Properties

Label 405.3.l.m.298.3
Level $405$
Weight $3$
Character 405.298
Analytic conductor $11.035$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,3,Mod(28,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([4, 9]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.28");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.l (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 256x^{12} + 15630x^{8} + 235936x^{4} + 28561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 298.3
Root \(-1.54374 + 1.54374i\) of defining polynomial
Character \(\chi\) \(=\) 405.298
Dual form 405.3.l.m.352.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.565047 + 2.10878i) q^{2} +(-0.663588 + 0.383123i) q^{4} +(2.48091 + 4.34109i) q^{5} +(0.528192 + 1.97124i) q^{7} +(4.99206 + 4.99206i) q^{8} +(-7.75259 + 7.68463i) q^{10} +(-6.33336 + 10.9697i) q^{11} +(3.44531 - 12.8581i) q^{13} +(-3.85846 + 2.22768i) q^{14} +(-9.23893 + 16.0023i) q^{16} +(16.3208 - 16.3208i) q^{17} +9.12517i q^{19} +(-3.30948 - 1.93020i) q^{20} +(-26.7114 - 7.15730i) q^{22} +(-5.73162 + 21.3907i) q^{23} +(-12.6901 + 21.5397i) q^{25} +29.0616 q^{26} +(-1.10573 - 1.10573i) q^{28} +(16.6416 + 9.60806i) q^{29} +(-9.32320 - 16.1483i) q^{31} +(-11.6886 - 3.13196i) q^{32} +(43.6390 + 25.1950i) q^{34} +(-7.24692 + 7.18340i) q^{35} +(-32.6377 + 32.6377i) q^{37} +(-19.2430 + 5.15615i) q^{38} +(-9.28611 + 34.0559i) q^{40} +(-25.8234 - 44.7275i) q^{41} +(-46.1316 + 12.3609i) q^{43} -9.70583i q^{44} -48.3470 q^{46} +(13.7731 + 51.4021i) q^{47} +(38.8285 - 22.4176i) q^{49} +(-52.5932 - 14.5898i) q^{50} +(2.63995 + 9.85244i) q^{52} +(-18.2998 - 18.2998i) q^{53} +(-63.3330 - 0.278790i) q^{55} +(-7.20378 + 12.4773i) q^{56} +(-10.8580 + 40.5226i) q^{58} +(85.9329 - 49.6134i) q^{59} +(51.7677 - 89.6644i) q^{61} +(28.7851 - 28.7851i) q^{62} +47.4929i q^{64} +(64.3655 - 16.9434i) q^{65} +(-18.9237 - 5.07060i) q^{67} +(-4.57742 + 17.0832i) q^{68} +(-19.2431 - 11.2232i) q^{70} -54.5913 q^{71} +(-8.13786 - 8.13786i) q^{73} +(-87.2677 - 50.3840i) q^{74} +(-3.49606 - 6.05535i) q^{76} +(-24.9691 - 6.69046i) q^{77} +(122.145 + 70.5203i) q^{79} +(-92.3884 - 0.406690i) q^{80} +(79.7291 - 79.7291i) q^{82} +(65.8143 - 17.6349i) q^{83} +(111.341 + 30.3595i) q^{85} +(-52.1330 - 90.2970i) q^{86} +(-86.3781 + 23.1449i) q^{88} +59.3859i q^{89} +27.1661 q^{91} +(-4.39183 - 16.3905i) q^{92} +(-100.613 + 58.0892i) q^{94} +(-39.6132 + 22.6388i) q^{95} +(-29.4385 - 109.866i) q^{97} +(69.2138 + 69.2138i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 6 q^{2} - 12 q^{5} - 20 q^{7} - 56 q^{10} + 22 q^{13} + 168 q^{14} + 16 q^{16} + 96 q^{20} - 16 q^{22} - 36 q^{23} + 46 q^{25} + 176 q^{28} + 252 q^{29} - 160 q^{31} + 114 q^{32} + 4 q^{37} - 192 q^{38}+ \cdots - 152 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.565047 + 2.10878i 0.282523 + 1.05439i 0.950630 + 0.310326i \(0.100438\pi\)
−0.668107 + 0.744065i \(0.732895\pi\)
\(3\) 0 0
\(4\) −0.663588 + 0.383123i −0.165897 + 0.0957807i
\(5\) 2.48091 + 4.34109i 0.496183 + 0.868218i
\(6\) 0 0
\(7\) 0.528192 + 1.97124i 0.0754560 + 0.281605i 0.993336 0.115252i \(-0.0367675\pi\)
−0.917880 + 0.396857i \(0.870101\pi\)
\(8\) 4.99206 + 4.99206i 0.624008 + 0.624008i
\(9\) 0 0
\(10\) −7.75259 + 7.68463i −0.775259 + 0.768463i
\(11\) −6.33336 + 10.9697i −0.575760 + 0.997246i 0.420198 + 0.907432i \(0.361961\pi\)
−0.995959 + 0.0898139i \(0.971373\pi\)
\(12\) 0 0
\(13\) 3.44531 12.8581i 0.265024 0.989082i −0.697212 0.716865i \(-0.745576\pi\)
0.962236 0.272217i \(-0.0877569\pi\)
\(14\) −3.85846 + 2.22768i −0.275604 + 0.159120i
\(15\) 0 0
\(16\) −9.23893 + 16.0023i −0.577433 + 1.00014i
\(17\) 16.3208 16.3208i 0.960047 0.960047i −0.0391852 0.999232i \(-0.512476\pi\)
0.999232 + 0.0391852i \(0.0124762\pi\)
\(18\) 0 0
\(19\) 9.12517i 0.480272i 0.970739 + 0.240136i \(0.0771920\pi\)
−0.970739 + 0.240136i \(0.922808\pi\)
\(20\) −3.30948 1.93020i −0.165474 0.0965101i
\(21\) 0 0
\(22\) −26.7114 7.15730i −1.21415 0.325332i
\(23\) −5.73162 + 21.3907i −0.249201 + 0.930030i 0.722025 + 0.691867i \(0.243212\pi\)
−0.971225 + 0.238163i \(0.923455\pi\)
\(24\) 0 0
\(25\) −12.6901 + 21.5397i −0.507605 + 0.861590i
\(26\) 29.0616 1.11776
\(27\) 0 0
\(28\) −1.10573 1.10573i −0.0394903 0.0394903i
\(29\) 16.6416 + 9.60806i 0.573850 + 0.331312i 0.758686 0.651457i \(-0.225842\pi\)
−0.184836 + 0.982769i \(0.559175\pi\)
\(30\) 0 0
\(31\) −9.32320 16.1483i −0.300748 0.520911i 0.675557 0.737307i \(-0.263903\pi\)
−0.976306 + 0.216396i \(0.930570\pi\)
\(32\) −11.6886 3.13196i −0.365270 0.0978738i
\(33\) 0 0
\(34\) 43.6390 + 25.1950i 1.28350 + 0.741030i
\(35\) −7.24692 + 7.18340i −0.207055 + 0.205240i
\(36\) 0 0
\(37\) −32.6377 + 32.6377i −0.882100 + 0.882100i −0.993748 0.111648i \(-0.964387\pi\)
0.111648 + 0.993748i \(0.464387\pi\)
\(38\) −19.2430 + 5.15615i −0.506395 + 0.135688i
\(39\) 0 0
\(40\) −9.28611 + 34.0559i −0.232153 + 0.851397i
\(41\) −25.8234 44.7275i −0.629839 1.09091i −0.987584 0.157094i \(-0.949787\pi\)
0.357744 0.933820i \(-0.383546\pi\)
\(42\) 0 0
\(43\) −46.1316 + 12.3609i −1.07283 + 0.287463i −0.751654 0.659557i \(-0.770744\pi\)
−0.321173 + 0.947021i \(0.604077\pi\)
\(44\) 9.70583i 0.220587i
\(45\) 0 0
\(46\) −48.3470 −1.05102
\(47\) 13.7731 + 51.4021i 0.293046 + 1.09366i 0.942757 + 0.333480i \(0.108223\pi\)
−0.649711 + 0.760181i \(0.725110\pi\)
\(48\) 0 0
\(49\) 38.8285 22.4176i 0.792417 0.457502i
\(50\) −52.5932 14.5898i −1.05186 0.291795i
\(51\) 0 0
\(52\) 2.63995 + 9.85244i 0.0507683 + 0.189470i
\(53\) −18.2998 18.2998i −0.345280 0.345280i 0.513068 0.858348i \(-0.328509\pi\)
−0.858348 + 0.513068i \(0.828509\pi\)
\(54\) 0 0
\(55\) −63.3330 0.278790i −1.15151 0.00506890i
\(56\) −7.20378 + 12.4773i −0.128639 + 0.222809i
\(57\) 0 0
\(58\) −10.8580 + 40.5226i −0.187207 + 0.698666i
\(59\) 85.9329 49.6134i 1.45649 0.840905i 0.457653 0.889131i \(-0.348690\pi\)
0.998836 + 0.0482263i \(0.0153569\pi\)
\(60\) 0 0
\(61\) 51.7677 89.6644i 0.848651 1.46991i −0.0337606 0.999430i \(-0.510748\pi\)
0.882412 0.470477i \(-0.155918\pi\)
\(62\) 28.7851 28.7851i 0.464276 0.464276i
\(63\) 0 0
\(64\) 47.4929i 0.742076i
\(65\) 64.3655 16.9434i 0.990239 0.260667i
\(66\) 0 0
\(67\) −18.9237 5.07060i −0.282444 0.0756805i 0.114816 0.993387i \(-0.463372\pi\)
