Properties

Label 405.3.l.j.298.2
Level $405$
Weight $3$
Character 405.298
Analytic conductor $11.035$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,3,Mod(28,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([4, 9]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.28");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.l (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 256x^{12} + 15630x^{8} + 235936x^{4} + 28561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 298.2
Root \(1.54374 - 1.54374i\) of defining polynomial
Character \(\chi\) \(=\) 405.298
Dual form 405.3.l.j.352.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.565047 - 2.10878i) q^{2} +(-0.663588 + 0.383123i) q^{4} +(-2.48091 - 4.34109i) q^{5} +(0.528192 + 1.97124i) q^{7} +(-4.99206 - 4.99206i) q^{8} +(-7.75259 + 7.68463i) q^{10} +(6.33336 - 10.9697i) q^{11} +(3.44531 - 12.8581i) q^{13} +(3.85846 - 2.22768i) q^{14} +(-9.23893 + 16.0023i) q^{16} +(-16.3208 + 16.3208i) q^{17} +9.12517i q^{19} +(3.30948 + 1.93020i) q^{20} +(-26.7114 - 7.15730i) q^{22} +(5.73162 - 21.3907i) q^{23} +(-12.6901 + 21.5397i) q^{25} -29.0616 q^{26} +(-1.10573 - 1.10573i) q^{28} +(-16.6416 - 9.60806i) q^{29} +(-9.32320 - 16.1483i) q^{31} +(11.6886 + 3.13196i) q^{32} +(43.6390 + 25.1950i) q^{34} +(7.24692 - 7.18340i) q^{35} +(-32.6377 + 32.6377i) q^{37} +(19.2430 - 5.15615i) q^{38} +(-9.28611 + 34.0559i) q^{40} +(25.8234 + 44.7275i) q^{41} +(-46.1316 + 12.3609i) q^{43} +9.70583i q^{44} -48.3470 q^{46} +(-13.7731 - 51.4021i) q^{47} +(38.8285 - 22.4176i) q^{49} +(52.5932 + 14.5898i) q^{50} +(2.63995 + 9.85244i) q^{52} +(18.2998 + 18.2998i) q^{53} +(-63.3330 - 0.278790i) q^{55} +(7.20378 - 12.4773i) q^{56} +(-10.8580 + 40.5226i) q^{58} +(-85.9329 + 49.6134i) q^{59} +(51.7677 - 89.6644i) q^{61} +(-28.7851 + 28.7851i) q^{62} +47.4929i q^{64} +(-64.3655 + 16.9434i) q^{65} +(-18.9237 - 5.07060i) q^{67} +(4.57742 - 17.0832i) q^{68} +(-19.2431 - 11.2232i) q^{70} +54.5913 q^{71} +(-8.13786 - 8.13786i) q^{73} +(87.2677 + 50.3840i) q^{74} +(-3.49606 - 6.05535i) q^{76} +(24.9691 + 6.69046i) q^{77} +(122.145 + 70.5203i) q^{79} +(92.3884 + 0.406690i) q^{80} +(79.7291 - 79.7291i) q^{82} +(-65.8143 + 17.6349i) q^{83} +(111.341 + 30.3595i) q^{85} +(52.1330 + 90.2970i) q^{86} +(-86.3781 + 23.1449i) q^{88} -59.3859i q^{89} +27.1661 q^{91} +(4.39183 + 16.3905i) q^{92} +(-100.613 + 58.0892i) q^{94} +(39.6132 - 22.6388i) q^{95} +(-29.4385 - 109.866i) q^{97} +(-69.2138 - 69.2138i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} + 12 q^{5} - 20 q^{7} - 56 q^{10} + 22 q^{13} - 168 q^{14} + 16 q^{16} - 96 q^{20} - 16 q^{22} + 36 q^{23} + 46 q^{25} + 176 q^{28} - 252 q^{29} - 160 q^{31} - 114 q^{32} + 4 q^{37} + 192 q^{38}+ \cdots - 152 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.565047 2.10878i −0.282523 1.05439i −0.950630 0.310326i \(-0.899562\pi\)
0.668107 0.744065i \(-0.267105\pi\)
\(3\) 0 0
\(4\) −0.663588 + 0.383123i −0.165897 + 0.0957807i
\(5\) −2.48091 4.34109i −0.496183 0.868218i
\(6\) 0 0
\(7\) 0.528192 + 1.97124i 0.0754560 + 0.281605i 0.993336 0.115252i \(-0.0367675\pi\)
−0.917880 + 0.396857i \(0.870101\pi\)
\(8\) −4.99206 4.99206i −0.624008 0.624008i
\(9\) 0 0
\(10\) −7.75259 + 7.68463i −0.775259 + 0.768463i
\(11\) 6.33336 10.9697i 0.575760 0.997246i −0.420198 0.907432i \(-0.638039\pi\)
0.995959 0.0898139i \(-0.0286272\pi\)
\(12\) 0 0
\(13\) 3.44531 12.8581i 0.265024 0.989082i −0.697212 0.716865i \(-0.745576\pi\)
0.962236 0.272217i \(-0.0877569\pi\)
\(14\) 3.85846 2.22768i 0.275604 0.159120i
\(15\) 0 0
\(16\) −9.23893 + 16.0023i −0.577433 + 1.00014i
\(17\) −16.3208 + 16.3208i −0.960047 + 0.960047i −0.999232 0.0391852i \(-0.987524\pi\)
0.0391852 + 0.999232i \(0.487524\pi\)
\(18\) 0 0
\(19\) 9.12517i 0.480272i 0.970739 + 0.240136i \(0.0771920\pi\)
−0.970739 + 0.240136i \(0.922808\pi\)
\(20\) 3.30948 + 1.93020i 0.165474 + 0.0965101i
\(21\) 0 0
\(22\) −26.7114 7.15730i −1.21415 0.325332i
\(23\) 5.73162 21.3907i 0.249201 0.930030i −0.722025 0.691867i \(-0.756788\pi\)
0.971225 0.238163i \(-0.0765451\pi\)
\(24\) 0 0
\(25\) −12.6901 + 21.5397i −0.507605 + 0.861590i
\(26\) −29.0616 −1.11776
\(27\) 0 0
\(28\) −1.10573 1.10573i −0.0394903 0.0394903i
\(29\) −16.6416 9.60806i −0.573850 0.331312i 0.184836 0.982769i \(-0.440825\pi\)
−0.758686 + 0.651457i \(0.774158\pi\)
\(30\) 0 0
\(31\) −9.32320 16.1483i −0.300748 0.520911i 0.675557 0.737307i \(-0.263903\pi\)
−0.976306 + 0.216396i \(0.930570\pi\)
\(32\) 11.6886 + 3.13196i 0.365270 + 0.0978738i
\(33\) 0 0
\(34\) 43.6390 + 25.1950i 1.28350 + 0.741030i
\(35\) 7.24692 7.18340i 0.207055 0.205240i
\(36\) 0 0
\(37\) −32.6377 + 32.6377i −0.882100 + 0.882100i −0.993748 0.111648i \(-0.964387\pi\)
0.111648 + 0.993748i \(0.464387\pi\)
\(38\) 19.2430 5.15615i 0.506395 0.135688i
\(39\) 0 0
\(40\) −9.28611 + 34.0559i −0.232153 + 0.851397i
\(41\) 25.8234 + 44.7275i 0.629839 + 1.09091i 0.987584 + 0.157094i \(0.0502126\pi\)
−0.357744 + 0.933820i \(0.616454\pi\)
\(42\) 0 0
\(43\) −46.1316 + 12.3609i −1.07283 + 0.287463i −0.751654 0.659557i \(-0.770744\pi\)
−0.321173 + 0.947021i \(0.604077\pi\)
\(44\) 9.70583i 0.220587i
\(45\) 0 0
\(46\) −48.3470 −1.05102
\(47\) −13.7731 51.4021i −0.293046 1.09366i −0.942757 0.333480i \(-0.891777\pi\)
0.649711 0.760181i \(-0.274890\pi\)
\(48\) 0 0
\(49\) 38.8285 22.4176i 0.792417 0.457502i
\(50\) 52.5932 + 14.5898i 1.05186 + 0.291795i
\(51\) 0 0
\(52\) 2.63995 + 9.85244i 0.0507683 + 0.189470i
\(53\) 18.2998 + 18.2998i 0.345280 + 0.345280i 0.858348 0.513068i \(-0.171491\pi\)
−0.513068 + 0.858348i \(0.671491\pi\)
\(54\) 0 0
\(55\) −63.3330 0.278790i −1.15151 0.00506890i
\(56\) 7.20378 12.4773i 0.128639 0.222809i
\(57\) 0 0
\(58\) −10.8580 + 40.5226i −0.187207 + 0.698666i
\(59\) −85.9329 + 49.6134i −1.45649 + 0.840905i −0.998836 0.0482263i \(-0.984643\pi\)
−0.457653 + 0.889131i \(0.651310\pi\)
\(60\) 0 0
\(61\) 51.7677 89.6644i 0.848651 1.46991i −0.0337606 0.999430i \(-0.510748\pi\)
0.882412 0.470477i \(-0.155918\pi\)
\(62\) −28.7851 + 28.7851i −0.464276 + 0.464276i
\(63\) 0 0
\(64\) 47.4929i 0.742076i
\(65\) −64.3655 + 16.9434i −0.990239 + 0.260667i
\(66\) 0 0
\(67\) −18.9237 5.07060i −0.282444 0.0756805i 0.114816 0.993387i \(-0.463372\pi\)
