Properties

Label 405.3.n.a.179.29
Level $405$
Weight $3$
Character 405.179
Analytic conductor $11.035$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,3,Mod(44,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 9]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.44");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.n (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 179.29
Character \(\chi\) \(=\) 405.179
Dual form 405.3.n.a.224.29

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.82399 + 1.02785i) q^{2} +(3.85425 + 3.23410i) q^{4} +(-4.79125 + 1.42965i) q^{5} +(7.59850 + 9.05554i) q^{7} +(1.54973 + 2.68422i) q^{8} +(-14.9999 - 0.887368i) q^{10} +(-11.5608 + 2.03849i) q^{11} +(4.88572 + 13.4234i) q^{13} +(12.1503 + 33.3828i) q^{14} +(-1.87729 - 10.6466i) q^{16} +(-5.22423 + 9.04864i) q^{17} +(7.65850 + 13.2649i) q^{19} +(-23.0903 - 9.98516i) q^{20} +(-34.7429 - 6.12611i) q^{22} +(18.2900 + 15.3471i) q^{23} +(20.9122 - 13.6996i) q^{25} +42.9293i q^{26} +59.4766i q^{28} +(6.33581 - 17.4075i) q^{29} +(-22.3385 - 18.7442i) q^{31} +(7.79453 - 44.2050i) q^{32} +(-24.0538 + 20.1835i) q^{34} +(-49.3526 - 32.5242i) q^{35} +(3.15030 + 1.81883i) q^{37} +(7.99320 + 45.3317i) q^{38} +(-11.2626 - 10.6452i) q^{40} +(8.41546 + 23.1213i) q^{41} +(14.5661 - 2.56840i) q^{43} +(-51.1509 - 29.5320i) q^{44} +(35.8762 + 62.1393i) q^{46} +(33.0925 - 27.7679i) q^{47} +(-15.7569 + 89.3615i) q^{49} +(73.1369 - 17.1930i) q^{50} +(-24.5818 + 67.5380i) q^{52} -84.2928 q^{53} +(52.4766 - 26.2948i) q^{55} +(-12.5314 + 34.4297i) q^{56} +(35.7844 - 42.6462i) q^{58} +(80.2108 + 14.1433i) q^{59} +(51.0771 - 42.8588i) q^{61} +(-43.8174 - 75.8940i) q^{62} +(45.8258 - 79.3727i) q^{64} +(-42.5995 - 57.3301i) q^{65} +(-38.8900 - 106.849i) q^{67} +(-49.3996 + 17.9800i) q^{68} +(-105.941 - 142.575i) q^{70} +(-5.55345 - 3.20629i) q^{71} +(64.9541 - 37.5013i) q^{73} +(7.02693 + 8.37437i) q^{74} +(-13.3823 + 75.8946i) q^{76} +(-106.305 - 89.2002i) q^{77} +(84.6709 + 30.8177i) q^{79} +(24.2155 + 48.3268i) q^{80} +73.9440i q^{82} +(49.9577 + 18.1831i) q^{83} +(12.0943 - 50.8231i) q^{85} +(43.7744 + 7.71861i) q^{86} +(-23.3879 - 27.8727i) q^{88} +(20.0986 - 11.6039i) q^{89} +(-84.4321 + 146.241i) q^{91} +(20.8600 + 118.303i) q^{92} +(121.994 - 44.4022i) q^{94} +(-55.6580 - 52.6066i) q^{95} +(17.5234 - 3.08985i) q^{97} +(-136.347 + 236.160i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q - 12 q^{4} - 3 q^{5} - 3 q^{10} - 6 q^{11} + 48 q^{14} + 12 q^{16} - 6 q^{19} - 63 q^{20} - 15 q^{25} - 96 q^{29} - 102 q^{31} + 12 q^{34} + 252 q^{35} + 117 q^{40} - 96 q^{41} + 666 q^{44} - 6 q^{46}+ \cdots + 543 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.82399 + 1.02785i 1.41199 + 0.513923i 0.931714 0.363193i \(-0.118313\pi\)
0.480279 + 0.877116i \(0.340536\pi\)
\(3\) 0 0
\(4\) 3.85425 + 3.23410i 0.963561 + 0.808524i
\(5\) −4.79125 + 1.42965i −0.958251 + 0.285930i
\(6\) 0 0
\(7\) 7.59850 + 9.05554i 1.08550 + 1.29365i 0.953167 + 0.302444i \(0.0978024\pi\)
0.132333 + 0.991205i \(0.457753\pi\)
\(8\) 1.54973 + 2.68422i 0.193717 + 0.335527i
\(9\) 0 0
\(10\) −14.9999 0.887368i −1.49999 0.0887368i
\(11\) −11.5608 + 2.03849i −1.05098 + 0.185317i −0.672353 0.740230i \(-0.734716\pi\)
−0.378632 + 0.925547i \(0.623605\pi\)
\(12\) 0 0
\(13\) 4.88572 + 13.4234i 0.375825 + 1.03257i 0.973070 + 0.230511i \(0.0740398\pi\)
−0.597245 + 0.802059i \(0.703738\pi\)
\(14\) 12.1503 + 33.3828i 0.867882 + 2.38449i
\(15\) 0 0
\(16\) −1.87729 10.6466i −0.117330 0.665413i
\(17\) −5.22423 + 9.04864i −0.307308 + 0.532273i −0.977772 0.209669i \(-0.932761\pi\)
0.670465 + 0.741941i \(0.266095\pi\)
\(18\) 0 0
\(19\) 7.65850 + 13.2649i 0.403079 + 0.698154i 0.994096 0.108506i \(-0.0346066\pi\)
−0.591017 + 0.806659i \(0.701273\pi\)
\(20\) −23.0903 9.98516i −1.15451 0.499258i
\(21\) 0 0
\(22\) −34.7429 6.12611i −1.57922 0.278459i
\(23\) 18.2900 + 15.3471i 0.795217 + 0.667266i 0.947031 0.321143i \(-0.104067\pi\)
−0.151814 + 0.988409i \(0.548512\pi\)
\(24\) 0 0
\(25\) 20.9122 13.6996i 0.836489 0.547984i
\(26\) 42.9293i 1.65113i
\(27\) 0 0
\(28\) 59.4766i 2.12416i
\(29\) 6.33581 17.4075i 0.218476 0.600258i −0.781236 0.624235i \(-0.785411\pi\)
0.999713 + 0.0239772i \(0.00763290\pi\)
\(30\) 0 0
\(31\) −22.3385 18.7442i −0.720597 0.604653i 0.206953 0.978351i \(-0.433645\pi\)
−0.927550 + 0.373698i \(0.878090\pi\)
\(32\) 7.79453 44.2050i 0.243579 1.38140i
\(33\) 0 0
\(34\) −24.0538 + 20.1835i −0.707464 + 0.593632i
\(35\) −49.3526 32.5242i −1.41007 0.929263i
\(36\) 0 0
\(37\) 3.15030 + 1.81883i 0.0851433 + 0.0491575i 0.541967 0.840400i \(-0.317680\pi\)
−0.456824 + 0.889557i \(0.651013\pi\)
\(38\) 7.99320 + 45.3317i 0.210347 + 1.19294i
\(39\) 0 0
\(40\) −11.2626 10.6452i −0.281566 0.266130i
\(41\) 8.41546 + 23.1213i 0.205255 + 0.563934i 0.999019 0.0442926i \(-0.0141034\pi\)
−0.793763 + 0.608227i \(0.791881\pi\)
\(42\) 0 0
\(43\) 14.5661 2.56840i 0.338747 0.0597302i −0.00168729 0.999999i \(-0.500537\pi\)
0.340434 + 0.940268i \(0.389426\pi\)
\(44\) −51.1509 29.5320i −1.16252 0.671182i
\(45\) 0 0
\(46\) 35.8762 + 62.1393i 0.779916 + 1.35085i
\(47\) 33.0925 27.7679i 0.704097 0.590807i −0.218839 0.975761i \(-0.570227\pi\)
0.922936 + 0.384954i \(0.125783\pi\)
\(48\) 0 0
\(49\) −15.7569 + 89.3615i −0.321568 + 1.82371i
\(50\) 73.1369 17.1930i 1.46274 0.343859i
\(51\) 0 0
\(52\) −24.5818 + 67.5380i −0.472727 + 1.29881i
\(53\) −84.2928 −1.59043 −0.795215 0.606327i \(-0.792642\pi\)
−0.795215 + 0.606327i \(0.792642\pi\)
\(54\) 0 0
\(55\) 52.4766 26.2948i 0.954119 0.478088i
\(56\) −12.5314 + 34.4297i −0.223775 + 0.614816i
\(57\) 0 0
\(58\) 35.7844 42.6462i 0.616973 0.735280i
\(59\) 80.2108 + 14.1433i 1.35950 + 0.239717i 0.805401 0.592731i \(-0.201950\pi\)
0.554103 + 0.832448i \(0.313061\pi\)
\(60\) 0 0
\(61\) 51.0771 42.8588i 0.837330 0.702603i −0.119631 0.992818i \(-0.538171\pi\)
0.956962 + 0.290215i \(0.0937268\pi\)
\(62\) −43.8174 75.8940i −0.706732 1.22410i
\(63\) 0 0
\(64\) 45.8258 79.3727i 0.716028 1.24020i
\(65\) −42.5995 57.3301i −0.655377 0.882001i
\(66\) 0 0
\(67\) −38.8900 106.849i −0.580447 1.59477i −0.787419 0.616418i \(-0.788583\pi\)
0.206972 0.978347i \(-0.433639\pi\)
\(68\) −49.3996 + 17.9800i −0.726465 + 0.264412i
\(69\) 0 0