−0.397260 + 0.917706i \(0.630039\pi\)
\(68\) −4.57742 + 17.0832i −0.0673150 + 0.251223i
\(69\) 0 0
\(70\) −19.2431 11.2232i −0.274901 0.160332i
\(71\) −54.5913 −0.768892 −0.384446 0.923148i \(-0.625607\pi\)
−0.384446 + 0.923148i \(0.625607\pi\)
\(72\) 0 0
\(73\) −8.13786 8.13786i −0.111478 0.111478i 0.649168 0.760645i \(-0.275117\pi\)
−0.760645 + 0.649168i \(0.775117\pi\)
\(74\) −87.2677 50.3840i −1.17929 0.680865i
\(75\) 0 0
\(76\) −3.49606 6.05535i −0.0460008 0.0796757i
\(77\) −24.9691 6.69046i −0.324275 0.0868891i
\(78\) 0 0
\(79\) 122.145 + 70.5203i 1.54614 + 0.892662i 0.998431 + 0.0559909i \(0.0178318\pi\)
0.547705 + 0.836671i \(0.315502\pi\)
\(80\) −92.3884 0.406690i −1.15485 0.00508363i
\(81\) 0 0
\(82\) 79.7291 79.7291i 0.972306 0.972306i
\(83\) 65.8143 17.6349i 0.792944 0.212469i 0.160460 0.987042i \(-0.448702\pi\)
0.632484 + 0.774574i \(0.282036\pi\)
\(84\) 0 0
\(85\) 111.341 + 30.3595i 1.30989 + 0.357171i
\(86\) −52.1330 90.2970i −0.606198 1.04996i
\(87\) 0 0
\(88\) −86.3781 + 23.1449i −0.981569 + 0.263011i
\(89\) 59.3859i 0.667257i 0.942705 + 0.333629i \(0.108273\pi\)
−0.942705 + 0.333629i \(0.891727\pi\)
\(90\) 0 0
\(91\) 27.1661 0.298528
\(92\) −4.39183 16.3905i −0.0477373 0.178158i
\(93\) 0 0
\(94\) −100.613 + 58.0892i −1.07036 + 0.617970i
\(95\) −39.6132 + 22.6388i −0.416981 + 0.238303i
\(96\) 0 0
\(97\) −29.4385 109.866i −0.303490 1.13264i −0.934238 0.356651i \(-0.883918\pi\)
0.630748 0.775988i \(-0.282748\pi\)
\(98\) 69.2138 + 69.2138i 0.706263 + 0.706263i
\(99\) 0 0
\(100\) 0.168646 19.1554i 0.00168646 0.191554i
\(101\) 8.95268 15.5065i 0.0886404 0.153530i −0.818296 0.574797i \(-0.805081\pi\)
0.906937 + 0.421267i \(0.138414\pi\)
\(102\) 0 0
\(103\) 20.5961 76.8655i 0.199962 0.746267i −0.790965 0.611862i \(-0.790421\pi\)
0.990926 0.134406i \(-0.0429125\pi\)
\(104\) 81.3875 46.9891i 0.782572 0.451818i
\(105\) 0 0
\(106\) 28.2501 48.9307i 0.266511 0.461610i
\(107\) 59.3250 59.3250i 0.554439 0.554439i −0.373280 0.927719i \(-0.621767\pi\)
0.927719 + 0.373280i \(0.121767\pi\)
\(108\) 0 0
\(109\) 140.876i 1.29244i −0.763153 0.646218i \(-0.776350\pi\)
0.763153 0.646218i \(-0.223650\pi\)
\(110\) −35.1982 133.713i −0.319984 1.21557i
\(111\) 0 0
\(112\) −36.4242 9.75985i −0.325217 0.0871415i
\(113\) −52.1216 + 194.521i −0.461253 + 1.72142i 0.207769 + 0.978178i \(0.433380\pi\)
−0.669022 + 0.743243i \(0.733287\pi\)
\(114\) 0 0
\(115\) −107.079 + 28.1870i −0.931118 + 0.245104i
\(116\) −14.7243 −0.126933
\(117\) 0 0
\(118\) 153.180 + 153.180i 1.29814 + 1.29814i
\(119\) 40.7927 + 23.5517i 0.342796 + 0.197913i
\(120\) 0 0
\(121\) −19.7230 34.1613i −0.163000 0.282324i
\(122\) 218.334 + 58.5024i 1.78962 + 0.479528i
\(123\) 0 0
\(124\) 12.3735 + 7.14386i 0.0997866 + 0.0576118i
\(125\) −124.989 1.65068i −0.999913 0.0132054i
\(126\) 0 0
\(127\) 145.343 145.343i 1.14443 1.14443i 0.156799 0.987631i \(-0.449882\pi\)
0.987631 0.156799i \(-0.0501175\pi\)
\(128\) −146.907 + 39.3636i −1.14771 + 0.307528i
\(129\) 0 0
\(130\) 72.0994 + 126.159i 0.554611 + 0.970455i
\(131\) 110.153 + 190.791i 0.840865 + 1.45642i 0.889164 + 0.457588i \(0.151287\pi\)
−0.0482993 + 0.998833i \(0.515380\pi\)
\(132\) 0 0
\(133\) −17.9879 + 4.81984i −0.135247 + 0.0362394i
\(134\) 42.7712i 0.319188i
\(135\) 0 0
\(136\) 162.949 1.19815
\(137\) 21.0181 + 78.4408i 0.153417 + 0.572560i 0.999236 + 0.0390898i \(0.0124459\pi\)
−0.845819 + 0.533471i \(0.820887\pi\)
\(138\) 0 0
\(139\) 224.304 129.502i 1.61369 0.931667i 0.625191 0.780472i \(-0.285021\pi\)
0.988504 0.151195i \(-0.0483121\pi\)
\(140\) 2.05685 7.54329i 0.0146918 0.0538806i
\(141\) 0 0
\(142\) −30.8467 115.121i −0.217230 0.810713i
\(143\) 119.229 + 119.229i 0.833768 + 0.833768i
\(144\) 0 0
\(145\) −0.422939 + 96.0797i −0.00291682 + 0.662618i
\(146\) 12.5627 21.7593i 0.0860460 0.149036i
\(147\) 0 0
\(148\) 9.15375 34.1623i 0.0618497 0.230826i
\(149\) 113.230 65.3731i 0.759930 0.438746i −0.0693405 0.997593i \(-0.522090\pi\)
0.829271 + 0.558847i \(0.188756\pi\)
\(150\) 0 0
\(151\) 63.1475 109.375i 0.418195 0.724335i −0.577563 0.816346i \(-0.695996\pi\)
0.995758 + 0.0920110i \(0.0293295\pi\)
\(152\) −45.5534 + 45.5534i −0.299694 + 0.299694i
\(153\) 0 0
\(154\) 56.4349i 0.366461i
\(155\) 46.9710 80.5353i 0.303038 0.519583i
\(156\) 0 0
\(157\) −178.457 47.8175i −1.13667 0.304570i −0.359060 0.933315i \(-0.616903\pi\)
−0.777612 + 0.628744i \(0.783569\pi\)
\(158\) −79.6946 + 297.424i −0.504396 + 1.88243i
\(159\) 0 0
\(160\) −15.4024 58.5116i −0.0962649 0.365697i
\(161\) −45.1935 −0.280705
\(162\) 0 0
\(163\) −70.0370 70.0370i −0.429675 0.429675i 0.458843 0.888518i \(-0.348264\pi\)
−0.888518 + 0.458843i \(0.848264\pi\)
\(164\) 34.2722 + 19.7871i 0.208977 + 0.120653i
\(165\) 0 0
\(166\) 74.3763 + 128.824i 0.448050 + 0.776046i
\(167\) 93.7589 + 25.1226i 0.561431 + 0.150435i 0.528363 0.849018i \(-0.322806\pi\)
0.0330670 + 0.999453i \(0.489473\pi\)
\(168\) 0 0
\(169\) −7.10136 4.09997i −0.0420199 0.0242602i
\(170\) −1.10906 + 251.948i −0.00652391 + 1.48205i
\(171\) 0 0
\(172\) 25.8766 25.8766i 0.150445 0.150445i
\(173\) −66.6187 + 17.8504i −0.385079 + 0.103182i −0.446165 0.894951i \(-0.647210\pi\)
0.0610854 + 0.998133i \(0.480544\pi\)
\(174\) 0 0
\(175\) −49.1628 13.6381i −0.280930 0.0779322i
\(176\) −117.027 202.697i −0.664926 1.15169i
\(177\) 0 0
\(178\) −125.232 + 33.5558i −0.703550 + 0.188516i
\(179\) 159.099i 0.888822i −0.895823 0.444411i \(-0.853413\pi\)
0.895823 0.444411i \(-0.146587\pi\)
\(180\) 0 0
\(181\) 63.3929 0.350237 0.175119 0.984547i \(-0.443969\pi\)
0.175119 + 0.984547i \(0.443969\pi\)
\(182\) 15.3501 + 57.2874i 0.0843413 + 0.314766i
\(183\) 0 0
\(184\) −135.396 + 78.1711i −0.735850 + 0.424843i
\(185\) −222.655 60.7119i −1.20354 0.328172i
\(186\) 0 0
\(187\) 75.6688 + 282.400i 0.404646 + 1.51016i
\(188\) −28.8330 28.8330i −0.153367 0.153367i
\(189\) 0 0
\(190\) −70.1235 70.7436i −0.369071 0.372335i
\(191\) 61.7475 106.950i 0.323285 0.559947i −0.657878 0.753124i \(-0.728546\pi\)
0.981164 + 0.193177i \(0.0618793\pi\)
\(192\) 0 0
\(193\) 64.3390 240.116i 0.333363 1.24413i −0.572271 0.820065i \(-0.693937\pi\)
0.905633 0.424062i \(-0.139396\pi\)
\(194\) 215.050 124.159i 1.10850 0.639994i
\(195\) 0 0
