Properties

Label 405.3.n.a.179.6
Level $405$
Weight $3$
Character 405.179
Analytic conductor $11.035$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,3,Mod(44,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 9]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.44");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.n (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 179.6
Character \(\chi\) \(=\) 405.179
Dual form 405.3.n.a.224.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.82399 - 1.02785i) q^{2} +(3.85425 + 3.23410i) q^{4} +(-4.01334 - 2.98213i) q^{5} +(-7.59850 - 9.05554i) q^{7} +(-1.54973 - 2.68422i) q^{8} +(8.26843 + 12.5466i) q^{10} +(-11.5608 + 2.03849i) q^{11} +(-4.88572 - 13.4234i) q^{13} +(12.1503 + 33.3828i) q^{14} +(-1.87729 - 10.6466i) q^{16} +(5.22423 - 9.04864i) q^{17} +(7.65850 + 13.2649i) q^{19} +(-5.82387 - 24.4734i) q^{20} +(34.7429 + 6.12611i) q^{22} +(-18.2900 - 15.3471i) q^{23} +(7.21374 + 23.9366i) q^{25} +42.9293i q^{26} -59.4766i q^{28} +(6.33581 - 17.4075i) q^{29} +(-22.3385 - 18.7442i) q^{31} +(-7.79453 + 44.2050i) q^{32} +(-24.0538 + 20.1835i) q^{34} +(3.49050 + 59.0027i) q^{35} +(-3.15030 - 1.81883i) q^{37} +(-7.99320 - 45.3317i) q^{38} +(-1.78509 + 15.3942i) q^{40} +(8.41546 + 23.1213i) q^{41} +(-14.5661 + 2.56840i) q^{43} +(-51.1509 - 29.5320i) q^{44} +(35.8762 + 62.1393i) q^{46} +(-33.0925 + 27.7679i) q^{47} +(-15.7569 + 89.3615i) q^{49} +(4.23167 - 75.0113i) q^{50} +(24.5818 - 67.5380i) q^{52} +84.2928 q^{53} +(52.4766 + 26.2948i) q^{55} +(-12.5314 + 34.4297i) q^{56} +(-35.7844 + 42.6462i) q^{58} +(80.2108 + 14.1433i) q^{59} +(51.0771 - 42.8588i) q^{61} +(43.8174 + 75.8940i) q^{62} +(45.8258 - 79.3727i) q^{64} +(-20.4224 + 68.4425i) q^{65} +(38.8900 + 106.849i) q^{67} +(49.3996 - 17.9800i) q^{68} +(50.7886 - 170.210i) q^{70} +(-5.55345 - 3.20629i) q^{71} +(-64.9541 + 37.5013i) q^{73} +(7.02693 + 8.37437i) q^{74} +(-13.3823 + 75.8946i) q^{76} +(106.305 + 89.2002i) q^{77} +(84.6709 + 30.8177i) q^{79} +(-24.2155 + 48.3268i) q^{80} -73.9440i q^{82} +(-49.9577 - 18.1831i) q^{83} +(-47.9509 + 20.7359i) q^{85} +(43.7744 + 7.71861i) q^{86} +(23.3879 + 27.8727i) q^{88} +(20.0986 - 11.6039i) q^{89} +(-84.4321 + 146.241i) q^{91} +(-20.8600 - 118.303i) q^{92} +(121.994 - 44.4022i) q^{94} +(8.82162 - 76.0753i) q^{95} +(-17.5234 + 3.08985i) q^{97} +(136.347 - 236.160i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q - 12 q^{4} - 3 q^{5} - 3 q^{10} - 6 q^{11} + 48 q^{14} + 12 q^{16} - 6 q^{19} - 63 q^{20} - 15 q^{25} - 96 q^{29} - 102 q^{31} + 12 q^{34} + 252 q^{35} + 117 q^{40} - 96 q^{41} + 666 q^{44} - 6 q^{46}+ \cdots + 543 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.82399 1.02785i −1.41199 0.513923i −0.480279 0.877116i \(-0.659464\pi\)
−0.931714 + 0.363193i \(0.881687\pi\)
\(3\) 0 0
\(4\) 3.85425 + 3.23410i 0.963561 + 0.808524i
\(5\) −4.01334 2.98213i −0.802667 0.596427i
\(6\) 0 0
\(7\) −7.59850 9.05554i −1.08550 1.29365i −0.953167 0.302444i \(-0.902198\pi\)
−0.132333 0.991205i \(-0.542247\pi\)
\(8\) −1.54973 2.68422i −0.193717 0.335527i
\(9\) 0 0
\(10\) 8.26843 + 12.5466i 0.826843 + 1.25466i
\(11\) −11.5608 + 2.03849i −1.05098 + 0.185317i −0.672353 0.740230i \(-0.734716\pi\)
−0.378632 + 0.925547i \(0.623605\pi\)
\(12\) 0 0
\(13\) −4.88572 13.4234i −0.375825 1.03257i −0.973070 0.230511i \(-0.925960\pi\)
0.597245 0.802059i \(-0.296262\pi\)
\(14\) 12.1503 + 33.3828i 0.867882 + 2.38449i
\(15\) 0 0
\(16\) −1.87729 10.6466i −0.117330 0.665413i
\(17\) 5.22423 9.04864i 0.307308 0.532273i −0.670465 0.741941i \(-0.733905\pi\)
0.977772 + 0.209669i \(0.0672386\pi\)
\(18\) 0 0
\(19\) 7.65850 + 13.2649i 0.403079 + 0.698154i 0.994096 0.108506i \(-0.0346066\pi\)
−0.591017 + 0.806659i \(0.701273\pi\)
\(20\) −5.82387 24.4734i −0.291194 1.22367i
\(21\) 0 0
\(22\) 34.7429 + 6.12611i 1.57922 + 0.278459i
\(23\) −18.2900 15.3471i −0.795217 0.667266i 0.151814 0.988409i \(-0.451488\pi\)
−0.947031 + 0.321143i \(0.895933\pi\)
\(24\) 0 0
\(25\) 7.21374 + 23.9366i 0.288550 + 0.957465i
\(26\) 42.9293i 1.65113i
\(27\) 0 0
\(28\) 59.4766i 2.12416i
\(29\) 6.33581 17.4075i 0.218476 0.600258i −0.781236 0.624235i \(-0.785411\pi\)
0.999713 + 0.0239772i \(0.00763290\pi\)
\(30\) 0 0
\(31\) −22.3385 18.7442i −0.720597 0.604653i 0.206953 0.978351i \(-0.433645\pi\)
−0.927550 + 0.373698i \(0.878090\pi\)
\(32\) −7.79453 + 44.2050i −0.243579 + 1.38140i
\(33\) 0 0
\(34\) −24.0538 + 20.1835i −0.707464 + 0.593632i
\(35\) 3.49050 + 59.0027i 0.0997286 + 1.68579i
\(36\) 0 0
\(37\) −3.15030 1.81883i −0.0851433 0.0491575i 0.456824 0.889557i \(-0.348987\pi\)
−0.541967 + 0.840400i \(0.682320\pi\)
\(38\) −7.99320 45.3317i −0.210347 1.19294i
\(39\) 0 0
\(40\) −1.78509 + 15.3942i −0.0446274 + 0.384854i
\(41\) 8.41546 + 23.1213i 0.205255 + 0.563934i 0.999019 0.0442926i \(-0.0141034\pi\)
−0.793763 + 0.608227i \(0.791881\pi\)
\(42\) 0 0
\(43\) −14.5661 + 2.56840i −0.338747 + 0.0597302i −0.340434 0.940268i \(-0.610574\pi\)
0.00168729 + 0.999999i \(0.499463\pi\)
\(44\) −51.1509 29.5320i −1.16252 0.671182i
\(45\) 0 0
\(46\) 35.8762 + 62.1393i 0.779916 + 1.35085i
\(47\) −33.0925 + 27.7679i −0.704097 + 0.590807i −0.922936 0.384954i \(-0.874217\pi\)
0.218839 + 0.975761i \(0.429773\pi\)
\(48\) 0 0
\(49\) −15.7569 + 89.3615i −0.321568 + 1.82371i
\(50\) 4.23167 75.0113i 0.0846333 1.50023i