−0.397260 + 0.917706i \(0.630039\pi\)
\(68\) 4.57742 17.0832i 0.0673150 0.251223i
\(69\) 0 0
\(70\) −19.2431 11.2232i −0.274901 0.160332i
\(71\) 54.5913 0.768892 0.384446 0.923148i \(-0.374393\pi\)
0.384446 + 0.923148i \(0.374393\pi\)
\(72\) 0 0
\(73\) −8.13786 8.13786i −0.111478 0.111478i 0.649168 0.760645i \(-0.275117\pi\)
−0.760645 + 0.649168i \(0.775117\pi\)
\(74\) 87.2677 + 50.3840i 1.17929 + 0.680865i
\(75\) 0 0
\(76\) −3.49606 6.05535i −0.0460008 0.0796757i
\(77\) 24.9691 + 6.69046i 0.324275 + 0.0868891i
\(78\) 0 0
\(79\) 122.145 + 70.5203i 1.54614 + 0.892662i 0.998431 + 0.0559909i \(0.0178318\pi\)
0.547705 + 0.836671i \(0.315502\pi\)
\(80\) 92.3884 + 0.406690i 1.15485 + 0.00508363i
\(81\) 0 0
\(82\) 79.7291 79.7291i 0.972306 0.972306i
\(83\) −65.8143 + 17.6349i −0.792944 + 0.212469i −0.632484 0.774574i \(-0.717964\pi\)
−0.160460 + 0.987042i \(0.551298\pi\)
\(84\) 0 0
\(85\) 111.341 + 30.3595i 1.30989 + 0.357171i
\(86\) 52.1330 + 90.2970i 0.606198 + 1.04996i
\(87\) 0 0
\(88\) −86.3781 + 23.1449i −0.981569 + 0.263011i
\(89\) 59.3859i 0.667257i −0.942705 0.333629i \(-0.891727\pi\)
0.942705 0.333629i \(-0.108273\pi\)
\(90\) 0 0
\(91\) 27.1661 0.298528
\(92\) 4.39183 + 16.3905i 0.0477373 + 0.178158i
\(93\) 0 0
\(94\) −100.613 + 58.0892i −1.07036 + 0.617970i
\(95\) 39.6132 22.6388i 0.416981 0.238303i
\(96\) 0 0
\(97\) −29.4385 109.866i −0.303490 1.13264i −0.934238 0.356651i \(-0.883918\pi\)
0.630748 0.775988i \(-0.282748\pi\)
\(98\) −69.2138 69.2138i −0.706263 0.706263i
\(99\) 0 0
\(100\) 0.168646 19.1554i 0.00168646 0.191554i
\(101\) −8.95268 + 15.5065i −0.0886404 + 0.153530i −0.906937 0.421267i \(-0.861586\pi\)
0.818296 + 0.574797i \(0.194919\pi\)
\(102\) 0 0
\(103\) 20.5961 76.8655i 0.199962 0.746267i −0.790965 0.611862i \(-0.790421\pi\)
0.990926 0.134406i \(-0.0429125\pi\)
\(104\) −81.3875 + 46.9891i −0.782572 + 0.451818i
\(105\) 0 0
\(106\) 28.2501 48.9307i 0.266511 0.461610i
\(107\) −59.3250 + 59.3250i −0.554439 + 0.554439i −0.927719 0.373280i \(-0.878233\pi\)
0.373280 + 0.927719i \(0.378233\pi\)
\(108\) 0 0
\(109\) 140.876i 1.29244i −0.763153 0.646218i \(-0.776350\pi\)
0.763153 0.646218i \(-0.223650\pi\)
\(110\) 35.1982 + 133.713i 0.319984 + 1.21557i
\(111\) 0 0
\(112\) −36.4242 9.75985i −0.325217 0.0871415i
\(113\) 52.1216 194.521i 0.461253 1.72142i −0.207769 0.978178i \(-0.566620\pi\)
0.669022 0.743243i \(-0.266713\pi\)
\(114\) 0 0
\(115\) −107.079 + 28.1870i −0.931118 + 0.245104i
\(116\) 14.7243 0.126933
\(117\) 0 0
\(118\) 153.180 + 153.180i 1.29814 + 1.29814i
\(119\) −40.7927 23.5517i −0.342796 0.197913i
\(120\) 0 0
\(121\) −19.7230 34.1613i −0.163000 0.282324i
\(122\) −218.334 58.5024i −1.78962 0.479528i
\(123\) 0 0
\(124\) 12.3735 + 7.14386i 0.0997866 + 0.0576118i
\(125\) 124.989 + 1.65068i 0.999913 + 0.0132054i
\(126\) 0 0
\(127\) 145.343 145.343i 1.14443 1.14443i 0.156799 0.987631i \(-0.449882\pi\)
0.987631 0.156799i \(-0.0501175\pi\)
\(128\) 146.907 39.3636i 1.14771 0.307528i
\(129\) 0 0
\(130\) 72.0994 + 126.159i 0.554611 + 0.970455i
\(131\) −110.153 190.791i −0.840865 1.45642i −0.889164 0.457588i \(-0.848713\pi\)
0.0482993 0.998833i \(-0.484620\pi\)
\(132\) 0 0
\(133\) −17.9879 + 4.81984i −0.135247 + 0.0362394i
\(134\) 42.7712i 0.319188i
\(135\) 0 0
\(136\) 162.949 1.19815
\(137\) −21.0181 78.4408i −0.153417 0.572560i −0.999236 0.0390898i \(-0.987554\pi\)
0.845819 0.533471i \(-0.179113\pi\)
\(138\) 0 0
\(139\) 224.304 129.502i 1.61369 0.931667i 0.625191 0.780472i \(-0.285021\pi\)
0.988504 0.151195i \(-0.0483121\pi\)
\(140\) −2.05685 + 7.54329i −0.0146918 + 0.0538806i
\(141\) 0 0
\(142\) −30.8467 115.121i −0.217230 0.810713i
\(143\) −119.229 119.229i −0.833768 0.833768i
\(144\) 0 0
\(145\) −0.422939 + 96.0797i −0.00291682 + 0.662618i
\(146\) −12.5627 + 21.7593i −0.0860460 + 0.149036i
\(147\) 0 0
\(148\) 9.15375 34.1623i 0.0618497 0.230826i
\(149\) −113.230 + 65.3731i −0.759930 + 0.438746i −0.829271 0.558847i \(-0.811244\pi\)
0.0693405 + 0.997593i \(0.477910\pi\)
\(150\) 0 0
\(151\) 63.1475 109.375i 0.418195 0.724335i −0.577563 0.816346i \(-0.695996\pi\)
0.995758 + 0.0920110i \(0.0293295\pi\)
\(152\) 45.5534 45.5534i 0.299694 0.299694i
\(153\) 0 0
\(154\) 56.4349i 0.366461i
\(155\) −46.9710 + 80.5353i −0.303038 + 0.519583i
\(156\) 0 0
\(157\) −178.457 47.8175i −1.13667 0.304570i −0.359060 0.933315i \(-0.616903\pi\)
−0.777612 + 0.628744i \(0.783569\pi\)
\(158\) 79.6946 297.424i 0.504396 1.88243i
\(159\) 0 0
\(160\) −15.4024 58.5116i −0.0962649 0.365697i
\(161\) 45.1935 0.280705
\(162\) 0 0
\(163\) −70.0370 70.0370i −0.429675 0.429675i 0.458843 0.888518i \(-0.348264\pi\)
−0.888518 + 0.458843i \(0.848264\pi\)
\(164\) −34.2722 19.7871i −0.208977 0.120653i
\(165\) 0 0
\(166\) 74.3763 + 128.824i 0.448050 + 0.776046i
\(167\) −93.7589 25.1226i −0.561431 0.150435i −0.0330670 0.999453i \(-0.510527\pi\)
−0.528363 + 0.849018i \(0.677194\pi\)
\(168\) 0 0
\(169\) −7.10136 4.09997i −0.0420199 0.0242602i
\(170\) 1.10906 251.948i 0.00652391 1.48205i
\(171\) 0 0
\(172\) 25.8766 25.8766i 0.150445 0.150445i
\(173\) 66.6187 17.8504i 0.385079 0.103182i −0.0610854 0.998133i \(-0.519456\pi\)
0.446165 + 0.894951i \(0.352790\pi\)
\(174\) 0 0
\(175\) −49.1628 13.6381i −0.280930 0.0779322i
\(176\) 117.027 + 202.697i 0.664926 + 1.15169i
\(177\) 0 0
\(178\) −125.232 + 33.5558i −0.703550 + 0.188516i
\(179\) 159.099i 0.888822i 0.895823 + 0.444411i \(0.146587\pi\)
−0.895823 + 0.444411i \(0.853413\pi\)
\(180\) 0 0
\(181\) 63.3929 0.350237 0.175119 0.984547i \(-0.443969\pi\)
0.175119 + 0.984547i \(0.443969\pi\)
\(182\) −15.3501 57.2874i −0.0843413 0.314766i
\(183\) 0 0
\(184\) −135.396 + 78.1711i −0.735850 + 0.424843i
\(185\) 222.655 + 60.7119i 1.20354 + 0.328172i
\(186\) 0 0
\(187\) 75.6688 + 282.400i 0.404646 + 1.51016i
\(188\) 28.8330 + 28.8330i 0.153367 + 0.153367i
\(189\) 0 0
\(190\) −70.1235 70.7436i −0.369071 0.372335i
\(191\) −61.7475 + 106.950i −0.323285 + 0.559947i −0.981164 0.193177i \(-0.938121\pi\)
0.657878 + 0.753124i \(0.271454\pi\)
\(192\) 0 0
\(193\) 64.3390 240.116i 0.333363 1.24413i −0.572271 0.820065i \(-0.693937\pi\)
0.905633 0.424062i \(-0.139396\pi\)
\(194\) −215.050 + 124.159i −1.10850 + 0.639994i
\(195\) 0 0
\(196\) −17.1774 + 29.7521i −0.0876398 + 0.151797i