\(196\) −17.1774 + 29.7521i −0.0876398 + 0.151797i
\(197\) 53.2469 53.2469i 0.270289 0.270289i −0.558928 0.829217i \(-0.688787\pi\)
0.829217 + 0.558928i \(0.188787\pi\)
\(198\) 0 0
\(199\) 31.6979i 0.159286i −0.996823 0.0796430i \(-0.974622\pi\)
0.996823 0.0796430i \(-0.0253780\pi\)
\(200\) −170.878 + 44.1779i −0.854389 + 0.220890i
\(201\) 0 0
\(202\) 37.7585 + 10.1174i 0.186923 + 0.0500860i
\(203\) −10.1498 + 37.8796i −0.0499990 + 0.186599i
\(204\) 0 0
\(205\) 130.100 223.067i 0.634635 1.08813i
\(206\) 173.731 0.843352
\(207\) 0 0
\(208\) 173.927 + 173.927i 0.836190 + 0.836190i
\(209\) −100.100 57.7930i −0.478949 0.276522i
\(210\) 0 0
\(211\) 101.246 + 175.363i 0.479838 + 0.831103i 0.999733 0.0231271i \(-0.00736225\pi\)
−0.519895 + 0.854230i \(0.674029\pi\)
\(212\) 19.1546 + 5.13247i 0.0903521 + 0.0242098i
\(213\) 0 0
\(214\) 158.625 + 91.5822i 0.741238 + 0.427954i
\(215\) −168.108 169.595i −0.781899 0.788813i
\(216\) 0 0
\(217\) 26.9076 26.9076i 0.123998 0.123998i
\(218\) 297.076 79.6013i 1.36273 0.365144i
\(219\) 0 0
\(220\) 42.1339 24.0793i 0.191518 0.109452i
\(221\) −153.624 266.084i −0.695130 1.20400i
\(222\) 0 0
\(223\) −64.0039 + 17.1498i −0.287013 + 0.0769049i −0.399453 0.916754i \(-0.630800\pi\)
0.112440 + 0.993658i \(0.464133\pi\)
\(224\) 24.6954i 0.110247i
\(225\) 0 0
\(226\) −439.653 −1.94537
\(227\) −75.6965 282.503i −0.333465 1.24451i −0.905524 0.424295i \(-0.860522\pi\)
0.572059 0.820212i \(-0.306145\pi\)
\(228\) 0 0
\(229\) −229.797 + 132.673i −1.00348 + 0.579358i −0.909276 0.416195i \(-0.863364\pi\)
−0.0942027 + 0.995553i \(0.530030\pi\)
\(230\) −119.945 209.879i −0.521499 0.912515i
\(231\) 0 0
\(232\) 35.1121 + 131.040i 0.151345 + 0.564829i
\(233\) −59.9258 59.9258i −0.257192 0.257192i 0.566719 0.823911i \(-0.308213\pi\)
−0.823911 + 0.566719i \(0.808213\pi\)
\(234\) 0 0
\(235\) −188.971 + 187.315i −0.804132 + 0.797084i
\(236\) −38.0160 + 65.8457i −0.161085 + 0.279007i
\(237\) 0 0
\(238\) −26.6156 + 99.3307i −0.111830 + 0.417356i
\(239\) −168.749 + 97.4274i −0.706063 + 0.407646i −0.809602 0.586980i \(-0.800317\pi\)
0.103538 + 0.994625i \(0.466984\pi\)
\(240\) 0 0
\(241\) 9.02748 15.6361i 0.0374584 0.0648799i −0.846688 0.532089i \(-0.821407\pi\)
0.884147 + 0.467209i \(0.154740\pi\)
\(242\) 60.8943 60.8943i 0.251629 0.251629i
\(243\) 0 0
\(244\) 79.3336i 0.325138i
\(245\) 193.647 + 112.942i 0.790396 + 0.460986i
\(246\) 0 0
\(247\) 117.332 + 31.4390i 0.475028 + 0.127283i
\(248\) 34.0711 127.155i 0.137384 0.512722i
\(249\) 0 0
\(250\) −67.1438 264.508i −0.268575 1.05803i
\(251\) −319.556 −1.27313 −0.636566 0.771223i \(-0.719646\pi\)
−0.636566 + 0.771223i \(0.719646\pi\)
\(252\) 0 0
\(253\) −198.349 198.349i −0.783989 0.783989i
\(254\) 388.621 + 224.371i 1.53001 + 0.883349i
\(255\) 0 0
\(256\) −71.0326 123.032i −0.277471 0.480594i
\(257\) −126.459 33.8846i −0.492058 0.131847i 0.00425348 0.999991i \(-0.498646\pi\)
−0.496312 + 0.868144i \(0.665313\pi\)
\(258\) 0 0
\(259\) −81.5757 47.0977i −0.314964 0.181845i
\(260\) −36.2208 + 35.9033i −0.139311 + 0.138090i
\(261\) 0 0
\(262\) −340.095 + 340.095i −1.29807 + 1.29807i
\(263\) −494.002 + 132.368i −1.87834 + 0.503299i −0.878671 + 0.477428i \(0.841569\pi\)
−0.999665 + 0.0258709i \(0.991764\pi\)
\(264\) 0 0
\(265\) 34.0409 124.842i 0.128456 0.471100i
\(266\) −20.3280 35.2091i −0.0764210 0.132365i
\(267\) 0 0
\(268\) 14.5002 3.88532i 0.0541053 0.0144975i
\(269\) 220.179i 0.818508i −0.912421 0.409254i \(-0.865789\pi\)
0.912421 0.409254i \(-0.134211\pi\)
\(270\) 0 0
\(271\) −298.400 −1.10111 −0.550553 0.834800i \(-0.685583\pi\)
−0.550553 + 0.834800i \(0.685583\pi\)
\(272\) 110.383 + 411.957i 0.405822 + 1.51455i
\(273\) 0 0
\(274\) −153.538 + 88.6454i −0.560359 + 0.323523i
\(275\) −155.914 275.626i −0.566959 1.00228i
\(276\) 0 0
\(277\) 93.2365 + 347.963i 0.336594 + 1.25619i 0.902131 + 0.431462i \(0.142002\pi\)
−0.565537 + 0.824723i \(0.691331\pi\)
\(278\) 399.833 + 399.833i 1.43825 + 1.43825i
\(279\) 0 0
\(280\) −72.0371 0.317105i −0.257275 0.00113252i
\(281\) −34.8739 + 60.4033i −0.124106 + 0.214959i −0.921383 0.388655i \(-0.872940\pi\)
0.797277 + 0.603614i \(0.206273\pi\)
\(282\) 0 0
\(283\) −16.5108 + 61.6190i −0.0583419 + 0.217735i −0.988942 0.148302i \(-0.952619\pi\)
0.930600 + 0.366037i \(0.119286\pi\)
\(284\) 36.2262 20.9152i 0.127557 0.0736450i
\(285\) 0 0
\(286\) −184.058 + 318.798i −0.643559 + 1.11468i
\(287\) 74.5288 74.5288i 0.259682 0.259682i
\(288\) 0 0
\(289\) 243.737i 0.843380i
\(290\) −202.850 + 53.3976i −0.699484 + 0.184130i
\(291\) 0 0
\(292\) 8.51799 + 2.28239i 0.0291712 + 0.00781640i
\(293\) −34.3019 + 128.016i −0.117071 + 0.436916i −0.999434 0.0336549i \(-0.989285\pi\)
0.882362 + 0.470571i \(0.155952\pi\)
\(294\) 0 0
\(295\) 428.568 + 249.956i 1.45277 + 0.847308i
\(296\) −325.859 −1.10088
\(297\) 0 0
\(298\) 201.838 + 201.838i 0.677308 + 0.677308i
\(299\) 255.296 + 147.395i 0.853832 + 0.492960i
\(300\) 0 0
\(301\) −48.7326 84.4074i −0.161902 0.280423i
\(302\) 266.329 + 71.3626i 0.881883 + 0.236300i
\(303\) 0 0
\(304\) −146.024 84.3067i −0.480341 0.277325i
\(305\) 517.672 + 2.27877i 1.69729 + 0.00747139i
\(306\) 0 0
\(307\) −110.408 + 110.408i −0.359634 + 0.359634i −0.863678 0.504044i \(-0.831845\pi\)
0.504044 + 0.863678i \(0.331845\pi\)
\(308\) 19.1325 5.12654i 0.0621185 0.0166446i
\(309\) 0 0
\(310\) 196.372 + 53.5454i 0.633459 + 0.172727i
\(311\) 151.964 + 263.209i 0.488630 + 0.846331i 0.999914 0.0130800i \(-0.00416361\pi\)
−0.511285 + 0.859411i \(0.670830\pi\)
\(312\) 0 0
\(313\) 70.0305 18.7646i 0.223740 0.0599508i −0.145208 0.989401i \(-0.546385\pi\)
0.368947 + 0.929450i \(0.379718\pi\)
\(314\) 403.347i 1.28455i
\(315\) 0 0
\(316\) −108.072 −0.341999
\(317\) −22.3631 83.4604i −0.0705462 0.263282i 0.921640 0.388045i \(-0.126850\pi\)
−0.992187 + 0.124763i \(0.960183\pi\)
\(318\) 0 0
\(319\) −210.795 + 121.703i −0.660800 + 0.381513i
\(320\) −206.171 + 117.826i −0.644284 + 0.368206i
\(321\) 0 0
\(322\) −25.5365 95.3034i −0.0793058 0.295973i
\(323\) 148.930 + 148.930i 0.461084 + 0.461084i
\(324\) 0 0
\(325\) 233.238 + 237.381i 0.717656 + 0.730405i
\(326\) 108.119 187.267i 0.331653 0.574439i
\(327\) 0 0
\(328\) 94.3703 352.195i 0.287714 1.07376i
\(329\) −94.0509 + 54.3003i −0.285869 + 0.165047i
\(330\) 0 0