\(51\) 0 0
\(52\) 24.5818 67.5380i 0.472727 1.29881i
\(53\) 84.2928 1.59043 0.795215 0.606327i \(-0.207358\pi\)
0.795215 + 0.606327i \(0.207358\pi\)
\(54\) 0 0
\(55\) 52.4766 + 26.2948i 0.954119 + 0.478088i
\(56\) −12.5314 + 34.4297i −0.223775 + 0.614816i
\(57\) 0 0
\(58\) −35.7844 + 42.6462i −0.616973 + 0.735280i
\(59\) 80.2108 + 14.1433i 1.35950 + 0.239717i 0.805401 0.592731i \(-0.201950\pi\)
0.554103 + 0.832448i \(0.313061\pi\)
\(60\) 0 0
\(61\) 51.0771 42.8588i 0.837330 0.702603i −0.119631 0.992818i \(-0.538171\pi\)
0.956962 + 0.290215i \(0.0937268\pi\)
\(62\) 43.8174 + 75.8940i 0.706732 + 1.22410i
\(63\) 0 0
\(64\) 45.8258 79.3727i 0.716028 1.24020i
\(65\) −20.4224 + 68.4425i −0.314190 + 1.05296i
\(66\) 0 0
\(67\) 38.8900 + 106.849i 0.580447 + 1.59477i 0.787419 + 0.616418i \(0.211417\pi\)
−0.206972 + 0.978347i \(0.566361\pi\)
\(68\) 49.3996 17.9800i 0.726465 0.264412i
\(69\) 0 0
\(70\) 50.7886 170.210i 0.725551 2.43158i
\(71\) −5.55345 3.20629i −0.0782176 0.0451590i 0.460381 0.887721i \(-0.347713\pi\)
−0.538599 + 0.842562i \(0.681046\pi\)
\(72\) 0 0
\(73\) −64.9541 + 37.5013i −0.889782 + 0.513716i −0.873871 0.486157i \(-0.838398\pi\)
−0.0159111 + 0.999873i \(0.505065\pi\)
\(74\) 7.02693 + 8.37437i 0.0949585 + 0.113167i
\(75\) 0 0
\(76\) −13.3823 + 75.8946i −0.176082 + 0.998613i
\(77\) 106.305 + 89.2002i 1.38058 + 1.15844i
\(78\) 0 0
\(79\) 84.6709 + 30.8177i 1.07178 + 0.390097i 0.816844 0.576859i \(-0.195722\pi\)
0.254940 + 0.966957i \(0.417944\pi\)
\(80\) −24.2155 + 48.3268i −0.302693 + 0.604085i
\(81\) 0 0
\(82\) 73.9440i 0.901756i
\(83\) −49.9577 18.1831i −0.601900 0.219074i 0.0230554 0.999734i \(-0.492661\pi\)
−0.624955 + 0.780661i \(0.714883\pi\)
\(84\) 0 0
\(85\) −47.9509 + 20.7359i −0.564128 + 0.243951i
\(86\) 43.7744 + 7.71861i 0.509005 + 0.0897513i
\(87\) 0 0
\(88\) 23.3879 + 27.8727i 0.265772 + 0.316735i
\(89\) 20.0986 11.6039i 0.225827 0.130381i −0.382819 0.923824i \(-0.625047\pi\)
0.608645 + 0.793442i \(0.291713\pi\)
\(90\) 0 0
\(91\) −84.4321 + 146.241i −0.927825 + 1.60704i
\(92\) −20.8600 118.303i −0.226739 1.28590i
\(93\) 0 0
\(94\) 121.994 44.4022i 1.29781 0.472364i
\(95\) 8.82162 76.0753i 0.0928591 0.800792i
\(96\) 0 0
\(97\) −17.5234 + 3.08985i −0.180654 + 0.0318542i −0.263243 0.964730i \(-0.584792\pi\)
0.0825892 + 0.996584i \(0.473681\pi\)
\(98\) 136.347 236.160i 1.39130 2.40980i
\(99\) 0 0
\(100\) −49.6098 + 115.588i −0.496098 + 1.15588i
\(101\) −40.9814 48.8397i −0.405756 0.483561i 0.524010 0.851712i \(-0.324435\pi\)
−0.929766 + 0.368151i \(0.879991\pi\)
\(102\) 0 0
\(103\) 8.64884 + 1.52502i 0.0839694 + 0.0148061i 0.215475 0.976509i \(-0.430870\pi\)
−0.131506 + 0.991315i \(0.541981\pi\)
\(104\) −28.4598 + 33.9170i −0.273652 + 0.326125i
\(105\) 0 0
\(106\) −238.042 86.6401i −2.24568 0.817359i
\(107\) −211.857 −1.97997 −0.989984 0.141177i \(-0.954911\pi\)
−0.989984 + 0.141177i \(0.954911\pi\)
\(108\) 0 0
\(109\) −100.928 −0.925947 −0.462973 0.886372i \(-0.653217\pi\)
−0.462973 + 0.886372i \(0.653217\pi\)
\(110\) −121.166 128.194i −1.10151 1.16540i
\(111\) 0 0
\(112\) −82.1463 + 97.8982i −0.733449 + 0.874091i
\(113\) 2.67270 15.1576i 0.0236522 0.134138i −0.970695 0.240314i \(-0.922750\pi\)
0.994347 + 0.106176i \(0.0338606\pi\)
\(114\) 0 0
\(115\) 27.6367 + 116.136i 0.240319 + 1.00988i
\(116\) 80.7172 46.6021i 0.695838 0.401742i
\(117\) 0 0
\(118\) −211.977 122.385i −1.79641 1.03716i
\(119\) −121.637 + 21.4478i −1.02216 + 0.180234i
\(120\) 0 0
\(121\) 15.7946 5.74877i 0.130534 0.0475105i
\(122\) −188.293 + 68.5332i −1.54339 + 0.561747i
\(123\) 0 0
\(124\) −25.4774 144.490i −0.205463 1.16524i
\(125\) 42.4310 117.578i 0.339448 0.940625i
\(126\) 0 0
\(127\) 179.281 103.508i 1.41166 0.815023i 0.416116 0.909312i \(-0.363391\pi\)
0.995545 + 0.0942888i \(0.0300577\pi\)
\(128\) −73.4529 + 61.6343i −0.573851 + 0.481518i
\(129\) 0 0
\(130\) 128.021 172.290i 0.984776 1.32531i
\(131\) 52.2452 62.2635i 0.398819 0.475294i −0.528841 0.848721i \(-0.677373\pi\)
0.927659 + 0.373428i \(0.121818\pi\)
\(132\) 0 0
\(133\) 61.9279 170.145i 0.465623 1.27929i
\(134\) 341.714i 2.55010i
\(135\) 0 0
\(136\) −32.3847 −0.238122
\(137\) −29.1079 10.5944i −0.212467 0.0773315i 0.233594 0.972334i \(-0.424951\pi\)
−0.446061 + 0.895003i \(0.647174\pi\)
\(138\) 0 0
\(139\) −128.959 108.209i −0.927760 0.778483i 0.0476535 0.998864i \(-0.484826\pi\)
−0.975414 + 0.220380i \(0.929270\pi\)
\(140\) −177.367 + 238.699i −1.26691 + 1.70500i
\(141\) 0 0
\(142\) 12.3873 + 14.7626i 0.0872344 + 0.103962i
\(143\) 83.8465 + 145.226i 0.586339 + 1.01557i
\(144\) 0 0
\(145\) −77.3392 + 50.9679i −0.533374 + 0.351503i
\(146\) 221.975 39.1402i 1.52038 0.268083i
\(147\) 0 0
\(148\) −6.25977 17.1986i −0.0422958 0.116207i
\(149\) 22.0664 + 60.6271i 0.148097 + 0.406893i 0.991453 0.130462i \(-0.0416459\pi\)
−0.843356 + 0.537355i \(0.819424\pi\)
\(150\) 0 0
\(151\) 33.6453 + 190.812i 0.222817 + 1.26366i 0.866815 + 0.498629i \(0.166163\pi\)
−0.643999 + 0.765026i \(0.722726\pi\)
\(152\) 23.7373 41.1142i 0.156166 0.270488i
\(153\) 0 0
\(154\) −208.519 361.165i −1.35402 2.34523i
\(155\) 33.7541 + 141.843i 0.217769 + 0.915118i
\(156\) 0 0
\(157\) −150.983 26.6225i −0.961678 0.169570i −0.329296 0.944227i \(-0.606812\pi\)
−0.632382 + 0.774657i \(0.717923\pi\)
\(158\) −207.434 174.057i −1.31287 1.10163i
