Properties

Label 405.3.l.i.28.2
Level $405$
Weight $3$
Character 405.28
Analytic conductor $11.035$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,3,Mod(28,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([4, 9]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.28");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.l (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: 8.0.49787136.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 28.2
Root \(-0.228425 - 1.39564i\) of defining polynomial
Character \(\chi\) \(=\) 405.28
Dual form 405.3.l.i.217.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.99009 + 0.801193i) q^{2} +(4.83465 + 2.79129i) q^{4} +(3.54933 + 3.52168i) q^{5} +(12.0091 + 3.21783i) q^{7} +(3.46410 + 3.46410i) q^{8} +(7.79129 + 13.3739i) q^{10} +(-5.24383 - 9.08258i) q^{11} +(-15.8221 + 4.23952i) q^{13} +(33.3303 + 19.2433i) q^{14} +(-3.58258 - 6.20520i) q^{16} +(-1.17985 + 1.17985i) q^{17} +1.74773i q^{19} +(7.32976 + 26.9333i) q^{20} +(-8.40264 - 31.3591i) q^{22} +(19.0585 - 5.10670i) q^{23} +(0.195508 + 24.9992i) q^{25} -50.7062 q^{26} +(49.0780 + 49.0780i) q^{28} +(-5.62159 + 3.24563i) q^{29} +(18.5000 - 32.0429i) q^{31} +(-10.8125 - 40.3527i) q^{32} +(-4.47315 + 2.58258i) q^{34} +(31.2922 + 53.7135i) q^{35} +(-45.6170 + 45.6170i) q^{37} +(-1.40027 + 5.22587i) q^{38} +(0.0957797 + 24.4947i) q^{40} +(19.6524 - 34.0390i) q^{41} +(-9.40838 + 35.1125i) q^{43} -58.5481i q^{44} +61.0780 q^{46} +(24.6751 + 6.61167i) q^{47} +(91.4293 + 52.7867i) q^{49} +(-19.4446 + 74.9067i) q^{50} +(-88.3280 - 23.6674i) q^{52} +(-64.6779 - 64.6779i) q^{53} +(13.3739 - 50.7042i) q^{55} +(30.4539 + 52.7477i) q^{56} +(-19.4095 + 5.20075i) q^{58} +(-45.3784 - 26.1992i) q^{59} +(0.252273 + 0.436950i) q^{61} +(80.9893 - 80.9893i) q^{62} -100.661i q^{64} +(-71.0881 - 40.6729i) q^{65} +(0.245126 + 0.914823i) q^{67} +(-8.99747 + 2.41086i) q^{68} +(50.5316 + 185.679i) q^{70} -60.6616 q^{71} +(25.6261 + 25.6261i) q^{73} +(-172.947 + 99.8512i) q^{74} +(-4.87841 + 8.44965i) q^{76} +(-33.7475 - 125.948i) q^{77} +(98.7866 - 57.0345i) q^{79} +(9.13701 - 34.6410i) q^{80} +(86.0345 - 86.0345i) q^{82} +(33.1688 - 123.788i) q^{83} +(-8.34274 + 0.0326220i) q^{85} +(-56.2639 + 97.4519i) q^{86} +(13.2978 - 49.6281i) q^{88} -83.4245i q^{89} -203.652 q^{91} +(106.395 + 28.5085i) q^{92} +(68.4836 + 39.5390i) q^{94} +(-6.15494 + 6.20326i) q^{95} +(-90.4428 - 24.2341i) q^{97} +(231.090 + 231.090i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{2} + 6 q^{5} + 26 q^{7} + 44 q^{10} - 28 q^{13} + 120 q^{14} + 8 q^{16} + 24 q^{20} + 46 q^{22} + 60 q^{23} + 32 q^{25} + 136 q^{28} + 120 q^{29} + 148 q^{31} - 168 q^{32} + 20 q^{37} - 54 q^{38}+ \cdots - 274 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.99009 + 0.801193i 1.49505 + 0.400597i 0.911438 0.411438i \(-0.134973\pi\)
0.583609 + 0.812035i \(0.301640\pi\)
\(3\) 0 0
\(4\) 4.83465 + 2.79129i 1.20866 + 0.697822i
\(5\) 3.54933 + 3.52168i 0.709866 + 0.704336i
\(6\) 0 0
\(7\) 12.0091 + 3.21783i 1.71559 + 0.459691i 0.976784 0.214228i \(-0.0687236\pi\)
0.738805 + 0.673919i \(0.235390\pi\)
\(8\) 3.46410 + 3.46410i 0.433013 + 0.433013i
\(9\) 0 0
\(10\) 7.79129 + 13.3739i 0.779129 + 1.33739i
\(11\) −5.24383 9.08258i −0.476712 0.825689i 0.522932 0.852374i \(-0.324838\pi\)
−0.999644 + 0.0266855i \(0.991505\pi\)
\(12\) 0 0
\(13\) −15.8221 + 4.23952i −1.21708 + 0.326117i −0.809538 0.587068i \(-0.800282\pi\)
−0.407546 + 0.913185i \(0.633616\pi\)
\(14\) 33.3303 + 19.2433i 2.38074 + 1.37452i
\(15\) 0 0
\(16\) −3.58258 6.20520i −0.223911 0.387825i
\(17\) −1.17985 + 1.17985i −0.0694030 + 0.0694030i −0.740956 0.671553i \(-0.765627\pi\)
0.671553 + 0.740956i \(0.265627\pi\)
\(18\) 0 0
\(19\) 1.74773i 0.0919856i 0.998942 + 0.0459928i \(0.0146451\pi\)
−0.998942 + 0.0459928i \(0.985355\pi\)
\(20\) 7.32976 + 26.9333i 0.366488 + 1.34667i
\(21\) 0 0
\(22\) −8.40264 31.3591i −0.381938 1.42541i
\(23\) 19.0585 5.10670i 0.828628 0.222030i 0.180513 0.983573i \(-0.442224\pi\)
0.648115 + 0.761542i \(0.275557\pi\)
\(24\) 0 0
\(25\) 0.195508 + 24.9992i 0.00782032 + 0.999969i
\(26\) −50.7062 −1.95024
\(27\) 0 0
\(28\) 49.0780 + 49.0780i 1.75279 + 1.75279i
\(29\) −5.62159 + 3.24563i −0.193848 + 0.111918i −0.593783 0.804625i \(-0.702366\pi\)
0.399935 + 0.916544i \(0.369033\pi\)
\(30\) 0 0
\(31\) 18.5000 32.0429i 0.596774 1.03364i −0.396520 0.918026i \(-0.629782\pi\)
0.993294 0.115617i \(-0.0368845\pi\)
\(32\) −10.8125 40.3527i −0.337890 1.26102i
\(33\) 0 0
\(34\) −4.47315 + 2.58258i −0.131563 + 0.0759581i
\(35\) 31.2922 + 53.7135i 0.894062 + 1.53467i
\(36\) 0 0
\(37\) −45.6170 + 45.6170i −1.23289 + 1.23289i −0.270046 + 0.962848i \(0.587039\pi\)
−0.962848 + 0.270046i \(0.912961\pi\)
\(38\) −1.40027 + 5.22587i −0.0368491 + 0.137523i
\(39\) 0 0
\(40\) 0.0957797 + 24.4947i 0.00239449 + 0.612368i
\(41\) 19.6524 34.0390i 0.479328 0.830220i −0.520391 0.853928i \(-0.674214\pi\)
0.999719 + 0.0237081i \(0.00754722\pi\)
\(42\) 0 0
\(43\) −9.40838 + 35.1125i −0.218799 + 0.816571i 0.765995 + 0.642847i \(0.222247\pi\)
−0.984794 + 0.173724i \(0.944420\pi\)
\(44\) 58.5481i 1.33064i
\(45\) 0 0
\(46\) 61.0780 1.32778
\(47\) 24.6751 + 6.61167i 0.525002 + 0.140674i 0.511579 0.859236i \(-0.329061\pi\)
0.0134225 + 0.999910i \(0.495727\pi\)
\(48\) 0 0
\(49\) 91.4293 + 52.7867i 1.86590 + 1.07728i
\(50\) −19.4446 + 74.9067i −0.388893 + 1.49813i
\(51\) 0 0
\(52\) −88.3280 23.6674i −1.69862 0.455143i
\(53\) −64.6779 64.6779i −1.22034 1.22034i −0.967512 0.252825i \(-0.918640\pi\)
−0.252825 0.967512i \(-0.581360\pi\)
\(54\) 0 0
\(55\) 13.3739 50.7042i 0.243161 0.921894i
\(56\) 30.4539 + 52.7477i 0.543820 + 0.941924i
\(57\) 0 0
\(58\) −19.4095 + 5.20075i −0.334646 + 0.0896681i
\(59\) −45.3784 26.1992i −0.769126 0.444055i 0.0634370 0.997986i \(-0.479794\pi\)
−0.832563 + 0.553931i \(0.813127\pi\)
\(60\) 0 0
\(61\) 0.252273 + 0.436950i 0.00413562 + 0.00716311i 0.868086 0.496414i \(-0.165350\pi\)
−0.863950 + 0.503577i \(0.832017\pi\)
\(62\) 80.9893 80.9893i 1.30628 1.30628i
\(63\) 0 0
\(64\) 100.661i 1.57282i
\(65\) −71.0881 40.6729i −1.09366 0.625737i
\(66\) 0 0
\(67\) 0.245126 + 0.914823i 0.00365860 + 0.0136541i 0.967731 0.251986i \(-0.0810835\pi\)
−0.964072 + 0.265640i \(0.914417\pi\)