\(331\) −124.188 + 215.101i −0.375192 + 0.649851i −0.990356 0.138548i \(-0.955756\pi\)
0.615164 + 0.788399i \(0.289090\pi\)
\(332\) −36.9173 + 36.9173i −0.111197 + 0.111197i
\(333\) 0 0
\(334\) 211.913i 0.634469i
\(335\) −24.9362 94.7293i −0.0744365 0.282774i
\(336\) 0 0
\(337\) −190.227 50.9712i −0.564472 0.151250i −0.0347120 0.999397i \(-0.511051\pi\)
−0.529760 + 0.848147i \(0.677718\pi\)
\(338\) 4.63335 17.2919i 0.0137081 0.0511595i
\(339\) 0 0
\(340\) −85.5157 + 22.5109i −0.251517 + 0.0662085i
\(341\) 236.189 0.692636
\(342\) 0 0
\(343\) 135.409 + 135.409i 0.394777 + 0.394777i
\(344\) −291.998 168.585i −0.848832 0.490073i
\(345\) 0 0
\(346\) −75.2854 130.398i −0.217588 0.376873i
\(347\) 27.4777 + 7.36263i 0.0791865 + 0.0212180i 0.298195 0.954505i \(-0.403616\pi\)
−0.219008 + 0.975723i \(0.570282\pi\)
\(348\) 0 0
\(349\) −515.156 297.426i −1.47609 0.852222i −0.476456 0.879198i \(-0.658079\pi\)
−0.999636 + 0.0269761i \(0.991412\pi\)
\(350\) 0.980599 111.380i 0.00280171 0.318228i
\(351\) 0 0
\(352\) 108.385 108.385i 0.307912 0.307912i
\(353\) −315.597 + 84.5639i −0.894042 + 0.239558i −0.676456 0.736483i \(-0.736485\pi\)
−0.217586 + 0.976041i \(0.569818\pi\)
\(354\) 0 0
\(355\) −135.436 236.986i −0.381511 0.667566i
\(356\) −22.7521 39.4078i −0.0639104 0.110696i
\(357\) 0 0
\(358\) 335.506 89.8985i 0.937166 0.251113i
\(359\) 245.484i 0.683799i 0.939736 + 0.341900i \(0.111070\pi\)
−0.939736 + 0.341900i \(0.888930\pi\)
\(360\) 0 0
\(361\) 277.731 0.769339
\(362\) 35.8200 + 133.682i 0.0989502 + 0.369287i
\(363\) 0 0
\(364\) −18.0271 + 10.4080i −0.0495250 + 0.0285933i
\(365\) 15.1378 55.5165i 0.0414735 0.152100i
\(366\) 0 0
\(367\) 114.721 + 428.144i 0.312591 + 1.16660i 0.926212 + 0.377004i \(0.123046\pi\)
−0.613621 + 0.789601i \(0.710288\pi\)
\(368\) −289.346 289.346i −0.786266 0.786266i
\(369\) 0 0
\(370\) 2.21786 503.835i 0.00599423 1.36172i
\(371\) 26.4075 45.7392i 0.0711793 0.123286i
\(372\) 0 0
\(373\) 51.4256 191.923i 0.137870 0.514539i −0.862099 0.506739i \(-0.830851\pi\)
0.999970 0.00779940i \(-0.00248265\pi\)
\(374\) −552.764 + 319.138i −1.47798 + 0.853311i
\(375\) 0 0
\(376\) −187.846 + 325.359i −0.499591 + 0.865316i
\(377\) 180.877 180.877i 0.479779 0.479779i
\(378\) 0 0
\(379\) 177.166i 0.467456i −0.972302 0.233728i \(-0.924908\pi\)
0.972302 0.233728i \(-0.0750925\pi\)
\(380\) 17.6134 30.1995i 0.0463511 0.0794725i
\(381\) 0 0
\(382\) 260.424 + 69.7805i 0.681739 + 0.182671i
\(383\) 4.44480 16.5882i 0.0116052 0.0433113i −0.959880 0.280410i \(-0.909530\pi\)
0.971486 + 0.237098i \(0.0761964\pi\)
\(384\) 0 0
\(385\) −32.9024 124.992i −0.0854608 0.324654i
\(386\) 542.708 1.40598
\(387\) 0 0
\(388\) 61.6273 + 61.6273i 0.158833 + 0.158833i
\(389\) 149.347 + 86.2254i 0.383925 + 0.221659i 0.679524 0.733653i \(-0.262186\pi\)
−0.295600 + 0.955312i \(0.595519\pi\)
\(390\) 0 0
\(391\) 255.569 + 442.658i 0.653628 + 1.13212i
\(392\) 305.744 + 81.9239i 0.779960 + 0.208990i
\(393\) 0 0
\(394\) 142.373 + 82.1992i 0.361353 + 0.208628i
\(395\) −3.10425 + 705.196i −0.00785886 + 1.78531i
\(396\) 0 0
\(397\) 4.98532 4.98532i 0.0125575 0.0125575i −0.700800 0.713358i \(-0.747174\pi\)
0.713358 + 0.700800i \(0.247174\pi\)
\(398\) 66.8440 17.9108i 0.167950 0.0450020i
\(399\) 0 0
\(400\) −227.442 402.075i −0.568605 1.00519i
\(401\) 354.129 + 613.369i 0.883115 + 1.52960i 0.847859 + 0.530221i \(0.177891\pi\)
0.0352554 + 0.999378i \(0.488776\pi\)
\(402\) 0 0
\(403\) −239.757 + 64.2426i −0.594929 + 0.159411i
\(404\) 13.7199i 0.0339602i
\(405\) 0 0
\(406\) −85.6149 −0.210874
\(407\) −151.320 564.733i −0.371793 1.38755i
\(408\) 0 0
\(409\) −344.913 + 199.136i −0.843309 + 0.486885i −0.858388 0.513002i \(-0.828533\pi\)
0.0150787 + 0.999886i \(0.495200\pi\)
\(410\) 543.912 + 148.310i 1.32662 + 0.361732i
\(411\) 0 0
\(412\) 15.7816 + 58.8979i 0.0383050 + 0.142956i
\(413\) 143.189 + 143.189i 0.346704 + 0.346704i
\(414\) 0 0
\(415\) 239.834 + 241.955i 0.577914 + 0.583025i
\(416\) −80.5419 + 139.503i −0.193610 + 0.335343i
\(417\) 0 0
\(418\) 65.3115 243.746i 0.156248 0.583124i
\(419\) 411.732 237.714i 0.982654 0.567336i 0.0795838 0.996828i \(-0.474641\pi\)
0.903070 + 0.429493i \(0.141308\pi\)
\(420\) 0 0
\(421\) 285.120 493.842i 0.677245 1.17302i −0.298563 0.954390i \(-0.596507\pi\)
0.975807 0.218632i \(-0.0701595\pi\)
\(422\) −312.593 + 312.593i −0.740743 + 0.740743i
\(423\) 0 0
\(424\) 182.708i 0.430915i
\(425\) 144.433 + 558.659i 0.339842 + 1.31449i
\(426\) 0 0
\(427\) 204.093 + 54.6866i 0.477970 + 0.128072i
\(428\) −16.6386 + 62.0961i −0.0388753 + 0.145084i
\(429\) 0 0
\(430\) 262.650 450.333i 0.610814 1.04729i
\(431\) −565.177 −1.31131 −0.655657 0.755059i \(-0.727608\pi\)
−0.655657 + 0.755059i \(0.727608\pi\)
\(432\) 0 0
\(433\) −34.7884 34.7884i −0.0803428 0.0803428i 0.665793 0.746136i \(-0.268093\pi\)
−0.746136 + 0.665793i \(0.768093\pi\)
\(434\) 71.9464 + 41.5383i 0.165775 + 0.0957103i
\(435\) 0 0
\(436\) 53.9727 + 93.4834i 0.123791 + 0.214411i
\(437\) −195.194 52.3020i −0.446667 0.119684i
\(438\) 0 0
\(439\) −271.216 156.587i −0.617804 0.356689i 0.158209 0.987406i \(-0.449428\pi\)
−0.776014 + 0.630716i \(0.782761\pi\)
\(440\) −314.771 317.554i −0.715388 0.721714i
\(441\) 0 0
\(442\) 474.309 474.309i 1.07310 1.07310i
\(443\) 446.109 119.535i 1.00702 0.269830i 0.282636 0.959227i \(-0.408791\pi\)
0.724383 + 0.689397i \(0.242125\pi\)
\(444\) 0 0
\(445\) −257.799 + 147.331i −0.579325 + 0.331082i
\(446\) −72.3304 125.280i −0.162176 0.280897i
\(447\) 0 0
\(448\) −93.6198 + 25.0854i −0.208973 + 0.0559941i
\(449\) 3.80236i 0.00846851i −0.999991 0.00423425i \(-0.998652\pi\)
0.999991 0.00423425i \(-0.00134781\pi\)
\(450\) 0 0
\(451\) 654.196 1.45055
\(452\) −39.9380 149.051i −0.0883584 0.329758i
\(453\) 0 0
\(454\) 552.966 319.255i 1.21799 0.703205i
\(455\) 67.3968 + 117.930i 0.148125 + 0.259188i
\(456\) 0 0
\(457\) −183.873 686.222i −0.402347 1.50158i −0.808896 0.587951i \(-0.799935\pi\)
0.406549 0.913629i \(-0.366732\pi\)
\(458\) −409.625 409.625i −0.894377 0.894377i
\(459\) 0 0
\(460\) 60.2570 59.7288i 0.130993 0.129845i
\(461\) −52.8552 + 91.5479i −0.114653 + 0.198586i −0.917641 0.397410i \(-0.869909\pi\)
0.802988 + 0.595996i \(0.203242\pi\)
\(462\) 0 0