\(159\) 0 0
\(160\) 163.107 154.165i 1.01942 0.963532i
\(161\) 282.241i 1.75305i
\(162\) 0 0
\(163\) 37.9711i 0.232951i −0.993194 0.116476i \(-0.962840\pi\)
0.993194 0.116476i \(-0.0371597\pi\)
\(164\) −42.3412 + 116.332i −0.258178 + 0.709339i
\(165\) 0 0
\(166\) 122.390 + 102.698i 0.737291 + 0.618661i
\(167\) 6.11658 34.6889i 0.0366263 0.207718i −0.961003 0.276539i \(-0.910813\pi\)
0.997629 + 0.0688209i \(0.0219237\pi\)
\(168\) 0 0
\(169\) −26.8561 + 22.5350i −0.158912 + 0.133343i
\(170\) 156.726 9.27163i 0.921916 0.0545390i
\(171\) 0 0
\(172\) −64.4478 37.2090i −0.374697 0.216331i
\(173\) −6.67558 37.8591i −0.0385872 0.218839i 0.959417 0.281992i \(-0.0909953\pi\)
−0.998004 + 0.0631536i \(0.979884\pi\)
\(174\) 0 0
\(175\) 161.945 247.207i 0.925403 1.41261i
\(176\) 43.4060 + 119.257i 0.246625 + 0.677596i
\(177\) 0 0
\(178\) −68.6852 + 12.1110i −0.385872 + 0.0680396i
\(179\) −196.409 113.397i −1.09726 0.633502i −0.161759 0.986830i \(-0.551717\pi\)
−0.935500 + 0.353328i \(0.885050\pi\)
\(180\) 0 0
\(181\) −32.1294 55.6497i −0.177510 0.307457i 0.763517 0.645788i \(-0.223471\pi\)
−0.941027 + 0.338331i \(0.890138\pi\)
\(182\) 388.748 326.198i 2.13598 1.79230i
\(183\) 0 0
\(184\) −12.8504 + 72.8782i −0.0698391 + 0.396077i
\(185\) 7.21923 + 16.6942i 0.0390229 + 0.0902389i
\(186\) 0 0
\(187\) −41.9510 + 115.259i −0.224337 + 0.616360i
\(188\) −217.351 −1.15612
\(189\) 0 0
\(190\) −103.106 + 205.768i −0.542662 + 1.08299i
\(191\) −100.954 + 277.368i −0.528552 + 1.45219i 0.332223 + 0.943201i \(0.392201\pi\)
−0.860775 + 0.508985i \(0.830021\pi\)
\(192\) 0 0
\(193\) 136.412 162.569i 0.706796 0.842327i −0.286481 0.958086i \(-0.592486\pi\)
0.993277 + 0.115759i \(0.0369300\pi\)
\(194\) 52.6618 + 9.28570i 0.271453 + 0.0478644i
\(195\) 0 0
\(196\) −349.735 + 293.462i −1.78436 + 1.49726i
\(197\) 3.49781 + 6.05838i 0.0177554 + 0.0307532i 0.874767 0.484545i \(-0.161015\pi\)
−0.857011 + 0.515298i \(0.827681\pi\)
\(198\) 0 0
\(199\) 53.2212 92.1818i 0.267443 0.463225i −0.700758 0.713399i \(-0.747155\pi\)
0.968201 + 0.250174i \(0.0804879\pi\)
\(200\) 53.0717 56.4586i 0.265358 0.282293i
\(201\) 0 0
\(202\) 65.5311 + 180.045i 0.324411 + 0.891313i
\(203\) −205.777 + 74.8967i −1.01368 + 0.368949i
\(204\) 0 0
\(205\) 35.1767 117.890i 0.171594 0.575071i
\(206\) −22.8567 13.1963i −0.110955 0.0640599i
\(207\) 0 0
\(208\) −133.742 + 77.2160i −0.642990 + 0.371231i
\(209\) −115.579 137.742i −0.553010 0.659051i
\(210\) 0 0
\(211\) 41.8113 237.123i 0.198158 1.12381i −0.709692 0.704512i \(-0.751166\pi\)
0.907850 0.419296i \(-0.137723\pi\)
\(212\) 324.885 + 272.611i 1.53248 + 1.28590i
\(213\) 0 0
\(214\) 598.280 + 217.756i 2.79570 + 1.01755i
\(215\) 66.1180 + 33.1303i 0.307526 + 0.154094i
\(216\) 0 0
\(217\) 344.715i 1.58855i
\(218\) 285.020 + 103.739i 1.30743 + 0.475866i
\(219\) 0 0
\(220\) 117.218 + 271.061i 0.532807 + 1.23210i
\(221\) −146.988 25.9179i −0.665103 0.117276i
\(222\) 0 0
\(223\) 50.8002 + 60.5414i 0.227804 + 0.271486i 0.867824 0.496872i \(-0.165518\pi\)
−0.640020 + 0.768358i \(0.721074\pi\)
\(224\) 459.527 265.308i 2.05146 1.18441i
\(225\) 0 0
\(226\) −23.1274 + 40.0578i −0.102334 + 0.177247i
\(227\) −7.53741 42.7468i −0.0332045 0.188312i 0.963694 0.267009i \(-0.0860352\pi\)
−0.996899 + 0.0786968i \(0.974924\pi\)
\(228\) 0 0
\(229\) −302.810 + 110.214i −1.32231 + 0.481283i −0.904199 0.427111i \(-0.859531\pi\)
−0.418115 + 0.908394i \(0.637309\pi\)
\(230\) 41.3247 356.374i 0.179673 1.54945i
\(231\) 0 0
\(232\) −56.5443 + 9.97028i −0.243725 + 0.0429753i
\(233\) 82.0547 142.123i 0.352166 0.609970i −0.634463 0.772954i \(-0.718779\pi\)
0.986629 + 0.162984i \(0.0521119\pi\)
\(234\) 0 0
\(235\) 215.619 12.7557i 0.917529 0.0542795i
\(236\) 263.411 + 313.921i 1.11615 + 1.33017i
\(237\) 0 0
\(238\) 365.545 + 64.4555i 1.53590 + 0.270821i
\(239\) 25.3352 30.1933i 0.106005 0.126332i −0.710433 0.703765i \(-0.751501\pi\)
0.816438 + 0.577433i \(0.195945\pi\)
\(240\) 0 0
\(241\) 420.528 + 153.060i 1.74493 + 0.635102i 0.999504 0.0314879i \(-0.0100246\pi\)
0.745425 + 0.666590i \(0.232247\pi\)
\(242\) −50.5126 −0.208730
\(243\) 0 0
\(244\) 335.473 1.37489
\(245\) 329.726 311.649i 1.34582 1.27204i
\(246\) 0 0
\(247\) 140.643 167.612i 0.569405 0.678591i
\(248\) −15.6949 + 89.0099i −0.0632857 + 0.358911i
\(249\) 0 0
\(250\) −240.677 + 288.426i −0.962707 + 1.15370i
\(251\) −11.9298 + 6.88767i −0.0475290 + 0.0274409i −0.523576 0.851979i \(-0.675402\pi\)
0.476047 + 0.879420i \(0.342069\pi\)
\(252\) 0 0
\(253\) 242.732 + 140.142i 0.959416 + 0.553919i
\(254\) −612.677 + 108.031i −2.41211 + 0.425321i
\(255\) 0 0
\(256\) −73.7169 + 26.8308i −0.287957 + 0.104808i
\(257\) −107.313 + 39.0589i −0.417562 + 0.151980i −0.542253 0.840216i \(-0.682428\pi\)
0.124691 + 0.992196i \(0.460206\pi\)
\(258\) 0 0
\(259\) 7.46711 + 42.3481i 0.0288305 + 0.163506i
\(260\) −300.063 + 197.746i −1.15409 + 0.760563i
\(261\) 0 0
\(262\) −211.537 + 122.131i −0.807393 + 0.466149i
\(263\) −213.136 + 178.843i −0.810405 + 0.680010i −0.950704 0.310099i \(-0.899638\pi\)
0.140300 + 0.990109i \(0.455193\pi\)
\(264\) 0 0
\(265\) −338.296 251.373i −1.27659 0.948576i
\(266\) −349.767 + 416.836i −1.31491 + 1.56705i
\(267\) 0 0
\(268\) −195.669 + 537.597i −0.730109 + 2.00596i
\(269\) 91.5594i 0.340369i 0.985412 + 0.170185i \(0.0544364\pi\)
−0.985412 + 0.170185i \(0.945564\pi\)
