483\) 0 0
\(484\) 61.4591i 0.126982i
\(485\) −235.667 404.525i −0.485911 0.834073i
\(486\) 0 0
\(487\) 284.693 284.693i 0.584586 0.584586i −0.351574 0.936160i \(-0.614354\pi\)
0.936160 + 0.351574i \(0.114354\pi\)
\(488\) −1.74780 1.74780i −0.00358155 0.00358155i
\(489\) 0 0
\(490\) 1411.93 822.553i 2.88148 1.67868i
\(491\) 58.2306 0.118596 0.0592979 0.998240i \(-0.481114\pi\)
0.0592979 + 0.998240i \(0.481114\pi\)
\(492\) 0 0
\(493\) 7.65871 + 7.65871i 0.0155349 + 0.0155349i
\(494\) 88.6206i 0.179394i
\(495\) 0 0
\(496\) −265.111 −0.534497
\(497\) 533.293 533.293i 1.07302 1.07302i
\(498\) 0 0
\(499\) 6.37197i 0.0127695i 0.999980 + 0.00638474i \(0.00203234\pi\)
−0.999980 + 0.00638474i \(0.997968\pi\)
\(500\) 499.189 + 487.613i 0.998378 + 0.975225i
\(501\) 0 0
\(502\) −191.583 + 191.583i −0.381639 + 0.381639i
\(503\) 452.328 + 452.328i 0.899261 + 0.899261i 0.995371 0.0961100i \(-0.0306401\pi\)
−0.0961100 + 0.995371i \(0.530640\pi\)
\(504\) 0 0
\(505\) −29.8784 + 113.278i −0.0591652 + 0.224312i
\(506\) 640.565 1.26594
\(507\) 0 0
\(508\) −55.0962 55.0962i −0.108457 0.108457i
\(509\) 584.107i 1.14756i −0.819010 0.573779i \(-0.805477\pi\)
0.819010 0.573779i \(-0.194523\pi\)
\(510\) 0 0
\(511\) −450.573 −0.881749
\(512\) −310.943 + 310.943i −0.607311 + 0.607311i
\(513\) 0 0
\(514\) 571.684i 1.11223i
\(515\) 286.098 166.674i 0.555531 0.323639i
\(516\) 0 0
\(517\) −189.443 + 189.443i −0.366427 + 0.366427i
\(518\) 1755.64 + 1755.64i 3.38927 + 3.38927i
\(519\) 0 0
\(520\) 387.964 + 102.330i 0.746084 + 0.196789i
\(521\) 512.704 0.984076 0.492038 0.870574i \(-0.336252\pi\)
0.492038 + 0.870574i \(0.336252\pi\)
\(522\) 0 0
\(523\) −562.973 562.973i −1.07643 1.07643i −0.996827 0.0796030i \(-0.974635\pi\)
−0.0796030 0.996827i \(-0.525365\pi\)
\(524\) 216.895i 0.413922i
\(525\) 0 0
\(526\) 948.170 1.80261
\(527\) 43.6545 43.6545i 0.0828358 0.0828358i
\(528\) 0 0
\(529\) 139.697i 0.264077i
\(530\) 361.069 1368.92i 0.681263 2.58286i
\(531\) 0 0
\(532\) −85.7750 + 85.7750i −0.161231 + 0.161231i
\(533\) −455.252 455.252i −0.854131 0.854131i
\(534\) 0 0
\(535\) 462.133 + 793.258i 0.863799 + 1.48272i
\(536\) 4.63980 0.00865634
\(537\) 0 0
\(538\) −619.562 619.562i −1.15160 1.15160i
\(539\) 1107.22i 2.05421i
\(540\) 0 0
\(541\) −943.675 −1.74432 −0.872158 0.489224i \(-0.837280\pi\)
−0.872158 + 0.489224i \(0.837280\pi\)
\(542\) 286.726 286.726i 0.529015 0.529015i
\(543\) 0 0
\(544\) 69.7061i 0.128136i
\(545\) 345.700 + 91.1826i 0.634311 + 0.167308i
\(546\) 0 0
\(547\) 208.537 208.537i 0.381238 0.381238i −0.490310 0.871548i \(-0.663116\pi\)
0.871548 + 0.490310i \(0.163116\pi\)
\(548\) 36.7702 + 36.7702i 0.0670989 + 0.0670989i
\(549\) 0 0
\(550\) 782.310 216.191i 1.42238 0.393074i
\(551\) 11.3449 0.0205897
\(552\) 0 0