\(463\) −224.884 + 839.277i −0.485710 + 1.81269i 0.0911330 + 0.995839i \(0.470951\pi\)
−0.576843 + 0.816855i \(0.695716\pi\)
\(464\) −307.502 + 177.536i −0.662720 + 0.382621i
\(465\) 0 0
\(466\) 92.5096 160.231i 0.198519 0.343844i
\(467\) −476.135 + 476.135i −1.01956 + 1.01956i −0.0197563 + 0.999805i \(0.506289\pi\)
−0.999805 + 0.0197563i \(0.993711\pi\)
\(468\) 0 0
\(469\) 39.9814i 0.0852482i
\(470\) −501.784 292.658i −1.06762 0.622676i
\(471\) 0 0
\(472\) 676.656 + 181.309i 1.43359 + 0.384130i
\(473\) 156.572 584.336i 0.331020 1.23538i
\(474\) 0 0
\(475\) −196.554 115.799i −0.413797 0.243788i
\(476\) −36.0927 −0.0758251
\(477\) 0 0
\(478\) −300.804 300.804i −0.629298 0.629298i
\(479\) −458.453 264.688i −0.957105 0.552585i −0.0618243 0.998087i \(-0.519692\pi\)
−0.895281 + 0.445502i \(0.853025\pi\)
\(480\) 0 0
\(481\) 307.211 + 532.105i 0.638692 + 1.10625i
\(482\) 38.0740 + 10.2019i 0.0789917 + 0.0211658i
\(483\) 0 0
\(484\) 26.1759 + 15.1127i 0.0540825 + 0.0312245i
\(485\) 403.904 400.363i 0.832791 0.825492i
\(486\) 0 0
\(487\) −386.577 + 386.577i −0.793793 + 0.793793i −0.982109 0.188315i \(-0.939697\pi\)
0.188315 + 0.982109i \(0.439697\pi\)
\(488\) 706.038 189.182i 1.44680 0.387669i
\(489\) 0 0
\(490\) −128.750 + 472.177i −0.262755 + 0.963626i
\(491\) −147.395 255.296i −0.300194 0.519951i 0.675986 0.736915i \(-0.263718\pi\)
−0.976180 + 0.216963i \(0.930385\pi\)
\(492\) 0 0
\(493\) 428.416 114.794i 0.868998 0.232847i
\(494\) 265.192i 0.536826i
\(495\) 0 0
\(496\) 344.545 0.694648
\(497\) −28.8347 107.613i −0.0580175 0.216524i
\(498\) 0 0
\(499\) 747.810 431.748i 1.49862 0.865227i 0.498619 0.866821i \(-0.333841\pi\)
0.999999 + 0.00159434i \(0.000507494\pi\)
\(500\) 83.5737 46.7908i 0.167147 0.0935816i
\(501\) 0 0
\(502\) −180.564 673.874i −0.359689 1.34238i
\(503\) −336.760 336.760i −0.669503 0.669503i 0.288098 0.957601i \(-0.406977\pi\)
−0.957601 + 0.288098i \(0.906977\pi\)
\(504\) 0 0
\(505\) 89.5259 + 0.394090i 0.177279 + 0.000780376i
\(506\) 306.199 530.352i 0.605136 1.04813i
\(507\) 0 0
\(508\) −40.7636 + 152.132i −0.0802433 + 0.299472i
\(509\) 429.289 247.850i 0.843397 0.486935i −0.0150207 0.999887i \(-0.504781\pi\)
0.858417 + 0.512952i \(0.171448\pi\)
\(510\) 0 0
\(511\) 11.7433 20.3400i 0.0229810 0.0398043i
\(512\) −210.862 + 210.862i −0.411839 + 0.411839i
\(513\) 0 0
\(514\) 285.821i 0.556072i
\(515\) 384.777 101.288i 0.747140 0.196675i
\(516\) 0 0
\(517\) −651.096 174.461i −1.25937 0.337448i
\(518\) 53.2249 198.638i 0.102751 0.383471i
\(519\) 0 0
\(520\) 405.899 + 236.734i 0.780576 + 0.455259i
\(521\) −225.358 −0.432550 −0.216275 0.976333i \(-0.569391\pi\)
−0.216275 + 0.976333i \(0.569391\pi\)
\(522\) 0 0
\(523\) −442.494 442.494i −0.846069 0.846069i 0.143571 0.989640i \(-0.454142\pi\)
−0.989640 + 0.143571i \(0.954142\pi\)
\(524\) −146.193 84.4045i −0.278994 0.161077i
\(525\) 0 0
\(526\) −558.269 966.950i −1.06135 1.83831i
\(527\) −415.714 111.390i −0.788832 0.211367i
\(528\) 0 0
\(529\) 33.4173 + 19.2935i 0.0631707 + 0.0364716i
\(530\) 282.499 + 1.24355i 0.533016 + 0.00234632i
\(531\) 0 0
\(532\) 10.0900 10.0900i 0.0189661 0.0189661i
\(533\) −664.078 + 177.939i −1.24593 + 0.333845i
\(534\) 0 0
\(535\) 404.715 + 110.355i 0.756477 + 0.206271i
\(536\) −69.1557 119.781i −0.129022 0.223472i
\(537\) 0 0
\(538\) 464.309 124.411i 0.863028 0.231248i
\(539\) 567.916i 1.05365i
\(540\) 0 0
\(541\) 223.593 0.413295 0.206647 0.978415i \(-0.433745\pi\)
0.206647 + 0.978415i \(0.433745\pi\)
\(542\) −168.610 629.260i −0.311088 1.16100i
\(543\) 0 0
\(544\) −241.884 + 139.652i −0.444640 + 0.256713i
\(545\) 611.554 349.500i 1.12212 0.641285i
\(546\) 0 0
\(547\) 149.145 + 556.615i 0.272659 + 1.01758i 0.957394 + 0.288785i \(0.0932514\pi\)
−0.684735 + 0.728792i \(0.740082\pi\)
\(548\) −43.9999 43.9999i −0.0802917 0.0802917i
\(549\) 0 0
\(550\) 493.137 484.530i 0.896613 0.880963i
\(551\) −87.6752 + 151.858i −0.159120 + 0.275604i
\(552\) 0 0
\(553\) −74.4965 + 278.025i −0.134713 + 0.502757i
\(554\) −681.096 + 393.231i −1.22942 + 0.709804i
\(555\) 0 0
\(556\) −99.2302 + 171.872i −0.178472 + 0.309122i
\(557\) −42.5030 + 42.5030i −0.0763070 + 0.0763070i −0.744230 0.667923i \(-0.767183\pi\)
0.667923 + 0.744230i \(0.267183\pi\)
\(558\) 0 0
\(559\) 635.750i 1.13730i
\(560\) −47.9971 182.334i −0.0857091 0.325597i
\(561\) 0 0
\(562\) −147.083 39.4108i −0.261713 0.0701259i
\(563\) 162.816 607.639i 0.289194 1.07929i −0.656525 0.754304i \(-0.727974\pi\)
0.945719 0.324984i \(-0.105359\pi\)
\(564\) 0 0
\(565\) −973.740 + 256.324i −1.72343 + 0.453671i
\(566\) −139.270 −0.246061
\(567\) 0 0
\(568\) −272.523 272.523i −0.479795 0.479795i
\(569\) 523.215 + 302.078i 0.919535 + 0.530894i 0.883487 0.468456i \(-0.155190\pi\)
0.0360482 + 0.999350i \(0.488523\pi\)
\(570\) 0 0
\(571\) 16.4403 + 28.4755i 0.0287921 + 0.0498695i 0.880062 0.474858i \(-0.157501\pi\)
−0.851270 + 0.524727i \(0.824167\pi\)
\(572\) −124.798 33.4396i −0.218179 0.0584608i
\(573\) 0 0
\(574\) 199.277 + 115.053i 0.347173 + 0.200440i
\(575\) −388.015 394.908i −0.674809 0.686797i
\(576\) 0 0
\(577\) 536.453 536.453i 0.929729 0.929729i −0.0679593 0.997688i \(-0.521649\pi\)
0.997688 + 0.0679593i \(0.0216488\pi\)
\(578\) 513.988 137.723i 0.889253 0.238275i
\(579\) 0 0
\(580\) −36.5297 63.9194i −0.0629822 0.110206i
\(581\) 69.5252 + 120.421i 0.119665 + 0.207265i
\(582\) 0 0
\(583\) 316.643 84.8443i 0.543128 0.145531i
\(584\) 81.2494i 0.139126i
\(585\) 0 0
\(586\) −289.341 −0.493756
\(587\) 77.4800 + 289.159i 0.131993 + 0.492605i 0.999992 0.00396077i \(-0.00126075\pi\)
−0.867999 + 0.496566i \(0.834594\pi\)
\(588\) 0 0
\(589\) 147.356 85.0757i 0.250179 0.144441i
\(590\) −284.942 + 1044.99i −0.482952 + 1.77118i
\(591\) 0 0
\(592\) −220.741 823.815i −0.372873 1.39158i
\(593\) −9.85573 9.85573i −0.0166201 0.0166201i 0.698748 0.715368i \(-0.253741\pi\)
−0.715368 + 0.698748i \(0.753741\pi\)
\(594\) 0 0
\(595\) −1.03673 + 235.514i −0.00174240 + 0.395823i
\(596\) −50.0919 + 86.7617i −0.0840468 + 0.145573i
\(597\) 0 0
\(598\) −166.570 + 621.648i −0.278545 + 1.03955i
\(599\) 98.0614 56.6158i 0.163709 0.0945172i −0.415907 0.909407i \(-0.636536\pi\)
0.579616 + 0.814890i \(0.303203\pi\)
\(600\) 0 0
\(601\) 408.039 706.744i 0.678933 1.17595i −0.296370 0.955073i \(-0.595776\pi\)