\(270\) 0 0
\(271\) −330.566 −1.21980 −0.609900 0.792478i \(-0.708790\pi\)
−0.609900 + 0.792478i \(0.708790\pi\)
\(272\) −106.145 38.6335i −0.390238 0.142035i
\(273\) 0 0
\(274\) 71.3109 + 59.8370i 0.260259 + 0.218383i
\(275\) −132.191 262.022i −0.480696 0.952808i
\(276\) 0 0
\(277\) −15.0444 17.9292i −0.0543120 0.0647265i 0.738205 0.674577i \(-0.235674\pi\)
−0.792517 + 0.609850i \(0.791229\pi\)
\(278\) 252.955 + 438.131i 0.909910 + 1.57601i
\(279\) 0 0
\(280\) 152.967 100.808i 0.546309 0.360027i
\(281\) 353.029 62.2485i 1.25633 0.221525i 0.494429 0.869218i \(-0.335377\pi\)
0.761901 + 0.647693i \(0.224266\pi\)
\(282\) 0 0
\(283\) −16.5869 45.5722i −0.0586110 0.161032i 0.906931 0.421279i \(-0.138419\pi\)
−0.965542 + 0.260246i \(0.916196\pi\)
\(284\) −11.0349 30.3182i −0.0388554 0.106754i
\(285\) 0 0
\(286\) −87.5108 496.298i −0.305982 1.73531i
\(287\) 145.431 251.894i 0.506728 0.877679i
\(288\) 0 0
\(289\) 89.9148 + 155.737i 0.311124 + 0.538882i
\(290\) 270.792 64.4397i 0.933765 0.222206i
\(291\) 0 0
\(292\) −371.632 65.5287i −1.27271 0.224413i
\(293\) 94.0109 + 78.8845i 0.320856 + 0.269230i 0.788962 0.614442i \(-0.210619\pi\)
−0.468106 + 0.883673i \(0.655063\pi\)
\(294\) 0 0
\(295\) −279.735 295.961i −0.948256 1.00326i
\(296\) 11.2748i 0.0380905i
\(297\) 0 0
\(298\) 193.891i 0.650640i
\(299\) −116.651 + 320.496i −0.390137 + 1.07189i
\(300\) 0 0
\(301\) 133.939 + 112.388i 0.444980 + 0.373382i
\(302\) 101.112 573.432i 0.334807 1.89878i
\(303\) 0 0
\(304\) 126.849 106.439i 0.417267 0.350129i
\(305\) −332.801 + 19.6879i −1.09115 + 0.0645506i
\(306\) 0 0
\(307\) 255.991 + 147.796i 0.833847 + 0.481422i 0.855168 0.518351i \(-0.173454\pi\)
−0.0213210 + 0.999773i \(0.506787\pi\)
\(308\) 121.242 + 687.599i 0.393643 + 2.23246i
\(309\) 0 0
\(310\) 50.4721 435.258i 0.162813 1.40406i
\(311\) −109.714 301.436i −0.352777 0.969247i −0.981474 0.191596i \(-0.938634\pi\)
0.628697 0.777651i \(-0.283589\pi\)
\(312\) 0 0
\(313\) −30.2976 + 5.34228i −0.0967974 + 0.0170680i −0.221837 0.975084i \(-0.571205\pi\)
0.125040 + 0.992152i \(0.460094\pi\)
\(314\) 399.011 + 230.369i 1.27074 + 0.733660i
\(315\) 0 0
\(316\) 226.675 + 392.613i 0.717326 + 1.24245i
\(317\) −359.537 + 301.687i −1.13419 + 0.951696i −0.999233 0.0391564i \(-0.987533\pi\)
−0.134953 + 0.990852i \(0.543088\pi\)
\(318\) 0 0
\(319\) −37.7623 + 214.160i −0.118377 + 0.671349i
\(320\) −420.614 + 181.890i −1.31442 + 0.568408i
\(321\) 0 0
\(322\) 290.100 797.044i 0.900932 2.47529i
\(323\) 160.039 0.495477
\(324\) 0 0
\(325\) 286.067 213.781i 0.880205 0.657787i
\(326\) −39.0285 + 107.230i −0.119719 + 0.328926i
\(327\) 0 0
\(328\) 49.0208 58.4208i 0.149454 0.178112i
\(329\) 502.907 + 88.6762i 1.52859 + 0.269532i
\(330\) 0 0
\(331\) −301.261 + 252.788i −0.910155 + 0.763711i −0.972148 0.234366i \(-0.924699\pi\)
0.0619937 + 0.998077i \(0.480254\pi\)
\(332\) −133.743 231.650i −0.402841 0.697741i
\(333\) 0 0
\(334\) −52.9280 + 91.6739i −0.158467 + 0.274473i
\(335\) 162.560 544.797i 0.485255 1.62626i
\(336\) 0 0
\(337\) 79.0320 + 217.139i 0.234516 + 0.644328i 1.00000 0.000872393i \(0.000277691\pi\)
−0.765483 + 0.643456i \(0.777500\pi\)
\(338\) 99.0039 36.0345i 0.292911 0.106611i
\(339\) 0 0
\(340\) −251.876 75.1566i −0.740812 0.221049i
\(341\) 296.462 + 171.162i 0.869389 + 0.501942i
\(342\) 0 0
\(343\) 427.311 246.708i 1.24581 0.719266i
\(344\) 29.4677 + 35.1183i 0.0856620 + 0.102088i
\(345\) 0 0
\(346\) −20.0616 + 113.775i −0.0579815 + 0.328830i
\(347\) 260.352 + 218.461i 0.750293 + 0.629571i 0.935581 0.353113i \(-0.114877\pi\)
−0.185287 + 0.982684i \(0.559321\pi\)
\(348\) 0 0
\(349\) 271.947 + 98.9805i 0.779217 + 0.283612i 0.700846 0.713313i \(-0.252806\pi\)
0.0783708 + 0.996924i \(0.475028\pi\)
\(350\) −711.422 + 531.653i −2.03263 + 1.51901i
\(351\) 0 0
\(352\) 526.935i 1.49697i
\(353\) −123.080 44.7973i −0.348667 0.126905i 0.161749 0.986832i \(-0.448287\pi\)
−0.510416 + 0.859927i \(0.670509\pi\)
\(354\) 0 0
\(355\) 12.7263 + 29.4290i 0.0358487 + 0.0828987i
\(356\) 114.993 + 20.2764i 0.323014 + 0.0569561i
\(357\) 0 0
\(358\) 438.102 + 522.110i 1.22375 + 1.45841i
\(359\) −451.001 + 260.385i −1.25627 + 0.725307i −0.972347 0.233540i \(-0.924969\pi\)
−0.283922 + 0.958847i \(0.591636\pi\)
\(360\) 0 0
\(361\) 63.1946 109.456i 0.175054 0.303203i
\(362\) 33.5335 + 190.178i 0.0926340 + 0.525354i
\(363\) 0 0
\(364\) −798.378 + 290.586i −2.19335 + 0.798313i
\(365\) 372.517 + 43.1967i 1.02059 + 0.118347i
\(366\) 0 0
\(367\) −344.630 + 60.7675i −0.939046 + 0.165579i −0.622165 0.782886i \(-0.713747\pi\)
−0.316881 + 0.948465i \(0.602636\pi\)
\(368\) −129.059 + 223.537i −0.350705 + 0.607438i
\(369\) 0 0
\(370\) −3.22794 54.5644i −0.00872416 0.147471i
\(371\) −640.499 763.317i −1.72641 2.05746i
\(372\) 0 0
\(373\) 336.395 + 59.3155i 0.901863 + 0.159023i 0.605306 0.795993i \(-0.293051\pi\)
0.296556 + 0.955015i \(0.404162\pi\)
\(374\) 236.938 282.371i 0.633523 0.755004i
\(375\) 0 0
\(376\) 125.820 + 45.7946i 0.334627 + 0.121794i
\(377\) −264.623 −0.701917
\(378\) 0 0
\(379\) −462.410 −1.22008 −0.610039 0.792371i \(-0.708846\pi\)
−0.610039 + 0.792371i \(0.708846\pi\)
\(380\) 280.035 264.683i 0.736935 0.696534i
\(381\) 0 0
\(382\) 570.182 679.517i 1.49262 1.77884i
\(383\) 27.6776 156.967i 0.0722652 0.409837i −0.927120 0.374766i \(-0.877723\pi\)