\(197\) −53.2469 + 53.2469i −0.270289 + 0.270289i −0.829217 0.558928i \(-0.811213\pi\)
0.558928 + 0.829217i \(0.311213\pi\)
\(198\) 0 0
\(199\) 31.6979i 0.159286i −0.996823 0.0796430i \(-0.974622\pi\)
0.996823 0.0796430i \(-0.0253780\pi\)
\(200\) 170.878 44.1779i 0.854389 0.220890i
\(201\) 0 0
\(202\) 37.7585 + 10.1174i 0.186923 + 0.0500860i
\(203\) 10.1498 37.8796i 0.0499990 0.186599i
\(204\) 0 0
\(205\) 130.100 223.067i 0.634635 1.08813i
\(206\) −173.731 −0.843352
\(207\) 0 0
\(208\) 173.927 + 173.927i 0.836190 + 0.836190i
\(209\) 100.100 + 57.7930i 0.478949 + 0.276522i
\(210\) 0 0
\(211\) 101.246 + 175.363i 0.479838 + 0.831103i 0.999733 0.0231271i \(-0.00736225\pi\)
−0.519895 + 0.854230i \(0.674029\pi\)
\(212\) −19.1546 5.13247i −0.0903521 0.0242098i
\(213\) 0 0
\(214\) 158.625 + 91.5822i 0.741238 + 0.427954i
\(215\) 168.108 + 169.595i 0.781899 + 0.788813i
\(216\) 0 0
\(217\) 26.9076 26.9076i 0.123998 0.123998i
\(218\) −297.076 + 79.6013i −1.36273 + 0.365144i
\(219\) 0 0
\(220\) 42.1339 24.0793i 0.191518 0.109452i
\(221\) 153.624 + 266.084i 0.695130 + 1.20400i
\(222\) 0 0
\(223\) −64.0039 + 17.1498i −0.287013 + 0.0769049i −0.399453 0.916754i \(-0.630800\pi\)
0.112440 + 0.993658i \(0.464133\pi\)
\(224\) 24.6954i 0.110247i
\(225\) 0 0
\(226\) −439.653 −1.94537
\(227\) 75.6965 + 282.503i 0.333465 + 1.24451i 0.905524 + 0.424295i \(0.139478\pi\)
−0.572059 + 0.820212i \(0.693855\pi\)
\(228\) 0 0
\(229\) −229.797 + 132.673i −1.00348 + 0.579358i −0.909276 0.416195i \(-0.863364\pi\)
−0.0942027 + 0.995553i \(0.530030\pi\)
\(230\) 119.945 + 209.879i 0.521499 + 0.912515i
\(231\) 0 0
\(232\) 35.1121 + 131.040i 0.151345 + 0.564829i
\(233\) 59.9258 + 59.9258i 0.257192 + 0.257192i 0.823911 0.566719i \(-0.191787\pi\)
−0.566719 + 0.823911i \(0.691787\pi\)
\(234\) 0 0
\(235\) −188.971 + 187.315i −0.804132 + 0.797084i
\(236\) 38.0160 65.8457i 0.161085 0.279007i
\(237\) 0 0
\(238\) −26.6156 + 99.3307i −0.111830 + 0.417356i
\(239\) 168.749 97.4274i 0.706063 0.407646i −0.103538 0.994625i \(-0.533016\pi\)
0.809602 + 0.586980i \(0.199683\pi\)
\(240\) 0 0
\(241\) 9.02748 15.6361i 0.0374584 0.0648799i −0.846688 0.532089i \(-0.821407\pi\)
0.884147 + 0.467209i \(0.154740\pi\)
\(242\) −60.8943 + 60.8943i −0.251629 + 0.251629i
\(243\) 0 0
\(244\) 79.3336i 0.325138i
\(245\) −193.647 112.942i −0.790396 0.460986i
\(246\) 0 0
\(247\) 117.332 + 31.4390i 0.475028 + 0.127283i
\(248\) −34.0711 + 127.155i −0.137384 + 0.512722i
\(249\) 0 0
\(250\) −67.1438 264.508i −0.268575 1.05803i
\(251\) 319.556 1.27313 0.636566 0.771223i \(-0.280354\pi\)
0.636566 + 0.771223i \(0.280354\pi\)
\(252\) 0 0
\(253\) −198.349 198.349i −0.783989 0.783989i
\(254\) −388.621 224.371i −1.53001 0.883349i
\(255\) 0 0
\(256\) −71.0326 123.032i −0.277471 0.480594i
\(257\) 126.459 + 33.8846i 0.492058 + 0.131847i 0.496312 0.868144i \(-0.334687\pi\)
−0.00425348 + 0.999991i \(0.501354\pi\)
\(258\) 0 0
\(259\) −81.5757 47.0977i −0.314964 0.181845i
\(260\) 36.2208 35.9033i 0.139311 0.138090i
\(261\) 0 0
\(262\) −340.095 + 340.095i −1.29807 + 1.29807i
\(263\) 494.002 132.368i 1.87834 0.503299i 0.878671 0.477428i \(-0.158431\pi\)
0.999665 0.0258709i \(-0.00823588\pi\)
\(264\) 0 0
\(265\) 34.0409 124.842i 0.128456 0.471100i
\(266\) 20.3280 + 35.2091i 0.0764210 + 0.132365i
\(267\) 0 0
\(268\) 14.5002 3.88532i 0.0541053 0.0144975i
\(269\) 220.179i 0.818508i 0.912421 + 0.409254i \(0.134211\pi\)
−0.912421 + 0.409254i \(0.865789\pi\)
\(270\) 0 0
\(271\) −298.400 −1.10111 −0.550553 0.834800i \(-0.685583\pi\)
−0.550553 + 0.834800i \(0.685583\pi\)
\(272\) −110.383 411.957i −0.405822 1.51455i
\(273\) 0 0
\(274\) −153.538 + 88.6454i −0.560359 + 0.323523i
\(275\) 155.914 + 275.626i 0.566959 + 1.00228i
\(276\) 0 0
\(277\) 93.2365 + 347.963i 0.336594 + 1.25619i 0.902131 + 0.431462i \(0.142002\pi\)
−0.565537 + 0.824723i \(0.691331\pi\)
\(278\) −399.833 399.833i −1.43825 1.43825i
\(279\) 0 0
\(280\) −72.0371 0.317105i −0.257275 0.00113252i
\(281\) 34.8739 60.4033i 0.124106 0.214959i −0.797277 0.603614i \(-0.793727\pi\)
0.921383 + 0.388655i \(0.127060\pi\)
\(282\) 0 0
\(283\) −16.5108 + 61.6190i −0.0583419 + 0.217735i −0.988942 0.148302i \(-0.952619\pi\)
0.930600 + 0.366037i \(0.119286\pi\)
\(284\) −36.2262 + 20.9152i −0.127557 + 0.0736450i
\(285\) 0 0
\(286\) −184.058 + 318.798i −0.643559 + 1.11468i
\(287\) −74.5288 + 74.5288i −0.259682 + 0.259682i
\(288\) 0 0
\(289\) 243.737i 0.843380i
\(290\) 202.850 53.3976i 0.699484 0.184130i
\(291\) 0 0
\(292\) 8.51799 + 2.28239i 0.0291712 + 0.00781640i
\(293\) 34.3019 128.016i 0.117071 0.436916i −0.882362 0.470571i \(-0.844048\pi\)
0.999434 + 0.0336549i \(0.0107147\pi\)
\(294\) 0 0
\(295\) 428.568 + 249.956i 1.45277 + 0.847308i
\(296\) 325.859 1.10088
\(297\) 0 0
\(298\) 201.838 + 201.838i 0.677308 + 0.677308i
\(299\) −255.296 147.395i −0.853832 0.492960i
\(300\) 0 0
\(301\) −48.7326 84.4074i −0.161902 0.280423i
\(302\) −266.329 71.3626i −0.881883 0.236300i
\(303\) 0 0
\(304\) −146.024 84.3067i −0.480341 0.277325i
\(305\) −517.672 2.27877i −1.69729 0.00747139i
\(306\) 0 0
\(307\) −110.408 + 110.408i −0.359634 + 0.359634i −0.863678 0.504044i \(-0.831845\pi\)
0.504044 + 0.863678i \(0.331845\pi\)
\(308\) −19.1325 + 5.12654i −0.0621185 + 0.0166446i
\(309\) 0 0
\(310\) 196.372 + 53.5454i 0.633459 + 0.172727i
\(311\) −151.964 263.209i −0.488630 0.846331i 0.511285 0.859411i \(-0.329170\pi\)
−0.999914 + 0.0130800i \(0.995836\pi\)
\(312\) 0 0
\(313\) 70.0305 18.7646i 0.223740 0.0599508i −0.145208 0.989401i \(-0.546385\pi\)
0.368947 + 0.929450i \(0.379718\pi\)
\(314\) 403.347i 1.28455i
\(315\) 0 0
\(316\) −108.072 −0.341999
\(317\) 22.3631 + 83.4604i 0.0705462 + 0.263282i 0.992187 0.124763i \(-0.0398171\pi\)
−0.921640 + 0.388045i \(0.873150\pi\)
\(318\) 0 0
\(319\) −210.795 + 121.703i −0.660800 + 0.381513i
\(320\) 206.171 117.826i 0.644284 0.368206i
\(321\) 0 0
\(322\) −25.5365 95.3034i −0.0793058 0.295973i
\(323\) −148.930 148.930i −0.461084 0.461084i
\(324\) 0 0
\(325\) 233.238 + 237.381i 0.717656 + 0.730405i
\(326\) −108.119 + 187.267i −0.331653 + 0.574439i
\(327\) 0 0
\(328\) 94.3703 352.195i 0.287714 1.07376i
\(329\) 94.0509 54.3003i 0.285869 0.165047i
\(330\) 0 0
\(331\) −124.188 + 215.101i −0.375192 + 0.649851i −0.990356 0.138548i \(-0.955756\pi\)