\(68\) −8.99747 + 2.41086i −0.132316 + 0.0354539i
\(69\) 0 0
\(70\) 50.5316 + 185.679i 0.721881 + 2.65256i
\(71\) −60.6616 −0.854388 −0.427194 0.904160i \(-0.640498\pi\)
−0.427194 + 0.904160i \(0.640498\pi\)
\(72\) 0 0
\(73\) 25.6261 + 25.6261i 0.351043 + 0.351043i 0.860498 0.509455i \(-0.170153\pi\)
−0.509455 + 0.860498i \(0.670153\pi\)
\(74\) −172.947 + 99.8512i −2.33713 + 1.34934i
\(75\) 0 0
\(76\) −4.87841 + 8.44965i −0.0641896 + 0.111180i
\(77\) −33.7475 125.948i −0.438280 1.63568i
\(78\) 0 0
\(79\) 98.7866 57.0345i 1.25046 0.721955i 0.279262 0.960215i \(-0.409910\pi\)
0.971201 + 0.238260i \(0.0765769\pi\)
\(80\) 9.13701 34.6410i 0.114213 0.433013i
\(81\) 0 0
\(82\) 86.0345 86.0345i 1.04920 1.04920i
\(83\) 33.1688 123.788i 0.399624 1.49142i −0.414135 0.910215i \(-0.635916\pi\)
0.813759 0.581202i \(-0.197417\pi\)
\(84\) 0 0
\(85\) −8.34274 + 0.0326220i −0.0981499 + 0.000383788i
\(86\) −56.2639 + 97.4519i −0.654231 + 1.13316i
\(87\) 0 0
\(88\) 13.2978 49.6281i 0.151112 0.563956i
\(89\) 83.4245i 0.937354i −0.883370 0.468677i \(-0.844731\pi\)
0.883370 0.468677i \(-0.155269\pi\)
\(90\) 0 0
\(91\) −203.652 −2.23793
\(92\) 106.395 + 28.5085i 1.15647 + 0.309875i
\(93\) 0 0
\(94\) 68.4836 + 39.5390i 0.728549 + 0.420628i
\(95\) −6.15494 + 6.20326i −0.0647888 + 0.0652975i
\(96\) 0 0
\(97\) −90.4428 24.2341i −0.932400 0.249836i −0.239522 0.970891i \(-0.576991\pi\)
−0.692878 + 0.721055i \(0.743657\pi\)
\(98\) 231.090 + 231.090i 2.35806 + 2.35806i
\(99\) 0 0
\(100\) −68.8348 + 121.408i −0.688348 + 1.21408i
\(101\) 11.7152 + 20.2913i 0.115992 + 0.200904i 0.918176 0.396173i \(-0.129662\pi\)
−0.802184 + 0.597077i \(0.796329\pi\)
\(102\) 0 0
\(103\) −63.9652 + 17.1394i −0.621021 + 0.166402i −0.555592 0.831455i \(-0.687508\pi\)
−0.0654292 + 0.997857i \(0.520842\pi\)
\(104\) −69.4955 40.1232i −0.668226 0.385800i
\(105\) 0 0
\(106\) −141.573 245.212i −1.33560 2.31333i
\(107\) −129.833 + 129.833i −1.21339 + 1.21339i −0.243483 + 0.969905i \(0.578290\pi\)
−0.969905 + 0.243483i \(0.921710\pi\)
\(108\) 0 0
\(109\) 71.5045i 0.656005i 0.944677 + 0.328003i \(0.106375\pi\)
−0.944677 + 0.328003i \(0.893625\pi\)
\(110\) 80.6130 140.895i 0.732845 1.28087i
\(111\) 0 0
\(112\) −23.0563 86.0472i −0.205860 0.768278i
\(113\) 76.5430 20.5096i 0.677372 0.181501i 0.0962986 0.995352i \(-0.469300\pi\)
0.581073 + 0.813851i \(0.302633\pi\)
\(114\) 0 0
\(115\) 85.6289 + 48.9925i 0.744599 + 0.426021i
\(116\) −36.2379 −0.312396
\(117\) 0 0
\(118\) −114.695 114.695i −0.971992 0.971992i
\(119\) −17.9655 + 10.3724i −0.150971 + 0.0871631i
\(120\) 0 0
\(121\) 5.50455 9.53415i 0.0454921 0.0787947i
\(122\) 0.404239 + 1.50864i 0.00331343 + 0.0123659i
\(123\) 0 0
\(124\) 178.882 103.278i 1.44260 0.832884i
\(125\) −87.3454 + 89.4191i −0.698764 + 0.715353i
\(126\) 0 0
\(127\) 9.86932 9.86932i 0.0777112 0.0777112i −0.667183 0.744894i \(-0.732500\pi\)
0.744894 + 0.667183i \(0.232500\pi\)
\(128\) 37.3987 139.574i 0.292178 1.09042i
\(129\) 0 0
\(130\) −179.973 178.571i −1.38441 1.37362i
\(131\) 19.4261 33.6470i 0.148291 0.256847i −0.782305 0.622895i \(-0.785956\pi\)
0.930596 + 0.366048i \(0.119290\pi\)
\(132\) 0 0
\(133\) −5.62390 + 20.9887i −0.0422849 + 0.157810i
\(134\) 2.93180i 0.0218791i
\(135\) 0 0
\(136\) −8.17424 −0.0601047
\(137\) 8.99747 + 2.41086i 0.0656750 + 0.0175976i 0.291507 0.956569i \(-0.405843\pi\)
−0.225832 + 0.974166i \(0.572510\pi\)
\(138\) 0 0
\(139\) −44.5130 25.6996i −0.320238 0.184889i 0.331261 0.943539i \(-0.392526\pi\)
−0.651499 + 0.758650i \(0.725859\pi\)
\(140\) 1.35697 + 347.031i 0.00969264 + 2.47880i
\(141\) 0 0
\(142\) −181.384 48.6017i −1.27735 0.342265i
\(143\) 121.474 + 121.474i 0.849469 + 0.849469i
\(144\) 0 0
\(145\) −31.3830 8.27765i −0.216434 0.0570872i
\(146\) 56.0931 + 97.1561i 0.384199 + 0.665452i
\(147\) 0 0
\(148\) −347.873 + 93.2123i −2.35049 + 0.629813i
\(149\) 120.234 + 69.4172i 0.806940 + 0.465887i 0.845892 0.533354i \(-0.179069\pi\)
−0.0389520 + 0.999241i \(0.512402\pi\)
\(150\) 0 0
\(151\) 58.6216 + 101.536i 0.388222 + 0.672421i 0.992211 0.124572i \(-0.0397559\pi\)
−0.603988 + 0.796993i \(0.706423\pi\)
\(152\) −6.05430 + 6.05430i −0.0398309 + 0.0398309i
\(153\) 0 0
\(154\) 403.633i 2.62100i
\(155\) 178.508 48.5799i 1.15166 0.313419i
\(156\) 0 0
\(157\) 63.7900 + 238.068i 0.406306 + 1.51635i 0.801634 + 0.597815i \(0.203964\pi\)
−0.395328 + 0.918540i \(0.629369\pi\)
\(158\) 341.077 91.3913i 2.15871 0.578426i
\(159\) 0 0
\(160\) 103.732 181.303i 0.648327 1.13314i
\(161\) 245.308 1.52365
\(162\) 0 0
\(163\) 157.626 + 157.626i 0.967032 + 0.967032i 0.999474 0.0324421i \(-0.0103285\pi\)
−0.0324421 + 0.999474i \(0.510328\pi\)
\(164\) 190.025 109.711i 1.15869 0.668971i
\(165\) 0 0
\(166\) 198.356 343.562i 1.19491 2.06965i
\(167\) 31.6857 + 118.253i 0.189735 + 0.708099i 0.993567 + 0.113244i \(0.0361241\pi\)
−0.803833 + 0.594856i \(0.797209\pi\)
\(168\) 0 0
\(169\) 86.0068 49.6561i 0.508916 0.293823i
\(170\) −24.9717 6.58660i −0.146892 0.0387447i
\(171\) 0 0
\(172\) −143.495 + 143.495i −0.834276 + 0.834276i
\(173\) −13.6072 + 50.7829i −0.0786546 + 0.293543i −0.994037 0.109042i \(-0.965222\pi\)
0.915383 + 0.402585i \(0.131888\pi\)
\(174\) 0 0
\(175\) −78.0955 + 300.848i −0.446260 + 1.71913i
\(176\) −37.5728 + 65.0780i −0.213482 + 0.369762i
\(177\) 0 0
\(178\) 66.8391 249.447i 0.375501 1.40139i
\(179\) 140.296i 0.783777i −0.920013 0.391889i \(-0.871822\pi\)
0.920013 0.391889i \(-0.128178\pi\)
\(180\) 0 0
\(181\) −242.720 −1.34100 −0.670498 0.741911i \(-0.733920\pi\)
−0.670498 + 0.741911i \(0.733920\pi\)
\(182\) −608.937 163.164i −3.34581 0.896507i
\(183\) 0 0
\(184\) 83.7105 + 48.3303i 0.454949 + 0.262665i
\(185\) −322.559 + 1.26128i −1.74356 + 0.00681771i
\(186\) 0 0
\(187\) 16.9030 + 4.52915i 0.0903904 + 0.0242200i
\(188\) 100.840 + 100.840i 0.536385 + 0.536385i
\(189\) 0 0
\(190\) −23.3739 + 13.6170i −0.123020 + 0.0716687i
\(191\) 9.03378 + 15.6470i 0.0472973 + 0.0819213i 0.888705 0.458480i \(-0.151606\pi\)
−0.841408 + 0.540401i \(0.818273\pi\)
\(192\) 0 0
\(193\) 261.278 70.0092i 1.35377 0.362742i 0.492245 0.870457i \(-0.336176\pi\)
0.861525 + 0.507715i \(0.169510\pi\)
\(194\) −251.016 144.924i −1.29390 0.747033i
\(195\) 0 0
\(196\) 294.686 + 510.411i 1.50350 + 2.60414i