0.999385 0.0350709i \(-0.0111657\pi\)
\(384\) 0 0
\(385\) −160.629 675.005i −0.417219 1.75326i
\(386\) −552.321 + 318.882i −1.43088 + 0.826120i
\(387\) 0 0
\(388\) −77.5325 44.7634i −0.199826 0.115370i
\(389\) −233.949 + 41.2515i −0.601411 + 0.106045i −0.466061 0.884753i \(-0.654327\pi\)
−0.135351 + 0.990798i \(0.543216\pi\)
\(390\) 0 0
\(391\) −234.422 + 85.3225i −0.599544 + 0.218216i
\(392\) 264.285 96.1917i 0.674195 0.245387i
\(393\) 0 0
\(394\) −3.65067 20.7040i −0.00926566 0.0525482i
\(395\) −247.910 376.182i −0.627621 0.952359i
\(396\) 0 0
\(397\) −351.860 + 203.147i −0.886297 + 0.511704i −0.872730 0.488204i \(-0.837652\pi\)
−0.0135678 + 0.999908i \(0.504319\pi\)
\(398\) −245.045 + 205.617i −0.615690 + 0.516625i
\(399\) 0 0
\(400\) 241.302 121.738i 0.603254 0.304345i
\(401\) 356.231 424.540i 0.888358 1.05870i −0.109546 0.993982i \(-0.534940\pi\)
0.997903 0.0647217i \(-0.0206160\pi\)
\(402\) 0 0
\(403\) −142.472 + 391.438i −0.353528 + 0.971310i
\(404\) 320.778i 0.794005i
\(405\) 0 0
\(406\) 658.093 1.62092
\(407\) 40.1278 + 14.6053i 0.0985940 + 0.0358853i
\(408\) 0 0
\(409\) −146.542 122.963i −0.358293 0.300644i 0.445817 0.895124i \(-0.352913\pi\)
−0.804110 + 0.594480i \(0.797358\pi\)
\(410\) −220.511 + 296.762i −0.537832 + 0.723810i
\(411\) 0 0
\(412\) 28.4027 + 33.8490i 0.0689386 + 0.0821578i
\(413\) −481.406 833.820i −1.16563 2.01893i
\(414\) 0 0
\(415\) 146.273 + 221.955i 0.352464 + 0.534833i
\(416\) 631.463 111.344i 1.51794 0.267654i
\(417\) 0 0
\(418\) 184.816 + 507.778i 0.442144 + 1.21478i
\(419\) 282.003 + 774.798i 0.673039 + 1.84916i 0.504373 + 0.863486i \(0.331723\pi\)
0.168665 + 0.985673i \(0.446054\pi\)
\(420\) 0 0
\(421\) −106.950 606.542i −0.254037 1.44072i −0.798532 0.601953i \(-0.794390\pi\)
0.544494 0.838765i \(-0.316722\pi\)
\(422\) −361.801 + 626.657i −0.857348 + 1.48497i
\(423\) 0 0
\(424\) −130.631 226.260i −0.308093 0.533632i
\(425\) 254.280 + 59.7759i 0.598306 + 0.140649i
\(426\) 0 0
\(427\) −776.220 136.868i −1.81784 0.320535i
\(428\) −816.548 685.165i −1.90782 1.60085i
\(429\) 0 0
\(430\) −152.664 161.519i −0.355031 0.375625i
\(431\) 119.081i 0.276291i 0.990412 + 0.138145i \(0.0441141\pi\)
−0.990412 + 0.138145i \(0.955886\pi\)
\(432\) 0 0
\(433\) 403.752i 0.932453i −0.884665 0.466226i \(-0.845613\pi\)
0.884665 0.466226i \(-0.154387\pi\)
\(434\) 354.315 973.471i 0.816393 2.24302i
\(435\) 0 0
\(436\) −389.002 326.411i −0.892207 0.748650i
\(437\) 63.5044 360.151i 0.145319 0.824144i
\(438\) 0 0
\(439\) 210.318 176.478i 0.479084 0.401999i −0.371011 0.928628i \(-0.620989\pi\)
0.850095 + 0.526629i \(0.176544\pi\)
\(440\) −10.7436 181.608i −0.0244174 0.412746i
\(441\) 0 0
\(442\) 388.451 + 224.273i 0.878849 + 0.507404i
\(443\) 144.009 + 816.715i 0.325076 + 1.84360i 0.509138 + 0.860685i \(0.329964\pi\)
−0.184062 + 0.982915i \(0.558925\pi\)
\(444\) 0 0
\(445\) −115.267 13.3662i −0.259027 0.0300365i
\(446\) −81.2319 223.183i −0.182134 0.500410i
\(447\) 0 0
\(448\) −1066.97 + 188.136i −2.38163 + 0.419946i
\(449\) 173.559 + 100.204i 0.386546 + 0.223172i 0.680662 0.732597i \(-0.261692\pi\)
−0.294117 + 0.955770i \(0.595025\pi\)
\(450\) 0 0
\(451\) −144.422 250.147i −0.320227 0.554649i
\(452\) 59.3225 49.7775i 0.131244 0.110127i
\(453\) 0 0
\(454\) −22.6516 + 128.464i −0.0498934 + 0.282959i
\(455\) 774.964 335.125i 1.70322 0.736539i
\(456\) 0 0
\(457\) −191.174 + 525.245i −0.418323 + 1.14933i 0.534330 + 0.845276i \(0.320564\pi\)
−0.952654 + 0.304058i \(0.901658\pi\)
\(458\) 968.413 2.11444
\(459\) 0 0
\(460\) −269.077 + 536.998i −0.584951 + 1.16739i
\(461\) 58.5842 160.959i 0.127081 0.349151i −0.859794 0.510642i \(-0.829408\pi\)
0.986874 + 0.161490i \(0.0516301\pi\)
\(462\) 0 0
\(463\) −335.733 + 400.111i −0.725126 + 0.864172i −0.995118 0.0986910i \(-0.968534\pi\)
0.269992 + 0.962863i \(0.412979\pi\)
\(464\) −197.225 34.7761i −0.425054 0.0749484i
\(465\) 0 0
\(466\) −377.802 + 317.013i −0.810734 + 0.680286i
\(467\) 267.546 + 463.403i 0.572903 + 0.992297i 0.996266 + 0.0863372i \(0.0275163\pi\)
−0.423363 + 0.905960i \(0.639150\pi\)
\(468\) 0 0
\(469\) 672.073 1164.06i 1.43299 2.48201i
\(470\) −622.016 185.602i −1.32344 0.394897i
\(471\) 0 0
\(472\) −86.3415 237.221i −0.182927 0.502588i
\(473\) 163.161 59.3857i 0.344949 0.125551i
\(474\) 0 0
\(475\) −262.271 + 279.008i −0.552149 + 0.587386i
\(476\) −538.182 310.719i −1.13063 0.652772i
\(477\) 0 0
\(478\) −102.580 + 59.2248i −0.214603 + 0.123901i
\(479\) 338.977 + 403.978i 0.707677 + 0.843377i 0.993372 0.114944i \(-0.0366688\pi\)
−0.285695 + 0.958321i \(0.592224\pi\)
\(480\) 0 0
\(481\) −9.02337 + 51.1741i −0.0187596 + 0.106391i
\(482\) −1030.24 864.476i −2.13743 1.79352i
\(483\) 0 0
\(484\) 79.4684 + 28.9241i 0.164191 + 0.0597606i
\(485\) 79.5418 + 39.8566i 0.164004 + 0.0821786i
\(486\) 0 0
\(487\) 639.130i 1.31238i 0.754595 + 0.656191i \(0.227834\pi\)
−0.754595 + 0.656191i \(0.772166\pi\)
\(488\) −194.198 70.6824i −0.397947 0.144841i
\(489\) 0 0
\(490\) −1251.47 + 541.184i −2.55402 + 1.10446i
\(491\) −342.650 60.4184i −0.697862 0.123052i −0.186548 0.982446i \(-0.559730\pi\)
−0.511314 + 0.859394i \(0.670841\pi\)
\(492\) 0 0
\(493\) −124.414 148.271i −0.252362 0.300753i
\(494\) −569.453 + 328.774i −1.15274 + 0.665535i
\(495\) 0 0
\(496\) −157.627 + 273.018i −0.317796 + 0.550439i
\(497\) 13.1632 + 74.6525i 0.0264854 + 0.150206i