\(70\) −105.941 142.575i −1.51344 2.03678i
\(71\) −5.55345 3.20629i −0.0782176 0.0451590i 0.460381 0.887721i \(-0.347713\pi\)
−0.538599 + 0.842562i \(0.681046\pi\)
\(72\) 0 0
\(73\) 64.9541 37.5013i 0.889782 0.513716i 0.0159111 0.999873i \(-0.494935\pi\)
0.873871 + 0.486157i \(0.161602\pi\)
\(74\) 7.02693 + 8.37437i 0.0949585 + 0.113167i
\(75\) 0 0
\(76\) −13.3823 + 75.8946i −0.176082 + 0.998613i
\(77\) −106.305 89.2002i −1.38058 1.15844i
\(78\) 0 0
\(79\) 84.6709 + 30.8177i 1.07178 + 0.390097i 0.816844 0.576859i \(-0.195722\pi\)
0.254940 + 0.966957i \(0.417944\pi\)
\(80\) 24.2155 + 48.3268i 0.302693 + 0.604085i
\(81\) 0 0
\(82\) 73.9440i 0.901756i
\(83\) 49.9577 + 18.1831i 0.601900 + 0.219074i 0.624955 0.780661i \(-0.285117\pi\)
−0.0230554 + 0.999734i \(0.507339\pi\)
\(84\) 0 0
\(85\) 12.0943 50.8231i 0.142285 0.597919i
\(86\) 43.7744 + 7.71861i 0.509005 + 0.0897513i
\(87\) 0 0
\(88\) −23.3879 27.8727i −0.265772 0.316735i
\(89\) 20.0986 11.6039i 0.225827 0.130381i −0.382819 0.923824i \(-0.625047\pi\)
0.608645 + 0.793442i \(0.291713\pi\)
\(90\) 0 0
\(91\) −84.4321 + 146.241i −0.927825 + 1.60704i
\(92\) 20.8600 + 118.303i 0.226739 + 1.28590i
\(93\) 0 0
\(94\) 121.994 44.4022i 1.29781 0.472364i
\(95\) −55.6580 52.6066i −0.585874 0.553754i
\(96\) 0 0
\(97\) 17.5234 3.08985i 0.180654 0.0318542i −0.0825892 0.996584i \(-0.526319\pi\)
0.263243 + 0.964730i \(0.415208\pi\)
\(98\) −136.347 + 236.160i −1.39130 + 2.40980i
\(99\) 0 0
\(100\) 124.907 + 14.8304i 1.24907 + 0.148304i
\(101\) −40.9814 48.8397i −0.405756 0.483561i 0.524010 0.851712i \(-0.324435\pi\)
−0.929766 + 0.368151i \(0.879991\pi\)
\(102\) 0 0
\(103\) −8.64884 1.52502i −0.0839694 0.0148061i 0.131506 0.991315i \(-0.458019\pi\)
−0.215475 + 0.976509i \(0.569130\pi\)
\(104\) −28.4598 + 33.9170i −0.273652 + 0.326125i
\(105\) 0 0
\(106\) −238.042 86.6401i −2.24568 0.817359i
\(107\) 211.857 1.97997 0.989984 0.141177i \(-0.0450887\pi\)
0.989984 + 0.141177i \(0.0450887\pi\)
\(108\) 0 0
\(109\) −100.928 −0.925947 −0.462973 0.886372i \(-0.653217\pi\)
−0.462973 + 0.886372i \(0.653217\pi\)
\(110\) 175.220 20.3184i 1.59291 0.184712i
\(111\) 0 0
\(112\) 82.1463 97.8982i 0.733449 0.874091i
\(113\) −2.67270 + 15.1576i −0.0236522 + 0.134138i −0.994347 0.106176i \(-0.966139\pi\)
0.970695 + 0.240314i \(0.0772505\pi\)
\(114\) 0 0
\(115\) −109.573 47.3837i −0.952808 0.412032i
\(116\) 80.7172 46.6021i 0.695838 0.401742i
\(117\) 0 0
\(118\) 211.977 + 122.385i 1.79641 + 1.03716i
\(119\) −121.637 + 21.4478i −1.02216 + 0.180234i
\(120\) 0 0
\(121\) 15.7946 5.74877i 0.130534 0.0475105i
\(122\) 188.293 68.5332i 1.54339 0.561747i
\(123\) 0 0
\(124\) −25.4774 144.490i −0.205463 1.16524i
\(125\) −80.6101 + 95.5354i −0.644881 + 0.764283i
\(126\) 0 0
\(127\) −179.281 + 103.508i −1.41166 + 0.815023i −0.995545 0.0942888i \(-0.969942\pi\)
−0.416116 + 0.909312i \(0.636609\pi\)
\(128\) 73.4529 61.6343i 0.573851 0.481518i
\(129\) 0 0
\(130\) −61.3738 205.685i −0.472106 1.58219i
\(131\) 52.2452 62.2635i 0.398819 0.475294i −0.528841 0.848721i \(-0.677373\pi\)
0.927659 + 0.373428i \(0.121818\pi\)
\(132\) 0 0
\(133\) −61.9279 + 170.145i −0.465623 + 1.27929i
\(134\) 341.714i 2.55010i
\(135\) 0 0
\(136\) −32.3847 −0.238122
\(137\) 29.1079 + 10.5944i 0.212467 + 0.0773315i 0.446061 0.895003i \(-0.352826\pi\)
−0.233594 + 0.972334i \(0.575049\pi\)
\(138\) 0 0
\(139\) −128.959 108.209i −0.927760 0.778483i 0.0476535 0.998864i \(-0.484826\pi\)
−0.975414 + 0.220380i \(0.929270\pi\)
\(140\) −85.0306 284.967i −0.607361 2.03548i
\(141\) 0 0
\(142\) −12.3873 14.7626i −0.0872344 0.103962i
\(143\) −83.8465 145.226i −0.586339 1.01557i
\(144\) 0 0
\(145\) −5.46988 + 92.4616i −0.0377233 + 0.637666i
\(146\) 221.975 39.1402i 1.52038 0.268083i
\(147\) 0 0
\(148\) 6.25977 + 17.1986i 0.0422958 + 0.116207i
\(149\) 22.0664 + 60.6271i 0.148097 + 0.406893i 0.991453 0.130462i \(-0.0416459\pi\)
−0.843356 + 0.537355i \(0.819424\pi\)
\(150\) 0 0
\(151\) 33.6453 + 190.812i 0.222817 + 1.26366i 0.866815 + 0.498629i \(0.166163\pi\)
−0.643999 + 0.765026i \(0.722726\pi\)
\(152\) −23.7373 + 41.1142i −0.156166 + 0.270488i
\(153\) 0 0
\(154\) −208.519 361.165i −1.35402 2.34523i
\(155\) 133.827 + 57.8722i 0.863401 + 0.373369i
\(156\) 0 0
\(157\) 150.983 + 26.6225i 0.961678 + 0.169570i 0.632382 0.774657i \(-0.282077\pi\)
0.329296 + 0.944227i \(0.393188\pi\)
\(158\) 207.434 + 174.057i 1.31287 + 1.10163i
\(159\) 0 0
\(160\) 25.8520 + 222.941i 0.161575 + 1.39338i
\(161\) 282.241i 1.75305i
\(162\) 0 0
\(163\) 37.9711i 0.232951i 0.993194 + 0.116476i \(0.0371597\pi\)
−0.993194 + 0.116476i \(0.962840\pi\)
\(164\) −42.3412 + 116.332i −0.258178 + 0.709339i
\(165\) 0 0
\(166\) 122.390 + 102.698i 0.737291 + 0.618661i
\(167\) −6.11658 + 34.6889i −0.0366263 + 0.207718i −0.997629 0.0688209i \(-0.978076\pi\)
0.961003 + 0.276539i \(0.0891874\pi\)
\(168\) 0 0
\(169\) −26.8561 + 22.5350i −0.158912 + 0.133343i
\(170\) 86.3924 131.093i 0.508190 0.771133i
\(171\) 0 0
\(172\) 64.4478 + 37.2090i 0.374697 + 0.216331i
\(173\) 6.67558 + 37.8591i 0.0385872 + 0.218839i 0.998004 0.0631536i \(-0.0201158\pi\)
−0.959417 + 0.281992i \(0.909005\pi\)
\(174\) 0 0
\(175\) 282.959 + 85.2749i 1.61691 + 0.487285i
\(176\) 43.4060 + 119.257i 0.246625 + 0.677596i
\(177\) 0 0
\(178\) 68.6852 12.1110i 0.385872 0.0680396i
\(179\) −196.409 113.397i −1.09726 0.633502i −0.161759 0.986830i \(-0.551717\pi\)
−0.935500 + 0.353328i \(0.885050\pi\)
\(180\) 0 0
\(181\) −32.1294 55.6497i −0.177510 0.307457i 0.763517 0.645788i \(-0.223471\pi\)
−0.941027 + 0.338331i \(0.890138\pi\)
\(182\) −388.748 + 326.198i −2.13598 + 1.79230i
\(183\) 0 0
\(184\) −12.8504 + 72.8782i −0.0698391 + 0.396077i
\(185\) −17.6942 4.21064i −0.0956442 0.0227602i
\(186\) 0 0
\(187\) 41.9510 115.259i 0.224337 0.616360i
\(188\) 217.351 1.15612
\(189\) 0 0
\(190\) −103.106 205.768i −0.542662 1.08299i
\(191\) −100.954 + 277.368i −0.528552 + 1.45219i 0.332223 + 0.943201i \(0.392201\pi\)
−0.860775 + 0.508985i \(0.830021\pi\)
\(192\) 0 0
\(193\) −136.412 + 162.569i −0.706796 + 0.842327i −0.993277 0.115759i \(-0.963070\pi\)
0.286481 + 0.958086i \(0.407514\pi\)
\(194\) 52.6618 + 9.28570i 0.271453 + 0.0478644i
\(195\) 0 0
\(196\) −349.735 + 293.462i −1.78436 + 1.49726i
\(197\) −3.49781 6.05838i −0.0177554 0.0307532i 0.857011 0.515298i \(-0.172319\pi\)