0.615164 + 0.788399i \(0.289090\pi\)
\(332\) 36.9173 36.9173i 0.111197 0.111197i
\(333\) 0 0
\(334\) 211.913i 0.634469i
\(335\) 24.9362 + 94.7293i 0.0744365 + 0.282774i
\(336\) 0 0
\(337\) −190.227 50.9712i −0.564472 0.151250i −0.0347120 0.999397i \(-0.511051\pi\)
−0.529760 + 0.848147i \(0.677718\pi\)
\(338\) −4.63335 + 17.2919i −0.0137081 + 0.0511595i
\(339\) 0 0
\(340\) −85.5157 + 22.5109i −0.251517 + 0.0662085i
\(341\) −236.189 −0.692636
\(342\) 0 0
\(343\) 135.409 + 135.409i 0.394777 + 0.394777i
\(344\) 291.998 + 168.585i 0.848832 + 0.490073i
\(345\) 0 0
\(346\) −75.2854 130.398i −0.217588 0.376873i
\(347\) −27.4777 7.36263i −0.0791865 0.0212180i 0.219008 0.975723i \(-0.429718\pi\)
−0.298195 + 0.954505i \(0.596384\pi\)
\(348\) 0 0
\(349\) −515.156 297.426i −1.47609 0.852222i −0.476456 0.879198i \(-0.658079\pi\)
−0.999636 + 0.0269761i \(0.991412\pi\)
\(350\) −0.980599 + 111.380i −0.00280171 + 0.318228i
\(351\) 0 0
\(352\) 108.385 108.385i 0.307912 0.307912i
\(353\) 315.597 84.5639i 0.894042 0.239558i 0.217586 0.976041i \(-0.430182\pi\)
0.676456 + 0.736483i \(0.263515\pi\)
\(354\) 0 0
\(355\) −135.436 236.986i −0.381511 0.667566i
\(356\) 22.7521 + 39.4078i 0.0639104 + 0.110696i
\(357\) 0 0
\(358\) 335.506 89.8985i 0.937166 0.251113i
\(359\) 245.484i 0.683799i −0.939736 0.341900i \(-0.888930\pi\)
0.939736 0.341900i \(-0.111070\pi\)
\(360\) 0 0
\(361\) 277.731 0.769339
\(362\) −35.8200 133.682i −0.0989502 0.369287i
\(363\) 0 0
\(364\) −18.0271 + 10.4080i −0.0495250 + 0.0285933i
\(365\) −15.1378 + 55.5165i −0.0414735 + 0.152100i
\(366\) 0 0
\(367\) 114.721 + 428.144i 0.312591 + 1.16660i 0.926212 + 0.377004i \(0.123046\pi\)
−0.613621 + 0.789601i \(0.710288\pi\)
\(368\) 289.346 + 289.346i 0.786266 + 0.786266i
\(369\) 0 0
\(370\) 2.21786 503.835i 0.00599423 1.36172i
\(371\) −26.4075 + 45.7392i −0.0711793 + 0.123286i
\(372\) 0 0
\(373\) 51.4256 191.923i 0.137870 0.514539i −0.862099 0.506739i \(-0.830851\pi\)
0.999970 0.00779940i \(-0.00248265\pi\)
\(374\) 552.764 319.138i 1.47798 0.853311i
\(375\) 0 0
\(376\) −187.846 + 325.359i −0.499591 + 0.865316i
\(377\) −180.877 + 180.877i −0.479779 + 0.479779i
\(378\) 0 0
\(379\) 177.166i 0.467456i −0.972302 0.233728i \(-0.924908\pi\)
0.972302 0.233728i \(-0.0750925\pi\)
\(380\) −17.6134 + 30.1995i −0.0463511 + 0.0794725i
\(381\) 0 0
\(382\) 260.424 + 69.7805i 0.681739 + 0.182671i
\(383\) −4.44480 + 16.5882i −0.0116052 + 0.0433113i −0.971486 0.237098i \(-0.923804\pi\)
0.959880 + 0.280410i \(0.0904703\pi\)
\(384\) 0 0
\(385\) −32.9024 124.992i −0.0854608 0.324654i
\(386\) −542.708 −1.40598
\(387\) 0 0
\(388\) 61.6273 + 61.6273i 0.158833 + 0.158833i
\(389\) −149.347 86.2254i −0.383925 0.221659i 0.295600 0.955312i \(-0.404481\pi\)
−0.679524 + 0.733653i \(0.737814\pi\)
\(390\) 0 0
\(391\) 255.569 + 442.658i 0.653628 + 1.13212i
\(392\) −305.744 81.9239i −0.779960 0.208990i
\(393\) 0 0
\(394\) 142.373 + 82.1992i 0.361353 + 0.208628i
\(395\) 3.10425 705.196i 0.00785886 1.78531i
\(396\) 0 0
\(397\) 4.98532 4.98532i 0.0125575 0.0125575i −0.700800 0.713358i \(-0.747174\pi\)
0.713358 + 0.700800i \(0.247174\pi\)
\(398\) −66.8440 + 17.9108i −0.167950 + 0.0450020i
\(399\) 0 0
\(400\) −227.442 402.075i −0.568605 1.00519i
\(401\) −354.129 613.369i −0.883115 1.52960i −0.847859 0.530221i \(-0.822109\pi\)
−0.0352554 0.999378i \(-0.511224\pi\)
\(402\) 0 0
\(403\) −239.757 + 64.2426i −0.594929 + 0.159411i
\(404\) 13.7199i 0.0339602i
\(405\) 0 0
\(406\) −85.6149 −0.210874
\(407\) 151.320 + 564.733i 0.371793 + 1.38755i
\(408\) 0 0
\(409\) −344.913 + 199.136i −0.843309 + 0.486885i −0.858388 0.513002i \(-0.828533\pi\)
0.0150787 + 0.999886i \(0.495200\pi\)
\(410\) −543.912 148.310i −1.32662 0.361732i
\(411\) 0 0
\(412\) 15.7816 + 58.8979i 0.0383050 + 0.142956i
\(413\) −143.189 143.189i −0.346704 0.346704i
\(414\) 0 0
\(415\) 239.834 + 241.955i 0.577914 + 0.583025i
\(416\) 80.5419 139.503i 0.193610 0.335343i
\(417\) 0 0
\(418\) 65.3115 243.746i 0.156248 0.583124i
\(419\) −411.732 + 237.714i −0.982654 + 0.567336i −0.903070 0.429493i \(-0.858692\pi\)
−0.0795838 + 0.996828i \(0.525359\pi\)
\(420\) 0 0
\(421\) 285.120 493.842i 0.677245 1.17302i −0.298563 0.954390i \(-0.596507\pi\)
0.975807 0.218632i \(-0.0701595\pi\)
\(422\) 312.593 312.593i 0.740743 0.740743i
\(423\) 0 0
\(424\) 182.708i 0.430915i
\(425\) −144.433 558.659i −0.339842 1.31449i
\(426\) 0 0
\(427\) 204.093 + 54.6866i 0.477970 + 0.128072i
\(428\) 16.6386 62.0961i 0.0388753 0.145084i
\(429\) 0 0
\(430\) 262.650 450.333i 0.610814 1.04729i
\(431\) 565.177 1.31131 0.655657 0.755059i \(-0.272392\pi\)
0.655657 + 0.755059i \(0.272392\pi\)
\(432\) 0 0
\(433\) −34.7884 34.7884i −0.0803428 0.0803428i 0.665793 0.746136i \(-0.268093\pi\)
−0.746136 + 0.665793i \(0.768093\pi\)
\(434\) −71.9464 41.5383i −0.165775 0.0957103i
\(435\) 0 0
\(436\) 53.9727 + 93.4834i 0.123791 + 0.214411i
\(437\) 195.194 + 52.3020i 0.446667 + 0.119684i
\(438\) 0 0
\(439\) −271.216 156.587i −0.617804 0.356689i 0.158209 0.987406i \(-0.449428\pi\)
−0.776014 + 0.630716i \(0.782761\pi\)
\(440\) 314.771 + 317.554i 0.715388 + 0.721714i
\(441\) 0 0
\(442\) 474.309 474.309i 1.07310 1.07310i
\(443\) −446.109 + 119.535i −1.00702 + 0.269830i −0.724383 0.689397i \(-0.757875\pi\)
−0.282636 + 0.959227i \(0.591209\pi\)
\(444\) 0 0
\(445\) −257.799 + 147.331i −0.579325 + 0.331082i
\(446\) 72.3304 + 125.280i 0.162176 + 0.280897i
\(447\) 0 0
\(448\) −93.6198 + 25.0854i −0.208973 + 0.0559941i
\(449\) 3.80236i 0.00846851i 0.999991 + 0.00423425i \(0.00134781\pi\)
−0.999991 + 0.00423425i \(0.998652\pi\)
\(450\) 0 0
\(451\) 654.196 1.45055
\(452\) 39.9380 + 149.051i 0.0883584 + 0.329758i
\(453\) 0 0
\(454\) 552.966 319.255i 1.21799 0.703205i
\(455\) −67.3968 117.930i −0.148125 0.259188i
\(456\) 0 0
\(457\) −183.873 686.222i −0.402347 1.50158i −0.808896 0.587951i \(-0.799935\pi\)
0.406549 0.913629i \(-0.366732\pi\)
\(458\) 409.625 + 409.625i 0.894377 + 0.894377i
\(459\) 0 0
\(460\) 60.2570 59.7288i 0.130993 0.129845i
\(461\) 52.8552 91.5479i 0.114653 0.198586i −0.802988 0.595996i \(-0.796758\pi\)
0.917641 + 0.397410i \(0.130091\pi\)
\(462\) 0 0
\(463\) −224.884 + 839.277i −0.485710 + 1.81269i 0.0911330 + 0.995839i \(0.470951\pi\)
−0.576843 + 0.816855i \(0.695716\pi\)