\(553\) −1002.81 1002.81i −1.81340 1.81340i
\(554\) 500.205i 0.902898i
\(555\) 0 0
\(556\) 286.940 0.516079
\(557\) 154.478 154.478i 0.277340 0.277340i −0.554706 0.832046i \(-0.687169\pi\)
0.832046 + 0.554706i \(0.187169\pi\)
\(558\) 0 0
\(559\) 595.441i 1.06519i
\(560\) 224.213 + 384.865i 0.400381 + 0.687259i
\(561\) 0 0
\(562\) 54.1561 54.1561i 0.0963631 0.0963631i
\(563\) −326.186 326.186i −0.579371 0.579371i 0.355359 0.934730i \(-0.384359\pi\)
−0.934730 + 0.355359i \(0.884359\pi\)
\(564\) 0 0
\(565\) −342.356 + 199.448i −0.605939 + 0.353005i
\(566\) 365.105 0.645062
\(567\) 0 0
\(568\) −210.138 210.138i −0.369961 0.369961i
\(569\) 533.091i 0.936891i −0.883492 0.468446i \(-0.844814\pi\)
0.883492 0.468446i \(-0.155186\pi\)
\(570\) 0 0
\(571\) −59.4318 −0.104084 −0.0520419 0.998645i \(-0.516573\pi\)
−0.0520419 + 0.998645i \(0.516573\pi\)
\(572\) 678.138 678.138i 1.18556 1.18556i
\(573\) 0 0
\(574\) 1512.71i 2.63538i
\(575\) 131.390 + 475.448i 0.228504 + 0.826867i
\(576\) 0 0
\(577\) 410.356 410.356i 0.711188 0.711188i −0.255595 0.966784i \(-0.582272\pi\)
0.966784 + 0.255595i \(0.0822715\pi\)
\(578\) −626.498 626.498i −1.08391 1.08391i
\(579\) 0 0
\(580\) −46.2106 + 175.198i −0.0796735 + 0.302065i
\(581\) −1593.31 −2.74236
\(582\) 0 0
\(583\) −678.319 678.319i −1.16350 1.16350i
\(584\) 177.543i 0.304012i
\(585\) 0 0
\(586\) 901.023 1.53758
\(587\) 405.066 405.066i 0.690061 0.690061i −0.272184 0.962245i \(-0.587746\pi\)
0.962245 + 0.272184i \(0.0877459\pi\)
\(588\) 0 0
\(589\) 64.6659i 0.109789i
\(590\) −700.770 + 408.252i −1.18775 + 0.691952i
\(591\) 0 0
\(592\) −326.853 + 326.853i −0.552117 + 0.552117i
\(593\) −526.790 526.790i −0.888347 0.888347i 0.106017 0.994364i \(-0.466190\pi\)
−0.994364 + 0.106017i \(0.966190\pi\)
\(594\) 0 0
\(595\) −100.294 26.4538i −0.168561 0.0444602i
\(596\) −775.053 −1.30043
\(597\) 0 0
\(598\) 707.441 + 707.441i 1.18301 + 1.18301i
\(599\) 429.621i 0.717230i 0.933486 + 0.358615i \(0.116751\pi\)
−0.933486 + 0.358615i \(0.883249\pi\)
\(600\) 0 0
\(601\) 415.189 0.690830 0.345415 0.938450i \(-0.387738\pi\)
0.345415 + 0.938450i \(0.387738\pi\)
\(602\) −989.264 + 989.264i −1.64330 + 1.64330i
\(603\) 0 0
\(604\) 654.519i 1.08364i
\(605\) −14.0388 + 53.2251i −0.0232046 + 0.0879754i
\(606\) 0 0
\(607\) −525.425 + 525.425i −0.865609 + 0.865609i −0.991983 0.126374i \(-0.959666\pi\)
0.126374 + 0.991983i \(0.459666\pi\)
\(608\) −51.6282 51.6282i −0.0849149 0.0849149i
\(609\) 0 0
\(610\) −3.93106 6.74773i −0.00644436 0.0110618i
\(611\) −418.442 −0.684847
\(612\) 0 0
\(613\) 764.432 + 764.432i 1.24703 + 1.24703i 0.957023 + 0.290010i \(0.0936588\pi\)
0.290010 + 0.957023i \(0.406341\pi\)
\(614\) 269.906i 0.439587i
\(615\) 0 0
\(616\) −638.780 −1.03698