−0.874767 + 0.484545i \(0.838985\pi\)
\(198\) 0 0
\(199\) 53.2212 92.1818i 0.267443 0.463225i −0.700758 0.713399i \(-0.747155\pi\)
0.968201 + 0.250174i \(0.0804879\pi\)
\(200\) 69.1811 + 34.9022i 0.345905 + 0.174511i
\(201\) 0 0
\(202\) −65.5311 180.045i −0.324411 0.891313i
\(203\) 205.777 74.8967i 1.01368 0.368949i
\(204\) 0 0
\(205\) −73.3759 98.7488i −0.357931 0.481702i
\(206\) −22.8567 13.1963i −0.110955 0.0640599i
\(207\) 0 0
\(208\) 133.742 77.2160i 0.642990 0.371231i
\(209\) −115.579 137.742i −0.553010 0.659051i
\(210\) 0 0
\(211\) 41.8113 237.123i 0.198158 1.12381i −0.709692 0.704512i \(-0.751166\pi\)
0.907850 0.419296i \(-0.137723\pi\)
\(212\) −324.885 272.611i −1.53248 1.28590i
\(213\) 0 0
\(214\) 598.280 + 217.756i 2.79570 + 1.01755i
\(215\) −66.1180 + 33.1303i −0.307526 + 0.154094i
\(216\) 0 0
\(217\) 344.715i 1.58855i
\(218\) −285.020 103.739i −1.30743 0.475866i
\(219\) 0 0
\(220\) 287.298 + 68.3675i 1.30590 + 0.310761i
\(221\) −146.988 25.9179i −0.665103 0.117276i
\(222\) 0 0
\(223\) −50.8002 60.5414i −0.227804 0.271486i 0.640020 0.768358i \(-0.278926\pi\)
−0.867824 + 0.496872i \(0.834482\pi\)
\(224\) 459.527 265.308i 2.05146 1.18441i
\(225\) 0 0
\(226\) −23.1274 + 40.0578i −0.102334 + 0.177247i
\(227\) 7.53741 + 42.7468i 0.0332045 + 0.188312i 0.996899 0.0786968i \(-0.0250759\pi\)
−0.963694 + 0.267009i \(0.913965\pi\)
\(228\) 0 0
\(229\) −302.810 + 110.214i −1.32231 + 0.481283i −0.904199 0.427111i \(-0.859531\pi\)
−0.418115 + 0.908394i \(0.637309\pi\)
\(230\) −260.729 246.435i −1.13360 1.07146i
\(231\) 0 0
\(232\) 56.5443 9.97028i 0.243725 0.0429753i
\(233\) −82.0547 + 142.123i −0.352166 + 0.609970i −0.986629 0.162984i \(-0.947888\pi\)
0.634463 + 0.772954i \(0.281221\pi\)
\(234\) 0 0
\(235\) −118.856 + 180.354i −0.505772 + 0.767463i
\(236\) 263.411 + 313.921i 1.11615 + 1.33017i
\(237\) 0 0
\(238\) −365.545 64.4555i −1.53590 0.270821i
\(239\) 25.3352 30.1933i 0.106005 0.126332i −0.710433 0.703765i \(-0.751501\pi\)
0.816438 + 0.577433i \(0.195945\pi\)
\(240\) 0 0
\(241\) 420.528 + 153.060i 1.74493 + 0.635102i 0.999504 0.0314879i \(-0.0100246\pi\)
0.745425 + 0.666590i \(0.232247\pi\)
\(242\) 50.5126 0.208730
\(243\) 0 0
\(244\) 335.473 1.37489
\(245\) −52.2605 450.681i −0.213308 1.83951i
\(246\) 0 0
\(247\) −140.643 + 167.612i −0.569405 + 0.678591i
\(248\) 15.6949 89.0099i 0.0632857 0.358911i
\(249\) 0 0
\(250\) −325.837 + 186.936i −1.30335 + 0.747743i
\(251\) −11.9298 + 6.88767i −0.0475290 + 0.0274409i −0.523576 0.851979i \(-0.675402\pi\)
0.476047 + 0.879420i \(0.342069\pi\)
\(252\) 0 0
\(253\) −242.732 140.142i −0.959416 0.553919i
\(254\) −612.677 + 108.031i −2.41211 + 0.425321i
\(255\) 0 0
\(256\) −73.7169 + 26.8308i −0.287957 + 0.104808i
\(257\) 107.313 39.0589i 0.417562 0.151980i −0.124691 0.992196i \(-0.539794\pi\)
0.542253 + 0.840216i \(0.317572\pi\)
\(258\) 0 0
\(259\) 7.46711 + 42.3481i 0.0288305 + 0.163506i
\(260\) 21.2222 358.735i 0.0816237 1.37975i
\(261\) 0 0
\(262\) 211.537 122.131i 0.807393 0.466149i
\(263\) 213.136 178.843i 0.810405 0.680010i −0.140300 0.990109i \(-0.544807\pi\)
0.950704 + 0.310099i \(0.100362\pi\)
\(264\) 0 0
\(265\) 403.868 120.509i 1.52403 0.454751i
\(266\) −349.767 + 416.836i −1.31491 + 1.56705i
\(267\) 0 0
\(268\) 195.669 537.597i 0.730109 2.00596i
\(269\) 91.5594i 0.340369i 0.985412 + 0.170185i \(0.0544364\pi\)
−0.985412 + 0.170185i \(0.945564\pi\)
\(270\) 0 0
\(271\) −330.566 −1.21980 −0.609900 0.792478i \(-0.708790\pi\)
−0.609900 + 0.792478i \(0.708790\pi\)
\(272\) 106.145 + 38.6335i 0.390238 + 0.142035i
\(273\) 0 0
\(274\) 71.3109 + 59.8370i 0.260259 + 0.218383i
\(275\) −213.836 + 201.008i −0.777586 + 0.730939i
\(276\) 0 0
\(277\) 15.0444 + 17.9292i 0.0543120 + 0.0647265i 0.792517 0.609850i \(-0.208771\pi\)
−0.738205 + 0.674577i \(0.764326\pi\)
\(278\) −252.955 438.131i −0.909910 1.57601i
\(279\) 0 0
\(280\) 10.8187 182.877i 0.0386382 0.653132i
\(281\) 353.029 62.2485i 1.25633 0.221525i 0.494429 0.869218i \(-0.335377\pi\)
0.761901 + 0.647693i \(0.224266\pi\)
\(282\) 0 0
\(283\) 16.5869 + 45.5722i 0.0586110 + 0.161032i 0.965542 0.260246i \(-0.0838037\pi\)
−0.906931 + 0.421279i \(0.861581\pi\)
\(284\) −11.0349 30.3182i −0.0388554 0.106754i
\(285\) 0 0
\(286\) −87.5108 496.298i −0.305982 1.73531i
\(287\) −145.431 + 251.894i −0.506728 + 0.877679i
\(288\) 0 0
\(289\) 89.9148 + 155.737i 0.311124 + 0.538882i
\(290\) −110.483 + 255.488i −0.380977 + 0.880993i
\(291\) 0 0
\(292\) 371.632 + 65.5287i 1.27271 + 0.224413i
\(293\) −94.0109 78.8845i −0.320856 0.269230i 0.468106 0.883673i \(-0.344937\pi\)
−0.788962 + 0.614442i \(0.789381\pi\)
\(294\) 0 0
\(295\) −404.530 + 46.9089i −1.37129 + 0.159013i
\(296\) 11.2748i 0.0380905i
\(297\) 0 0
\(298\) 193.891i 0.650640i
\(299\) −116.651 + 320.496i −0.390137 + 1.07189i
\(300\) 0 0
\(301\) 133.939 + 112.388i 0.444980 + 0.373382i
\(302\) −101.112 + 573.432i −0.334807 + 1.89878i
\(303\) 0 0
\(304\) 126.849 106.439i 0.417267 0.350129i
\(305\) −183.451 + 278.370i −0.601477 + 0.912688i
\(306\) 0 0
\(307\) −255.991 147.796i −0.833847 0.481422i 0.0213210 0.999773i \(-0.493213\pi\)
−0.855168 + 0.518351i \(0.826546\pi\)
\(308\) −121.242 687.599i −0.393643 2.23246i
\(309\) 0 0
\(310\) 318.442 + 300.984i 1.02723 + 0.970916i
\(311\) −109.714 301.436i −0.352777 0.969247i −0.981474 0.191596i \(-0.938634\pi\)
0.628697 0.777651i \(-0.283589\pi\)
\(312\) 0 0
\(313\) 30.2976 5.34228i 0.0967974 0.0170680i −0.125040 0.992152i \(-0.539906\pi\)
0.221837 + 0.975084i \(0.428795\pi\)
\(314\) 399.011 + 230.369i 1.27074 + 0.733660i
\(315\) 0 0
\(316\) 226.675 + 392.613i 0.717326 + 1.24245i
\(317\) 359.537 301.687i 1.13419 0.951696i 0.134953 0.990852i \(-0.456912\pi\)
0.999233 + 0.0391564i \(0.0124671\pi\)
\(318\) 0 0
\(319\) −37.7623 + 214.160i −0.118377 + 0.671349i
\(320\) −106.088 + 445.809i −0.331525 + 1.39315i
\(321\) 0 0
\(322\) −290.100 + 797.044i −0.900932 + 2.47529i
\(323\) −160.039 −0.495477
\(324\) 0 0
\(325\) 286.067 + 213.781i 0.880205 + 0.657787i
\(326\) −39.0285 + 107.230i −0.119719 + 0.328926i
\(327\) 0 0
\(328\) −49.0208 + 58.4208i −0.149454 + 0.178112i
\(329\) 502.907 + 88.6762i 1.52859 + 0.269532i
\(330\) 0 0
\(331\) −301.261 + 252.788i −0.910155 + 0.763711i −0.972148 0.234366i \(-0.924699\pi\)