\(464\) 307.502 177.536i 0.662720 0.382621i
\(465\) 0 0
\(466\) 92.5096 160.231i 0.198519 0.343844i
\(467\) 476.135 476.135i 1.01956 1.01956i 0.0197563 0.999805i \(-0.493711\pi\)
0.999805 0.0197563i \(-0.00628905\pi\)
\(468\) 0 0
\(469\) 39.9814i 0.0852482i
\(470\) 501.784 + 292.658i 1.06762 + 0.622676i
\(471\) 0 0
\(472\) 676.656 + 181.309i 1.43359 + 0.384130i
\(473\) −156.572 + 584.336i −0.331020 + 1.23538i
\(474\) 0 0
\(475\) −196.554 115.799i −0.413797 0.243788i
\(476\) 36.0927 0.0758251
\(477\) 0 0
\(478\) −300.804 300.804i −0.629298 0.629298i
\(479\) 458.453 + 264.688i 0.957105 + 0.552585i 0.895281 0.445502i \(-0.146975\pi\)
0.0618243 + 0.998087i \(0.480308\pi\)
\(480\) 0 0
\(481\) 307.211 + 532.105i 0.638692 + 1.10625i
\(482\) −38.0740 10.2019i −0.0789917 0.0211658i
\(483\) 0 0
\(484\) 26.1759 + 15.1127i 0.0540825 + 0.0312245i
\(485\) −403.904 + 400.363i −0.832791 + 0.825492i
\(486\) 0 0
\(487\) −386.577 + 386.577i −0.793793 + 0.793793i −0.982109 0.188315i \(-0.939697\pi\)
0.188315 + 0.982109i \(0.439697\pi\)
\(488\) −706.038 + 189.182i −1.44680 + 0.387669i
\(489\) 0 0
\(490\) −128.750 + 472.177i −0.262755 + 0.963626i
\(491\) 147.395 + 255.296i 0.300194 + 0.519951i 0.976180 0.216963i \(-0.0696152\pi\)
−0.675986 + 0.736915i \(0.736282\pi\)
\(492\) 0 0
\(493\) 428.416 114.794i 0.868998 0.232847i
\(494\) 265.192i 0.536826i
\(495\) 0 0
\(496\) 344.545 0.694648
\(497\) 28.8347 + 107.613i 0.0580175 + 0.216524i
\(498\) 0 0
\(499\) 747.810 431.748i 1.49862 0.865227i 0.498619 0.866821i \(-0.333841\pi\)
0.999999 + 0.00159434i \(0.000507494\pi\)
\(500\) −83.5737 + 46.7908i −0.167147 + 0.0935816i
\(501\) 0 0
\(502\) −180.564 673.874i −0.359689 1.34238i
\(503\) 336.760 + 336.760i 0.669503 + 0.669503i 0.957601 0.288098i \(-0.0930228\pi\)
−0.288098 + 0.957601i \(0.593023\pi\)
\(504\) 0 0
\(505\) 89.5259 + 0.394090i 0.177279 + 0.000780376i
\(506\) −306.199 + 530.352i −0.605136 + 1.04813i
\(507\) 0 0
\(508\) −40.7636 + 152.132i −0.0802433 + 0.299472i
\(509\) −429.289 + 247.850i −0.843397 + 0.486935i −0.858417 0.512952i \(-0.828552\pi\)
0.0150207 + 0.999887i \(0.495219\pi\)
\(510\) 0 0
\(511\) 11.7433 20.3400i 0.0229810 0.0398043i
\(512\) 210.862 210.862i 0.411839 0.411839i
\(513\) 0 0
\(514\) 285.821i 0.556072i
\(515\) −384.777 + 101.288i −0.747140 + 0.196675i
\(516\) 0 0
\(517\) −651.096 174.461i −1.25937 0.337448i
\(518\) −53.2249 + 198.638i −0.102751 + 0.383471i
\(519\) 0 0
\(520\) 405.899 + 236.734i 0.780576 + 0.455259i
\(521\) 225.358 0.432550 0.216275 0.976333i \(-0.430609\pi\)
0.216275 + 0.976333i \(0.430609\pi\)
\(522\) 0 0
\(523\) −442.494 442.494i −0.846069 0.846069i 0.143571 0.989640i \(-0.454142\pi\)
−0.989640 + 0.143571i \(0.954142\pi\)
\(524\) 146.193 + 84.4045i 0.278994 + 0.161077i
\(525\) 0 0
\(526\) −558.269 966.950i −1.06135 1.83831i
\(527\) 415.714 + 111.390i 0.788832 + 0.211367i
\(528\) 0 0
\(529\) 33.4173 + 19.2935i 0.0631707 + 0.0364716i
\(530\) −282.499 1.24355i −0.533016 0.00234632i
\(531\) 0 0
\(532\) 10.0900 10.0900i 0.0189661 0.0189661i
\(533\) 664.078 177.939i 1.24593 0.333845i
\(534\) 0 0
\(535\) 404.715 + 110.355i 0.756477 + 0.206271i
\(536\) 69.1557 + 119.781i 0.129022 + 0.223472i
\(537\) 0 0
\(538\) 464.309 124.411i 0.863028 0.231248i
\(539\) 567.916i 1.05365i
\(540\) 0 0
\(541\) 223.593 0.413295 0.206647 0.978415i \(-0.433745\pi\)
0.206647 + 0.978415i \(0.433745\pi\)
\(542\) 168.610 + 629.260i 0.311088 + 1.16100i
\(543\) 0 0
\(544\) −241.884 + 139.652i −0.444640 + 0.256713i
\(545\) −611.554 + 349.500i −1.12212 + 0.641285i
\(546\) 0 0
\(547\) 149.145 + 556.615i 0.272659 + 1.01758i 0.957394 + 0.288785i \(0.0932514\pi\)
−0.684735 + 0.728792i \(0.740082\pi\)
\(548\) 43.9999 + 43.9999i 0.0802917 + 0.0802917i
\(549\) 0 0
\(550\) 493.137 484.530i 0.896613 0.880963i
\(551\) 87.6752 151.858i 0.159120 0.275604i
\(552\) 0 0
\(553\) −74.4965 + 278.025i −0.134713 + 0.502757i
\(554\) 681.096 393.231i 1.22942 0.709804i
\(555\) 0 0
\(556\) −99.2302 + 171.872i −0.178472 + 0.309122i
\(557\) 42.5030 42.5030i 0.0763070 0.0763070i −0.667923 0.744230i \(-0.732817\pi\)
0.744230 + 0.667923i \(0.232817\pi\)
\(558\) 0 0
\(559\) 635.750i 1.13730i
\(560\) 47.9971 + 182.334i 0.0857091 + 0.325597i
\(561\) 0 0
\(562\) −147.083 39.4108i −0.261713 0.0701259i
\(563\) −162.816 + 607.639i −0.289194 + 1.07929i 0.656525 + 0.754304i \(0.272026\pi\)
−0.945719 + 0.324984i \(0.894641\pi\)
\(564\) 0 0
\(565\) −973.740 + 256.324i −1.72343 + 0.453671i
\(566\) 139.270 0.246061
\(567\) 0 0
\(568\) −272.523 272.523i −0.479795 0.479795i
\(569\) −523.215 302.078i −0.919535 0.530894i −0.0360482 0.999350i \(-0.511477\pi\)
−0.883487 + 0.468456i \(0.844810\pi\)
\(570\) 0 0
\(571\) 16.4403 + 28.4755i 0.0287921 + 0.0498695i 0.880062 0.474858i \(-0.157501\pi\)
−0.851270 + 0.524727i \(0.824167\pi\)
\(572\) 124.798 + 33.4396i 0.218179 + 0.0584608i
\(573\) 0 0
\(574\) 199.277 + 115.053i 0.347173 + 0.200440i
\(575\) 388.015 + 394.908i 0.674809 + 0.686797i
\(576\) 0 0
\(577\) 536.453 536.453i 0.929729 0.929729i −0.0679593 0.997688i \(-0.521649\pi\)
0.997688 + 0.0679593i \(0.0216488\pi\)
\(578\) −513.988 + 137.723i −0.889253 + 0.238275i
\(579\) 0 0
\(580\) −36.5297 63.9194i −0.0629822 0.110206i
\(581\) −69.5252 120.421i −0.119665 0.207265i
\(582\) 0 0
\(583\) 316.643 84.8443i 0.543128 0.145531i
\(584\) 81.2494i 0.139126i
\(585\) 0 0
\(586\) −289.341 −0.493756
\(587\) −77.4800 289.159i −0.131993 0.492605i 0.867999 0.496566i \(-0.165406\pi\)
−0.999992 + 0.00396077i \(0.998739\pi\)
\(588\) 0 0
\(589\) 147.356 85.0757i 0.250179 0.144441i
\(590\) 284.942 1044.99i 0.482952 1.77118i
\(591\) 0 0
\(592\) −220.741 823.815i −0.372873 1.39158i
\(593\) 9.85573 + 9.85573i 0.0166201 + 0.0166201i 0.715368 0.698748i \(-0.246259\pi\)
−0.698748 + 0.715368i \(0.746259\pi\)
\(594\) 0 0
\(595\) −1.03673 + 235.514i −0.00174240 + 0.395823i
\(596\) 50.0919 86.7617i 0.0840468 0.145573i
\(597\) 0 0
\(598\) −166.570 + 621.648i −0.278545 + 1.03955i
\(599\) −98.0614 + 56.6158i −0.163709 + 0.0945172i −0.579616 0.814890i \(-0.696797\pi\)
0.415907 + 0.909407i \(0.363464\pi\)
\(600\) 0 0
\(601\) 408.039 706.744i 0.678933 1.17595i −0.296370 0.955073i \(-0.595776\pi\)
0.975303 0.220873i \(-0.0708907\pi\)