\(197\) −13.5148 + 13.5148i −0.0686031 + 0.0686031i −0.740576 0.671973i \(-0.765447\pi\)
0.671973 + 0.740576i \(0.265447\pi\)
\(198\) 0 0
\(199\) 141.964i 0.713385i 0.934222 + 0.356693i \(0.116096\pi\)
−0.934222 + 0.356693i \(0.883904\pi\)
\(200\) −85.9226 + 87.2772i −0.429613 + 0.436386i
\(201\) 0 0
\(202\) 18.7723 + 70.0590i 0.0929319 + 0.346827i
\(203\) −77.9543 + 20.8878i −0.384011 + 0.102895i
\(204\) 0 0
\(205\) 189.628 51.6061i 0.925013 0.251737i
\(206\) −204.994 −0.995116
\(207\) 0 0
\(208\) 82.9909 + 82.9909i 0.398995 + 0.398995i
\(209\) 15.8739 9.16478i 0.0759515 0.0438506i
\(210\) 0 0
\(211\) −96.9864 + 167.985i −0.459651 + 0.796139i −0.998942 0.0459804i \(-0.985359\pi\)
0.539291 + 0.842119i \(0.318692\pi\)
\(212\) −132.160 493.230i −0.623399 2.32656i
\(213\) 0 0
\(214\) −492.232 + 284.191i −2.30015 + 1.32799i
\(215\) −157.049 + 91.4927i −0.730459 + 0.425548i
\(216\) 0 0
\(217\) 325.278 325.278i 1.49898 1.49898i
\(218\) −57.2890 + 213.805i −0.262793 + 0.980758i
\(219\) 0 0
\(220\) 206.188 207.807i 0.937218 0.944576i
\(221\) 13.6657 23.6697i 0.0618358 0.107103i
\(222\) 0 0
\(223\) −5.14959 + 19.2185i −0.0230923 + 0.0861817i −0.976510 0.215471i \(-0.930871\pi\)
0.953418 + 0.301652i \(0.0975382\pi\)
\(224\) 519.393i 2.31872i
\(225\) 0 0
\(226\) 245.303 1.08541
\(227\) 202.908 + 54.3692i 0.893870 + 0.239512i 0.676382 0.736551i \(-0.263547\pi\)
0.217488 + 0.976063i \(0.430214\pi\)
\(228\) 0 0
\(229\) 62.6399 + 36.1652i 0.273537 + 0.157926i 0.630494 0.776194i \(-0.282852\pi\)
−0.356957 + 0.934121i \(0.616186\pi\)
\(230\) 216.786 + 215.097i 0.942549 + 0.935206i
\(231\) 0 0
\(232\) −30.7169 8.23058i −0.132401 0.0354766i
\(233\) −113.160 113.160i −0.485663 0.485663i 0.421271 0.906935i \(-0.361584\pi\)
−0.906935 + 0.421271i \(0.861584\pi\)
\(234\) 0 0
\(235\) 64.2958 + 110.365i 0.273599 + 0.469637i
\(236\) −146.259 253.328i −0.619742 1.07343i
\(237\) 0 0
\(238\) −62.0289 + 16.6206i −0.260626 + 0.0698345i
\(239\) −245.505 141.742i −1.02722 0.593063i −0.111030 0.993817i \(-0.535415\pi\)
−0.916186 + 0.400754i \(0.868748\pi\)
\(240\) 0 0
\(241\) −240.856 417.174i −0.999401 1.73101i −0.529667 0.848206i \(-0.677683\pi\)
−0.469734 0.882808i \(-0.655650\pi\)
\(242\) 24.0978 24.0978i 0.0995777 0.0995777i
\(243\) 0 0
\(244\) 2.81667i 0.0115437i
\(245\) 138.615 + 509.343i 0.565775 + 2.07895i
\(246\) 0 0
\(247\) −7.40952 27.6527i −0.0299981 0.111954i
\(248\) 175.086 46.9141i 0.705991 0.189170i
\(249\) 0 0
\(250\) −332.813 + 197.391i −1.33125 + 0.789564i
\(251\) 87.5245 0.348703 0.174352 0.984683i \(-0.444217\pi\)
0.174352 + 0.984683i \(0.444217\pi\)
\(252\) 0 0
\(253\) −146.321 146.321i −0.578345 0.578345i
\(254\) 37.4174 21.6030i 0.147313 0.0850510i
\(255\) 0 0
\(256\) 22.3303 38.6772i 0.0872277 0.151083i
\(257\) −47.7982 178.385i −0.185985 0.694106i −0.994418 0.105517i \(-0.966350\pi\)
0.808432 0.588589i \(-0.200316\pi\)
\(258\) 0 0
\(259\) −694.609 + 401.033i −2.68189 + 1.54839i
\(260\) −230.156 395.067i −0.885217 1.51949i
\(261\) 0 0
\(262\) 85.0436 85.0436i 0.324594 0.324594i
\(263\) −79.2760 + 295.862i −0.301430 + 1.12495i 0.634546 + 0.772885i \(0.281187\pi\)
−0.935975 + 0.352065i \(0.885480\pi\)
\(264\) 0 0
\(265\) −1.78829 457.338i −0.00674828 1.72580i
\(266\) −33.6320 + 58.2523i −0.126436 + 0.218994i
\(267\) 0 0
\(268\) −1.36844 + 5.10707i −0.00510610 + 0.0190562i
\(269\) 283.047i 1.05222i 0.850416 + 0.526110i \(0.176350\pi\)
−0.850416 + 0.526110i \(0.823650\pi\)
\(270\) 0 0
\(271\) −130.991 −0.483361 −0.241681 0.970356i \(-0.577699\pi\)
−0.241681 + 0.970356i \(0.577699\pi\)
\(272\) 11.5481 + 3.09431i 0.0424563 + 0.0113761i
\(273\) 0 0
\(274\) 24.9717 + 14.4174i 0.0911376 + 0.0526183i
\(275\) 226.032 132.867i 0.821935 0.483154i
\(276\) 0 0
\(277\) 156.081 + 41.8219i 0.563471 + 0.150981i 0.529300 0.848435i \(-0.322454\pi\)
0.0341702 + 0.999416i \(0.489121\pi\)
\(278\) −112.508 112.508i −0.404705 0.404705i
\(279\) 0 0
\(280\) −77.6697 + 294.468i −0.277392 + 1.05167i
\(281\) 12.3706 + 21.4265i 0.0440235 + 0.0762509i 0.887198 0.461390i \(-0.152649\pi\)
−0.843174 + 0.537641i \(0.819316\pi\)
\(282\) 0 0
\(283\) 113.925 30.5262i 0.402564 0.107867i −0.0518555 0.998655i \(-0.516514\pi\)
0.454419 + 0.890788i \(0.349847\pi\)
\(284\) −293.278 169.324i −1.03267 0.596211i
\(285\) 0 0
\(286\) 265.895 + 460.543i 0.929702 + 1.61029i
\(287\) 345.540 345.540i 1.20397 1.20397i
\(288\) 0 0
\(289\) 286.216i 0.990366i
\(290\) −87.2060 49.8948i −0.300710 0.172051i
\(291\) 0 0
\(292\) 52.3635 + 195.423i 0.179327 + 0.669258i
\(293\) 281.150 75.3340i 0.959558 0.257113i 0.255145 0.966903i \(-0.417877\pi\)
0.704413 + 0.709790i \(0.251210\pi\)
\(294\) 0 0
\(295\) −68.7976 252.798i −0.233212 0.856943i
\(296\) −316.044 −1.06772
\(297\) 0 0
\(298\) 303.895 + 303.895i 1.01978 + 1.01978i
\(299\) −279.895 + 161.597i −0.936103 + 0.540459i
\(300\) 0 0
\(301\) −225.973 + 391.396i −0.750740 + 1.30032i
\(302\) 93.9345 + 350.568i 0.311041 + 1.16082i
\(303\) 0 0
\(304\) 10.8450 6.26136i 0.0356743 0.0205966i
\(305\) −0.643397 + 2.43930i −0.00210950 + 0.00799772i
\(306\) 0 0
\(307\) 61.6534 61.6534i 0.200825 0.200825i −0.599528 0.800354i \(-0.704645\pi\)
0.800354 + 0.599528i \(0.204645\pi\)
\(308\) 188.398 703.112i 0.611682 2.28283i
\(309\) 0 0
\(310\) 572.677 2.23929i 1.84734 0.00722353i
\(311\) −306.228 + 530.402i −0.984655 + 1.70547i −0.341195 + 0.939993i \(0.610832\pi\)
−0.643460 + 0.765480i \(0.722502\pi\)
\(312\) 0 0
\(313\) 27.0473 100.942i 0.0864132 0.322499i −0.909165 0.416436i \(-0.863279\pi\)
0.995578 + 0.0939379i \(0.0299455\pi\)
\(314\) 762.953i 2.42979i
\(315\) 0 0
\(316\) 636.798 2.01519
\(317\) 404.227 + 108.312i 1.27516 + 0.341679i 0.832007 0.554765i \(-0.187192\pi\)
0.443156 + 0.896444i \(0.353859\pi\)
\(318\) 0 0
\(319\) 58.9573 + 34.0390i 0.184819 + 0.106705i
\(320\) 354.495 357.278i 1.10780 1.11649i
\(321\) 0 0
\(322\) 733.494 + 196.539i 2.27793 + 0.610370i
\(323\) −2.06206 2.06206i −0.00638408 0.00638408i
\(324\) 0 0
\(325\) −109.078 394.711i −0.335625 1.21450i
\(326\) 345.028 + 597.606i 1.05837 + 1.83315i
\(327\) 0 0
\(328\) 185.993 49.8366i 0.567051 0.151941i
\(329\) 275.051 + 158.801i 0.836021 + 0.482677i
\(330\) 0 0