0.975303 0.220873i \(-0.0708907\pi\)
\(602\) 150.461 150.461i 0.249935 0.249935i
\(603\) 0 0
\(604\) 96.7730i 0.160220i
\(605\) 99.3660 170.371i 0.164241 0.281604i
\(606\) 0 0
\(607\) 578.568 + 155.027i 0.953161 + 0.255399i 0.701703 0.712470i \(-0.252423\pi\)
0.251458 + 0.967868i \(0.419090\pi\)
\(608\) 28.5797 106.661i 0.0470060 0.175429i
\(609\) 0 0
\(610\) 287.704 + 1092.95i 0.471645 + 1.79172i
\(611\) 708.384 1.15938
\(612\) 0 0
\(613\) 567.736 + 567.736i 0.926160 + 0.926160i 0.997455 0.0712948i \(-0.0227131\pi\)
−0.0712948 + 0.997455i \(0.522713\pi\)
\(614\) −295.211 170.440i −0.480800 0.277590i
\(615\) 0 0
\(616\) −91.2484 158.047i −0.148130 0.256569i
\(617\) −927.600 248.550i −1.50340 0.402836i −0.589165 0.808012i \(-0.700543\pi\)
−0.914238 + 0.405177i \(0.867210\pi\)
\(618\) 0 0
\(619\) −248.631 143.547i −0.401665 0.231902i 0.285537 0.958368i \(-0.407828\pi\)
−0.687202 + 0.726466i \(0.741161\pi\)
\(620\) −0.314467 + 71.4379i −0.000507205 + 0.115222i
\(621\) 0 0
\(622\) −469.184 + 469.184i −0.754315 + 0.754315i
\(623\) −117.064 + 31.3671i −0.187903 + 0.0503485i
\(624\) 0 0
\(625\) −302.922 546.684i −0.484675 0.874695i
\(626\) 79.1410 + 137.076i 0.126423 + 0.218972i
\(627\) 0 0
\(628\) 136.742 36.6400i 0.217743 0.0583439i
\(629\) 1065.35i 1.69372i
\(630\) 0 0
\(631\) −431.640 −0.684057 −0.342029 0.939690i \(-0.611114\pi\)
−0.342029 + 0.939690i \(0.611114\pi\)
\(632\) 257.713 + 961.797i 0.407773 + 1.52183i
\(633\) 0 0
\(634\) 163.364 94.3181i 0.257671 0.148767i
\(635\) 991.528 + 270.363i 1.56146 + 0.425768i
\(636\) 0 0
\(637\) −154.471 576.494i −0.242498 0.905015i
\(638\) −375.754 375.754i −0.588956 0.588956i
\(639\) 0 0
\(640\) −535.344 540.078i −0.836475 0.843872i
\(641\) −169.961 + 294.381i −0.265150 + 0.459253i −0.967603 0.252477i \(-0.918755\pi\)
0.702453 + 0.711730i \(0.252088\pi\)
\(642\) 0 0
\(643\) −54.8829 + 204.826i −0.0853544 + 0.318547i −0.995381 0.0960027i \(-0.969394\pi\)
0.910027 + 0.414550i \(0.136061\pi\)
\(644\) 29.9899 17.3147i 0.0465682 0.0268862i
\(645\) 0 0
\(646\) −229.909 + 398.213i −0.355896 + 0.616430i
\(647\) 575.066 575.066i 0.888819 0.888819i −0.105591 0.994410i \(-0.533673\pi\)
0.994410 + 0.105591i \(0.0336734\pi\)
\(648\) 0 0
\(649\) 1256.88i 1.93664i
\(650\) −368.796 + 625.980i −0.567378 + 0.963047i
\(651\) 0 0
\(652\) 73.3086 + 19.6430i 0.112436 + 0.0301273i
\(653\) 17.1844 64.1329i 0.0263160 0.0982128i −0.951519 0.307591i \(-0.900477\pi\)
0.977835 + 0.209378i \(0.0671439\pi\)
\(654\) 0 0
\(655\) −554.960 + 951.522i −0.847268 + 1.45271i
\(656\) 954.322 1.45476
\(657\) 0 0
\(658\) −167.651 167.651i −0.254788 0.254788i
\(659\) −958.773 553.548i −1.45489 0.839981i −0.456137 0.889909i \(-0.650767\pi\)
−0.998753 + 0.0499281i \(0.984101\pi\)
\(660\) 0 0
\(661\) −168.964 292.654i −0.255619 0.442745i 0.709445 0.704761i \(-0.248946\pi\)
−0.965063 + 0.262016i \(0.915613\pi\)
\(662\) −523.773 140.345i −0.791198 0.212001i
\(663\) 0 0
\(664\) 416.584 + 240.515i 0.627385 + 0.362221i
\(665\) −65.5497 66.1294i −0.0985710 0.0994427i
\(666\) 0 0
\(667\) −300.907 + 300.907i −0.451134 + 0.451134i
\(668\) −71.8424 + 19.2501i −0.107548 + 0.0288175i
\(669\) 0 0
\(670\) 185.673 106.112i 0.277125 0.158376i
\(671\) 655.728 + 1135.75i 0.977240 + 1.69263i
\(672\) 0 0
\(673\) −881.503 + 236.198i −1.30981 + 0.350963i −0.845152 0.534527i \(-0.820490\pi\)
−0.464660 + 0.885489i \(0.653823\pi\)
\(674\) 429.949i 0.637906i
\(675\) 0 0
\(676\) 6.28317 0.00929464
\(677\) 170.665 + 636.930i 0.252090 + 0.940812i 0.969686 + 0.244353i \(0.0785755\pi\)
−0.717597 + 0.696459i \(0.754758\pi\)
\(678\) 0 0
\(679\) 201.023 116.061i 0.296057 0.170929i
\(680\) 404.262 + 707.376i 0.594504 + 1.04026i
\(681\) 0 0
\(682\) 133.458 + 498.071i 0.195686 + 0.730310i
\(683\) 88.3335 + 88.3335i 0.129332 + 0.129332i 0.768810 0.639478i \(-0.220849\pi\)
−0.639478 + 0.768810i \(0.720849\pi\)
\(684\) 0 0
\(685\) −288.374 + 285.847i −0.420984 + 0.417294i
\(686\) −209.035 + 362.060i −0.304716 + 0.527784i
\(687\) 0 0
\(688\) 228.403 852.412i 0.331981 1.23897i
\(689\) −298.349 + 172.252i −0.433017 + 0.250003i
\(690\) 0 0
\(691\) −408.588 + 707.695i −0.591300 + 1.02416i 0.402758 + 0.915307i \(0.368052\pi\)
−0.994058 + 0.108855i \(0.965282\pi\)
\(692\) 37.3685 37.3685i 0.0540007 0.0540007i
\(693\) 0 0
\(694\) 62.1048i 0.0894882i
\(695\) 1118.66 + 652.439i 1.60958 + 0.938761i
\(696\) 0 0
\(697\) −1151.45 308.529i −1.65200 0.442653i
\(698\) 336.119 1254.41i 0.481545 1.79715i
\(699\) 0 0
\(700\) 37.8489 9.78529i 0.0540699 0.0139790i
\(701\) 626.425 0.893616 0.446808 0.894630i \(-0.352561\pi\)
0.446808 + 0.894630i \(0.352561\pi\)
\(702\) 0 0
\(703\) −297.825 297.825i −0.423648 0.423648i
\(704\) −520.983 300.790i −0.740033 0.427258i
\(705\) 0 0
\(706\) −356.654 617.743i −0.505175 0.874990i
\(707\) 35.2957 + 9.45746i 0.0499232 + 0.0133769i
\(708\) 0 0
\(709\) 82.1961 + 47.4559i 0.115932 + 0.0669336i 0.556845 0.830616i \(-0.312012\pi\)
−0.440912 + 0.897550i \(0.645345\pi\)
\(710\) 423.224 419.514i 0.596090 0.590865i
\(711\) 0 0
\(712\) −296.458 + 296.458i −0.416374 + 0.416374i
\(713\) 398.859 106.874i 0.559410 0.149893i
\(714\) 0 0
\(715\) −221.786 + 813.380i −0.310191 + 1.13759i
\(716\) 60.9545 + 105.576i 0.0851320 + 0.147453i
\(717\) 0 0
\(718\) −517.673 + 138.710i −0.720992 + 0.193189i
\(719\) 377.998i 0.525727i 0.964833 + 0.262864i \(0.0846670\pi\)
−0.964833 + 0.262864i \(0.915333\pi\)
\(720\) 0 0
\(721\) 162.399 0.225241
\(722\) 156.931 + 585.675i 0.217356 + 0.811185i
\(723\) 0 0
\(724\) −42.0668 + 24.2873i −0.0581033 + 0.0335460i
\(725\) −418.140 + 236.529i −0.576745 + 0.326248i
\(726\) 0 0
\(727\) 71.4219 + 266.550i 0.0982419 + 0.366644i 0.997491 0.0707930i \(-0.0225530\pi\)
−0.899249 + 0.437437i \(0.855886\pi\)
\(728\) 135.615 + 135.615i 0.186284 + 0.186284i
\(729\) 0 0
\(730\) 125.626 + 0.553000i 0.172090 + 0.000757535i
\(731\) −551.164 + 954.644i −0.753986 + 1.30594i
\(732\) 0 0
\(733\) −130.531 + 487.149i −0.178078 + 0.664596i 0.817929 + 0.575319i \(0.195122\pi\)
−0.996007 + 0.0892766i \(0.971544\pi\)
\(734\) −838.040 + 483.843i −1.14174 + 0.659186i
\(735\) 0 0
\(736\) 133.990 232.077i 0.182051 0.315322i
\(737\) 175.474 175.474i 0.238092 0.238092i
\(738\) 0 0
\(739\) 347.915i 0.470791i 0.971900 + 0.235396i \(0.0756386\pi\)