\(617\) 530.469 530.469i 0.859755 0.859755i −0.131554 0.991309i \(-0.541997\pi\)
0.991309 + 0.131554i \(0.0419968\pi\)
\(618\) 0 0
\(619\) 1203.77i 1.94470i 0.233522 + 0.972352i \(0.424975\pi\)
−0.233522 + 0.972352i \(0.575025\pi\)
\(620\) 998.623 + 263.399i 1.61068 + 0.424838i
\(621\) 0 0
\(622\) −1340.60 + 1340.60i −2.15531 + 2.15531i
\(623\) 733.409 + 733.409i 1.17722 + 1.17722i
\(624\) 0 0
\(625\) 320.927 + 536.312i 0.513484 + 0.858099i
\(626\) −323.496 −0.516767
\(627\) 0 0
\(628\) −972.918 972.918i −1.54923 1.54923i
\(629\) 107.643i 0.171133i
\(630\) 0 0
\(631\) 133.973 0.212318 0.106159 0.994349i \(-0.466145\pi\)
0.106159 + 0.994349i \(0.466145\pi\)
\(632\) −395.146 + 395.146i −0.625232 + 0.625232i
\(633\) 0 0
\(634\) 1295.46i 2.04330i
\(635\) −35.1294 60.3001i −0.0553218 0.0949608i
\(636\) 0 0
\(637\) 1222.81 1222.81i 1.91964 1.91964i
\(638\) 149.016 + 149.016i 0.233568 + 0.233568i
\(639\) 0 0
\(640\) 624.276 363.688i 0.975431 0.568262i
\(641\) −362.038 −0.564803 −0.282401 0.959296i \(-0.591131\pi\)
−0.282401 + 0.959296i \(0.591131\pi\)
\(642\) 0 0
\(643\) −243.080 243.080i −0.378040 0.378040i 0.492354 0.870395i \(-0.336136\pi\)
−0.870395 + 0.492354i \(0.836136\pi\)
\(644\) 1369.45i 2.12647i
\(645\) 0 0
\(646\) 9.02727 0.0139741
\(647\) −627.638 + 627.638i −0.970075 + 0.970075i −0.999565 0.0294903i \(-0.990612\pi\)
0.0294903 + 0.999565i \(0.490612\pi\)
\(648\) 0 0
\(649\) 549.537i 0.846744i
\(650\) 1102.75 + 625.223i 1.69653 + 0.961882i
\(651\) 0 0
\(652\) 879.960 879.960i 1.34963 1.34963i
\(653\) 343.319 + 343.319i 0.525757 + 0.525757i 0.919304 0.393548i \(-0.128752\pi\)
−0.393548 + 0.919304i \(0.628752\pi\)
\(654\) 0 0
\(655\) −49.5443 + 187.837i −0.0756402 + 0.286774i
\(656\) −281.625 −0.429307
\(657\) 0 0
\(658\) 695.198 + 695.198i 1.05653 + 1.05653i
\(659\) 1203.78i 1.82668i 0.407194 + 0.913342i \(0.366507\pi\)
−0.407194 + 0.913342i \(0.633493\pi\)
\(660\) 0 0
\(661\) −788.143 −1.19235 −0.596175 0.802855i \(-0.703314\pi\)
−0.596175 + 0.802855i \(0.703314\pi\)
\(662\) 483.215 483.215i 0.729932 0.729932i
\(663\) 0 0
\(664\) 627.826i 0.945521i
\(665\) −93.8765 + 54.6902i −0.141168 + 0.0822408i
\(666\) 0 0
\(667\) −90.5644 + 90.5644i −0.135779 + 0.135779i
\(668\) −483.266 483.266i −0.723452 0.723452i
\(669\) 0 0
\(670\) 14.1742 + 3.73864i 0.0211556 + 0.00558005i
\(671\) −5.29150 −0.00788599
\(672\) 0 0
\(673\) 199.922 + 199.922i 0.297061 + 0.297061i 0.839862 0.542801i \(-0.182636\pi\)
−0.542801 + 0.839862i \(0.682636\pi\)
\(674\) 267.769i 0.397283i
\(675\) 0 0
\(676\) 554.417 0.820144
\(677\) −496.788 + 496.788i −0.733809 + 0.733809i −0.971372 0.237563i \(-0.923651\pi\)
0.237563 + 0.971372i \(0.423651\pi\)
\(678\) 0 0
\(679\) 1164.12i 1.71446i
\(680\) −10.4238 + 39.5196i −0.0153291 + 0.0581171i