\(331\) 110.378 + 191.181i 0.333470 + 0.577586i 0.983190 0.182587i \(-0.0584472\pi\)
−0.649720 + 0.760174i \(0.725114\pi\)
\(332\) 505.887 505.887i 1.52375 1.52375i
\(333\) 0 0
\(334\) 378.973i 1.13465i
\(335\) −2.35168 + 4.11027i −0.00701995 + 0.0122695i
\(336\) 0 0
\(337\) 22.3880 + 83.5532i 0.0664332 + 0.247932i 0.991155 0.132713i \(-0.0423687\pi\)
−0.924721 + 0.380645i \(0.875702\pi\)
\(338\) 296.953 79.5682i 0.878558 0.235409i
\(339\) 0 0
\(340\) −40.4253 23.1293i −0.118898 0.0680273i
\(341\) −388.043 −1.13796
\(342\) 0 0
\(343\) 497.354 + 497.354i 1.45001 + 1.45001i
\(344\) −154.225 + 89.0418i −0.448328 + 0.258843i
\(345\) 0 0
\(346\) −81.3739 + 140.944i −0.235185 + 0.407352i
\(347\) 112.526 + 419.953i 0.324283 + 1.21024i 0.915031 + 0.403384i \(0.132166\pi\)
−0.590748 + 0.806856i \(0.701167\pi\)
\(348\) 0 0
\(349\) 336.701 194.395i 0.964761 0.557005i 0.0671257 0.997745i \(-0.478617\pi\)
0.897635 + 0.440740i \(0.145284\pi\)
\(350\) −474.550 + 836.994i −1.35586 + 2.39141i
\(351\) 0 0
\(352\) −309.808 + 309.808i −0.880135 + 0.880135i
\(353\) 5.91365 22.0701i 0.0167526 0.0625214i −0.957044 0.289944i \(-0.906363\pi\)
0.973796 + 0.227423i \(0.0730299\pi\)
\(354\) 0 0
\(355\) −215.308 213.631i −0.606502 0.601777i
\(356\) 232.862 403.328i 0.654106 1.13294i
\(357\) 0 0
\(358\) 112.404 419.499i 0.313979 1.17178i
\(359\) 105.473i 0.293796i 0.989152 + 0.146898i \(0.0469289\pi\)
−0.989152 + 0.146898i \(0.953071\pi\)
\(360\) 0 0
\(361\) 357.945 0.991539
\(362\) −725.757 194.466i −2.00485 0.537199i
\(363\) 0 0
\(364\) −984.584 568.450i −2.70490 1.56168i
\(365\) 0.708543 + 181.203i 0.00194121 + 0.496446i
\(366\) 0 0
\(367\) 178.498 + 47.8284i 0.486371 + 0.130323i 0.493668 0.869651i \(-0.335656\pi\)
−0.00729667 + 0.999973i \(0.502323\pi\)
\(368\) −99.9664 99.9664i −0.271648 0.271648i
\(369\) 0 0
\(370\) −965.492 254.661i −2.60944 0.688272i
\(371\) −568.602 984.847i −1.53262 2.65458i
\(372\) 0 0
\(373\) −291.888 + 78.2112i −0.782542 + 0.209681i −0.627905 0.778290i \(-0.716087\pi\)
−0.154637 + 0.987971i \(0.549421\pi\)
\(374\) 46.9129 + 27.0852i 0.125436 + 0.0724202i
\(375\) 0 0
\(376\) 62.5735 + 108.380i 0.166419 + 0.288246i
\(377\) 75.1854 75.1854i 0.199431 0.199431i
\(378\) 0 0
\(379\) 142.748i 0.376643i 0.982107 + 0.188322i \(0.0603047\pi\)
−0.982107 + 0.188322i \(0.939695\pi\)
\(380\) −47.0721 + 12.8104i −0.123874 + 0.0337116i
\(381\) 0 0
\(382\) 14.4756 + 54.0237i 0.0378943 + 0.141423i
\(383\) 308.517 82.6668i 0.805526 0.215840i 0.167517 0.985869i \(-0.446425\pi\)
0.638009 + 0.770029i \(0.279758\pi\)
\(384\) 0 0
\(385\) 323.766 565.878i 0.840951 1.46981i
\(386\) 837.336 2.16926
\(387\) 0 0
\(388\) −369.615 369.615i −0.952616 0.952616i
\(389\) 67.7205 39.0984i 0.174089 0.100510i −0.410424 0.911895i \(-0.634619\pi\)
0.584512 + 0.811385i \(0.301286\pi\)
\(390\) 0 0
\(391\) −16.4610 + 28.5113i −0.0420997 + 0.0729188i
\(392\) 133.862 + 499.579i 0.341484 + 1.27444i
\(393\) 0 0
\(394\) −51.2385 + 29.5826i −0.130047 + 0.0750827i
\(395\) 551.484 + 145.461i 1.39616 + 0.368255i
\(396\) 0 0
\(397\) −140.027 + 140.027i −0.352714 + 0.352714i −0.861118 0.508405i \(-0.830235\pi\)
0.508405 + 0.861118i \(0.330235\pi\)
\(398\) −113.740 + 424.485i −0.285780 + 1.06654i
\(399\) 0 0
\(400\) 154.425 90.7748i 0.386062 0.226937i
\(401\) −172.582 + 298.920i −0.430378 + 0.745437i −0.996906 0.0786061i \(-0.974953\pi\)
0.566528 + 0.824043i \(0.308286\pi\)
\(402\) 0 0
\(403\) −156.862 + 585.417i −0.389236 + 1.45265i
\(404\) 130.802i 0.323767i
\(405\) 0 0
\(406\) −249.826 −0.615334
\(407\) 653.528 + 175.112i 1.60572 + 0.430251i
\(408\) 0 0
\(409\) −243.075 140.339i −0.594315 0.343128i 0.172487 0.985012i \(-0.444820\pi\)
−0.766802 + 0.641884i \(0.778153\pi\)
\(410\) 608.351 2.37879i 1.48378 0.00580192i
\(411\) 0 0
\(412\) −357.090 95.6821i −0.866724 0.232238i
\(413\) −460.650 460.650i −1.11538 1.11538i
\(414\) 0 0
\(415\) 553.668 322.553i 1.33414 0.777237i
\(416\) 342.152 + 592.624i 0.822480 + 1.42458i
\(417\) 0 0
\(418\) 54.8071 14.6855i 0.131117 0.0351328i
\(419\) −427.301 246.702i −1.01981 0.588789i −0.105762 0.994391i \(-0.533728\pi\)
−0.914049 + 0.405603i \(0.867062\pi\)
\(420\) 0 0
\(421\) −197.500 342.080i −0.469121 0.812542i 0.530256 0.847838i \(-0.322096\pi\)
−0.999377 + 0.0352961i \(0.988763\pi\)
\(422\) −424.587 + 424.587i −1.00613 + 1.00613i
\(423\) 0 0
\(424\) 448.102i 1.05684i
\(425\) −29.7260 29.2647i −0.0699436 0.0688581i
\(426\) 0 0
\(427\) 1.62355 + 6.05915i 0.00380221 + 0.0141901i
\(428\) −990.095 + 265.295i −2.31331 + 0.619848i
\(429\) 0 0
\(430\) −542.894 + 147.746i −1.26254 + 0.343594i
\(431\) 23.0490 0.0534779 0.0267389 0.999642i \(-0.491488\pi\)
0.0267389 + 0.999642i \(0.491488\pi\)
\(432\) 0 0
\(433\) −357.486 357.486i −0.825604 0.825604i 0.161302 0.986905i \(-0.448431\pi\)
−0.986905 + 0.161302i \(0.948431\pi\)
\(434\) 1233.22 712.001i 2.84152 1.64055i
\(435\) 0 0
\(436\) −199.590 + 345.700i −0.457775 + 0.792889i
\(437\) 8.92511 + 33.3090i 0.0204236 + 0.0762219i
\(438\) 0 0
\(439\) −596.116 + 344.168i −1.35790 + 0.783981i −0.989340 0.145624i \(-0.953481\pi\)
−0.368556 + 0.929606i \(0.620148\pi\)
\(440\) 221.973 129.316i 0.504484 0.293900i
\(441\) 0 0
\(442\) 59.8258 59.8258i 0.135352 0.135352i
\(443\) 87.0946 325.041i 0.196602 0.733728i −0.795245 0.606289i \(-0.792658\pi\)
0.991846 0.127439i \(-0.0406757\pi\)
\(444\) 0 0
\(445\) 293.795 296.101i 0.660212 0.665396i
\(446\) −30.7955 + 53.3394i −0.0690482 + 0.119595i
\(447\) 0 0
\(448\) 323.909 1208.85i 0.723012 2.69832i
\(449\) 387.090i 0.862115i 0.902324 + 0.431058i \(0.141859\pi\)
−0.902324 + 0.431058i \(0.858141\pi\)
\(450\) 0 0
\(451\) −412.216 −0.914004
\(452\) 427.307 + 114.497i 0.945370 + 0.253311i
\(453\) 0 0
\(454\) 563.155 + 325.138i 1.24043 + 0.716163i
\(455\) −722.827 717.196i −1.58863 1.57625i
\(456\) 0 0
\(457\) 193.284 + 51.7902i 0.422940 + 0.113327i 0.464010 0.885830i \(-0.346410\pi\)
−0.0410700 + 0.999156i \(0.513077\pi\)
\(458\) 158.324 + 158.324i 0.345685 + 0.345685i
\(459\) 0 0
\(460\) 277.234 + 475.877i 0.602683 + 1.03451i
\(461\) −352.588 610.700i −0.764832 1.32473i −0.940335 0.340249i \(-0.889489\pi\)
0.175503 0.984479i \(-0.443845\pi\)
\(462\) 0 0
\(463\) −163.673 + 43.8559i −0.353505 + 0.0947213i −0.431201 0.902256i \(-0.641910\pi\)