0.0619937 + 0.998077i \(0.480254\pi\)
\(332\) 133.743 + 231.650i 0.402841 + 0.697741i
\(333\) 0 0
\(334\) −52.9280 + 91.6739i −0.158467 + 0.274473i
\(335\) 339.088 + 456.343i 1.01220 + 1.36222i
\(336\) 0 0
\(337\) −79.0320 217.139i −0.234516 0.644328i −1.00000 0.000872393i \(-0.999722\pi\)
0.765483 0.643456i \(-0.222500\pi\)
\(338\) −99.0039 + 36.0345i −0.292911 + 0.106611i
\(339\) 0 0
\(340\) 210.981 156.771i 0.620533 0.461091i
\(341\) 296.462 + 171.162i 0.869389 + 0.501942i
\(342\) 0 0
\(343\) −427.311 + 246.708i −1.24581 + 0.719266i
\(344\) 29.4677 + 35.1183i 0.0856620 + 0.102088i
\(345\) 0 0
\(346\) −20.0616 + 113.775i −0.0579815 + 0.328830i
\(347\) −260.352 218.461i −0.750293 0.629571i 0.185287 0.982684i \(-0.440679\pi\)
−0.935581 + 0.353113i \(0.885123\pi\)
\(348\) 0 0
\(349\) 271.947 + 98.9805i 0.779217 + 0.283612i 0.700846 0.713313i \(-0.252806\pi\)
0.0783708 + 0.996924i \(0.475028\pi\)
\(350\) 711.422 + 531.653i 2.03263 + 1.51901i
\(351\) 0 0
\(352\) 526.935i 1.49697i
\(353\) 123.080 + 44.7973i 0.348667 + 0.126905i 0.510416 0.859927i \(-0.329491\pi\)
−0.161749 + 0.986832i \(0.551713\pi\)
\(354\) 0 0
\(355\) 31.1918 + 7.42265i 0.0878643 + 0.0209089i
\(356\) 114.993 + 20.2764i 0.323014 + 0.0569561i
\(357\) 0 0
\(358\) −438.102 522.110i −1.22375 1.45841i
\(359\) −451.001 + 260.385i −1.25627 + 0.725307i −0.972347 0.233540i \(-0.924969\pi\)
−0.283922 + 0.958847i \(0.591636\pi\)
\(360\) 0 0
\(361\) 63.1946 109.456i 0.175054 0.303203i
\(362\) −33.5335 190.178i −0.0926340 0.525354i
\(363\) 0 0
\(364\) −798.378 + 290.586i −2.19335 + 0.798313i
\(365\) −257.598 + 272.540i −0.705748 + 0.746684i
\(366\) 0 0
\(367\) 344.630 60.7675i 0.939046 0.165579i 0.316881 0.948465i \(-0.397364\pi\)
0.622165 + 0.782886i \(0.286253\pi\)
\(368\) 129.059 223.537i 0.350705 0.607438i
\(369\) 0 0
\(370\) −45.6402 30.0777i −0.123352 0.0812910i
\(371\) −640.499 763.317i −1.72641 2.05746i
\(372\) 0 0
\(373\) −336.395 59.3155i −0.901863 0.159023i −0.296556 0.955015i \(-0.595838\pi\)
−0.605306 + 0.795993i \(0.706949\pi\)
\(374\) 236.938 282.371i 0.633523 0.755004i
\(375\) 0 0
\(376\) 125.820 + 45.7946i 0.334627 + 0.121794i
\(377\) 264.623 0.701917
\(378\) 0 0
\(379\) −462.410 −1.22008 −0.610039 0.792371i \(-0.708846\pi\)
−0.610039 + 0.792371i \(0.708846\pi\)
\(380\) −44.3847 382.762i −0.116802 1.00727i
\(381\) 0 0
\(382\) −570.182 + 679.517i −1.49262 + 1.77884i
\(383\) −27.6776 + 156.967i −0.0722652 + 0.409837i 0.927120 + 0.374766i \(0.122277\pi\)
−0.999385 + 0.0350709i \(0.988834\pi\)
\(384\) 0 0
\(385\) 636.857 + 275.402i 1.65417 + 0.715331i
\(386\) −552.321 + 318.882i −1.43088 + 0.826120i
\(387\) 0 0
\(388\) 77.5325 + 44.7634i 0.199826 + 0.115370i
\(389\) −233.949 + 41.2515i −0.601411 + 0.106045i −0.466061 0.884753i \(-0.654327\pi\)
−0.135351 + 0.990798i \(0.543216\pi\)
\(390\) 0 0
\(391\) −234.422 + 85.3225i −0.599544 + 0.218216i
\(392\) −264.285 + 96.1917i −0.674195 + 0.245387i
\(393\) 0 0
\(394\) −3.65067 20.7040i −0.00926566 0.0525482i
\(395\) −449.738 26.6058i −1.13858 0.0673564i
\(396\) 0 0
\(397\) 351.860 203.147i 0.886297 0.511704i 0.0135678 0.999908i \(-0.495681\pi\)
0.872730 + 0.488204i \(0.162348\pi\)
\(398\) 245.045 205.617i 0.615690 0.516625i
\(399\) 0 0
\(400\) −185.113 196.926i −0.462782 0.492316i
\(401\) 356.231 424.540i 0.888358 1.05870i −0.109546 0.993982i \(-0.534940\pi\)
0.997903 0.0647217i \(-0.0206160\pi\)
\(402\) 0 0
\(403\) 142.472 391.438i 0.353528 0.971310i
\(404\) 320.778i 0.794005i
\(405\) 0 0
\(406\) 658.093 1.62092
\(407\) −40.1278 14.6053i −0.0985940 0.0358853i
\(408\) 0 0
\(409\) −146.542 122.963i −0.358293 0.300644i 0.445817 0.895124i \(-0.352913\pi\)
−0.804110 + 0.594480i \(0.797358\pi\)
\(410\) −105.714 354.284i −0.257839 0.864108i
\(411\) 0 0
\(412\) −28.4027 33.8490i −0.0689386 0.0821578i
\(413\) 481.406 + 833.820i 1.16563 + 2.01893i
\(414\) 0 0
\(415\) −265.355 15.6980i −0.639411 0.0378265i
\(416\) 631.463 111.344i 1.51794 0.267654i
\(417\) 0 0
\(418\) −184.816 507.778i −0.442144 1.21478i
\(419\) 282.003 + 774.798i 0.673039 + 1.84916i 0.504373 + 0.863486i \(0.331723\pi\)
0.168665 + 0.985673i \(0.446054\pi\)
\(420\) 0 0
\(421\) −106.950 606.542i −0.254037 1.44072i −0.798532 0.601953i \(-0.794390\pi\)
0.544494 0.838765i \(-0.316722\pi\)
\(422\) 361.801 626.657i 0.857348 1.48497i
\(423\) 0 0
\(424\) −130.631 226.260i −0.308093 0.533632i
\(425\) 14.7125 + 260.797i 0.0346177 + 0.613640i
\(426\) 0 0
\(427\) 776.220 + 136.868i 1.81784 + 0.320535i
\(428\) 816.548 + 685.165i 1.90782 + 1.60085i
\(429\) 0 0
\(430\) −220.769 + 25.6002i −0.513417 + 0.0595353i
\(431\) 119.081i 0.276291i 0.990412 + 0.138145i \(0.0441141\pi\)
−0.990412 + 0.138145i \(0.955886\pi\)
\(432\) 0 0
\(433\) 403.752i 0.932453i 0.884665 + 0.466226i \(0.154387\pi\)
−0.884665 + 0.466226i \(0.845613\pi\)
\(434\) 354.315 973.471i 0.816393 2.24302i
\(435\) 0 0
\(436\) −389.002 326.411i −0.892207 0.748650i
\(437\) −63.5044 + 360.151i −0.145319 + 0.824144i
\(438\) 0 0
\(439\) 210.318 176.478i 0.479084 0.401999i −0.371011 0.928628i \(-0.620989\pi\)
0.850095 + 0.526629i \(0.176544\pi\)
\(440\) 151.906 + 100.108i 0.345240 + 0.227519i
\(441\) 0 0
\(442\) −388.451 224.273i −0.878849 0.507404i
\(443\) −144.009 816.715i −0.325076 1.84360i −0.509138 0.860685i \(-0.670036\pi\)
0.184062 0.982915i \(-0.441075\pi\)
\(444\) 0 0
\(445\) −79.7079 + 84.3312i −0.179119 + 0.189508i
\(446\) −81.2319 223.183i −0.182134 0.500410i
\(447\) 0 0
\(448\) 1066.97 188.136i 2.38163 0.419946i
\(449\) 173.559 + 100.204i 0.386546 + 0.223172i 0.680662 0.732597i \(-0.261692\pi\)
−0.294117 + 0.955770i \(0.595025\pi\)
\(450\) 0 0
\(451\) −144.422 250.147i −0.320227 0.554649i
\(452\) −59.3225 + 49.7775i −0.131244 + 0.110127i
\(453\) 0 0
\(454\) −22.6516 + 128.464i −0.0498934 + 0.282959i
\(455\) 195.463 821.384i 0.429589 1.80524i
\(456\) 0 0
\(457\) 191.174 525.245i 0.418323 1.14933i −0.534330 0.845276i \(-0.679436\pi\)
0.952654 0.304058i \(-0.0983416\pi\)
\(458\) −968.413 −2.11444
\(459\) 0 0
\(460\) −269.077 536.998i −0.584951 1.16739i
\(461\) 58.5842 160.959i 0.127081 0.349151i −0.859794 0.510642i \(-0.829408\pi\)
0.986874 + 0.161490i \(0.0516301\pi\)
\(462\) 0 0
\(463\) 335.733 400.111i 0.725126 0.864172i −0.269992 0.962863i \(-0.587021\pi\)