\(602\) −150.461 + 150.461i −0.249935 + 0.249935i
\(603\) 0 0
\(604\) 96.7730i 0.160220i
\(605\) −99.3660 + 170.371i −0.164241 + 0.281604i
\(606\) 0 0
\(607\) 578.568 + 155.027i 0.953161 + 0.255399i 0.701703 0.712470i \(-0.252423\pi\)
0.251458 + 0.967868i \(0.419090\pi\)
\(608\) −28.5797 + 106.661i −0.0470060 + 0.175429i
\(609\) 0 0
\(610\) 287.704 + 1092.95i 0.471645 + 1.79172i
\(611\) −708.384 −1.15938
\(612\) 0 0
\(613\) 567.736 + 567.736i 0.926160 + 0.926160i 0.997455 0.0712948i \(-0.0227131\pi\)
−0.0712948 + 0.997455i \(0.522713\pi\)
\(614\) 295.211 + 170.440i 0.480800 + 0.277590i
\(615\) 0 0
\(616\) −91.2484 158.047i −0.148130 0.256569i
\(617\) 927.600 + 248.550i 1.50340 + 0.402836i 0.914238 0.405177i \(-0.132790\pi\)
0.589165 + 0.808012i \(0.299457\pi\)
\(618\) 0 0
\(619\) −248.631 143.547i −0.401665 0.231902i 0.285537 0.958368i \(-0.407828\pi\)
−0.687202 + 0.726466i \(0.741161\pi\)
\(620\) 0.314467 71.4379i 0.000507205 0.115222i
\(621\) 0 0
\(622\) −469.184 + 469.184i −0.754315 + 0.754315i
\(623\) 117.064 31.3671i 0.187903 0.0503485i
\(624\) 0 0
\(625\) −302.922 546.684i −0.484675 0.874695i
\(626\) −79.1410 137.076i −0.126423 0.218972i
\(627\) 0 0
\(628\) 136.742 36.6400i 0.217743 0.0583439i
\(629\) 1065.35i 1.69372i
\(630\) 0 0
\(631\) −431.640 −0.684057 −0.342029 0.939690i \(-0.611114\pi\)
−0.342029 + 0.939690i \(0.611114\pi\)
\(632\) −257.713 961.797i −0.407773 1.52183i
\(633\) 0 0
\(634\) 163.364 94.3181i 0.257671 0.148767i
\(635\) −991.528 270.363i −1.56146 0.425768i
\(636\) 0 0
\(637\) −154.471 576.494i −0.242498 0.905015i
\(638\) 375.754 + 375.754i 0.588956 + 0.588956i
\(639\) 0 0
\(640\) −535.344 540.078i −0.836475 0.843872i
\(641\) 169.961 294.381i 0.265150 0.459253i −0.702453 0.711730i \(-0.747912\pi\)
0.967603 + 0.252477i \(0.0812453\pi\)
\(642\) 0 0
\(643\) −54.8829 + 204.826i −0.0853544 + 0.318547i −0.995381 0.0960027i \(-0.969394\pi\)
0.910027 + 0.414550i \(0.136061\pi\)
\(644\) −29.9899 + 17.3147i −0.0465682 + 0.0268862i
\(645\) 0 0
\(646\) −229.909 + 398.213i −0.355896 + 0.616430i
\(647\) −575.066 + 575.066i −0.888819 + 0.888819i −0.994410 0.105591i \(-0.966327\pi\)
0.105591 + 0.994410i \(0.466327\pi\)
\(648\) 0 0
\(649\) 1256.88i 1.93664i
\(650\) 368.796 625.980i 0.567378 0.963047i
\(651\) 0 0
\(652\) 73.3086 + 19.6430i 0.112436 + 0.0301273i
\(653\) −17.1844 + 64.1329i −0.0263160 + 0.0982128i −0.977835 0.209378i \(-0.932856\pi\)
0.951519 + 0.307591i \(0.0995228\pi\)
\(654\) 0 0
\(655\) −554.960 + 951.522i −0.847268 + 1.45271i
\(656\) −954.322 −1.45476
\(657\) 0 0
\(658\) −167.651 167.651i −0.254788 0.254788i
\(659\) 958.773 + 553.548i 1.45489 + 0.839981i 0.998753 0.0499281i \(-0.0158992\pi\)
0.456137 + 0.889909i \(0.349233\pi\)
\(660\) 0 0
\(661\) −168.964 292.654i −0.255619 0.442745i 0.709445 0.704761i \(-0.248946\pi\)
−0.965063 + 0.262016i \(0.915613\pi\)
\(662\) 523.773 + 140.345i 0.791198 + 0.212001i
\(663\) 0 0
\(664\) 416.584 + 240.515i 0.627385 + 0.362221i
\(665\) 65.5497 + 66.1294i 0.0985710 + 0.0994427i
\(666\) 0 0
\(667\) −300.907 + 300.907i −0.451134 + 0.451134i
\(668\) 71.8424 19.2501i 0.107548 0.0288175i
\(669\) 0 0
\(670\) 185.673 106.112i 0.277125 0.158376i
\(671\) −655.728 1135.75i −0.977240 1.69263i
\(672\) 0 0
\(673\) −881.503 + 236.198i −1.30981 + 0.350963i −0.845152 0.534527i \(-0.820490\pi\)
−0.464660 + 0.885489i \(0.653823\pi\)
\(674\) 429.949i 0.637906i
\(675\) 0 0
\(676\) 6.28317 0.00929464
\(677\) −170.665 636.930i −0.252090 0.940812i −0.969686 0.244353i \(-0.921424\pi\)
0.717597 0.696459i \(-0.245242\pi\)
\(678\) 0 0
\(679\) 201.023 116.061i 0.296057 0.170929i
\(680\) −404.262 707.376i −0.594504 1.04026i
\(681\) 0 0
\(682\) 133.458 + 498.071i 0.195686 + 0.730310i
\(683\) −88.3335 88.3335i −0.129332 0.129332i 0.639478 0.768810i \(-0.279151\pi\)
−0.768810 + 0.639478i \(0.779151\pi\)
\(684\) 0 0
\(685\) −288.374 + 285.847i −0.420984 + 0.417294i
\(686\) 209.035 362.060i 0.304716 0.527784i
\(687\) 0 0
\(688\) 228.403 852.412i 0.331981 1.23897i
\(689\) 298.349 172.252i 0.433017 0.250003i
\(690\) 0 0
\(691\) −408.588 + 707.695i −0.591300 + 1.02416i 0.402758 + 0.915307i \(0.368052\pi\)
−0.994058 + 0.108855i \(0.965282\pi\)
\(692\) −37.3685 + 37.3685i −0.0540007 + 0.0540007i
\(693\) 0 0
\(694\) 62.1048i 0.0894882i
\(695\) −1118.66 652.439i −1.60958 0.938761i
\(696\) 0 0
\(697\) −1151.45 308.529i −1.65200 0.442653i
\(698\) −336.119 + 1254.41i −0.481545 + 1.79715i
\(699\) 0 0
\(700\) 37.8489 9.78529i 0.0540699 0.0139790i
\(701\) −626.425 −0.893616 −0.446808 0.894630i \(-0.647439\pi\)
−0.446808 + 0.894630i \(0.647439\pi\)
\(702\) 0 0
\(703\) −297.825 297.825i −0.423648 0.423648i
\(704\) 520.983 + 300.790i 0.740033 + 0.427258i
\(705\) 0 0
\(706\) −356.654 617.743i −0.505175 0.874990i
\(707\) −35.2957 9.45746i −0.0499232 0.0133769i
\(708\) 0 0
\(709\) 82.1961 + 47.4559i 0.115932 + 0.0669336i 0.556845 0.830616i \(-0.312012\pi\)
−0.440912 + 0.897550i \(0.645345\pi\)
\(710\) −423.224 + 419.514i −0.596090 + 0.590865i
\(711\) 0 0
\(712\) −296.458 + 296.458i −0.416374 + 0.416374i
\(713\) −398.859 + 106.874i −0.559410 + 0.149893i
\(714\) 0 0
\(715\) −221.786 + 813.380i −0.310191 + 1.13759i
\(716\) −60.9545 105.576i −0.0851320 0.147453i
\(717\) 0 0
\(718\) −517.673 + 138.710i −0.720992 + 0.193189i
\(719\) 377.998i 0.525727i −0.964833 0.262864i \(-0.915333\pi\)
0.964833 0.262864i \(-0.0846670\pi\)
\(720\) 0 0
\(721\) 162.399 0.225241
\(722\) −156.931 585.675i −0.217356 0.811185i
\(723\) 0 0
\(724\) −42.0668 + 24.2873i −0.0581033 + 0.0335460i
\(725\) 418.140 236.529i 0.576745 0.326248i
\(726\) 0 0
\(727\) 71.4219 + 266.550i 0.0982419 + 0.366644i 0.997491 0.0707930i \(-0.0225530\pi\)
−0.899249 + 0.437437i \(0.855886\pi\)
\(728\) −135.615 135.615i −0.186284 0.186284i
\(729\) 0 0
\(730\) 125.626 + 0.553000i 0.172090 + 0.000757535i
\(731\) 551.164 954.644i 0.753986 1.30594i
\(732\) 0 0
\(733\) −130.531 + 487.149i −0.178078 + 0.664596i 0.817929 + 0.575319i \(0.195122\pi\)
−0.996007 + 0.0892766i \(0.971544\pi\)
\(734\) 838.040 483.843i 1.14174 0.659186i
\(735\) 0 0
\(736\) 133.990 232.077i 0.182051 0.315322i
\(737\) −175.474 + 175.474i −0.238092 + 0.238092i
\(738\) 0 0
\(739\) 347.915i 0.470791i 0.971900 + 0.235396i \(0.0756386\pi\)
−0.971900 + 0.235396i \(0.924361\pi\)