\(681\) 0 0
\(682\) 849.388 849.388i 1.24544 1.24544i
\(683\) 328.645 + 328.645i 0.481179 + 0.481179i 0.905508 0.424329i \(-0.139490\pi\)
−0.424329 + 0.905508i \(0.639490\pi\)
\(684\) 0 0
\(685\) 23.4447 + 40.2432i 0.0342258 + 0.0587492i
\(686\) −2177.32 −3.17393
\(687\) 0 0
\(688\) −184.174 184.174i −0.267695 0.267695i
\(689\) 1498.27i 2.17456i
\(690\) 0 0
\(691\) −27.5318 −0.0398434 −0.0199217 0.999802i \(-0.506342\pi\)
−0.0199217 + 0.999802i \(0.506342\pi\)
\(692\) −207.536 + 207.536i −0.299908 + 0.299908i
\(693\) 0 0
\(694\) 1345.85i 1.93927i
\(695\) 248.497 + 65.5443i 0.357550 + 0.0943084i
\(696\) 0 0
\(697\) 46.3739 46.3739i 0.0665335 0.0665335i
\(698\) −851.022 851.022i −1.21923 1.21923i
\(699\) 0 0
\(700\) −462.189 1672.48i −0.660269 2.38926i
\(701\) 520.641 0.742712 0.371356 0.928491i \(-0.378893\pi\)
0.371356 + 0.928491i \(0.378893\pi\)
\(702\) 0 0
\(703\) −79.7261 79.7261i −0.113408 0.113408i
\(704\) 1055.69i 1.49956i
\(705\) 0 0
\(706\) −70.7295 −0.100183
\(707\) 205.983 205.983i 0.291348 0.291348i
\(708\) 0 0
\(709\) 931.060i 1.31320i 0.754238 + 0.656601i \(0.228006\pi\)
−0.754238 + 0.656601i \(0.771994\pi\)
\(710\) −472.632 811.280i −0.665679 1.14265i
\(711\) 0 0
\(712\) 288.991 288.991i 0.405886 0.405886i
\(713\) 516.215 + 516.215i 0.724004 + 0.724004i
\(714\) 0 0
\(715\) 742.189 432.381i 1.03803 0.604729i
\(716\) −783.214 −1.09387
\(717\) 0 0
\(718\) −230.869 230.869i −0.321545 0.321545i
\(719\) 441.340i 0.613824i 0.951738 + 0.306912i \(0.0992958\pi\)
−0.951738 + 0.306912i \(0.900704\pi\)
\(720\) 0 0
\(721\) −823.317 −1.14191
\(722\) −783.507 + 783.507i −1.08519 + 1.08519i
\(723\) 0 0
\(724\) 1355.01i 1.87155i
\(725\) −80.0391 + 141.170i −0.110399 + 0.194717i
\(726\) 0 0
\(727\) −187.463 + 187.463i −0.257858 + 0.257858i −0.824182 0.566324i \(-0.808365\pi\)
0.566324 + 0.824182i \(0.308365\pi\)
\(728\) −705.470 705.470i −0.969052 0.969052i
\(729\) 0 0
\(730\) −143.060 + 542.381i −0.195972 + 0.742988i
\(731\) 60.6541 0.0829742
\(732\) 0 0
\(733\) −211.642 211.642i −0.288735 0.288735i 0.547845 0.836580i \(-0.315448\pi\)
−0.836580 + 0.547845i \(0.815448\pi\)
\(734\) 572.046i 0.779354i
\(735\) 0 0
\(736\) 824.276 1.11994
\(737\) 7.02355 7.02355i 0.00952992 0.00952992i
\(738\) 0 0
\(739\) 784.720i 1.06187i 0.847413 + 0.530934i \(0.178159\pi\)
−0.847413 + 0.530934i \(0.821841\pi\)
\(740\) 1555.94 906.452i 2.10262 1.22494i
\(741\) 0 0
\(742\) −2489.23 + 2489.23i −3.35475 + 3.35475i
\(743\) 858.156 + 858.156i 1.15499 + 1.15499i 0.985539 + 0.169449i \(0.0541989\pi\)
0.169449 + 0.985539i \(0.445801\pi\)
\(744\) 0 0
\(745\) −671.216 177.042i −0.900961 0.237640i
\(746\) −935.435 −1.25393
\(747\) 0 0
\(748\) 69.0780 + 69.0780i 0.0923503 + 0.0923503i
\(749\) 2282.79i 3.04778i
\(750\) 0 0