\(498\) 0 0
\(499\) −318.889 + 116.066i −0.639057 + 0.232598i −0.641168 0.767400i \(-0.721550\pi\)
0.00211177 + 0.999998i \(0.499328\pi\)
\(500\) 543.798 315.949i 1.08760 0.631897i
\(501\) 0 0
\(502\) 40.7690 7.18868i 0.0812132 0.0143201i
\(503\) −215.970 + 374.071i −0.429364 + 0.743680i −0.996817 0.0797255i \(-0.974596\pi\)
0.567453 + 0.823406i \(0.307929\pi\)
\(504\) 0 0
\(505\) 18.8255 + 318.222i 0.0372782 + 0.630143i
\(506\) −541.428 645.249i −1.07002 1.27520i
\(507\) 0 0
\(508\) 1025.75 + 180.867i 2.01919 + 0.356037i
\(509\) 68.1800 81.2537i 0.133949 0.159634i −0.694900 0.719106i \(-0.744552\pi\)
0.828849 + 0.559472i \(0.188996\pi\)
\(510\) 0 0
\(511\) 833.148 + 303.241i 1.63043 + 0.593427i
\(512\) 619.297 1.20956
\(513\) 0 0
\(514\) 343.198 0.667701
\(515\) −30.1629 31.9125i −0.0585687 0.0619659i
\(516\) 0 0
\(517\) 325.973 388.479i 0.630508 0.751410i
\(518\) 22.4403 127.265i 0.0433211 0.245686i
\(519\) 0 0
\(520\) 215.364 51.2496i 0.414161 0.0985569i
\(521\) 609.297 351.778i 1.16948 0.675197i 0.215919 0.976411i \(-0.430725\pi\)
0.953557 + 0.301214i \(0.0973918\pi\)
\(522\) 0 0
\(523\) −211.577 122.154i −0.404546 0.233564i 0.283898 0.958855i \(-0.408372\pi\)
−0.688443 + 0.725290i \(0.741706\pi\)
\(524\) 402.732 71.0125i 0.768572 0.135520i
\(525\) 0 0
\(526\) 785.717 285.978i 1.49376 0.543684i
\(527\) −286.311 + 104.209i −0.543285 + 0.197740i
\(528\) 0 0
\(529\) 7.12954 + 40.4337i 0.0134774 + 0.0764341i
\(530\) 696.969 + 1057.59i 1.31504 + 1.99545i
\(531\) 0 0
\(532\) 788.952 455.502i 1.48299 0.856206i
\(533\) 269.251 225.928i 0.505161 0.423881i
\(534\) 0 0
\(535\) 850.252 + 631.785i 1.58926 + 1.18091i
\(536\) 226.537 269.977i 0.422645 0.503688i
\(537\) 0 0
\(538\) 94.1090 258.562i 0.174924 0.480599i
\(539\) 1065.21i 1.97628i
\(540\) 0 0
\(541\) 222.608 0.411474 0.205737 0.978607i \(-0.434041\pi\)
0.205737 + 0.978607i \(0.434041\pi\)
\(542\) 933.513 + 339.771i 1.72235 + 0.626884i
\(543\) 0 0
\(544\) 359.274 + 301.467i 0.660430 + 0.554167i
\(545\) 405.059 + 300.982i 0.743227 + 0.552260i
\(546\) 0 0
\(547\) 657.900 + 784.054i 1.20274 + 1.43337i 0.871899 + 0.489686i \(0.162888\pi\)
0.330843 + 0.943686i \(0.392667\pi\)
\(548\) −77.9257 134.971i −0.142200 0.246298i
\(549\) 0 0
\(550\) 103.988 + 875.819i 0.189069 + 1.59240i
\(551\) 279.432 49.2713i 0.507135 0.0894217i
\(552\) 0 0
\(553\) −364.301 1000.91i −0.658773 1.80996i
\(554\) 24.0567 + 66.0953i 0.0434237 + 0.119306i
\(555\) 0 0
\(556\) −147.080 834.130i −0.264532 1.50023i
\(557\) −377.892 + 654.528i −0.678442 + 1.17510i 0.297008 + 0.954875i \(0.404011\pi\)
−0.975450 + 0.220221i \(0.929322\pi\)
\(558\) 0 0
\(559\) 105.643 + 182.978i 0.188985 + 0.327332i
\(560\) 621.626 147.927i 1.11005 0.264155i
\(561\) 0 0
\(562\) −1060.93 187.070i −1.88777 0.332866i
\(563\) 281.344 + 236.076i 0.499723 + 0.419317i 0.857495 0.514491i \(-0.172019\pi\)
−0.357773 + 0.933809i \(0.616464\pi\)
\(564\) 0 0
\(565\) −55.9286 + 52.8623i −0.0989886 + 0.0935617i
\(566\) 145.744i 0.257498i
\(567\) 0 0
\(568\) 19.8755i 0.0349922i
\(569\) −93.5838 + 257.119i −0.164471 + 0.451879i −0.994361 0.106047i \(-0.966181\pi\)
0.829891 + 0.557926i \(0.188403\pi\)
\(570\) 0 0
\(571\) −300.950 252.527i −0.527058 0.442254i 0.340026 0.940416i \(-0.389564\pi\)
−0.867084 + 0.498162i \(0.834008\pi\)
\(572\) −146.511 + 830.905i −0.256138 + 1.45263i
\(573\) 0 0
\(574\) −669.603 + 561.864i −1.16656 + 0.978857i
\(575\) 235.419 548.511i 0.409424 0.953931i
\(576\) 0 0
\(577\) −396.854 229.124i −0.687789 0.397095i 0.114994 0.993366i \(-0.463315\pi\)
−0.802783 + 0.596271i \(0.796648\pi\)
\(578\) −93.8443 532.218i −0.162360 0.920792i
\(579\) 0 0
\(580\) −462.919 53.6797i −0.798137 0.0925512i
\(581\) 214.946 + 590.558i 0.369958 + 1.01645i
\(582\) 0 0
\(583\) −974.495 + 171.830i −1.67152 + 0.294734i
\(584\) 201.323 + 116.234i 0.344731 + 0.199031i
\(585\) 0 0
\(586\) −184.404 319.397i −0.314683 0.545047i
\(587\) −381.350 + 319.991i −0.649660 + 0.545129i −0.906968 0.421200i \(-0.861609\pi\)
0.257308 + 0.966329i \(0.417165\pi\)
\(588\) 0 0
\(589\) 77.5612 439.871i 0.131683 0.746810i
\(590\) 485.766 + 1123.32i 0.823332 + 1.90392i
\(591\) 0 0
\(592\) −13.4503 + 36.9545i −0.0227202 + 0.0624232i
\(593\) 379.139 0.639357 0.319679 0.947526i \(-0.396425\pi\)
0.319679 + 0.947526i \(0.396425\pi\)
\(594\) 0 0
\(595\) 552.129 + 276.660i 0.927948 + 0.464974i
\(596\) −111.024 + 305.037i −0.186282 + 0.511806i
\(597\) 0 0
\(598\) 658.841 785.176i 1.10174 1.31300i
\(599\) −853.195 150.441i −1.42437 0.251154i −0.592249 0.805755i \(-0.701760\pi\)
−0.832117 + 0.554600i \(0.812871\pi\)
\(600\) 0 0
\(601\) 292.301 245.270i 0.486358 0.408102i −0.366361 0.930473i \(-0.619397\pi\)
0.852719 + 0.522370i \(0.174952\pi\)
\(602\) −262.724 455.051i −0.436418 0.755898i
\(603\) 0 0
\(604\) −487.427 + 844.248i −0.806998 + 1.39776i
\(605\) −80.5327 24.0299i −0.133112 0.0397189i
\(606\) 0 0
\(607\) −130.172 357.645i −0.214451 0.589200i 0.785093 0.619378i \(-0.212615\pi\)
−0.999545 + 0.0301773i \(0.990393\pi\)
\(608\) −646.070 + 235.150i −1.06261 + 0.386760i
\(609\) 0 0
\(610\) 960.060 + 286.469i 1.57387 + 0.469622i
\(611\) 534.421 + 308.548i 0.874667 + 0.504989i
\(612\) 0 0
\(613\) 210.200 121.359i 0.342903 0.197975i −0.318652 0.947872i \(-0.603230\pi\)
0.661555 + 0.749896i \(0.269897\pi\)
\(614\) −571.003 680.495i −0.929972 1.10830i