0.0776967 + 0.996977i \(0.475243\pi\)
\(464\) 40.2795 + 23.2554i 0.0868094 + 0.0501194i
\(465\) 0 0
\(466\) −247.695 429.020i −0.531534 0.920645i
\(467\) −47.2065 + 47.2065i −0.101085 + 0.101085i −0.755840 0.654756i \(-0.772771\pi\)
0.654756 + 0.755840i \(0.272771\pi\)
\(468\) 0 0
\(469\) 11.7750i 0.0251066i
\(470\) 103.827 + 381.514i 0.220909 + 0.811733i
\(471\) 0 0
\(472\) −66.4386 247.952i −0.140760 0.525323i
\(473\) 368.248 98.6718i 0.778538 0.208609i
\(474\) 0 0
\(475\) −43.6918 + 0.341695i −0.0919828 + 0.000719357i
\(476\) −115.809 −0.243297
\(477\) 0 0
\(478\) −620.519 620.519i −1.29816 1.29816i
\(479\) −463.239 + 267.451i −0.967095 + 0.558353i −0.898349 0.439281i \(-0.855233\pi\)
−0.0687458 + 0.997634i \(0.521900\pi\)
\(480\) 0 0
\(481\) 528.363 915.151i 1.09847 1.90260i
\(482\) −385.944 1440.36i −0.800714 2.98830i
\(483\) 0 0
\(484\) 53.2251 30.7295i 0.109969 0.0634908i
\(485\) −235.667 404.525i −0.485911 0.834073i
\(486\) 0 0
\(487\) 284.693 284.693i 0.584586 0.584586i −0.351574 0.936160i \(-0.614354\pi\)
0.936160 + 0.351574i \(0.114354\pi\)
\(488\) −0.639738 + 2.38754i −0.00131094 + 0.00489249i
\(489\) 0 0
\(490\) 6.38946 + 1634.04i 0.0130397 + 3.33478i
\(491\) −29.1153 + 50.4292i −0.0592979 + 0.102707i −0.894150 0.447767i \(-0.852220\pi\)
0.834853 + 0.550474i \(0.185553\pi\)
\(492\) 0 0
\(493\) 2.80328 10.4620i 0.00568617 0.0212211i
\(494\) 88.6206i 0.179394i
\(495\) 0 0
\(496\) −265.111 −0.534497
\(497\) −728.492 195.199i −1.46578 0.392754i
\(498\) 0 0
\(499\) −5.51828 3.18598i −0.0110587 0.00638474i 0.494460 0.869200i \(-0.335366\pi\)
−0.505519 + 0.862815i \(0.668699\pi\)
\(500\) −671.879 + 188.504i −1.34376 + 0.377008i
\(501\) 0 0
\(502\) 261.707 + 70.1241i 0.521328 + 0.139689i
\(503\) 452.328 + 452.328i 0.899261 + 0.899261i 0.995371 0.0961100i \(-0.0306401\pi\)
−0.0961100 + 0.995371i \(0.530640\pi\)
\(504\) 0 0
\(505\) −29.8784 + 113.278i −0.0591652 + 0.224312i
\(506\) −320.283 554.746i −0.632970 1.09634i
\(507\) 0 0
\(508\) 75.2628 20.1666i 0.148155 0.0396981i
\(509\) 505.851 + 292.053i 0.993814 + 0.573779i 0.906412 0.422395i \(-0.138810\pi\)
0.0874016 + 0.996173i \(0.472144\pi\)
\(510\) 0 0
\(511\) 225.287 + 390.208i 0.440874 + 0.763617i
\(512\) −310.943 + 310.943i −0.607311 + 0.607311i
\(513\) 0 0
\(514\) 571.684i 1.11223i
\(515\) −287.393 164.432i −0.558045 0.319285i
\(516\) 0 0
\(517\) −69.3409 258.784i −0.134122 0.500549i
\(518\) −2398.25 + 642.609i −4.62983 + 1.24056i
\(519\) 0 0
\(520\) −105.361 387.152i −0.202618 0.744522i
\(521\) 512.704 0.984076 0.492038 0.870574i \(-0.336252\pi\)
0.492038 + 0.870574i \(0.336252\pi\)
\(522\) 0 0
\(523\) −562.973 562.973i −1.07643 1.07643i −0.996827 0.0796030i \(-0.974635\pi\)
−0.0796030 0.996827i \(-0.525365\pi\)
\(524\) 187.837 108.448i 0.358467 0.206961i
\(525\) 0 0
\(526\) −474.085 + 821.140i −0.901303 + 1.56110i
\(527\) 15.9786 + 59.6331i 0.0303200 + 0.113156i
\(528\) 0 0
\(529\) −120.981 + 69.8485i −0.228698 + 0.132039i
\(530\) 361.069 1368.92i 0.681263 2.58286i
\(531\) 0 0
\(532\) −85.7750 + 85.7750i −0.161231 + 0.161231i
\(533\) −166.634 + 621.885i −0.312634 + 1.16676i
\(534\) 0 0
\(535\) −918.047 + 3.58977i −1.71598 + 0.00670985i
\(536\) −2.31990 + 4.01818i −0.00432817 + 0.00749661i
\(537\) 0 0
\(538\) −226.776 + 846.338i −0.421516 + 1.57312i
\(539\) 1107.22i 2.05421i
\(540\) 0 0
\(541\) −943.675 −1.74432 −0.872158 0.489224i \(-0.837280\pi\)
−0.872158 + 0.489224i \(0.837280\pi\)
\(542\) −391.675 104.949i −0.722648 0.193633i
\(543\) 0 0
\(544\) 60.3672 + 34.8530i 0.110969 + 0.0640681i
\(545\) −251.816 + 253.793i −0.462048 + 0.465676i
\(546\) 0 0
\(547\) −284.867 76.3299i −0.520781 0.139543i −0.0111530 0.999938i \(-0.503550\pi\)
−0.509628 + 0.860395i \(0.670217\pi\)
\(548\) 36.7702 + 36.7702i 0.0670989 + 0.0670989i
\(549\) 0 0
\(550\) 782.310 216.191i 1.42238 0.393074i
\(551\) −5.67247 9.82501i −0.0102949 0.0178312i
\(552\) 0 0
\(553\) 1369.87 367.055i 2.47716 0.663752i
\(554\) 433.191 + 250.103i 0.781932 + 0.451449i
\(555\) 0 0
\(556\) −143.470 248.497i −0.258040 0.446938i
\(557\) 154.478 154.478i 0.277340 0.277340i −0.554706 0.832046i \(-0.687169\pi\)
0.832046 + 0.554706i \(0.187169\pi\)
\(558\) 0 0
\(559\) 595.441i 1.06519i
\(560\) 221.196 386.607i 0.394994 0.690369i
\(561\) 0 0
\(562\) 19.8225 + 73.9786i 0.0352713 + 0.131634i
\(563\) 445.578 119.392i 0.791436 0.212065i 0.159615 0.987179i \(-0.448975\pi\)
0.631821 + 0.775115i \(0.282308\pi\)
\(564\) 0 0
\(565\) 343.905 + 196.765i 0.608681 + 0.348256i
\(566\) 365.105 0.645062
\(567\) 0 0
\(568\) −210.138 210.138i −0.369961 0.369961i
\(569\) −461.670 + 266.546i −0.811372 + 0.468446i −0.847432 0.530904i \(-0.821852\pi\)
0.0360604 + 0.999350i \(0.488519\pi\)
\(570\) 0 0
\(571\) 29.7159 51.4695i 0.0520419 0.0901392i −0.838831 0.544392i \(-0.816760\pi\)
0.890873 + 0.454253i \(0.150094\pi\)
\(572\) 248.216 + 926.354i 0.433944 + 1.61950i
\(573\) 0 0
\(574\) 1310.04 756.354i 2.28231 1.31769i
\(575\) 131.390 + 475.448i 0.228504 + 0.826867i
\(576\) 0 0
\(577\) 410.356 410.356i 0.711188 0.711188i −0.255595 0.966784i \(-0.582272\pi\)
0.966784 + 0.255595i \(0.0822715\pi\)
\(578\) −229.314 + 855.813i −0.396738 + 1.48064i
\(579\) 0 0
\(580\) −128.620 127.618i −0.221759 0.220032i
\(581\) 796.656 1379.85i 1.37118 2.37496i
\(582\) 0 0
\(583\) −248.282 + 926.601i −0.425870 + 1.58937i
\(584\) 177.543i 0.304012i
\(585\) 0 0
\(586\) 901.023 1.53758
\(587\) −553.331 148.264i −0.942642 0.252580i −0.245405 0.969421i \(-0.578921\pi\)
−0.697237 + 0.716841i \(0.745587\pi\)
\(588\) 0 0
\(589\) 56.0023 + 32.3330i 0.0950803 + 0.0548947i
\(590\) −3.17123 811.010i −0.00537497 1.37459i
\(591\) 0 0
\(592\) 446.490 + 119.637i 0.754205 + 0.202089i
\(593\) −526.790 526.790i −0.888347 0.888347i 0.106017 0.994364i \(-0.466190\pi\)
−0.994364 + 0.106017i \(0.966190\pi\)
\(594\) 0 0
\(595\) −100.294 26.4538i −0.168561 0.0444602i
\(596\) 387.527 + 671.216i 0.650213 + 1.12620i
\(597\) 0 0
\(598\) −966.382 + 258.941i −1.61602 + 0.433012i
\(599\) −372.062 214.810i −0.621139 0.358615i 0.156173 0.987730i \(-0.450084\pi\)
−0.777312 + 0.629115i \(0.783418\pi\)
\(600\) 0 0
\(601\) −207.594 359.564i −0.345415 0.598276i 0.640014 0.768363i \(-0.278928\pi\)
−0.985429 + 0.170087i \(0.945595\pi\)