\(751\) 111.405 0.148342 0.0741708 0.997246i \(-0.476369\pi\)
0.0741708 + 0.997246i \(0.476369\pi\)
\(752\) −129.427 + 129.427i −0.172110 + 0.172110i
\(753\) 0 0
\(754\) 329.147i 0.436534i
\(755\) −149.509 + 566.830i −0.198025 + 0.750768i
\(756\) 0 0
\(757\) 668.748 668.748i 0.883418 0.883418i −0.110462 0.993880i \(-0.535233\pi\)
0.993880 + 0.110462i \(0.0352330\pi\)
\(758\) −312.461 312.461i −0.412217 0.412217i
\(759\) 0 0
\(760\) 21.5500 + 36.9909i 0.0283553 + 0.0486722i
\(761\) −1255.44 −1.64973 −0.824864 0.565331i \(-0.808748\pi\)
−0.824864 + 0.565331i \(0.808748\pi\)
\(762\) 0 0
\(763\) −628.617 628.617i −0.823876 0.823876i
\(764\) 100.864i 0.132020i
\(765\) 0 0
\(766\) 988.726 1.29076
\(767\) −606.909 + 606.909i −0.791277 + 0.791277i
\(768\) 0 0
\(769\) 527.519i 0.685980i −0.939339 0.342990i \(-0.888560\pi\)
0.939339 0.342990i \(-0.111440\pi\)
\(770\) −1951.43 514.713i −2.53432 0.668459i
\(771\) 0 0
\(772\) −1067.77 + 1067.77i −1.38312 + 1.38312i
\(773\) −97.6183 97.6183i −0.126285 0.126285i 0.641139 0.767424i \(-0.278462\pi\)
−0.767424 + 0.641139i \(0.778462\pi\)
\(774\) 0 0
\(775\) 804.666 + 456.221i 1.03828 + 0.588673i
\(776\) 458.707 0.591118
\(777\) 0 0
\(778\) −171.165 171.165i −0.220007 0.220007i
\(779\) 68.6942i 0.0881825i
\(780\) 0 0
\(781\) −636.198 −0.814594
\(782\) −72.0629 + 72.0629i −0.0921521 + 0.0921521i
\(783\) 0 0
\(784\) 756.450i 0.964860i
\(785\) −620.333 1064.81i −0.790233 1.35645i
\(786\) 0 0
\(787\) −17.9019 + 17.9019i −0.0227470 + 0.0227470i −0.718389 0.695642i \(-0.755120\pi\)
0.695642 + 0.718389i \(0.255120\pi\)
\(788\) 75.4474 + 75.4474i 0.0957455 + 0.0957455i
\(789\) 0 0
\(790\) −1525.54 + 888.744i −1.93107 + 1.12499i
\(791\) 985.211 1.24553
\(792\) 0 0
\(793\) −5.84394 5.84394i −0.00736941 0.00736941i
\(794\) 613.012i 0.772055i
\(795\) 0 0
\(796\) 792.523 0.995632
\(797\) −108.850 + 108.850i −0.136574 + 0.136574i −0.772089 0.635515i \(-0.780788\pi\)
0.635515 + 0.772089i \(0.280788\pi\)
\(798\) 0 0
\(799\) 42.6242i 0.0533470i
\(800\) 1006.67 278.193i 1.25834 0.347741i
\(801\) 0 0
\(802\) −755.528 + 755.528i −0.942055 + 0.942055i
\(803\) 268.758 + 268.758i 0.334693 + 0.334693i
\(804\) 0 0
\(805\) 312.817 1185.98i 0.388592 1.47326i
\(806\) 1876.13 2.32771
\(807\) 0 0
\(808\) −81.1652 81.1652i −0.100452 0.100452i
\(809\) 992.609i 1.22696i −0.789711 0.613479i \(-0.789769\pi\)
0.789711 0.613479i \(-0.210231\pi\)
\(810\) 0 0
\(811\) 815.730 1.00583 0.502916 0.864335i \(-0.332261\pi\)
0.502916 + 0.864335i \(0.332261\pi\)
\(812\) 318.578 318.578i 0.392337 0.392337i
\(813\) 0 0
\(814\) 2094.41i 2.57299i
\(815\) 963.073 561.063i 1.18168 0.688420i
\(816\) 0 0
\(817\) 44.9239 44.9239i 0.0549864 0.0549864i
\(818\) −614.378 614.378i −0.751073 0.751073i
\(819\) 0 0