\(740\) −171.011 + 45.0164i −0.231096 + 0.0608330i
\(741\) 0 0
\(742\) 111.375 + 29.8430i 0.150102 + 0.0402196i
\(743\) 252.285 941.541i 0.339550 1.26722i −0.559302 0.828964i \(-0.688931\pi\)
0.898852 0.438252i \(-0.144402\pi\)
\(744\) 0 0
\(745\) 564.704 + 329.355i 0.757991 + 0.442087i
\(746\) −433.782 −0.581477
\(747\) 0 0
\(748\) −158.407 158.407i −0.211774 0.211774i
\(749\) −148.279 85.6087i −0.197969 0.114297i
\(750\) 0 0
\(751\) −254.883 441.471i −0.339392 0.587844i 0.644927 0.764244i \(-0.276888\pi\)
−0.984318 + 0.176401i \(0.943555\pi\)
\(752\) 949.800 + 254.498i 1.26303 + 0.338428i
\(753\) 0 0
\(754\) 483.634 + 279.226i 0.641424 + 0.370326i
\(755\) −631.469 2.77970i −0.836382 0.00368172i
\(756\) 0 0
\(757\) 280.253 280.253i 0.370215 0.370215i −0.497340 0.867555i \(-0.665690\pi\)
0.867555 + 0.497340i \(0.165690\pi\)
\(758\) −373.604 + 100.107i −0.492881 + 0.132067i
\(759\) 0 0
\(760\) −310.766 84.7373i −0.408902 0.111496i
\(761\) 404.473 + 700.568i 0.531502 + 0.920589i 0.999324 + 0.0367662i \(0.0117057\pi\)
−0.467822 + 0.883823i \(0.654961\pi\)
\(762\) 0 0
\(763\) 277.699 74.4093i 0.363957 0.0975220i
\(764\) 94.6276i 0.123858i
\(765\) 0 0
\(766\) 37.4925 0.0489458
\(767\) 341.867 + 1275.86i 0.445719 + 1.66345i
\(768\) 0 0
\(769\) 449.923 259.763i 0.585075 0.337793i −0.178073 0.984017i \(-0.556986\pi\)
0.763148 + 0.646224i \(0.223653\pi\)
\(770\) −244.989 + 140.010i −0.318168 + 0.181832i
\(771\) 0 0
\(772\) 49.2995 + 183.988i 0.0638595 + 0.238327i
\(773\) 436.114 + 436.114i 0.564184 + 0.564184i 0.930493 0.366309i \(-0.119379\pi\)
−0.366309 + 0.930493i \(0.619379\pi\)
\(774\) 0 0
\(775\) 466.142 + 4.10396i 0.601473 + 0.00529543i
\(776\) −401.499 + 695.417i −0.517396 + 0.896156i
\(777\) 0 0
\(778\) −97.4427 + 363.661i −0.125248 + 0.467431i
\(779\) −408.146 + 235.643i −0.523935 + 0.302494i
\(780\) 0 0
\(781\) 345.747 598.851i 0.442697 0.766775i
\(782\) 789.061 789.061i 1.00903 1.00903i
\(783\) 0 0
\(784\) 828.459i 1.05671i
\(785\) 235.158 + 893.331i 0.299564 + 1.13800i
\(786\) 0 0
\(787\) −782.335 209.626i −0.994073 0.266361i −0.275112 0.961412i \(-0.588715\pi\)
−0.718960 + 0.695051i \(0.755382\pi\)
\(788\) 14.9339 55.7342i 0.0189517 0.0707286i
\(789\) 0 0
\(790\) −1488.86 + 391.923i −1.88463 + 0.496105i
\(791\) 410.977 0.519566
\(792\) 0 0
\(793\) −974.554 974.554i −1.22895 1.22895i
\(794\) −13.3299 7.69602i −0.0167883 0.00969271i
\(795\) 0 0
\(796\) 12.1442 + 21.0344i 0.0152565 + 0.0264251i
\(797\) 755.517 + 202.440i 0.947951 + 0.254003i 0.699492 0.714640i \(-0.253409\pi\)
0.248458 + 0.968643i \(0.420076\pi\)
\(798\) 0 0
\(799\) 1063.71 + 614.134i 1.33130 + 0.768629i
\(800\) −215.792 + 212.025i −0.269740 + 0.265032i
\(801\) 0 0
\(802\) −1093.36 + 1093.36i −1.36330 + 1.36330i
\(803\) −140.810 + 37.7299i −0.175355 + 0.0469862i
\(804\) 0 0
\(805\) −112.121 196.189i −0.139281 0.243713i
\(806\) 270.947 + 469.295i 0.336163 + 0.582251i
\(807\) 0 0
\(808\) 122.102 32.7171i 0.151116 0.0404914i
\(809\) 12.8828i 0.0159243i −0.999968 0.00796215i \(-0.997466\pi\)
0.999968 0.00796215i \(-0.00253446\pi\)
\(810\) 0 0
\(811\) −513.954 −0.633729 −0.316864 0.948471i \(-0.602630\pi\)
−0.316864 + 0.948471i \(0.602630\pi\)
\(812\) 7.77724 + 29.0251i 0.00957788 + 0.0357451i
\(813\) 0 0
\(814\) 1105.40 638.201i 1.35798 0.784031i
\(815\) −130.281 + 477.793i −0.159854 + 0.586249i
\(816\) 0 0
\(817\) −112.795 420.958i −0.138060 0.515249i
\(818\) 614.827 + 614.827i 0.751622 + 0.751622i
\(819\) 0 0
\(820\) −0.871012 + 197.869i −0.00106221 + 0.241304i
\(821\) 656.487 1137.07i 0.799619 1.38498i −0.120246 0.992744i \(-0.538368\pi\)
0.919865 0.392236i \(-0.128298\pi\)
\(822\) 0 0
\(823\) −233.948 + 873.104i −0.284262 + 1.06088i 0.665115 + 0.746741i \(0.268383\pi\)
−0.949377 + 0.314139i \(0.898284\pi\)
\(824\) −486.535 + 280.901i −0.590455 + 0.340899i
\(825\) 0 0
\(826\) −221.046 + 382.863i −0.267610 + 0.463514i
\(827\) −117.925 + 117.925i −0.142594 + 0.142594i −0.774800 0.632206i \(-0.782150\pi\)
0.632206 + 0.774800i \(0.282150\pi\)
\(828\) 0 0
\(829\) 579.532i 0.699073i −0.936923 0.349537i \(-0.886339\pi\)
0.936923 0.349537i \(-0.113661\pi\)
\(830\) 374.713 642.475i 0.451462 0.774066i
\(831\) 0 0
\(832\) 610.667 + 163.628i 0.733974 + 0.196668i
\(833\) −267.838 + 999.585i −0.321534 + 1.19998i
\(834\) 0 0
\(835\) 123.548 + 469.343i 0.147962 + 0.562087i
\(836\) −88.5673 −0.105942
\(837\) 0 0
\(838\) 733.935 + 733.935i 0.875817 + 0.875817i
\(839\) −251.639 145.284i −0.299928 0.173163i 0.342483 0.939524i \(-0.388732\pi\)
−0.642410 + 0.766361i \(0.722065\pi\)
\(840\) 0 0
\(841\) −235.870 408.539i −0.280464 0.485778i
\(842\) −1202.51 322.212i −1.42816 0.382675i
\(843\) 0 0
\(844\) −134.371 77.5791i −0.159207 0.0919184i
\(845\) −0.180477 + 40.9993i −0.000213583 + 0.0485199i
\(846\) 0 0
\(847\) 56.9225 56.9225i 0.0672048 0.0672048i
\(848\) −461.910 + 123.768i −0.544705 + 0.145953i
\(849\) 0 0
\(850\) −1096.48 + 620.246i −1.28998 + 0.729701i
\(851\) 511.076 + 885.210i 0.600560 + 1.04020i
\(852\) 0 0
\(853\) 359.918 96.4397i 0.421943 0.113059i −0.0415985 0.999134i \(-0.513245\pi\)
0.463542 + 0.886075i \(0.346578\pi\)
\(854\) 461.289i 0.540151i
\(855\) 0 0
\(856\) 592.308 0.691949
\(857\) 128.091 + 478.041i 0.149464 + 0.557807i 0.999516 + 0.0311085i \(0.00990374\pi\)
−0.850052 + 0.526699i \(0.823430\pi\)
\(858\) 0 0
\(859\) 510.012 294.456i 0.593728 0.342789i −0.172842 0.984950i \(-0.555295\pi\)
0.766570 + 0.642161i \(0.221962\pi\)
\(860\) −176.530 48.1350i −0.205268 0.0559710i
\(861\) 0 0
\(862\) −319.351 1191.84i −0.370477 1.38264i
\(863\) 142.644 + 142.644i 0.165288 + 0.165288i 0.784905 0.619616i \(-0.212712\pi\)
−0.619616 + 0.784905i \(0.712712\pi\)
\(864\) 0 0
\(865\) −242.766 244.912i −0.280654 0.283136i
\(866\) −53.7041 + 93.0183i −0.0620140 + 0.107411i
\(867\) 0 0
\(868\) −7.54666 + 28.1645i −0.00869431 + 0.0324476i
\(869\) 1547.17 893.262i 1.78041 1.02792i
\(870\) 0 0
\(871\) −130.396 + 225.853i −0.149709 + 0.259303i
\(872\) −703.260 + 703.260i −0.806491 + 0.806491i
\(873\) 0 0
\(874\) 441.174i 0.504776i
\(875\) 62.7643 + 247.255i 0.0717307 + 0.282577i
\(876\) 0 0
\(877\) 1509.15 + 404.375i 1.72081 + 0.461089i 0.978033 0.208451i \(-0.0668423\pi\)
0.742775 + 0.669541i \(0.233509\pi\)