\(602\) −989.264 + 989.264i −1.64330 + 1.64330i
\(603\) 0 0
\(604\) 654.519i 1.08364i
\(605\) 53.1137 14.4546i 0.0877913 0.0238919i
\(606\) 0 0
\(607\) −192.319 717.743i −0.316835 1.18244i −0.922269 0.386548i \(-0.873667\pi\)
0.605434 0.795895i \(-0.292999\pi\)
\(608\) 70.5255 18.8972i 0.115996 0.0310810i
\(609\) 0 0
\(610\) −3.87817 + 6.77826i −0.00635766 + 0.0111119i
\(611\) −418.442 −0.684847
\(612\) 0 0
\(613\) 764.432 + 764.432i 1.24703 + 1.24703i 0.957023 + 0.290010i \(0.0936588\pi\)
0.290010 + 0.957023i \(0.406341\pi\)
\(614\) 233.746 134.953i 0.380694 0.219794i
\(615\) 0 0
\(616\) 319.390 553.200i 0.518491 0.898052i
\(617\) 194.165 + 724.634i 0.314692 + 1.17445i 0.924276 + 0.381725i \(0.124670\pi\)
−0.609584 + 0.792722i \(0.708663\pi\)
\(618\) 0 0
\(619\) 1042.50 601.886i 1.68416 0.972352i 0.725320 0.688412i \(-0.241692\pi\)
0.958842 0.283940i \(-0.0916416\pi\)
\(620\) 998.623 + 263.399i 1.61068 + 0.424838i
\(621\) 0 0
\(622\) −1340.60 + 1340.60i −2.15531 + 2.15531i
\(623\) 268.446 1001.85i 0.430893 1.60811i
\(624\) 0 0
\(625\) −624.924 + 9.77511i −0.999878 + 0.0156402i
\(626\) 161.748 280.156i 0.258384 0.447534i
\(627\) 0 0
\(628\) −356.113 + 1329.03i −0.567059 + 2.11629i
\(629\) 107.643i 0.171133i
\(630\) 0 0
\(631\) 133.973 0.212318 0.106159 0.994349i \(-0.466145\pi\)
0.106159 + 0.994349i \(0.466145\pi\)
\(632\) 539.780 + 144.634i 0.854082 + 0.228851i
\(633\) 0 0
\(634\) 1121.90 + 647.728i 1.76955 + 1.02165i
\(635\) 69.7861 0.272879i 0.109899 0.000429731i
\(636\) 0 0
\(637\) −1670.39 447.581i −2.62228 0.702638i
\(638\) 149.016 + 149.016i 0.233568 + 0.233568i
\(639\) 0 0
\(640\) 624.276 363.688i 0.975431 0.568262i
\(641\) 181.019 + 313.534i 0.282401 + 0.489133i 0.971976 0.235082i \(-0.0755357\pi\)
−0.689574 + 0.724215i \(0.742202\pi\)
\(642\) 0 0
\(643\) 332.053 88.9734i 0.516413 0.138372i 0.00880592 0.999961i \(-0.497197\pi\)
0.507607 + 0.861589i \(0.330530\pi\)
\(644\) 1185.98 + 684.725i 1.84158 + 1.06324i
\(645\) 0 0
\(646\) −4.51364 7.81785i −0.00698705 0.0121019i
\(647\) −627.638 + 627.638i −0.970075 + 0.970075i −0.999565 0.0294903i \(-0.990612\pi\)
0.0294903 + 0.999565i \(0.490612\pi\)
\(648\) 0 0
\(649\) 549.537i 0.846744i
\(650\) −9.91348 1267.62i −0.0152515 1.95018i
\(651\) 0 0
\(652\) 322.088 + 1202.05i 0.493999 + 1.84363i
\(653\) −468.983 + 125.664i −0.718197 + 0.192440i −0.599367 0.800474i \(-0.704581\pi\)
−0.118830 + 0.992915i \(0.537914\pi\)
\(654\) 0 0
\(655\) 187.444 51.0117i 0.286173 0.0778805i
\(656\) −281.625 −0.429307
\(657\) 0 0
\(658\) 695.198 + 695.198i 1.05653 + 1.05653i
\(659\) 1042.51 601.892i 1.58195 0.913342i 0.587380 0.809311i \(-0.300159\pi\)
0.994574 0.104031i \(-0.0331740\pi\)
\(660\) 0 0
\(661\) 394.072 682.552i 0.596175 1.03261i −0.397205 0.917730i \(-0.630020\pi\)
0.993380 0.114875i \(-0.0366468\pi\)
\(662\) 176.869 + 660.084i 0.267174 + 0.997105i
\(663\) 0 0
\(664\) 543.713 313.913i 0.818845 0.472760i
\(665\) −93.8765 + 54.6902i −0.141168 + 0.0822408i
\(666\) 0 0
\(667\) −90.5644 + 90.5644i −0.135779 + 0.135779i
\(668\) −176.888 + 660.154i −0.264802 + 0.988254i
\(669\) 0 0
\(670\) −10.3249 + 10.4059i −0.0154103 + 0.0155312i
\(671\) 2.64575 4.58258i 0.00394300 0.00682947i
\(672\) 0 0
\(673\) 73.1765 273.098i 0.108732 0.405793i −0.890010 0.455941i \(-0.849303\pi\)
0.998742 + 0.0501484i \(0.0159694\pi\)
\(674\) 267.769i 0.397283i
\(675\) 0 0
\(676\) 554.417 0.820144
\(677\) 678.626 + 181.837i 1.00240 + 0.268593i 0.722451 0.691422i \(-0.243015\pi\)
0.279950 + 0.960015i \(0.409682\pi\)
\(678\) 0 0
\(679\) −1008.16 582.060i −1.48477 0.857231i
\(680\) −29.0131 28.7871i −0.0426663 0.0423340i
\(681\) 0 0
\(682\) −1160.29 310.898i −1.70130 0.455862i
\(683\) 328.645 + 328.645i 0.481179 + 0.481179i 0.905508 0.424329i \(-0.139490\pi\)
−0.424329 + 0.905508i \(0.639490\pi\)
\(684\) 0 0
\(685\) 23.4447 + 40.2432i 0.0342258 + 0.0587492i
\(686\) 1088.66 + 1885.61i 1.58697 + 2.74870i
\(687\) 0 0
\(688\) 251.587 67.4125i 0.365678 0.0979832i
\(689\) 1297.54 + 749.136i 1.88323 + 1.08728i
\(690\) 0 0
\(691\) 13.7659 + 23.8433i 0.0199217 + 0.0345054i 0.875814 0.482648i \(-0.160325\pi\)
−0.855893 + 0.517153i \(0.826992\pi\)
\(692\) −207.536 + 207.536i −0.299908 + 0.299908i
\(693\) 0 0
\(694\) 1345.85i 1.93927i
\(695\) −67.4857 247.977i −0.0971017 0.356802i
\(696\) 0 0
\(697\) 16.9740 + 63.3479i 0.0243530 + 0.0908865i
\(698\) 1162.52 311.495i 1.66550 0.446269i
\(699\) 0 0
\(700\) −1217.32 + 1236.51i −1.73903 + 1.76644i
\(701\) 520.641 0.742712 0.371356 0.928491i \(-0.378893\pi\)
0.371356 + 0.928491i \(0.378893\pi\)
\(702\) 0 0
\(703\) −79.7261 79.7261i −0.113408 0.113408i
\(704\) −914.258 + 527.847i −1.29866 + 0.749782i
\(705\) 0 0
\(706\) 35.3648 61.2536i 0.0500917 0.0867614i
\(707\) 75.3950 + 281.378i 0.106641 + 0.397989i
\(708\) 0 0
\(709\) 806.321 465.530i 1.13727 0.656601i 0.191514 0.981490i \(-0.438660\pi\)
0.945752 + 0.324889i \(0.105327\pi\)
\(710\) −472.632 811.280i −0.665679 1.14265i
\(711\) 0 0
\(712\) 288.991 288.991i 0.405886 0.405886i
\(713\) 188.948 705.163i 0.265004 0.989008i
\(714\) 0 0
\(715\) 3.35866 + 858.945i 0.00469743 + 1.20132i
\(716\) 391.607 678.283i 0.546937 0.947323i
\(717\) 0 0
\(718\) −84.5040 + 315.373i −0.117694 + 0.439239i
\(719\) 441.340i 0.613824i 0.951738 + 0.306912i \(0.0992958\pi\)
−0.951738 + 0.306912i \(0.900704\pi\)
\(720\) 0 0
\(721\) −823.317 −1.14191
\(722\) 1070.29 + 286.784i 1.48240 + 0.397207i
\(723\) 0 0
\(724\) −1173.47 677.503i −1.62081 0.935777i
\(725\) −82.2373 139.901i −0.113431 0.192967i
\(726\) 0 0
\(727\) 256.079 + 68.6162i 0.352241 + 0.0943826i 0.430601 0.902542i \(-0.358302\pi\)
−0.0783600 + 0.996925i \(0.524968\pi\)
\(728\) −705.470 705.470i −0.969052 0.969052i
\(729\) 0 0
\(730\) −143.060 + 542.381i −0.195972 + 0.742988i
\(731\) −30.3271 52.5280i −0.0414871 0.0718578i
\(732\) 0 0
\(733\) 289.109 77.4665i 0.394419 0.105684i −0.0561580 0.998422i \(-0.517885\pi\)
0.450577 + 0.892738i \(0.351218\pi\)
\(734\) 495.406 + 286.023i 0.674941 + 0.389677i
\(735\) 0 0
\(736\) −412.138 713.844i −0.559970 0.969896i
\(737\) 7.02355 7.02355i 0.00952992 0.00952992i
\(738\) 0 0
\(739\) 784.720i 1.06187i 0.847413 + 0.530934i \(0.178159\pi\)
−0.847413 + 0.530934i \(0.821841\pi\)