\(820\) 1060.83 + 279.808i 1.29370 + 0.341229i
\(821\) 1179.57 1.43675 0.718377 0.695654i \(-0.244885\pi\)
0.718377 + 0.695654i \(0.244885\pi\)
\(822\) 0 0
\(823\) 878.005 + 878.005i 1.06684 + 1.06684i 0.997600 + 0.0692347i \(0.0220557\pi\)
0.0692347 + 0.997600i \(0.477944\pi\)
\(824\) 324.418i 0.393712i
\(825\) 0 0
\(826\) 2016.63 2.44145
\(827\) 537.516 537.516i 0.649959 0.649959i −0.303024 0.952983i \(-0.597996\pi\)
0.952983 + 0.303024i \(0.0979962\pi\)
\(828\) 0 0
\(829\) 600.964i 0.724926i −0.931998 0.362463i \(-0.881936\pi\)
0.931998 0.362463i \(-0.118064\pi\)
\(830\) −505.887 + 1917.96i −0.609502 + 2.31080i
\(831\) 0 0
\(832\) 1165.91 1165.91i 1.40133 1.40133i
\(833\) 124.561 + 124.561i 0.149533 + 0.149533i
\(834\) 0 0
\(835\) −308.131 528.911i −0.369019 0.633426i
\(836\) 102.326 0.122400
\(837\) 0 0
\(838\) −1080.01 1080.01i −1.28880 1.28880i
\(839\) 96.9791i 0.115589i 0.998329 + 0.0577945i \(0.0184068\pi\)
−0.998329 + 0.0577945i \(0.981593\pi\)
\(840\) 0 0
\(841\) 798.864 0.949897
\(842\) −864.616 + 864.616i −1.02686 + 1.02686i
\(843\) 0 0
\(844\) 1082.87i 1.28302i
\(845\) 480.140 + 126.643i 0.568213 + 0.149873i
\(846\) 0 0
\(847\) 96.7841 96.7841i 0.114267 0.114267i
\(848\) −463.427 463.427i −0.546494 0.546494i
\(849\) 0 0
\(850\) −63.6879 + 112.330i −0.0749269 + 0.132153i
\(851\) 1272.88 1.49574
\(852\) 0 0
\(853\) 608.232 + 608.232i 0.713051 + 0.713051i 0.967172 0.254122i \(-0.0817864\pi\)
−0.254122 + 0.967172i \(0.581786\pi\)
\(854\) 19.4182i 0.0227380i
\(855\) 0 0
\(856\) −899.506 −1.05082
\(857\) −953.217 + 953.217i −1.11227 + 1.11227i −0.119429 + 0.992843i \(0.538106\pi\)
−0.992843 + 0.119429i \(0.961894\pi\)
\(858\) 0 0
\(859\) 143.780i 0.167381i −0.996492 0.0836905i \(-0.973329\pi\)
0.996492 0.0836905i \(-0.0266707\pi\)
\(860\) 510.765 + 876.736i 0.593913 + 1.01946i
\(861\) 0 0
\(862\) −50.4519 + 50.4519i −0.0585289 + 0.0585289i
\(863\) −945.308 945.308i −1.09537 1.09537i −0.994944 0.100430i \(-0.967978\pi\)
−0.100430 0.994944i \(-0.532022\pi\)
\(864\) 0 0
\(865\) −227.138 + 132.325i −0.262587 + 0.152977i
\(866\) 1565.00 1.80716
\(867\) 0 0
\(868\) −1815.89 1815.89i −2.09204 2.09204i
\(869\) 1196.32i 1.37666i
\(870\) 0 0
\(871\) 15.5136 0.0178113
\(872\) −247.699 + 247.699i −0.284059 + 0.284059i
\(873\) 0 0
\(874\) 106.748i 0.122137i
\(875\) −18.2301 1553.99i −0.0208343 1.77599i
\(876\) 0 0
\(877\) 818.047 818.047i 0.932779 0.932779i −0.0651000 0.997879i \(-0.520737\pi\)
0.997879 + 0.0651000i \(0.0207366\pi\)
\(878\) 1506.70 + 1506.70i 1.71606 + 1.71606i
\(879\) 0 0
\(880\) 95.8258 363.303i 0.108893 0.412844i
\(881\) −1608.71 −1.82601 −0.913003 0.407952i \(-0.866243\pi\)
−0.913003 + 0.407952i \(0.866243\pi\)
\(882\) 0 0
\(883\) −12.3011 12.3011i −0.0139311 0.0139311i 0.700107 0.714038i \(-0.253136\pi\)