0.995118 + 0.0986910i \(0.0314655\pi\)
\(464\) −197.225 34.7761i −0.425054 0.0749484i
\(465\) 0 0
\(466\) −377.802 + 317.013i −0.810734 + 0.680286i
\(467\) −267.546 463.403i −0.572903 0.992297i −0.996266 0.0863372i \(-0.972484\pi\)
0.423363 0.905960i \(-0.360850\pi\)
\(468\) 0 0
\(469\) 672.073 1164.06i 1.43299 2.48201i
\(470\) −521.025 + 387.151i −1.10856 + 0.823725i
\(471\) 0 0
\(472\) 86.3415 + 237.221i 0.182927 + 0.502588i
\(473\) −163.161 + 59.3857i −0.344949 + 0.125551i
\(474\) 0 0
\(475\) 341.880 + 172.480i 0.719748 + 0.363116i
\(476\) −538.182 310.719i −1.13063 0.652772i
\(477\) 0 0
\(478\) 102.580 59.2248i 0.214603 0.123901i
\(479\) 338.977 + 403.978i 0.707677 + 0.843377i 0.993372 0.114944i \(-0.0366688\pi\)
−0.285695 + 0.958321i \(0.592224\pi\)
\(480\) 0 0
\(481\) −9.02337 + 51.1741i −0.0187596 + 0.106391i
\(482\) 1030.24 + 864.476i 2.13743 + 1.79352i
\(483\) 0 0
\(484\) 79.4684 + 28.9241i 0.164191 + 0.0597606i
\(485\) −79.5418 + 39.8566i −0.164004 + 0.0821786i
\(486\) 0 0
\(487\) 639.130i 1.31238i −0.754595 0.656191i \(-0.772166\pi\)
0.754595 0.656191i \(-0.227834\pi\)
\(488\) 194.198 + 70.6824i 0.397947 + 0.144841i
\(489\) 0 0
\(490\) 315.648 1326.43i 0.644179 2.70700i
\(491\) −342.650 60.4184i −0.697862 0.123052i −0.186548 0.982446i \(-0.559730\pi\)
−0.511314 + 0.859394i \(0.670841\pi\)
\(492\) 0 0
\(493\) 124.414 + 148.271i 0.252362 + 0.300753i
\(494\) −569.453 + 328.774i −1.15274 + 0.665535i
\(495\) 0 0
\(496\) −157.627 + 273.018i −0.317796 + 0.550439i
\(497\) −13.1632 74.6525i −0.0264854 0.150206i
\(498\) 0 0
\(499\) −318.889 + 116.066i −0.639057 + 0.232598i −0.641168 0.767400i \(-0.721550\pi\)
0.00211177 + 0.999998i \(0.499328\pi\)
\(500\) −619.662 + 107.516i −1.23932 + 0.215032i
\(501\) 0 0
\(502\) −40.7690 + 7.18868i −0.0812132 + 0.0143201i
\(503\) 215.970 374.071i 0.429364 0.743680i −0.567453 0.823406i \(-0.692071\pi\)
0.996817 + 0.0797255i \(0.0254044\pi\)
\(504\) 0 0
\(505\) 266.176 + 175.414i 0.527081 + 0.347355i
\(506\) −541.428 645.249i −1.07002 1.27520i
\(507\) 0 0
\(508\) −1025.75 180.867i −2.01919 0.356037i
\(509\) 68.1800 81.2537i 0.133949 0.159634i −0.694900 0.719106i \(-0.744552\pi\)
0.828849 + 0.559472i \(0.188996\pi\)
\(510\) 0 0
\(511\) 833.148 + 303.241i 1.63043 + 0.593427i
\(512\) −619.297 −1.20956
\(513\) 0 0
\(514\) 343.198 0.667701
\(515\) 43.6191 5.05802i 0.0846972 0.00982141i
\(516\) 0 0
\(517\) −325.973 + 388.479i −0.630508 + 0.751410i
\(518\) −22.4403 + 127.265i −0.0433211 + 0.245686i
\(519\) 0 0
\(520\) 87.8685 203.193i 0.168978 0.390755i
\(521\) 609.297 351.778i 1.16948 0.675197i 0.215919 0.976411i \(-0.430725\pi\)
0.953557 + 0.301214i \(0.0973918\pi\)
\(522\) 0 0
\(523\) 211.577 + 122.154i 0.404546 + 0.233564i 0.688443 0.725290i \(-0.258294\pi\)
−0.283898 + 0.958855i \(0.591628\pi\)
\(524\) 402.732 71.0125i 0.768572 0.135520i
\(525\) 0 0
\(526\) 785.717 285.978i 1.49376 0.543684i
\(527\) 286.311 104.209i 0.543285 0.197740i
\(528\) 0 0
\(529\) 7.12954 + 40.4337i 0.0134774 + 0.0764341i
\(530\) 1264.38 + 74.7988i 2.38563 + 0.141130i
\(531\) 0 0
\(532\) −788.952 + 455.502i −1.48299 + 0.856206i
\(533\) −269.251 + 225.928i −0.505161 + 0.423881i
\(534\) 0 0
\(535\) −1015.06 + 302.880i −1.89731 + 0.566132i
\(536\) 226.537 269.977i 0.422645 0.503688i
\(537\) 0 0
\(538\) −94.1090 + 258.562i −0.174924 + 0.480599i
\(539\) 1065.21i 1.97628i
\(540\) 0 0
\(541\) 222.608 0.411474 0.205737 0.978607i \(-0.434041\pi\)
0.205737 + 0.978607i \(0.434041\pi\)
\(542\) −933.513 339.771i −1.72235 0.626884i
\(543\) 0 0
\(544\) 359.274 + 301.467i 0.660430 + 0.554167i
\(545\) 483.573 144.292i 0.887289 0.264756i
\(546\) 0 0
\(547\) −657.900 784.054i −1.20274 1.43337i −0.871899 0.489686i \(-0.837112\pi\)
−0.330843 0.943686i \(-0.607333\pi\)
\(548\) 77.9257 + 134.971i 0.142200 + 0.246298i
\(549\) 0 0
\(550\) −810.476 + 347.853i −1.47359 + 0.632461i
\(551\) 279.432 49.2713i 0.507135 0.0894217i
\(552\) 0 0
\(553\) 364.301 + 1000.91i 0.658773 + 1.80996i
\(554\) 24.0567 + 66.0953i 0.0434237 + 0.119306i
\(555\) 0 0
\(556\) −147.080 834.130i −0.264532 1.50023i
\(557\) 377.892 654.528i 0.678442 1.17510i −0.297008 0.954875i \(-0.595989\pi\)
0.975450 0.220221i \(-0.0706777\pi\)
\(558\) 0 0
\(559\) 105.643 + 182.978i 0.188985 + 0.327332i
\(560\) −253.624 + 586.495i −0.452900 + 1.04731i
\(561\) 0 0
\(562\) 1060.93 + 187.070i 1.88777 + 0.332866i
\(563\) −281.344 236.076i −0.499723 0.419317i 0.357773 0.933809i \(-0.383536\pi\)
−0.857495 + 0.514491i \(0.827981\pi\)
\(564\) 0 0
\(565\) −8.86450 76.4451i −0.0156894 0.135301i
\(566\) 145.744i 0.257498i
\(567\) 0 0
\(568\) 19.8755i 0.0349922i
\(569\) −93.5838 + 257.119i −0.164471 + 0.451879i −0.994361 0.106047i \(-0.966181\pi\)
0.829891 + 0.557926i \(0.188403\pi\)
\(570\) 0 0
\(571\) −300.950 252.527i −0.527058 0.442254i 0.340026 0.940416i \(-0.389564\pi\)
−0.867084 + 0.498162i \(0.834008\pi\)
\(572\) 146.511 830.905i 0.256138 1.45263i
\(573\) 0 0
\(574\) −669.603 + 561.864i −1.16656 + 0.978857i
\(575\) 592.734 + 70.3765i 1.03084 + 0.122394i
\(576\) 0 0
\(577\) 396.854 + 229.124i 0.687789 + 0.397095i 0.802783 0.596271i \(-0.203352\pi\)
−0.114994 + 0.993366i \(0.536685\pi\)
\(578\) 93.8443 + 532.218i 0.162360 + 0.920792i
\(579\) 0 0
\(580\) −320.112 + 338.680i −0.551917 + 0.583931i
\(581\) 214.946 + 590.558i 0.369958 + 1.01645i
\(582\) 0 0
\(583\) 974.495 171.830i 1.67152 0.294734i
\(584\) 201.323 + 116.234i 0.344731 + 0.199031i
\(585\) 0 0
\(586\) −184.404 319.397i −0.314683 0.545047i
\(587\) 381.350 319.991i 0.649660 0.545129i −0.257308 0.966329i \(-0.582835\pi\)
0.906968 + 0.421200i \(0.138391\pi\)
\(588\) 0 0
\(589\) 77.5612 439.871i 0.131683 0.746810i
\(590\) −1190.60 283.325i −2.01797 0.480211i
\(591\) 0 0
\(592\) 13.4503 36.9545i 0.0227202 0.0624232i
\(593\) −379.139 −0.639357 −0.319679 0.947526i \(-0.603575\pi\)
−0.319679 + 0.947526i \(0.603575\pi\)
\(594\) 0 0
\(595\) 552.129 276.660i 0.927948 0.464974i
\(596\) −111.024 + 305.037i −0.186282 + 0.511806i
\(597\) 0 0
\(598\) −658.841 + 785.176i −1.10174 + 1.31300i
\(599\) −853.195 150.441i −1.42437 0.251154i −0.592249 0.805755i \(-0.701760\pi\)
−0.832117 + 0.554600i \(0.812871\pi\)
\(600\) 0 0
\(601\) 292.301 245.270i 0.486358 0.408102i −0.366361 0.930473i \(-0.619397\pi\)