\(878\) −176.958 + 660.415i −0.201546 + 0.752181i
\(879\) 0 0
\(880\) 589.590 1010.90i 0.669989 1.14875i
\(881\) −395.302 −0.448697 −0.224349 0.974509i \(-0.572025\pi\)
−0.224349 + 0.974509i \(0.572025\pi\)
\(882\) 0 0
\(883\) −827.610 827.610i −0.937271 0.937271i 0.0608748 0.998145i \(-0.480611\pi\)
−0.998145 + 0.0608748i \(0.980611\pi\)
\(884\) −203.886 117.714i −0.230640 0.133160i
\(885\) 0 0
\(886\) 504.145 + 873.205i 0.569013 + 0.985559i
\(887\) −292.997 78.5084i −0.330324 0.0885100i 0.0898455 0.995956i \(-0.471363\pi\)
−0.420169 + 0.907446i \(0.638029\pi\)
\(888\) 0 0
\(889\) 363.274 + 209.736i 0.408632 + 0.235924i
\(890\) 456.359 + 460.394i 0.512763 + 0.517297i
\(891\) 0 0
\(892\) 35.9018 35.9018i 0.0402486 0.0402486i
\(893\) 469.053 125.682i 0.525255 0.140742i
\(894\) 0 0
\(895\) 690.664 394.711i 0.771691 0.441018i
\(896\) 155.190 + 268.797i 0.173203 + 0.299996i
\(897\) 0 0
\(898\) 8.01835 2.14851i 0.00892912 0.00239255i
\(899\) 358.311i 0.398567i
\(900\) 0 0
\(901\) −597.336 −0.662970
\(902\) −369.652 1379.56i −0.409813 1.52944i
\(903\) 0 0
\(904\) −1231.25 + 710.865i −1.36201 + 0.786355i
\(905\) −157.272 275.194i −0.173782 0.304082i
\(906\) 0 0
\(907\) −143.164 534.296i −0.157844 0.589080i −0.998845 0.0480474i \(-0.984700\pi\)
0.841002 0.541033i \(-0.181967\pi\)
\(908\) −158.465 158.465i −0.174521 0.174521i
\(909\) 0 0
\(910\) −210.607 + 208.761i −0.231437 + 0.229408i
\(911\) −622.627 + 1078.42i −0.683454 + 1.18378i 0.290466 + 0.956885i \(0.406190\pi\)
−0.973920 + 0.226892i \(0.927144\pi\)
\(912\) 0 0
\(913\) −223.376 + 833.652i −0.244662 + 0.913091i
\(914\) −1343.20 + 775.495i −1.46958 + 0.848463i
\(915\) 0 0
\(916\) 101.660 176.081i 0.110983 0.192228i
\(917\) 317.913 317.913i 0.346688 0.346688i
\(918\) 0 0
\(919\) 123.047i 0.133892i −0.997757 0.0669462i \(-0.978674\pi\)
0.997757 0.0669462i \(-0.0213256\pi\)
\(920\) 675.255 + 393.832i 0.733972 + 0.428078i
\(921\) 0 0
\(922\) −222.920 59.7314i −0.241779 0.0647845i
\(923\) 188.084 701.939i 0.203775 0.760497i
\(924\) 0 0
\(925\) −288.832 1117.18i −0.312250 1.20777i
\(926\) 1896.92 2.04851
\(927\) 0 0
\(928\) −164.426 164.426i −0.177183 0.177183i
\(929\) −998.545 576.510i −1.07486 0.620571i −0.145355 0.989380i \(-0.546432\pi\)
−0.929505 + 0.368809i \(0.879766\pi\)
\(930\) 0 0
\(931\) 204.564 + 354.316i 0.219726 + 0.380576i
\(932\) −62.7250 16.8071i −0.0673015 0.0180334i
\(933\) 0 0
\(934\) −1273.10 735.027i −1.36307 0.786967i
\(935\) 1038.20 1029.10i 1.11037 1.10064i
\(936\) 0 0
\(937\) 315.317 315.317i 0.336518 0.336518i −0.518537 0.855055i \(-0.673523\pi\)
0.855055 + 0.518537i \(0.173523\pi\)
\(938\) −84.3122 + 22.5914i −0.0898850 + 0.0240846i
\(939\) 0 0
\(940\) 53.6345 196.699i 0.0570579 0.209254i
\(941\) −311.898 540.224i −0.331454 0.574095i 0.651343 0.758783i \(-0.274206\pi\)
−0.982797 + 0.184688i \(0.940873\pi\)
\(942\) 0 0
\(943\) 1104.76 296.020i 1.17154 0.313913i
\(944\) 1833.50i 1.94226i
\(945\) 0 0
\(946\) 1320.71 1.39610
\(947\) 324.936 + 1212.68i 0.343121 + 1.28055i 0.894792 + 0.446484i \(0.147324\pi\)
−0.551670 + 0.834062i \(0.686009\pi\)
\(948\) 0 0
\(949\) −132.675 + 76.5997i −0.139805 + 0.0807162i
\(950\) −133.134 + 479.922i −0.140141 + 0.505181i
\(951\) 0 0
\(952\) 86.0683 + 321.211i 0.0904079 + 0.337407i
\(953\) 1156.15 + 1156.15i 1.21317 + 1.21317i 0.969979 + 0.243188i \(0.0781933\pi\)
0.243188 + 0.969979i \(0.421807\pi\)
\(954\) 0 0
\(955\) 617.469 + 2.71808i 0.646565 + 0.00284615i
\(956\) −74.6533 + 129.303i −0.0780892 + 0.135255i
\(957\) 0 0
\(958\) 299.122 1116.34i 0.312236 1.16528i
\(959\) 143.524 82.8636i 0.149660 0.0864062i
\(960\) 0 0
\(961\) 306.656 531.144i 0.319101 0.552699i
\(962\) 948.505 948.505i 0.985972 0.985972i
\(963\) 0 0
\(964\) 13.8345i 0.0143512i
\(965\) −1201.99 + 316.407i −1.24558 + 0.327883i
\(966\) 0 0
\(967\) −564.461 151.247i −0.583724 0.156408i −0.0451407 0.998981i \(-0.514374\pi\)
−0.538583 + 0.842572i \(0.681040\pi\)
\(968\) −72.0767 + 268.994i −0.0744594 + 0.277886i
\(969\) 0 0
\(970\) 1072.50 + 625.522i 1.10567 + 0.644868i
\(971\) 755.109 0.777662 0.388831 0.921309i \(-0.372879\pi\)
0.388831 + 0.921309i \(0.372879\pi\)
\(972\) 0 0
\(973\) 373.754 + 373.754i 0.384125 + 0.384125i
\(974\) 1033.64 + 596.774i 1.06123 + 0.612704i
\(975\) 0 0
\(976\) 956.557 + 1656.80i 0.980078 + 1.69755i
\(977\) 1053.61 + 282.315i 1.07842 + 0.288961i 0.753947 0.656935i \(-0.228147\pi\)
0.324470 + 0.945896i \(0.394814\pi\)
\(978\) 0 0
\(979\) −651.446 376.112i −0.665420 0.384180i
\(980\) 171.772 + 0.756136i 0.175278 + 0.000771567i
\(981\) 0 0
\(982\) 455.079 455.079i 0.463421 0.463421i
\(983\) −144.353 + 38.6793i −0.146850 + 0.0393482i −0.331495 0.943457i \(-0.607553\pi\)
0.184645 + 0.982805i \(0.440886\pi\)
\(984\) 0 0
\(985\) 363.251 + 99.0486i 0.368783 + 0.100557i
\(986\) −484.150 838.573i −0.491025 0.850480i
\(987\) 0 0
\(988\) −89.9051 + 24.0900i −0.0909971 + 0.0243826i
\(989\) 1057.63i 1.06940i
\(990\) 0 0
\(991\) 961.090 0.969819 0.484909 0.874564i \(-0.338853\pi\)
0.484909 + 0.874564i \(0.338853\pi\)
\(992\) −58.3998 217.951i −0.0588708 0.219709i
\(993\) 0 0
\(994\) 210.639 121.612i 0.211910 0.122346i
\(995\) −137.603 + 78.6398i −0.138295 + 0.0790350i
\(996\) 0 0
\(997\) 263.082 + 981.834i 0.263873 + 0.984788i 0.962936 + 0.269728i \(0.0869339\pi\)
−0.699063 + 0.715060i \(0.746399\pi\)
\(998\) −1333.01 1333.01i −1.33568 1.33568i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.l.j.298.2 16
3.2 odd 2 405.3.l.m.298.3 16
5.2 odd 4 405.3.l.m.217.3 16
9.2 odd 6 405.3.g.f.163.6 yes 16
9.4 even 3 405.3.l.m.28.3 16
9.5 odd 6 inner 405.3.l.j.28.2 16
9.7 even 3 405.3.g.f.163.3 yes 16
15.2 even 4 inner 405.3.l.j.217.2 16
45.2 even 12 405.3.g.f.82.6 yes 16
45.7 odd 12 405.3.g.f.82.3 16
45.22 odd 12 inner 405.3.l.j.352.2 16
45.32 even 12 405.3.l.m.352.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
405.3.g.f.82.3 16 45.7 odd 12
405.3.g.f.82.6 yes 16 45.2 even 12
405.3.g.f.163.3 yes 16 9.7 even 3
405.3.g.f.163.6 yes 16 9.2 odd 6
405.3.l.j.28.2 16 9.5 odd 6 inner
405.3.l.j.217.2 16 15.2 even 4 inner
405.3.l.j.298.2 16 1.1 even 1 trivial
405.3.l.j.352.2 16 45.22 odd 12 inner
405.3.l.m.28.3 16 9.4 even 3
405.3.l.m.217.3 16 5.2 odd 4
405.3.l.m.298.3 16 3.2 odd 2
405.3.l.m.352.3 16 45.32 even 12