−0.714038 + 0.700107i \(0.753136\pi\)
\(884\) 152.580i 0.172601i
\(885\) 0 0
\(886\) −1041.68 −1.17572
\(887\) −236.119 + 236.119i −0.266200 + 0.266200i −0.827567 0.561367i \(-0.810276\pi\)
0.561367 + 0.827567i \(0.310276\pi\)
\(888\) 0 0
\(889\) 173.528i 0.195195i
\(890\) 1115.71 649.984i 1.25360 0.730319i
\(891\) 0 0
\(892\) −78.5409 + 78.5409i −0.0880504 + 0.0880504i
\(893\) −31.5699 31.5699i −0.0353526 0.0353526i
\(894\) 0 0
\(895\) −678.283 178.906i −0.757858 0.199895i
\(896\) −1796.50 −2.00503
\(897\) 0 0
\(898\) −847.301 847.301i −0.943542 0.943542i
\(899\) 240.176i 0.267159i
\(900\) 0 0
\(901\) 152.620 0.169390
\(902\) 902.300 902.300i 1.00033 1.00033i
\(903\) 0 0
\(904\) 388.211i 0.429437i
\(905\) −309.517 + 1173.47i −0.342008 + 1.29665i
\(906\) 0 0
\(907\) 125.817 125.817i 0.138717 0.138717i −0.634338 0.773056i \(-0.718727\pi\)
0.773056 + 0.634338i \(0.218727\pi\)
\(908\) 829.232 + 829.232i 0.913251 + 0.913251i
\(909\) 0 0
\(910\) −1586.71 2723.61i −1.74363 2.99298i
\(911\) −1208.42 −1.32647 −0.663236 0.748410i \(-0.730818\pi\)
−0.663236 + 0.748410i \(0.730818\pi\)
\(912\) 0 0
\(913\) 950.379 + 950.379i 1.04094 + 1.04094i
\(914\) 619.431i 0.677714i
\(915\) 0 0
\(916\) −403.789 −0.440818
\(917\) 341.561 341.561i 0.372476 0.372476i
\(918\) 0 0
\(919\) 58.7205i 0.0638960i −0.999490 0.0319480i \(-0.989829\pi\)
0.999490 0.0319480i \(-0.0101711\pi\)
\(920\) −467.320 123.262i −0.507957 0.133980i
\(921\) 0 0
\(922\) −1543.56 + 1543.56i −1.67414 + 1.67414i
\(923\) −702.617 702.617i −0.761232 0.761232i
\(924\) 0 0
\(925\) 1554.54 429.595i 1.68058 0.464427i
\(926\) −524.534 −0.566451
\(927\) 0 0
\(928\) 191.753 + 191.753i 0.206630 + 0.206630i
\(929\) 1527.16i 1.64388i 0.569576 + 0.821939i \(0.307107\pi\)
−0.569576 + 0.821939i \(0.692893\pi\)
\(930\) 0 0
\(931\) 184.514 0.198189
\(932\) −631.722 + 631.722i −0.677813 + 0.677813i
\(933\) 0 0
\(934\) 206.661i 0.221264i
\(935\) 44.0442 + 75.6025i 0.0471061 + 0.0808583i
\(936\) 0 0
\(937\) −566.027 + 566.027i −0.604085 + 0.604085i −0.941394 0.337309i \(-0.890483\pi\)
0.337309 + 0.941394i \(0.390483\pi\)
\(938\) −25.7743 25.7743i −0.0274779 0.0274779i
\(939\) 0 0
\(940\) 616.120 358.936i 0.655446 0.381847i
\(941\) 1065.69 1.13251 0.566254 0.824231i \(-0.308392\pi\)
0.566254 + 0.824231i \(0.308392\pi\)
\(942\) 0 0
\(943\) 548.372 + 548.372i 0.581519 + 0.581519i
\(944\) 375.443i 0.397715i
\(945\) 0 0
\(946\) 1180.15 1.24752
\(947\) −361.475 + 361.475i −0.381705 + 0.381705i −0.871716 0.490011i \(-0.836993\pi\)
0.490011 + 0.871716i \(0.336993\pi\)
\(948\) 0 0
\(949\) 593.633i 0.625536i
\(950\) 36.0273 + 130.369i 0.0379235 + 0.137230i
\(951\) 0 0
\(952\) 71.8621 71.8621i 0.0754854 0.0754854i