0.852719 + 0.522370i \(0.174952\pi\)
\(602\) 262.724 + 455.051i 0.436418 + 0.755898i
\(603\) 0 0
\(604\) −487.427 + 844.248i −0.806998 + 1.39776i
\(605\) −67.4573 + 50.1246i −0.111500 + 0.0828505i
\(606\) 0 0
\(607\) 130.172 + 357.645i 0.214451 + 0.589200i 0.999545 0.0301773i \(-0.00960718\pi\)
−0.785093 + 0.619378i \(0.787385\pi\)
\(608\) 646.070 235.150i 1.06261 0.386760i
\(609\) 0 0
\(610\) −804.183 + 597.553i −1.31833 + 0.979595i
\(611\) 534.421 + 308.548i 0.874667 + 0.504989i
\(612\) 0 0
\(613\) −210.200 + 121.359i −0.342903 + 0.197975i −0.661555 0.749896i \(-0.730103\pi\)
0.318652 + 0.947872i \(0.396770\pi\)
\(614\) −571.003 680.495i −0.929972 1.10830i
\(615\) 0 0
\(616\) 74.6888 423.581i 0.121248 0.687631i
\(617\) −148.955 124.988i −0.241419 0.202574i 0.514048 0.857761i \(-0.328145\pi\)
−0.755467 + 0.655187i \(0.772590\pi\)
\(618\) 0 0
\(619\) −759.634 276.484i −1.22720 0.446663i −0.354559 0.935034i \(-0.615369\pi\)
−0.872636 + 0.488371i \(0.837591\pi\)
\(620\) 328.638 + 655.863i 0.530062 + 1.05784i
\(621\) 0 0
\(622\) 964.019i 1.54987i
\(623\) 257.799 + 93.8312i 0.413803 + 0.150612i
\(624\) 0 0
\(625\) 249.641 572.978i 0.399426 0.916765i
\(626\) 91.0510 + 16.0547i 0.145449 + 0.0256466i
\(627\) 0 0
\(628\) 495.828 + 590.905i 0.789535 + 0.940931i
\(629\) −32.9158 + 19.0040i −0.0523304 + 0.0302130i
\(630\) 0 0
\(631\) 498.492 863.413i 0.790003 1.36832i −0.135962 0.990714i \(-0.543412\pi\)
0.925964 0.377611i \(-0.123254\pi\)
\(632\) 48.4960 + 275.034i 0.0767341 + 0.435181i
\(633\) 0 0
\(634\) 1325.42 482.412i 2.09056 0.760902i
\(635\) 711.000 752.241i 1.11969 1.18463i
\(636\) 0 0
\(637\) −1276.52 + 225.085i −2.00396 + 0.353352i
\(638\) −326.764 + 565.972i −0.512170 + 0.887104i
\(639\) 0 0
\(640\) −263.816 + 400.317i −0.412213 + 0.625496i
\(641\) 301.260 + 359.028i 0.469985 + 0.560106i 0.948010 0.318240i \(-0.103092\pi\)
−0.478026 + 0.878346i \(0.658647\pi\)
\(642\) 0 0
\(643\) 30.3696 + 5.35498i 0.0472311 + 0.00832812i 0.197214 0.980361i \(-0.436811\pi\)
−0.149983 + 0.988689i \(0.547922\pi\)
\(644\) −912.794 + 1087.83i −1.41738 + 1.68917i
\(645\) 0 0
\(646\) −451.948 164.496i −0.699610 0.254637i
\(647\) −389.494 −0.602000 −0.301000 0.953624i \(-0.597320\pi\)
−0.301000 + 0.953624i \(0.597320\pi\)
\(648\) 0 0
\(649\) −956.134 −1.47324
\(650\) 588.114 + 897.746i 0.904791 + 1.38115i
\(651\) 0 0
\(652\) −122.802 + 146.350i −0.188347 + 0.224463i
\(653\) −173.274 + 982.684i −0.265350 + 1.50488i 0.502686 + 0.864469i \(0.332345\pi\)
−0.768036 + 0.640407i \(0.778766\pi\)
\(654\) 0 0
\(655\) −161.305 + 373.012i −0.246268 + 0.569484i
\(656\) 230.365 133.001i 0.351167 0.202746i
\(657\) 0 0
\(658\) 1329.06 + 767.332i 2.01984 + 1.16616i
\(659\) 81.2990 14.3352i 0.123367 0.0217530i −0.111624 0.993751i \(-0.535605\pi\)
0.234991 + 0.971998i \(0.424494\pi\)
\(660\) 0 0
\(661\) 360.048 131.047i 0.544702 0.198255i −0.0549888 0.998487i \(-0.517512\pi\)
0.599691 + 0.800232i \(0.295290\pi\)
\(662\) −1110.58 + 404.220i −1.67762 + 0.610604i
\(663\) 0 0
\(664\) 28.6137 + 162.276i 0.0430929 + 0.244392i
\(665\) 53.4640 903.745i 0.0803970 1.35901i
\(666\) 0 0
\(667\) 383.036 221.146i 0.574268 0.331554i
\(668\) −135.762 + 113.918i −0.203236 + 0.170536i
\(669\) 0 0
\(670\) 488.530 + 1637.24i 0.729150 + 2.44364i
\(671\) −503.127 + 599.604i −0.749817 + 0.893597i
\(672\) 0 0
\(673\) 117.908 323.950i 0.175198 0.481352i −0.820750 0.571288i \(-0.806444\pi\)
0.995948 + 0.0899359i \(0.0286662\pi\)
\(674\) 694.429i 1.03031i
\(675\) 0 0
\(676\) −176.390 −0.260933
\(677\) 690.627 + 251.368i 1.02013 + 0.371297i 0.797314 0.603564i \(-0.206253\pi\)
0.222815 + 0.974861i \(0.428476\pi\)
\(678\) 0 0
\(679\) 161.132 + 135.206i 0.237308 + 0.199125i
\(680\) 155.163 46.2987i 0.228181 0.0680863i
\(681\) 0 0
\(682\) 661.275 + 788.076i 0.969611 + 1.15554i
\(683\) 233.214 + 403.938i 0.341455 + 0.591418i 0.984703 0.174240i \(-0.0557469\pi\)
−0.643248 + 0.765658i \(0.722414\pi\)
\(684\) 0 0
\(685\) −154.610 9.14645i −0.225708 0.0133525i
\(686\) −1460.30 + 257.490i −2.12872 + 0.375350i
\(687\) 0 0
\(688\) −54.6895 150.258i −0.0794906 0.218399i
\(689\) −411.831 1131.50i −0.597723 1.64223i
\(690\) 0 0
\(691\) 49.3428 + 279.837i 0.0714078 + 0.404974i 0.999470 + 0.0325490i \(0.0103625\pi\)
−0.928062 + 0.372425i \(0.878526\pi\)
\(692\) −96.7107 + 167.508i −0.139755 + 0.242063i
\(693\) 0 0
\(694\) −510.685 884.533i −0.735858 1.27454i
\(695\) 772.575 + 334.092i 1.11162 + 0.480708i
\(696\) 0 0
\(697\) −253.181 44.6426i −0.363243 0.0640496i
\(698\) 666.237 + 559.039i 0.954494 + 0.800915i
\(699\) 0 0
\(700\) 814.806 + 1243.79i 1.16401 + 1.77684i
\(701\) 769.747i 1.09807i −0.835799 0.549035i \(-0.814995\pi\)
0.835799 0.549035i \(-0.185005\pi\)
\(702\) 0 0
\(703\) 55.7180i 0.0792575i
\(704\) −367.985 + 1011.03i −0.522705 + 1.43612i
\(705\) 0 0
\(706\) 301.530 + 253.014i 0.427097 + 0.358377i
\(707\) 130.873 742.217i 0.185110 1.04981i
\(708\) 0 0
\(709\) −1011.12 + 848.431i −1.42612 + 1.19666i −0.478161 + 0.878272i \(0.658696\pi\)
−0.947961 + 0.318386i \(0.896859\pi\)
\(710\) 80.4560 + 53.0219i 0.113318 + 0.0746787i
\(711\) 0 0
\(712\) 62.2949 + 35.9660i 0.0874928 + 0.0505140i
\(713\) −120.901 685.663i −0.169567 0.961660i
\(714\) 0 0
\(715\) 609.352 + 575.945i 0.852241 + 0.805518i
\(716\) −390.273 1072.27i −0.545074 1.49758i
\(717\) 0 0
\(718\) −1541.25 + 271.765i −2.14659 + 0.378503i
\(719\) 253.774 + 146.516i 0.352954 + 0.203778i 0.665985 0.745965i \(-0.268011\pi\)
−0.313032 + 0.949743i \(0.601345\pi\)
\(720\) 0 0
\(721\) −51.9083 89.9079i −0.0719949 0.124699i
\(722\) 290.965 244.149i 0.402999 0.338156i
\(723\) 0 0
\(724\) 56.1420 318.397i 0.0775442 0.439775i
\(725\) −105.980 450.827i −0.146179 0.621830i
\(726\) 0 0
\(727\) −248.711 + 683.327i −0.342105 + 0.939927i 0.642678 + 0.766137i \(0.277824\pi\)
−0.984783 + 0.173790i \(0.944399\pi\)
\(728\) −523.389 −0.718941
\(729\) 0 0
\(730\) −1007.58 + 504.877i −1.38025 + 0.691612i
\(731\) −52.8563 + 145.221i −0.0723068 + 0.198661i
\(732\) 0 0
\(733\) 313.284 373.357i 0.427400 0.509355i −0.508770 0.860902i \(-0.669900\pi\)
0.936170 + 0.351547i \(0.114344\pi\)
\(734\) 1035.69 + 182.620i 1.41102 + 0.248801i
\(735\) 0 0
\(736\) 820.980 688.884i 1.11546 0.935984i