−0.971900 + 0.235396i \(0.924361\pi\)
\(740\) 171.011 45.0164i 0.231096 0.0608330i
\(741\) 0 0
\(742\) 111.375 + 29.8430i 0.150102 + 0.0402196i
\(743\) −252.285 + 941.541i −0.339550 + 1.26722i 0.559302 + 0.828964i \(0.311069\pi\)
−0.898852 + 0.438252i \(0.855598\pi\)
\(744\) 0 0
\(745\) 564.704 + 329.355i 0.757991 + 0.442087i
\(746\) 433.782 0.581477
\(747\) 0 0
\(748\) −158.407 158.407i −0.211774 0.211774i
\(749\) 148.279 + 85.6087i 0.197969 + 0.114297i
\(750\) 0 0
\(751\) −254.883 441.471i −0.339392 0.587844i 0.644927 0.764244i \(-0.276888\pi\)
−0.984318 + 0.176401i \(0.943555\pi\)
\(752\) −949.800 254.498i −1.26303 0.338428i
\(753\) 0 0
\(754\) 483.634 + 279.226i 0.641424 + 0.370326i
\(755\) 631.469 + 2.77970i 0.836382 + 0.00368172i
\(756\) 0 0
\(757\) 280.253 280.253i 0.370215 0.370215i −0.497340 0.867555i \(-0.665690\pi\)
0.867555 + 0.497340i \(0.165690\pi\)
\(758\) 373.604 100.107i 0.492881 0.132067i
\(759\) 0 0
\(760\) −310.766 84.7373i −0.408902 0.111496i
\(761\) −404.473 700.568i −0.531502 0.920589i −0.999324 0.0367662i \(-0.988294\pi\)
0.467822 0.883823i \(-0.345039\pi\)
\(762\) 0 0
\(763\) 277.699 74.4093i 0.363957 0.0975220i
\(764\) 94.6276i 0.123858i
\(765\) 0 0
\(766\) 37.4925 0.0489458
\(767\) −341.867 1275.86i −0.445719 1.66345i
\(768\) 0 0
\(769\) 449.923 259.763i 0.585075 0.337793i −0.178073 0.984017i \(-0.556986\pi\)
0.763148 + 0.646224i \(0.223653\pi\)
\(770\) 244.989 140.010i 0.318168 0.181832i
\(771\) 0 0
\(772\) 49.2995 + 183.988i 0.0638595 + 0.238327i
\(773\) −436.114 436.114i −0.564184 0.564184i 0.366309 0.930493i \(-0.380621\pi\)
−0.930493 + 0.366309i \(0.880621\pi\)
\(774\) 0 0
\(775\) 466.142 + 4.10396i 0.601473 + 0.00529543i
\(776\) 401.499 695.417i 0.517396 0.896156i
\(777\) 0 0
\(778\) −97.4427 + 363.661i −0.125248 + 0.467431i
\(779\) 408.146 235.643i 0.523935 0.302494i
\(780\) 0 0
\(781\) 345.747 598.851i 0.442697 0.766775i
\(782\) −789.061 + 789.061i −1.00903 + 1.00903i
\(783\) 0 0
\(784\) 828.459i 1.05671i
\(785\) −235.158 893.331i −0.299564 1.13800i
\(786\) 0 0
\(787\) −782.335 209.626i −0.994073 0.266361i −0.275112 0.961412i \(-0.588715\pi\)
−0.718960 + 0.695051i \(0.755382\pi\)
\(788\) −14.9339 + 55.7342i −0.0189517 + 0.0707286i
\(789\) 0 0
\(790\) −1488.86 + 391.923i −1.88463 + 0.496105i
\(791\) −410.977 −0.519566
\(792\) 0 0
\(793\) −974.554 974.554i −1.22895 1.22895i
\(794\) 13.3299 + 7.69602i 0.0167883 + 0.00969271i
\(795\) 0 0
\(796\) 12.1442 + 21.0344i 0.0152565 + 0.0264251i
\(797\) −755.517 202.440i −0.947951 0.254003i −0.248458 0.968643i \(-0.579924\pi\)
−0.699492 + 0.714640i \(0.746591\pi\)
\(798\) 0 0
\(799\) 1063.71 + 614.134i 1.33130 + 0.768629i
\(800\) 215.792 212.025i 0.269740 0.265032i
\(801\) 0 0
\(802\) −1093.36 + 1093.36i −1.36330 + 1.36330i
\(803\) 140.810 37.7299i 0.175355 0.0469862i
\(804\) 0 0
\(805\) −112.121 196.189i −0.139281 0.243713i
\(806\) −270.947 469.295i −0.336163 0.582251i
\(807\) 0 0
\(808\) 122.102 32.7171i 0.151116 0.0404914i
\(809\) 12.8828i 0.0159243i 0.999968 + 0.00796215i \(0.00253446\pi\)
−0.999968 + 0.00796215i \(0.997466\pi\)
\(810\) 0 0
\(811\) −513.954 −0.633729 −0.316864 0.948471i \(-0.602630\pi\)
−0.316864 + 0.948471i \(0.602630\pi\)
\(812\) −7.77724 29.0251i −0.00957788 0.0357451i
\(813\) 0 0
\(814\) 1105.40 638.201i 1.35798 0.784031i
\(815\) 130.281 477.793i 0.159854 0.586249i
\(816\) 0 0
\(817\) −112.795 420.958i −0.138060 0.515249i
\(818\) −614.827 614.827i −0.751622 0.751622i
\(819\) 0 0
\(820\) −0.871012 + 197.869i −0.00106221 + 0.241304i
\(821\) −656.487 + 1137.07i −0.799619 + 1.38498i 0.120246 + 0.992744i \(0.461632\pi\)
−0.919865 + 0.392236i \(0.871702\pi\)
\(822\) 0 0
\(823\) −233.948 + 873.104i −0.284262 + 1.06088i 0.665115 + 0.746741i \(0.268383\pi\)
−0.949377 + 0.314139i \(0.898284\pi\)
\(824\) 486.535 280.901i 0.590455 0.340899i
\(825\) 0 0
\(826\) −221.046 + 382.863i −0.267610 + 0.463514i
\(827\) 117.925 117.925i 0.142594 0.142594i −0.632206 0.774800i \(-0.717850\pi\)
0.774800 + 0.632206i \(0.217850\pi\)
\(828\) 0 0
\(829\) 579.532i 0.699073i −0.936923 0.349537i \(-0.886339\pi\)
0.936923 0.349537i \(-0.113661\pi\)
\(830\) −374.713 + 642.475i −0.451462 + 0.774066i
\(831\) 0 0
\(832\) 610.667 + 163.628i 0.733974 + 0.196668i
\(833\) 267.838 999.585i 0.321534 1.19998i
\(834\) 0 0
\(835\) 123.548 + 469.343i 0.147962 + 0.562087i
\(836\) 88.5673 0.105942
\(837\) 0 0
\(838\) 733.935 + 733.935i 0.875817 + 0.875817i
\(839\) 251.639 + 145.284i 0.299928 + 0.173163i 0.642410 0.766361i \(-0.277935\pi\)
−0.342483 + 0.939524i \(0.611268\pi\)
\(840\) 0 0
\(841\) −235.870 408.539i −0.280464 0.485778i
\(842\) 1202.51 + 322.212i 1.42816 + 0.382675i
\(843\) 0 0
\(844\) −134.371 77.5791i −0.159207 0.0919184i
\(845\) 0.180477 40.9993i 0.000213583 0.0485199i
\(846\) 0 0
\(847\) 56.9225 56.9225i 0.0672048 0.0672048i
\(848\) 461.910 123.768i 0.544705 0.145953i
\(849\) 0 0
\(850\) −1096.48 + 620.246i −1.28998 + 0.729701i
\(851\) −511.076 885.210i −0.600560 1.04020i
\(852\) 0 0
\(853\) 359.918 96.4397i 0.421943 0.113059i −0.0415985 0.999134i \(-0.513245\pi\)
0.463542 + 0.886075i \(0.346578\pi\)
\(854\) 461.289i 0.540151i
\(855\) 0 0
\(856\) 592.308 0.691949
\(857\) −128.091 478.041i −0.149464 0.557807i −0.999516 0.0311085i \(-0.990096\pi\)
0.850052 0.526699i \(-0.176570\pi\)
\(858\) 0 0
\(859\) 510.012 294.456i 0.593728 0.342789i −0.172842 0.984950i \(-0.555295\pi\)
0.766570 + 0.642161i \(0.221962\pi\)
\(860\) 176.530 + 48.1350i 0.205268 + 0.0559710i
\(861\) 0 0
\(862\) −319.351 1191.84i −0.370477 1.38264i
\(863\) −142.644 142.644i −0.165288 0.165288i 0.619616 0.784905i \(-0.287288\pi\)
−0.784905 + 0.619616i \(0.787288\pi\)
\(864\) 0 0
\(865\) −242.766 244.912i −0.280654 0.283136i
\(866\) 53.7041 93.0183i 0.0620140 0.107411i
\(867\) 0 0
\(868\) −7.54666 + 28.1645i −0.00869431 + 0.0324476i
\(869\) −1547.17 + 893.262i −1.78041 + 1.02792i
\(870\) 0 0
\(871\) −130.396 + 225.853i −0.149709 + 0.259303i
\(872\) 703.260 703.260i 0.806491 0.806491i
\(873\) 0 0
\(874\) 441.174i 0.504776i
\(875\) −62.7643 247.255i −0.0717307 0.282577i
\(876\) 0 0
\(877\) 1509.15 + 404.375i 1.72081 + 0.461089i 0.978033 0.208451i \(-0.0668423\pi\)
0.742775 + 0.669541i \(0.233509\pi\)