\(740\) −1562.98 894.256i −2.11214 1.20845i
\(741\) 0 0
\(742\) −911.120 3400.35i −1.22792 4.58268i
\(743\) −1172.26 + 314.107i −1.57774 + 0.422755i −0.938226 0.346022i \(-0.887532\pi\)
−0.639517 + 0.768777i \(0.720866\pi\)
\(744\) 0 0
\(745\) 182.285 + 669.811i 0.244678 + 0.899075i
\(746\) −935.435 −1.25393
\(747\) 0 0
\(748\) 69.0780 + 69.0780i 0.0923503 + 0.0923503i
\(749\) −1976.95 + 1141.40i −2.63946 + 1.52389i
\(750\) 0 0
\(751\) −55.7023 + 96.4792i −0.0741708 + 0.128468i −0.900725 0.434389i \(-0.856964\pi\)
0.826555 + 0.562857i \(0.190298\pi\)
\(752\) −47.3736 176.801i −0.0629968 0.235107i
\(753\) 0 0
\(754\) 285.050 164.573i 0.378050 0.218267i
\(755\) −149.509 + 566.830i −0.198025 + 0.750768i
\(756\) 0 0
\(757\) 668.748 668.748i 0.883418 0.883418i −0.110462 0.993880i \(-0.535233\pi\)
0.993880 + 0.110462i \(0.0352330\pi\)
\(758\) −114.369 + 426.829i −0.150882 + 0.563099i
\(759\) 0 0
\(760\) −42.8101 + 0.167397i −0.0563290 + 0.000220259i
\(761\) 627.722 1087.25i 0.824864 1.42871i −0.0771588 0.997019i \(-0.524585\pi\)
0.902023 0.431688i \(-0.142082\pi\)
\(762\) 0 0
\(763\) −230.090 + 858.707i −0.301559 + 1.12543i
\(764\) 100.864i 0.132020i
\(765\) 0 0
\(766\) 988.726 1.29076
\(767\) 829.054 + 222.144i 1.08090 + 0.289627i
\(768\) 0 0
\(769\) 456.845 + 263.759i 0.594076 + 0.342990i 0.766708 0.641996i \(-0.221894\pi\)
−0.172631 + 0.984987i \(0.555227\pi\)
\(770\) 1421.47 1432.63i 1.84606 1.86056i
\(771\) 0 0
\(772\) 1458.60 + 390.831i 1.88938 + 0.506258i
\(773\) −97.6183 97.6183i −0.126285 0.126285i 0.641139 0.767424i \(-0.278462\pi\)
−0.767424 + 0.641139i \(0.778462\pi\)
\(774\) 0 0
\(775\) 804.666 + 456.221i 1.03828 + 0.588673i
\(776\) −229.354 397.252i −0.295559 0.511923i
\(777\) 0 0
\(778\) 233.816 62.6508i 0.300535 0.0805280i
\(779\) 59.4909 + 34.3471i 0.0763683 + 0.0440913i
\(780\) 0 0
\(781\) 318.099 + 550.963i 0.407297 + 0.705459i
\(782\) −72.0629 + 72.0629i −0.0921521 + 0.0921521i
\(783\) 0 0
\(784\) 756.450i 0.964860i
\(785\) −611.987 + 1069.63i −0.779601 + 1.36259i
\(786\) 0 0
\(787\) −6.55255 24.4544i −0.00832598 0.0310730i 0.961638 0.274322i \(-0.0884534\pi\)
−0.969964 + 0.243249i \(0.921787\pi\)
\(788\) −103.063 + 27.6157i −0.130791 + 0.0350453i
\(789\) 0 0
\(790\) 1532.45 + 876.787i 1.93981 + 1.10986i
\(791\) 985.211 1.24553
\(792\) 0 0
\(793\) −5.84394 5.84394i −0.00736941 0.00736941i
\(794\) −530.884 + 306.506i −0.668619 + 0.386028i
\(795\) 0 0
\(796\) −396.261 + 686.345i −0.497816 + 0.862242i
\(797\) −39.8418 148.692i −0.0499897 0.186564i 0.936416 0.350891i \(-0.114121\pi\)
−0.986406 + 0.164327i \(0.947455\pi\)
\(798\) 0 0
\(799\) −36.9137 + 21.3121i −0.0461998 + 0.0266735i
\(800\) 1006.67 278.193i 1.25834 0.347741i
\(801\) 0 0
\(802\) −755.528 + 755.528i −0.942055 + 0.942055i
\(803\) 98.3723 367.130i 0.122506 0.457198i
\(804\) 0 0
\(805\) 870.679 + 863.896i 1.08159 + 1.07316i
\(806\) −938.065 + 1624.78i −1.16385 + 2.01585i
\(807\) 0 0
\(808\) −29.7085 + 110.874i −0.0367680 + 0.137220i
\(809\) 992.609i 1.22696i −0.789711 0.613479i \(-0.789769\pi\)
0.789711 0.613479i \(-0.210231\pi\)
\(810\) 0 0
\(811\) 815.730 1.00583 0.502916 0.864335i \(-0.332261\pi\)
0.502916 + 0.864335i \(0.332261\pi\)
\(812\) −435.186 116.608i −0.535943 0.143605i
\(813\) 0 0
\(814\) 1813.81 + 1047.20i 2.22827 + 1.28649i
\(815\) 4.35824 + 1114.58i 0.00534754 + 1.36758i
\(816\) 0 0
\(817\) −61.3671 16.4433i −0.0751128 0.0201264i
\(818\) −614.378 614.378i −0.751073 0.751073i
\(819\) 0 0
\(820\) 1060.83 + 279.808i 1.29370 + 0.341229i
\(821\) −589.787 1021.54i −0.718377 1.24427i −0.961643 0.274305i \(-0.911552\pi\)
0.243266 0.969960i \(-0.421781\pi\)
\(822\) 0 0
\(823\) −1199.38 + 321.372i −1.45732 + 0.390489i −0.898565 0.438841i \(-0.855389\pi\)
−0.558759 + 0.829330i \(0.688722\pi\)
\(824\) −280.955 162.209i −0.340964 0.196856i
\(825\) 0 0
\(826\) −1008.32 1746.46i −1.22072 2.11435i
\(827\) 537.516 537.516i 0.649959 0.649959i −0.303024 0.952983i \(-0.597996\pi\)
0.952983 + 0.303024i \(0.0979962\pi\)
\(828\) 0 0
\(829\) 600.964i 0.724926i −0.931998 0.362463i \(-0.881936\pi\)
0.931998 0.362463i \(-0.118064\pi\)
\(830\) 1913.95 520.870i 2.30596 0.627554i
\(831\) 0 0
\(832\) 426.752 + 1592.66i 0.512923 + 1.91426i
\(833\) −170.153 + 45.5925i −0.204266 + 0.0547328i
\(834\) 0 0
\(835\) −303.985 + 531.304i −0.364054 + 0.636293i
\(836\) 102.326 0.122400
\(837\) 0 0
\(838\) −1080.01 1080.01i −1.28880 1.28880i
\(839\) 83.9864 48.4895i 0.100103 0.0577945i −0.449113 0.893475i \(-0.648260\pi\)
0.549216 + 0.835681i \(0.314927\pi\)
\(840\) 0 0
\(841\) −399.432 + 691.836i −0.474949 + 0.822635i
\(842\) −316.471 1181.09i −0.375857 1.40272i
\(843\) 0 0
\(844\) −937.791 + 541.434i −1.11113 + 0.641509i
\(845\) 480.140 + 126.643i 0.568213 + 0.149873i
\(846\) 0 0
\(847\) 96.7841 96.7841i 0.114267 0.114267i
\(848\) −169.626 + 633.053i −0.200031 + 0.746525i
\(849\) 0 0
\(850\) −65.4370 111.320i −0.0769847 0.130965i
\(851\) −636.438 + 1102.34i −0.747871 + 1.29535i
\(852\) 0 0
\(853\) 222.628 830.861i 0.260995 0.974045i −0.703662 0.710535i \(-0.748453\pi\)
0.964657 0.263510i \(-0.0848803\pi\)
\(854\) 19.4182i 0.0227380i
\(855\) 0 0
\(856\) −899.506 −1.05082
\(857\) 1302.12 + 348.902i 1.51939 + 0.407120i 0.919541 0.392993i \(-0.128560\pi\)
0.599850 + 0.800113i \(0.295227\pi\)
\(858\) 0 0
\(859\) 124.517 + 71.8901i 0.144956 + 0.0836905i 0.570724 0.821142i \(-0.306663\pi\)
−0.425768 + 0.904832i \(0.639996\pi\)
\(860\) −1014.66 + 3.96754i −1.17984 + 0.00461342i
\(861\) 0 0
\(862\) 68.9186 + 18.4667i 0.0799519 + 0.0214231i
\(863\) −945.308 945.308i −1.09537 1.09537i −0.994944 0.100430i \(-0.967978\pi\)
−0.100430 0.994944i \(-0.532022\pi\)
\(864\) 0 0
\(865\) −227.138 + 132.325i −0.262587 + 0.152977i
\(866\) −782.502 1355.33i −0.903582 1.56505i
\(867\) 0 0
\(868\) 2480.55 664.661i 2.85777 0.765738i
\(869\) −1036.04 598.158i −1.19222 0.688329i
\(870\) 0 0
\(871\) −7.75682 13.4352i −0.00890565 0.0154250i
\(872\) −247.699 + 247.699i −0.284059 + 0.284059i
\(873\) 0 0
\(874\) 106.748i 0.122137i
\(875\) −1336.68 + 792.782i −1.52763 + 0.906036i
\(876\) 0 0
\(877\) 299.426 + 1117.47i 0.341421 + 1.27420i 0.896738 + 0.442561i \(0.145930\pi\)
−0.555318 + 0.831638i \(0.687403\pi\)
\(878\) −2058.19 + 551.490i −2.34418 + 0.628121i