\(737\) 667.411 + 1155.99i 0.905578 + 1.56851i
\(738\) 0 0
\(739\) −485.402 + 840.741i −0.656837 + 1.13767i 0.324593 + 0.945854i \(0.394773\pi\)
−0.981430 + 0.191821i \(0.938561\pi\)
\(740\) −54.5801 73.4535i −0.0737569 0.0992615i
\(741\) 0 0
\(742\) −1024.19 2813.93i −1.38031 3.79236i
\(743\) 46.3654 16.8756i 0.0624030 0.0227128i −0.310630 0.950531i \(-0.600540\pi\)
0.373033 + 0.927818i \(0.378318\pi\)
\(744\) 0 0
\(745\) −192.401 258.932i −0.258257 0.347560i
\(746\) −889.006 513.268i −1.19170 0.688027i
\(747\) 0 0
\(748\) 534.449 308.564i 0.714504 0.412519i
\(749\) 1609.79 + 1918.48i 2.14926 + 2.56138i
\(750\) 0 0
\(751\) −218.951 + 1241.73i −0.291546 + 1.65344i 0.389371 + 0.921081i \(0.372692\pi\)
−0.680917 + 0.732360i \(0.738419\pi\)
\(752\) −357.759 300.195i −0.475743 0.399196i
\(753\) 0 0
\(754\) 747.291 + 271.992i 0.991102 + 0.360732i
\(755\) −433.997 866.128i −0.574831 1.14719i
\(756\) 0 0
\(757\) 653.161i 0.862828i 0.902154 + 0.431414i \(0.141985\pi\)
−0.902154 + 0.431414i \(0.858015\pi\)
\(758\) −1305.84 475.286i −1.72274 0.627026i
\(759\) 0 0
\(760\) 54.9525 230.924i 0.0723059 0.303848i
\(761\) −744.387 131.256i −0.978170 0.172478i −0.338365 0.941015i \(-0.609874\pi\)
−0.639805 + 0.768537i \(0.720985\pi\)
\(762\) 0 0
\(763\) −766.903 913.960i −1.00512 1.19785i
\(764\) −1286.13 + 742.549i −1.68342 + 0.971923i
\(765\) 0 0
\(766\) −239.499 + 414.825i −0.312663 + 0.541547i
\(767\) 202.036 + 1145.80i 0.263410 + 1.49387i
\(768\) 0 0
\(769\) 1169.47 425.651i 1.52076 0.553513i 0.559425 0.828881i \(-0.311022\pi\)
0.961339 + 0.275368i \(0.0887996\pi\)
\(770\) 1515.40 + 1432.32i 1.96806 + 1.86016i
\(771\) 0 0
\(772\) −1051.53 + 185.413i −1.36208 + 0.240172i
\(773\) −535.789 + 928.014i −0.693130 + 1.20054i 0.277677 + 0.960674i \(0.410435\pi\)
−0.970807 + 0.239862i \(0.922898\pi\)
\(774\) 0 0
\(775\) −723.936 85.9545i −0.934111 0.110909i
\(776\) 35.4505 + 42.2482i 0.0456836 + 0.0544436i
\(777\) 0 0
\(778\) −703.069 123.970i −0.903688 0.159344i
\(779\) −242.252 + 288.705i −0.310979 + 0.370610i
\(780\) 0 0
\(781\) 70.7385 + 25.7467i 0.0905742 + 0.0329663i
\(782\) −749.701 −0.958698
\(783\) 0 0
\(784\) 980.978 1.25125
\(785\) −761.461 + 88.2983i −0.970014 + 0.112482i
\(786\) 0 0
\(787\) −259.579 + 309.354i −0.329833 + 0.393080i −0.905319 0.424732i \(-0.860368\pi\)
0.575486 + 0.817812i \(0.304813\pi\)
\(788\) 6.11197 34.6627i 0.00775631 0.0439882i
\(789\) 0 0
\(790\) −1242.71 537.396i −1.57305 0.680248i
\(791\) −157.569 + 90.9726i −0.199202 + 0.115010i
\(792\) 0 0
\(793\) 824.860 + 476.233i 1.04018 + 0.600546i
\(794\) 1202.45 212.025i 1.51442 0.267033i
\(795\) 0 0
\(796\) 503.252 183.169i 0.632227 0.230112i
\(797\) 230.850 84.0224i 0.289648 0.105423i −0.193110 0.981177i \(-0.561857\pi\)
0.482758 + 0.875754i \(0.339635\pi\)
\(798\) 0 0
\(799\) 78.3788 + 444.508i 0.0980962 + 0.556331i
\(800\) −442.590 1031.21i −0.553237 1.28901i
\(801\) 0 0
\(802\) 1442.35 832.744i 1.79845 1.03833i
\(803\) −674.478 + 565.954i −0.839947 + 0.704800i
\(804\) 0 0
\(805\) −403.505 1352.29i −0.501248 1.67986i
\(806\) 804.676 958.976i 0.998358 1.18980i
\(807\) 0 0
\(808\) 67.5861 185.691i 0.0836462 0.229816i
\(809\) 1384.62i 1.71153i 0.517368 + 0.855763i \(0.326912\pi\)
−0.517368 + 0.855763i \(0.673088\pi\)
\(810\) 0 0
\(811\) −590.867 −0.728566 −0.364283 0.931288i \(-0.618686\pi\)
−0.364283 + 0.931288i \(0.618686\pi\)
\(812\) 1035.34 + 376.832i 1.27505 + 0.464079i
\(813\) 0 0
\(814\) −98.3082 82.4904i −0.120772 0.101340i
\(815\) −54.2853 181.929i −0.0666077 0.223226i
\(816\) 0 0
\(817\) 145.624 + 173.548i 0.178243 + 0.212421i
\(818\) −287.445 497.869i −0.351400 0.608642i
\(819\) 0 0
\(820\) 36.5543 617.907i 0.0445785 0.753545i
\(821\) 494.358 87.1687i 0.602142 0.106174i 0.135737 0.990745i \(-0.456660\pi\)
0.466405 + 0.884571i \(0.345549\pi\)
\(822\) 0 0
\(823\) 20.2243 + 55.5657i 0.0245738 + 0.0675160i 0.951373 0.308041i \(-0.0996735\pi\)
−0.926799 + 0.375557i \(0.877451\pi\)
\(824\) −9.30990 25.5787i −0.0112984 0.0310422i
\(825\) 0 0
\(826\) 502.445 + 2849.51i 0.608287 + 3.44977i
\(827\) −275.911 + 477.893i −0.333629 + 0.577863i −0.983221 0.182421i \(-0.941607\pi\)
0.649591 + 0.760284i \(0.274940\pi\)
\(828\) 0 0
\(829\) 582.852 + 1009.53i 0.703078 + 1.21777i 0.967381 + 0.253327i \(0.0815250\pi\)
−0.264302 + 0.964440i \(0.585142\pi\)
\(830\) −733.224 317.075i −0.883403 0.382019i
\(831\) 0 0
\(832\) 1289.34 + 227.346i 1.54969 + 0.273253i
\(833\) −726.283 609.423i −0.871888 0.731601i
\(834\) 0 0
\(835\) −20.2868 174.948i −0.0242955 0.209518i
\(836\) 904.684i 1.08216i
\(837\) 0 0
\(838\) 2477.87i 2.95689i
\(839\) 313.787 862.123i 0.374001 1.02756i −0.599798 0.800151i \(-0.704753\pi\)
0.973799 0.227409i \(-0.0730253\pi\)
\(840\) 0 0
\(841\) 381.365 + 320.003i 0.453466 + 0.380504i
\(842\) 321.408 1822.79i 0.381719 2.16484i
\(843\) 0 0
\(844\) 928.031 778.710i 1.09956 0.922642i
\(845\) 96.4575 146.366i 0.114151 0.173214i
\(846\) 0 0
\(847\) 172.074 + 99.3468i 0.203157 + 0.117293i
\(848\) 158.242 + 897.433i 0.186606 + 1.05829i
\(849\) 0 0
\(850\) −226.511 + 751.609i −0.266484 + 0.884246i
\(851\) 29.7052 + 81.6144i 0.0349062 + 0.0959041i
\(852\) 0 0
\(853\) 538.725 94.9917i 0.631565 0.111362i 0.151303 0.988487i \(-0.451653\pi\)
0.480261 + 0.877125i \(0.340542\pi\)
\(854\) 2051.35 + 1184.35i 2.40205 + 1.38683i
\(855\) 0 0
\(856\) 328.321 + 568.669i 0.383553 + 0.664333i
\(857\) −1059.56 + 889.075i −1.23636 + 1.03743i −0.238558 + 0.971128i \(0.576675\pi\)
−0.997800 + 0.0662989i \(0.978881\pi\)
\(858\) 0 0
\(859\) −13.3234 + 75.5605i −0.0155103 + 0.0879633i −0.991580 0.129493i \(-0.958665\pi\)
0.976070 + 0.217457i \(0.0697760\pi\)
\(860\) −361.982 86.1399i −0.420909 0.100163i
\(861\) 0 0
\(862\) −122.397 + 336.284i −0.141992 + 0.390121i
\(863\) −85.6487 −0.0992453 −0.0496226 0.998768i \(-0.515802\pi\)
−0.0496226 + 0.998768i \(0.515802\pi\)
\(864\) 0 0
\(865\) −86.1096 171.849i −0.0995487 0.198669i
\(866\) −414.995 + 1140.19i −0.479209 + 1.31662i
\(867\) 0 0
\(868\) 1114.84 1328.62i 1.28438 1.53067i
\(869\) −1041.69 183.678i −1.19872 0.211367i
\(870\) 0 0
\(871\) 1244.28 1044.07i 1.42856 1.19870i
\(872\) −156.412 270.913i −0.179371 0.310680i
\(873\) 0 0
\(874\) −549.515 + 951.789i −0.628736 + 1.08900i
\(875\) −1477.64 4.04202i −1.68873 0.00461945i