\(953\) −477.641 477.641i −0.501198 0.501198i 0.410612 0.911810i \(-0.365315\pi\)
−0.911810 + 0.410612i \(0.865315\pi\)
\(954\) 0 0
\(955\) −23.0398 + 87.3504i −0.0241254 + 0.0914664i
\(956\) 1582.57 1.65541
\(957\) 0 0
\(958\) 1170.85 + 1170.85i 1.22218 + 1.22218i
\(959\) 115.809i 0.120761i
\(960\) 0 0
\(961\) 408.000 0.424558
\(962\) 2313.07 2313.07i 2.40444 2.40444i
\(963\) 0 0
\(964\) 2689.19i 2.78962i
\(965\) −1168.62 + 680.811i −1.21101 + 0.705504i
\(966\) 0 0
\(967\) 339.332 339.332i 0.350912 0.350912i −0.509537 0.860449i \(-0.670183\pi\)
0.860449 + 0.509537i \(0.170183\pi\)
\(968\) −38.1366 38.1366i −0.0393973 0.0393973i
\(969\) 0 0
\(970\) 1401.32 + 369.615i 1.44466 + 0.381047i
\(971\) −364.302 −0.375182 −0.187591 0.982247i \(-0.560068\pi\)
−0.187591 + 0.982247i \(0.560068\pi\)
\(972\) 0 0
\(973\) −451.866 451.866i −0.464404 0.464404i
\(974\) 1246.33i 1.27960i
\(975\) 0 0
\(976\) −3.61515 −0.00370404
\(977\) −59.2711 + 59.2711i −0.0606665 + 0.0606665i −0.736789 0.676123i \(-0.763659\pi\)
0.676123 + 0.736789i \(0.263659\pi\)
\(978\) 0 0
\(979\) 874.927i 0.893695i
\(980\) −751.567 + 2849.41i −0.766906 + 2.90756i
\(981\) 0 0
\(982\) −127.461 + 127.461i −0.129797 + 0.129797i
\(983\) −13.4709 13.4709i −0.0137038 0.0137038i 0.700222 0.713925i \(-0.253084\pi\)
−0.713925 + 0.700222i \(0.753084\pi\)
\(984\) 0 0
\(985\) 48.1053 + 82.5735i 0.0488379 + 0.0838309i
\(986\) −33.5283 −0.0340044
\(987\) 0 0
\(988\) 113.009 + 113.009i 0.114382 + 0.114382i
\(989\) 717.237i 0.725214i
\(990\) 0 0
\(991\) 522.405 0.527149 0.263574 0.964639i \(-0.415099\pi\)
0.263574 + 0.964639i \(0.415099\pi\)
\(992\) 1092.99 1092.99i 1.10180 1.10180i
\(993\) 0 0
\(994\) 2334.65i 2.34875i
\(995\) 686.345 + 181.032i 0.689794 + 0.181942i
\(996\) 0 0
\(997\) 419.975 419.975i 0.421238 0.421238i −0.464392 0.885630i \(-0.653727\pi\)
0.885630 + 0.464392i \(0.153727\pi\)
\(998\) −13.9476 13.9476i −0.0139756 0.0139756i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.g.d.163.1 yes 8
3.2 odd 2 inner 405.3.g.d.163.4 yes 8
5.2 odd 4 inner 405.3.g.d.82.1 8
9.2 odd 6 405.3.l.e.28.1 8
9.4 even 3 405.3.l.e.298.1 8
9.5 odd 6 405.3.l.i.298.2 8
9.7 even 3 405.3.l.i.28.2 8
15.2 even 4 inner 405.3.g.d.82.4 yes 8
45.2 even 12 405.3.l.i.352.2 8
45.7 odd 12 405.3.l.e.352.1 8
45.22 odd 12 405.3.l.i.217.2 8
45.32 even 12 405.3.l.e.217.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
405.3.g.d.82.1 8 5.2 odd 4 inner
405.3.g.d.82.4 yes 8 15.2 even 4 inner
405.3.g.d.163.1 yes 8 1.1 even 1 trivial
405.3.g.d.163.4 yes 8 3.2 odd 2 inner
405.3.l.e.28.1 8 9.2 odd 6
405.3.l.e.217.1 8 45.32 even 12
405.3.l.e.298.1 8 9.4 even 3
405.3.l.e.352.1 8 45.7 odd 12
405.3.l.i.28.2 8 9.7 even 3
405.3.l.i.217.2 8 45.22 odd 12
405.3.l.i.298.2 8 9.5 odd 6
405.3.l.i.352.2 8 45.2 even 12