\(879\) 0 0
\(880\) −362.543 + 98.6640i −0.411980 + 0.112118i
\(881\) −1608.71 −1.82601 −0.913003 0.407952i \(-0.866243\pi\)
−0.913003 + 0.407952i \(0.866243\pi\)
\(882\) 0 0
\(883\) −12.3011 12.3011i −0.0139311 0.0139311i 0.700107 0.714038i \(-0.253136\pi\)
−0.714038 + 0.700107i \(0.753136\pi\)
\(884\) 132.138 76.2898i 0.149477 0.0863007i
\(885\) 0 0
\(886\) 520.842 902.125i 0.587858 1.01820i
\(887\) −86.4257 322.545i −0.0974360 0.363636i 0.899942 0.436011i \(-0.143609\pi\)
−0.997378 + 0.0723746i \(0.976942\pi\)
\(888\) 0 0
\(889\) 150.280 86.7640i 0.169044 0.0975973i
\(890\) 1115.71 649.984i 1.25360 0.730319i
\(891\) 0 0
\(892\) −78.5409 + 78.5409i −0.0880504 + 0.0880504i
\(893\) −11.5554 + 43.1253i −0.0129400 + 0.0482926i
\(894\) 0 0
\(895\) 494.078 497.957i 0.552043 0.556377i
\(896\) 898.252 1555.82i 1.00251 1.73640i
\(897\) 0 0
\(898\) −310.134 + 1157.43i −0.345361 + 1.28890i
\(899\) 240.176i 0.267159i
\(900\) 0 0
\(901\) 152.620 0.169390
\(902\) −1232.56 330.265i −1.36648 0.366147i
\(903\) 0 0
\(904\) 336.200 + 194.105i 0.371903 + 0.214718i
\(905\) −861.495 854.784i −0.951929 0.944513i
\(906\) 0 0
\(907\) −171.869 46.0521i −0.189491 0.0507741i 0.162825 0.986655i \(-0.447939\pi\)
−0.352317 + 0.935881i \(0.614606\pi\)
\(908\) 829.232 + 829.232i 0.913251 + 0.913251i
\(909\) 0 0
\(910\) −1586.71 2723.61i −1.74363 2.99298i
\(911\) 604.208 + 1046.52i 0.663236 + 1.14876i 0.979760 + 0.200175i \(0.0641510\pi\)
−0.316524 + 0.948585i \(0.602516\pi\)
\(912\) 0 0
\(913\) −1298.24 + 347.863i −1.42195 + 0.381011i
\(914\) 536.443 + 309.715i 0.586918 + 0.338857i
\(915\) 0 0
\(916\) 201.895 + 349.692i 0.220409 + 0.381760i
\(917\) 341.561 341.561i 0.372476 0.372476i
\(918\) 0 0
\(919\) 58.7205i 0.0638960i −0.999490 0.0319480i \(-0.989829\pi\)
0.999490 0.0319480i \(-0.0101711\pi\)
\(920\) 126.912 + 466.342i 0.137948 + 0.506894i
\(921\) 0 0
\(922\) −564.982 2108.54i −0.612778 2.28692i
\(923\) 959.793 257.176i 1.03986 0.278630i
\(924\) 0 0
\(925\) −1149.31 1131.47i −1.24250 1.22321i
\(926\) −524.534 −0.566451
\(927\) 0 0
\(928\) 191.753 + 191.753i 0.206630 + 0.206630i
\(929\) 1322.56 763.581i 1.42364 0.821939i 0.427032 0.904237i \(-0.359559\pi\)
0.996608 + 0.0822977i \(0.0262258\pi\)
\(930\) 0 0
\(931\) −92.2568 + 159.793i −0.0990943 + 0.171636i
\(932\) −231.226 862.948i −0.248097 0.925910i
\(933\) 0 0
\(934\) −178.973 + 103.330i −0.191620 + 0.110632i
\(935\) 44.0442 + 75.6025i 0.0471061 + 0.0808583i
\(936\) 0 0
\(937\) −566.027 + 566.027i −0.604085 + 0.604085i −0.941394 0.337309i \(-0.890483\pi\)
0.337309 + 0.941394i \(0.390483\pi\)
\(938\) −9.43405 + 35.2084i −0.0100576 + 0.0375356i
\(939\) 0 0
\(940\) 2.78816 + 713.043i 0.00296613 + 0.758557i
\(941\) −532.845 + 922.914i −0.566254 + 0.980780i 0.430678 + 0.902506i \(0.358274\pi\)
−0.996932 + 0.0782748i \(0.975059\pi\)
\(942\) 0 0
\(943\) 200.718 749.090i 0.212851 0.794369i
\(944\) 375.443i 0.397715i
\(945\) 0 0
\(946\) 1180.15 1.24752
\(947\) 493.784 + 132.309i 0.521419 + 0.139714i 0.509923 0.860220i \(-0.329674\pi\)
0.0114960 + 0.999934i \(0.496341\pi\)
\(948\) 0 0
\(949\) −514.102 296.817i −0.541730 0.312768i
\(950\) −130.916 33.9839i −0.137807 0.0357725i
\(951\) 0 0
\(952\) −98.1655 26.3034i −0.103115 0.0276296i
\(953\) −477.641 477.641i −0.501198 0.501198i 0.410612 0.911810i \(-0.365315\pi\)
−0.911810 + 0.410612i \(0.865315\pi\)
\(954\) 0 0
\(955\) −23.0398 + 87.3504i −0.0241254 + 0.0914664i
\(956\) −791.286 1370.55i −0.827705 1.43363i
\(957\) 0 0
\(958\) −1599.41 + 428.560i −1.66953 + 0.447349i
\(959\) 100.294 + 57.9047i 0.104582 + 0.0603803i
\(960\) 0 0
\(961\) −204.000 353.338i −0.212279 0.367678i
\(962\) 2313.07 2313.07i 2.40444 2.40444i
\(963\) 0 0
\(964\) 2689.19i 2.78962i
\(965\) 1173.91 + 671.651i 1.21649 + 0.696012i
\(966\) 0 0
\(967\) 124.204 + 463.536i 0.128443 + 0.479355i 0.999939 0.0110472i \(-0.00351651\pi\)
−0.871496 + 0.490402i \(0.836850\pi\)
\(968\) 52.0956 13.9590i 0.0538177 0.0144204i
\(969\) 0 0
\(970\) −380.563 1398.38i −0.392333 1.44163i
\(971\) −364.302 −0.375182 −0.187591 0.982247i \(-0.560068\pi\)
−0.187591 + 0.982247i \(0.560068\pi\)
\(972\) 0 0
\(973\) −451.866 451.866i −0.464404 0.464404i
\(974\) 1079.35 623.165i 1.10817 0.639800i
\(975\) 0 0
\(976\) 1.80757 3.13081i 0.00185202 0.00320780i
\(977\) −21.6947 80.9659i −0.0222055 0.0828719i 0.953934 0.300017i \(-0.0969923\pi\)
−0.976139 + 0.217145i \(0.930326\pi\)
\(978\) 0 0
\(979\) −757.709 + 437.464i −0.773962 + 0.446847i
\(980\) −751.567 + 2849.41i −0.766906 + 2.90756i
\(981\) 0 0
\(982\) −127.461 + 127.461i −0.129797 + 0.129797i
\(983\) −4.93067 + 18.4015i −0.00501595 + 0.0187198i −0.968388 0.249447i \(-0.919751\pi\)
0.963373 + 0.268167i \(0.0864178\pi\)
\(984\) 0 0
\(985\) −95.5634 + 0.373674i −0.0970187 + 0.000379365i
\(986\) 16.7642 29.0364i 0.0170022 0.0294486i
\(987\) 0 0
\(988\) 41.3642 154.373i 0.0418666 0.156248i
\(989\) 717.237i 0.725214i
\(990\) 0 0
\(991\) 522.405 0.527149 0.263574 0.964639i \(-0.415099\pi\)
0.263574 + 0.964639i \(0.415099\pi\)
\(992\) −1493.05 400.061i −1.50509 0.403288i
\(993\) 0 0
\(994\) −2021.87 1167.33i −2.03407 1.17437i
\(995\) −499.951 + 503.876i −0.502463 + 0.506408i
\(996\) 0 0
\(997\) −573.696 153.721i −0.575422 0.154184i −0.0406400 0.999174i \(-0.512940\pi\)
−0.534782 + 0.844990i \(0.679606\pi\)
\(998\) −13.9476 13.9476i −0.0139756 0.0139756i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.l.i.28.2 8
3.2 odd 2 405.3.l.e.28.1 8
5.2 odd 4 405.3.l.e.352.1 8
9.2 odd 6 inner 405.3.l.i.298.2 8
9.4 even 3 405.3.g.d.163.1 yes 8
9.5 odd 6 405.3.g.d.163.4 yes 8
9.7 even 3 405.3.l.e.298.1 8
15.2 even 4 inner 405.3.l.i.352.2 8
45.2 even 12 405.3.l.e.217.1 8
45.7 odd 12 inner 405.3.l.i.217.2 8
45.22 odd 12 405.3.g.d.82.1 8
45.32 even 12 405.3.g.d.82.4 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
405.3.g.d.82.1 8 45.22 odd 12
405.3.g.d.82.4 yes 8 45.32 even 12
405.3.g.d.163.1 yes 8 9.4 even 3
405.3.g.d.163.4 yes 8 9.5 odd 6
405.3.l.e.28.1 8 3.2 odd 2
405.3.l.e.217.1 8 45.2 even 12
405.3.l.e.298.1 8 9.7 even 3
405.3.l.e.352.1 8 5.2 odd 4
405.3.l.i.28.2 8 1.1 even 1 trivial
405.3.l.i.217.2 8 45.7 odd 12 inner
405.3.l.i.298.2 8 9.2 odd 6 inner
405.3.l.i.352.2 8 15.2 even 4 inner