\(876\) 0 0
\(877\) −373.044 1024.93i −0.425363 1.16868i −0.948597 0.316487i \(-0.897497\pi\)
0.523234 0.852189i \(-0.324725\pi\)
\(878\) 775.326 282.196i 0.883059 0.321407i
\(879\) 0 0
\(880\) −378.464 509.335i −0.430073 0.578790i
\(881\) −768.700 443.809i −0.872531 0.503756i −0.00434241 0.999991i \(-0.501382\pi\)
−0.868188 + 0.496235i \(0.834716\pi\)
\(882\) 0 0
\(883\) −257.980 + 148.945i −0.292163 + 0.168680i −0.638917 0.769276i \(-0.720617\pi\)
0.346754 + 0.937956i \(0.387284\pi\)
\(884\) −482.706 575.266i −0.546047 0.650754i
\(885\) 0 0
\(886\) 432.779 2454.41i 0.488463 2.77021i
\(887\) −978.464 821.029i −1.10312 0.925624i −0.105485 0.994421i \(-0.533640\pi\)
−0.997631 + 0.0687965i \(0.978084\pi\)
\(888\) 0 0
\(889\) −2299.59 836.981i −2.58671 0.941486i
\(890\) −311.773 + 156.223i −0.350307 + 0.175531i
\(891\) 0 0
\(892\) 397.634i 0.445778i
\(893\) 621.779 + 226.309i 0.696281 + 0.253425i
\(894\) 0 0
\(895\) 1103.16 + 262.517i 1.23259 + 0.293315i
\(896\) 1116.26 + 196.828i 1.24583 + 0.219674i
\(897\) 0 0
\(898\) 387.133 + 461.368i 0.431106 + 0.513772i
\(899\) −467.822 + 270.097i −0.520381 + 0.300442i
\(900\) 0 0
\(901\) 440.365 762.735i 0.488752 0.846543i
\(902\) −150.734 854.854i −0.167111 0.947732i
\(903\) 0 0
\(904\) −44.8283 + 16.3162i −0.0495889 + 0.0180489i
\(905\) 233.500 + 220.698i 0.258011 + 0.243865i
\(906\) 0 0
\(907\) 1520.14 268.041i 1.67601 0.295525i 0.746789 0.665061i \(-0.231594\pi\)
0.929216 + 0.369536i \(0.120483\pi\)
\(908\) −109.196 + 189.133i −0.120260 + 0.208297i
\(909\) 0 0
\(910\) 1396.24 2118.67i 1.53433 2.32821i
\(911\) −536.186 639.001i −0.588568 0.701428i 0.386762 0.922180i \(-0.373593\pi\)
−0.975330 + 0.220751i \(0.929149\pi\)
\(912\) 0 0
\(913\) −614.618 108.374i −0.673186 0.118701i
\(914\) 1079.74 1286.79i 1.18134 1.40786i
\(915\) 0 0
\(916\) −1523.55 554.525i −1.66326 0.605377i
\(917\) 960.815 1.04778
\(918\) 0 0
\(919\) −258.168 −0.280923 −0.140461 0.990086i \(-0.544859\pi\)
−0.140461 + 0.990086i \(0.544859\pi\)
\(920\) −42.6207 367.549i −0.0463268 0.399510i
\(921\) 0 0
\(922\) 330.882 394.329i 0.358874 0.427689i
\(923\) 15.9067 90.2112i 0.0172337 0.0977370i
\(924\) 0 0
\(925\) 90.7970 5.12220i 0.0981589 0.00553751i
\(926\) 1359.36 784.826i 1.46799 0.847545i
\(927\) 0 0
\(928\) −720.112 415.757i −0.775983 0.448014i
\(929\) −68.6412 + 12.1033i −0.0738872 + 0.0130283i −0.210470 0.977600i \(-0.567499\pi\)
0.136582 + 0.990629i \(0.456388\pi\)
\(930\) 0 0
\(931\) −1306.05 + 475.362i −1.40284 + 0.510593i
\(932\) −775.898 + 282.404i −0.832509 + 0.303008i
\(933\) 0 0
\(934\) −279.238 1583.64i −0.298970 1.69554i
\(935\) −36.2174 + 612.212i −0.0387352 + 0.654772i
\(936\) 0 0
\(937\) −1193.28 + 688.938i −1.27351 + 0.735259i −0.975646 0.219351i \(-0.929606\pi\)
−0.297860 + 0.954610i \(0.596273\pi\)
\(938\) 3094.40 2596.51i 3.29894 2.76814i
\(939\) 0 0
\(940\) −1041.38 + 310.735i −1.10785 + 0.330569i
\(941\) −407.413 + 485.535i −0.432957 + 0.515978i −0.937773 0.347249i \(-0.887116\pi\)
0.504816 + 0.863227i \(0.331560\pi\)
\(942\) 0 0
\(943\) −200.927 + 552.041i −0.213072 + 0.585410i
\(944\) 880.524i 0.932759i
\(945\) 0 0
\(946\) −521.803 −0.551589
\(947\) −126.925 46.1971i −0.134029 0.0487826i 0.274135 0.961691i \(-0.411609\pi\)
−0.408164 + 0.912909i \(0.633831\pi\)
\(948\) 0 0
\(949\) 820.743 + 688.685i 0.864850 + 0.725695i
\(950\) 788.182 + 838.482i 0.829665 + 0.882613i
\(951\) 0 0
\(952\) −246.075 293.261i −0.258482 0.308047i
\(953\) −629.190 1089.79i −0.660220 1.14353i −0.980558 0.196231i \(-0.937130\pi\)
0.320337 0.947303i \(-0.396204\pi\)
\(954\) 0 0
\(955\) 87.1559 1473.27i 0.0912628 1.54269i
\(956\) 195.296 34.4360i 0.204285 0.0360209i
\(957\) 0 0
\(958\) 542.040 + 1489.24i 0.565804 + 1.55453i
\(959\) 125.238 + 344.090i 0.130593 + 0.358801i
\(960\) 0 0
\(961\) −19.2133 108.964i −0.0199930 0.113386i
\(962\) −78.0810 + 135.240i −0.0811652 + 0.140582i
\(963\) 0 0
\(964\) 1125.81 + 1949.96i 1.16785 + 2.02278i
\(965\) 421.166 973.930i 0.436442 1.00925i
\(966\) 0 0
\(967\) 599.358 + 105.683i 0.619812 + 0.109290i 0.474732 0.880130i \(-0.342545\pi\)
0.145080 + 0.989420i \(0.453656\pi\)
\(968\) 39.9084 + 33.4871i 0.0412277 + 0.0345941i
\(969\) 0 0
\(970\) −265.591 + 30.7977i −0.273806 + 0.0317502i
\(971\) 667.066i 0.686988i −0.939155 0.343494i \(-0.888389\pi\)
0.939155 0.343494i \(-0.111611\pi\)
\(972\) 0 0
\(973\) 1990.02i 2.04524i
\(974\) 656.928 1804.89i 0.674464 1.85307i
\(975\) 0 0
\(976\) −552.188 463.341i −0.565766 0.474734i
\(977\) −138.429 + 785.069i −0.141688 + 0.803551i 0.828280 + 0.560315i \(0.189320\pi\)
−0.969967 + 0.243236i \(0.921791\pi\)
\(978\) 0 0
\(979\) −208.702 + 175.122i −0.213179 + 0.178878i
\(980\) 1256.12 1906.05i 1.28175 1.94495i
\(981\) 0 0
\(982\) −905.538 522.812i −0.922136 0.532396i
\(983\) 81.4145 + 461.724i 0.0828225 + 0.469710i 0.997805 + 0.0662167i \(0.0210929\pi\)
−0.914983 + 0.403493i \(0.867796\pi\)
\(984\) 0 0
\(985\) 25.4202 + 24.0266i 0.0258073 + 0.0243925i
\(986\) 198.944 + 546.594i 0.201769 + 0.554355i
\(987\) 0 0
\(988\) −1084.15 + 191.164i −1.09731 + 0.193486i
\(989\) 305.831 + 176.572i 0.309233 + 0.178536i
\(990\) 0 0
\(991\) −467.836 810.316i −0.472085 0.817675i 0.527405 0.849614i \(-0.323165\pi\)
−0.999490 + 0.0319388i \(0.989832\pi\)
\(992\) −1002.71 + 841.370i −1.01079 + 0.848156i
\(993\) 0 0
\(994\) 39.5585 224.347i 0.0397973 0.225701i
\(995\) −123.209 + 517.754i −0.123828 + 0.520356i
\(996\) 0 0
\(997\) 248.507 682.768i 0.249255 0.684822i −0.750459 0.660917i \(-0.770168\pi\)
0.999714 0.0239057i \(-0.00761015\pi\)
\(998\) −1019.84 −1.02188
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.n.a.179.29 204
3.2 odd 2 135.3.n.a.104.6 yes 204
5.4 even 2 inner 405.3.n.a.179.6 204
15.14 odd 2 135.3.n.a.104.29 yes 204
27.7 even 9 135.3.n.a.74.29 yes 204
27.20 odd 18 inner 405.3.n.a.224.6 204
135.34 even 18 135.3.n.a.74.6 204
135.74 odd 18 inner 405.3.n.a.224.29 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.n.a.74.6 204 135.34 even 18
135.3.n.a.74.29 yes 204 27.7 even 9
135.3.n.a.104.6 yes 204 3.2 odd 2
135.3.n.a.104.29 yes 204 15.14 odd 2
405.3.n.a.179.6 204 5.4 even 2 inner
405.3.n.a.179.29 204 1.1 even 1 trivial
405.3.n.a.224.6 204 27.20 odd 18 inner
405.3.n.a.224.29 204 135.74 odd 18 inner