\(615\) 0 0
\(616\) 74.6888 423.581i 0.121248 0.687631i
\(617\) 148.955 + 124.988i 0.241419 + 0.202574i 0.755467 0.655187i \(-0.227410\pi\)
−0.514048 + 0.857761i \(0.671855\pi\)
\(618\) 0 0
\(619\) −759.634 276.484i −1.22720 0.446663i −0.354559 0.935034i \(-0.615369\pi\)
−0.872636 + 0.488371i \(0.837591\pi\)
\(620\) −328.638 + 655.863i −0.530062 + 1.05784i
\(621\) 0 0
\(622\) 964.019i 1.54987i
\(623\) −257.799 93.8312i −0.413803 0.150612i
\(624\) 0 0
\(625\) −520.924 + 345.345i −0.833478 + 0.552553i
\(626\) 91.0510 + 16.0547i 0.145449 + 0.0256466i
\(627\) 0 0
\(628\) −495.828 590.905i −0.789535 0.940931i
\(629\) −32.9158 + 19.0040i −0.0523304 + 0.0302130i
\(630\) 0 0
\(631\) 498.492 863.413i 0.790003 1.36832i −0.135962 0.990714i \(-0.543412\pi\)
0.925964 0.377611i \(-0.123254\pi\)
\(632\) −48.4960 275.034i −0.0767341 0.435181i
\(633\) 0 0
\(634\) 1325.42 482.412i 2.09056 0.760902i
\(635\) −1028.19 119.228i −1.61920 0.187760i
\(636\) 0 0
\(637\) 1276.52 225.085i 2.00396 0.353352i
\(638\) 326.764 565.972i 0.512170 0.887104i
\(639\) 0 0
\(640\) 478.593 28.3128i 0.747802 0.0442387i
\(641\) 301.260 + 359.028i 0.469985 + 0.560106i 0.948010 0.318240i \(-0.103092\pi\)
−0.478026 + 0.878346i \(0.658647\pi\)
\(642\) 0 0
\(643\) −30.3696 5.35498i −0.0472311 0.00832812i 0.149983 0.988689i \(-0.452078\pi\)
−0.197214 + 0.980361i \(0.563189\pi\)
\(644\) −912.794 + 1087.83i −1.41738 + 1.68917i
\(645\) 0 0
\(646\) −451.948 164.496i −0.699610 0.254637i
\(647\) 389.494 0.602000 0.301000 0.953624i \(-0.402680\pi\)
0.301000 + 0.953624i \(0.402680\pi\)
\(648\) 0 0
\(649\) −956.134 −1.47324
\(650\) −1027.58 + 309.681i −1.58090 + 0.476432i
\(651\) 0 0
\(652\) 122.802 146.350i 0.188347 0.224463i
\(653\) 173.274 982.684i 0.265350 1.50488i −0.502686 0.864469i \(-0.667655\pi\)
0.768036 0.640407i \(-0.221234\pi\)
\(654\) 0 0
\(655\) −395.356 + 94.0819i −0.603597 + 0.143636i
\(656\) 230.365 133.001i 0.351167 0.202746i
\(657\) 0 0
\(658\) −1329.06 767.332i −2.01984 1.16616i
\(659\) 81.2990 14.3352i 0.123367 0.0217530i −0.111624 0.993751i \(-0.535605\pi\)
0.234991 + 0.971998i \(0.424494\pi\)
\(660\) 0 0
\(661\) 360.048 131.047i 0.544702 0.198255i −0.0549888 0.998487i \(-0.517512\pi\)
0.599691 + 0.800232i \(0.295290\pi\)
\(662\) 1110.58 404.220i 1.67762 0.610604i
\(663\) 0 0
\(664\) 28.6137 + 162.276i 0.0430929 + 0.244392i
\(665\) −755.934 + 498.174i −1.13674 + 0.749133i
\(666\) 0 0
\(667\) −383.036 + 221.146i −0.574268 + 0.331554i
\(668\) 135.762 113.918i 0.203236 0.170536i
\(669\) 0 0
\(670\) −1019.04 + 1371.41i −1.52095 + 2.04688i
\(671\) −503.127 + 599.604i −0.749817 + 0.893597i
\(672\) 0 0
\(673\) −117.908 + 323.950i −0.175198 + 0.481352i −0.995948 0.0899359i \(-0.971334\pi\)
0.820750 + 0.571288i \(0.193556\pi\)
\(674\) 694.429i 1.03031i
\(675\) 0 0
\(676\) −176.390 −0.260933
\(677\) −690.627 251.368i −1.02013 0.371297i −0.222815 0.974861i \(-0.571524\pi\)
−0.797314 + 0.603564i \(0.793747\pi\)
\(678\) 0 0
\(679\) 161.132 + 135.206i 0.237308 + 0.199125i
\(680\) 129.971 + 96.5754i 0.191133 + 0.142023i
\(681\) 0 0
\(682\) −661.275 788.076i −0.969611 1.15554i
\(683\) −233.214 403.938i −0.341455 0.591418i 0.643248 0.765658i \(-0.277586\pi\)
−0.984703 + 0.174240i \(0.944253\pi\)
\(684\) 0 0
\(685\) 85.2259 + 129.323i 0.124417 + 0.188792i
\(686\) −1460.30 + 257.490i −2.12872 + 0.375350i
\(687\) 0 0
\(688\) 54.6895 + 150.258i 0.0794906 + 0.218399i
\(689\) −411.831 1131.50i −0.597723 1.64223i
\(690\) 0 0
\(691\) 49.3428 + 279.837i 0.0714078 + 0.404974i 0.999470 + 0.0325490i \(0.0103625\pi\)
−0.928062 + 0.372425i \(0.878526\pi\)
\(692\) 96.7107 167.508i 0.139755 0.242063i
\(693\) 0 0
\(694\) −510.685 884.533i −0.735858 1.27454i
\(695\) 194.860 + 818.852i 0.280375 + 1.17820i
\(696\) 0 0
\(697\) 253.181 + 44.6426i 0.363243 + 0.0640496i
\(698\) −666.237 559.039i −0.954494 0.800915i
\(699\) 0 0
\(700\) 1423.67 429.049i 2.03381 0.612927i
\(701\) 769.747i 1.09807i −0.835799 0.549035i \(-0.814995\pi\)
0.835799 0.549035i \(-0.185005\pi\)
\(702\) 0 0
\(703\) 55.7180i 0.0792575i
\(704\) −367.985 + 1011.03i −0.522705 + 1.43612i
\(705\) 0 0
\(706\) 301.530 + 253.014i 0.427097 + 0.358377i
\(707\) −130.873 + 742.217i −0.185110 + 1.04981i
\(708\) 0 0
\(709\) −1011.12 + 848.431i −1.42612 + 1.19666i −0.478161 + 0.878272i \(0.658696\pi\)
−0.947961 + 0.318386i \(0.896859\pi\)
\(710\) −5.69031 96.1878i −0.00801452 0.135476i
\(711\) 0 0
\(712\) −62.2949 35.9660i −0.0874928 0.0505140i
\(713\) 120.901 + 685.663i 0.169567 + 0.961660i
\(714\) 0 0
\(715\) 96.5804 832.884i 0.135077 1.16487i
\(716\) −390.273 1072.27i −0.545074 1.49758i
\(717\) 0 0
\(718\) 1541.25 271.765i 2.14659 0.378503i
\(719\) 253.774 + 146.516i 0.352954 + 0.203778i 0.665985 0.745965i \(-0.268011\pi\)
−0.313032 + 0.949743i \(0.601345\pi\)
\(720\) 0 0
\(721\) −51.9083 89.9079i −0.0719949 0.124699i
\(722\) −290.965 + 244.149i −0.402999 + 0.338156i
\(723\) 0 0
\(724\) 56.1420 318.397i 0.0775442 0.439775i
\(725\) 462.381 + 26.0847i 0.637767 + 0.0359788i
\(726\) 0 0
\(727\) 248.711 683.327i 0.342105 0.939927i −0.642678 0.766137i \(-0.722176\pi\)
0.984783 0.173790i \(-0.0556013\pi\)
\(728\) 523.389 0.718941
\(729\) 0 0
\(730\) −1007.58 504.877i −1.38025 0.691612i
\(731\) −52.8563 + 145.221i −0.0723068 + 0.198661i
\(732\) 0 0