\(878\) 176.958 660.415i 0.201546 0.752181i
\(879\) 0 0
\(880\) 589.590 1010.90i 0.669989 1.14875i
\(881\) 395.302 0.448697 0.224349 0.974509i \(-0.427975\pi\)
0.224349 + 0.974509i \(0.427975\pi\)
\(882\) 0 0
\(883\) −827.610 827.610i −0.937271 0.937271i 0.0608748 0.998145i \(-0.480611\pi\)
−0.998145 + 0.0608748i \(0.980611\pi\)
\(884\) 203.886 + 117.714i 0.230640 + 0.133160i
\(885\) 0 0
\(886\) 504.145 + 873.205i 0.569013 + 0.985559i
\(887\) 292.997 + 78.5084i 0.330324 + 0.0885100i 0.420169 0.907446i \(-0.361971\pi\)
−0.0898455 + 0.995956i \(0.528637\pi\)
\(888\) 0 0
\(889\) 363.274 + 209.736i 0.408632 + 0.235924i
\(890\) −456.359 460.394i −0.512763 0.517297i
\(891\) 0 0
\(892\) 35.9018 35.9018i 0.0402486 0.0402486i
\(893\) −469.053 + 125.682i −0.525255 + 0.140742i
\(894\) 0 0
\(895\) 690.664 394.711i 0.771691 0.441018i
\(896\) −155.190 268.797i −0.173203 0.299996i
\(897\) 0 0
\(898\) 8.01835 2.14851i 0.00892912 0.00239255i
\(899\) 358.311i 0.398567i
\(900\) 0 0
\(901\) −597.336 −0.662970
\(902\) 369.652 + 1379.56i 0.409813 + 1.52944i
\(903\) 0 0
\(904\) −1231.25 + 710.865i −1.36201 + 0.786355i
\(905\) 157.272 + 275.194i 0.173782 + 0.304082i
\(906\) 0 0
\(907\) −143.164 534.296i −0.157844 0.589080i −0.998845 0.0480474i \(-0.984700\pi\)
0.841002 0.541033i \(-0.181967\pi\)
\(908\) 158.465 + 158.465i 0.174521 + 0.174521i
\(909\) 0 0
\(910\) −210.607 + 208.761i −0.231437 + 0.229408i
\(911\) 622.627 1078.42i 0.683454 1.18378i −0.290466 0.956885i \(-0.593810\pi\)
0.973920 0.226892i \(-0.0728564\pi\)
\(912\) 0 0
\(913\) −223.376 + 833.652i −0.244662 + 0.913091i
\(914\) 1343.20 775.495i 1.46958 0.848463i
\(915\) 0 0
\(916\) 101.660 176.081i 0.110983 0.192228i
\(917\) −317.913 + 317.913i −0.346688 + 0.346688i
\(918\) 0 0
\(919\) 123.047i 0.133892i −0.997757 0.0669462i \(-0.978674\pi\)
0.997757 0.0669462i \(-0.0213256\pi\)
\(920\) −675.255 393.832i −0.733972 0.428078i
\(921\) 0 0
\(922\) −222.920 59.7314i −0.241779 0.0647845i
\(923\) −188.084 + 701.939i −0.203775 + 0.760497i
\(924\) 0 0
\(925\) −288.832 1117.18i −0.312250 1.20777i
\(926\) −1896.92 −2.04851
\(927\) 0 0
\(928\) −164.426 164.426i −0.177183 0.177183i
\(929\) 998.545 + 576.510i 1.07486 + 0.620571i 0.929505 0.368809i \(-0.120234\pi\)
0.145355 + 0.989380i \(0.453568\pi\)
\(930\) 0 0
\(931\) 204.564 + 354.316i 0.219726 + 0.380576i
\(932\) 62.7250 + 16.8071i 0.0673015 + 0.0180334i
\(933\) 0 0
\(934\) −1273.10 735.027i −1.36307 0.786967i
\(935\) −1038.20 + 1029.10i −1.11037 + 1.10064i
\(936\) 0 0
\(937\) 315.317 315.317i 0.336518 0.336518i −0.518537 0.855055i \(-0.673523\pi\)
0.855055 + 0.518537i \(0.173523\pi\)
\(938\) 84.3122 22.5914i 0.0898850 0.0240846i
\(939\) 0 0
\(940\) 53.6345 196.699i 0.0570579 0.209254i
\(941\) 311.898 + 540.224i 0.331454 + 0.574095i 0.982797 0.184688i \(-0.0591275\pi\)
−0.651343 + 0.758783i \(0.725794\pi\)
\(942\) 0 0
\(943\) 1104.76 296.020i 1.17154 0.313913i
\(944\) 1833.50i 1.94226i
\(945\) 0 0
\(946\) 1320.71 1.39610
\(947\) −324.936 1212.68i −0.343121 1.28055i −0.894792 0.446484i \(-0.852676\pi\)
0.551670 0.834062i \(-0.313991\pi\)
\(948\) 0 0
\(949\) −132.675 + 76.5997i −0.139805 + 0.0807162i
\(950\) 133.134 479.922i 0.140141 0.505181i
\(951\) 0 0
\(952\) 86.0683 + 321.211i 0.0904079 + 0.337407i
\(953\) −1156.15 1156.15i −1.21317 1.21317i −0.969979 0.243188i \(-0.921807\pi\)
−0.243188 0.969979i \(-0.578193\pi\)
\(954\) 0 0
\(955\) 617.469 + 2.71808i 0.646565 + 0.00284615i
\(956\) 74.6533 129.303i 0.0780892 0.135255i
\(957\) 0 0
\(958\) 299.122 1116.34i 0.312236 1.16528i
\(959\) −143.524 + 82.8636i −0.149660 + 0.0864062i
\(960\) 0 0
\(961\) 306.656 531.144i 0.319101 0.552699i
\(962\) −948.505 + 948.505i −0.985972 + 0.985972i
\(963\) 0 0
\(964\) 13.8345i 0.0143512i
\(965\) 1201.99 316.407i 1.24558 0.327883i
\(966\) 0 0
\(967\) −564.461 151.247i −0.583724 0.156408i −0.0451407 0.998981i \(-0.514374\pi\)
−0.538583 + 0.842572i \(0.681040\pi\)
\(968\) 72.0767 268.994i 0.0744594 0.277886i
\(969\) 0 0
\(970\) 1072.50 + 625.522i 1.10567 + 0.644868i
\(971\) −755.109 −0.777662 −0.388831 0.921309i \(-0.627121\pi\)
−0.388831 + 0.921309i \(0.627121\pi\)
\(972\) 0 0
\(973\) 373.754 + 373.754i 0.384125 + 0.384125i
\(974\) −1033.64 596.774i −1.06123 0.612704i
\(975\) 0 0
\(976\) 956.557 + 1656.80i 0.980078 + 1.69755i
\(977\) −1053.61 282.315i −1.07842 0.288961i −0.324470 0.945896i \(-0.605186\pi\)
−0.753947 + 0.656935i \(0.771853\pi\)
\(978\) 0 0
\(979\) −651.446 376.112i −0.665420 0.384180i
\(980\) −171.772 0.756136i −0.175278 0.000771567i
\(981\) 0 0
\(982\) 455.079 455.079i 0.463421 0.463421i
\(983\) 144.353 38.6793i 0.146850 0.0393482i −0.184645 0.982805i \(-0.559114\pi\)
0.331495 + 0.943457i \(0.392447\pi\)
\(984\) 0 0
\(985\) 363.251 + 99.0486i 0.368783 + 0.100557i
\(986\) 484.150 + 838.573i 0.491025 + 0.850480i
\(987\) 0 0
\(988\) −89.9051 + 24.0900i −0.0909971 + 0.0243826i
\(989\) 1057.63i 1.06940i
\(990\) 0 0
\(991\) 961.090 0.969819 0.484909 0.874564i \(-0.338853\pi\)
0.484909 + 0.874564i \(0.338853\pi\)
\(992\) 58.3998 + 217.951i 0.0588708 + 0.219709i
\(993\) 0 0
\(994\) 210.639 121.612i 0.211910 0.122346i
\(995\) 137.603 78.6398i 0.138295 0.0790350i
\(996\) 0 0
\(997\) 263.082 + 981.834i 0.263873 + 0.984788i 0.962936 + 0.269728i \(0.0869339\pi\)
−0.699063 + 0.715060i \(0.746399\pi\)
\(998\) 1333.01 + 1333.01i 1.33568 + 1.33568i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.l.m.298.3 16
3.2 odd 2 405.3.l.j.298.2 16
5.2 odd 4 405.3.l.j.217.2 16
9.2 odd 6 405.3.g.f.163.3 yes 16
9.4 even 3 405.3.l.j.28.2 16
9.5 odd 6 inner 405.3.l.m.28.3 16
9.7 even 3 405.3.g.f.163.6 yes 16
15.2 even 4 inner 405.3.l.m.217.3 16
45.2 even 12 405.3.g.f.82.3 16
45.7 odd 12 405.3.g.f.82.6 yes 16
45.22 odd 12 inner 405.3.l.m.352.3 16
45.32 even 12 405.3.l.j.352.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
405.3.g.f.82.3 16 45.2 even 12
405.3.g.f.82.6 yes 16 45.7 odd 12
405.3.g.f.163.3 yes 16 9.2 odd 6
405.3.g.f.163.6 yes 16 9.7 even 3
405.3.l.j.28.2 16 9.4 even 3
405.3.l.j.217.2 16 5.2 odd 4
405.3.l.j.298.2 16 3.2 odd 2
405.3.l.j.352.2 16 45.32 even 12
405.3.l.m.28.3 16 9.5 odd 6 inner
405.3.l.m.217.3 16 15.2 even 4 inner
405.3.l.m.298.3 16 1.1 even 1 trivial
405.3.l.m.352.3 16 45.22 odd 12 inner