\(733\) −313.284 + 373.357i −0.427400 + 0.509355i −0.936170 0.351547i \(-0.885656\pi\)
0.508770 + 0.860902i \(0.330100\pi\)
\(734\) 1035.69 + 182.620i 1.41102 + 0.248801i
\(735\) 0 0
\(736\) 820.980 688.884i 1.11546 0.935984i
\(737\) −667.411 1155.99i −0.905578 1.56851i
\(738\) 0 0
\(739\) −485.402 + 840.741i −0.656837 + 1.13767i 0.324593 + 0.945854i \(0.394773\pi\)
−0.981430 + 0.191821i \(0.938561\pi\)
\(740\) −26.1659 + 87.6912i −0.0353594 + 0.118502i
\(741\) 0 0
\(742\) 1024.19 + 2813.93i 1.38031 + 3.79236i
\(743\) −46.3654 + 16.8756i −0.0624030 + 0.0227128i −0.373033 0.927818i \(-0.621682\pi\)
0.310630 + 0.950531i \(0.399460\pi\)
\(744\) 0 0
\(745\) 92.2380 309.122i 0.123809 0.414929i
\(746\) −889.006 513.268i −1.19170 0.688027i
\(747\) 0 0
\(748\) −534.449 + 308.564i −0.714504 + 0.412519i
\(749\) 1609.79 + 1918.48i 2.14926 + 2.56138i
\(750\) 0 0
\(751\) −218.951 + 1241.73i −0.291546 + 1.65344i 0.389371 + 0.921081i \(0.372692\pi\)
−0.680917 + 0.732360i \(0.738419\pi\)
\(752\) 357.759 + 300.195i 0.475743 + 0.399196i
\(753\) 0 0
\(754\) 747.291 + 271.992i 0.991102 + 0.360732i
\(755\) 433.997 866.128i 0.574831 1.14719i
\(756\) 0 0
\(757\) 653.161i 0.862828i −0.902154 0.431414i \(-0.858015\pi\)
0.902154 0.431414i \(-0.141985\pi\)
\(758\) 1305.84 + 475.286i 1.72274 + 0.627026i
\(759\) 0 0
\(760\) −217.874 + 94.2172i −0.286676 + 0.123970i
\(761\) −744.387 131.256i −0.978170 0.172478i −0.338365 0.941015i \(-0.609874\pi\)
−0.639805 + 0.768537i \(0.720985\pi\)
\(762\) 0 0
\(763\) 766.903 + 913.960i 1.00512 + 1.19785i
\(764\) −1286.13 + 742.549i −1.68342 + 0.971923i
\(765\) 0 0
\(766\) −239.499 + 414.825i −0.312663 + 0.541547i
\(767\) −202.036 1145.80i −0.263410 1.49387i
\(768\) 0 0
\(769\) 1169.47 425.651i 1.52076 0.553513i 0.559425 0.828881i \(-0.311022\pi\)
0.961339 + 0.275368i \(0.0887996\pi\)
\(770\) −240.187 + 2071.31i −0.311931 + 2.69001i
\(771\) 0 0
\(772\) 1051.53 185.413i 1.36208 0.240172i
\(773\) 535.789 928.014i 0.693130 1.20054i −0.277677 0.960674i \(-0.589565\pi\)
0.970807 0.239862i \(-0.0771021\pi\)
\(774\) 0 0
\(775\) 287.529 669.924i 0.371006 0.864419i
\(776\) 35.4505 + 42.2482i 0.0456836 + 0.0544436i
\(777\) 0 0
\(778\) 703.069 + 123.970i 0.903688 + 0.159344i
\(779\) −242.252 + 288.705i −0.310979 + 0.370610i
\(780\) 0 0
\(781\) 70.7385 + 25.7467i 0.0905742 + 0.0329663i
\(782\) 749.701 0.958698
\(783\) 0 0
\(784\) 980.978 1.25125
\(785\) 526.556 + 557.098i 0.670772 + 0.709679i
\(786\) 0 0
\(787\) 259.579 309.354i 0.329833 0.393080i −0.575486 0.817812i \(-0.695187\pi\)
0.905319 + 0.424732i \(0.139632\pi\)
\(788\) −6.11197 + 34.6627i −0.00775631 + 0.0439882i
\(789\) 0 0
\(790\) 313.438 + 1317.15i 0.396757 + 1.66727i
\(791\) −157.569 + 90.9726i −0.199202 + 0.115010i
\(792\) 0 0
\(793\) −824.860 476.233i −1.04018 0.600546i
\(794\) 1202.45 212.025i 1.51442 0.267033i
\(795\) 0 0
\(796\) 503.252 183.169i 0.632227 0.230112i
\(797\) −230.850 + 84.0224i −0.289648 + 0.105423i −0.482758 0.875754i \(-0.660365\pi\)
0.193110 + 0.981177i \(0.438143\pi\)
\(798\) 0 0
\(799\) 78.3788 + 444.508i 0.0980962 + 0.556331i
\(800\) −1114.35 + 132.309i −1.39293 + 0.165386i
\(801\) 0 0
\(802\) −1442.35 + 832.744i −1.79845 + 1.03833i
\(803\) 674.478 565.954i 0.839947 0.704800i
\(804\) 0 0
\(805\) 841.680 1132.73i 1.04557 1.40711i
\(806\) 804.676 958.976i 0.998358 1.18980i
\(807\) 0 0
\(808\) −67.5861 + 185.691i −0.0836462 + 0.229816i
\(809\) 1384.62i 1.71153i 0.517368 + 0.855763i \(0.326912\pi\)
−0.517368 + 0.855763i \(0.673088\pi\)
\(810\) 0 0
\(811\) −590.867 −0.728566 −0.364283 0.931288i \(-0.618686\pi\)
−0.364283 + 0.931288i \(0.618686\pi\)
\(812\) −1035.34 376.832i −1.27505 0.464079i
\(813\) 0 0
\(814\) −98.3082 82.4904i −0.120772 0.101340i
\(815\) −113.235 + 152.391i −0.138939 + 0.186983i
\(816\) 0 0
\(817\) −145.624 173.548i −0.178243 0.212421i
\(818\) 287.445 + 497.869i 0.351400 + 0.608642i
\(819\) 0 0
\(820\) 516.846 340.611i 0.630300 0.415379i
\(821\) 494.358 87.1687i 0.602142 0.106174i 0.135737 0.990745i \(-0.456660\pi\)
0.466405 + 0.884571i \(0.345549\pi\)
\(822\) 0 0
\(823\) −20.2243 55.5657i −0.0245738 0.0675160i 0.926799 0.375557i \(-0.122549\pi\)
−0.951373 + 0.308041i \(0.900326\pi\)
\(824\) −9.30990 25.5787i −0.0112984 0.0310422i
\(825\) 0 0
\(826\) 502.445 + 2849.51i 0.608287 + 3.44977i
\(827\) 275.911 477.893i 0.333629 0.577863i −0.649591 0.760284i \(-0.725060\pi\)
0.983221 + 0.182421i \(0.0583933\pi\)
\(828\) 0 0
\(829\) 582.852 + 1009.53i 0.703078 + 1.21777i 0.967381 + 0.253327i \(0.0815250\pi\)
−0.264302 + 0.964440i \(0.585142\pi\)
\(830\) −184.935 777.145i −0.222814 0.936319i
\(831\) 0 0
\(832\) −1289.34 227.346i −1.54969 0.273253i
\(833\) 726.283 + 609.423i 0.871888 + 0.731601i
\(834\) 0 0
\(835\) −127.995 + 120.978i −0.153287 + 0.144883i
\(836\) 904.684i 1.08216i
\(837\) 0 0
\(838\) 2477.87i 2.95689i
\(839\) 313.787 862.123i 0.374001 1.02756i −0.599798 0.800151i \(-0.704753\pi\)
0.973799 0.227409i \(-0.0730253\pi\)
\(840\) 0 0
\(841\) 381.365 + 320.003i 0.453466 + 0.380504i
\(842\) −321.408 + 1822.79i −0.381719 + 2.16484i
\(843\) 0 0
\(844\) 928.031 778.710i 1.09956 0.922642i
\(845\) 174.985 10.3518i 0.207083 0.0122507i
\(846\) 0 0
\(847\) −172.074 99.3468i −0.203157 0.117293i
\(848\) −158.242 897.433i −0.186606 1.05829i
\(849\) 0 0
\(850\) −656.643 430.167i −0.772521 0.506079i
\(851\) 29.7052 + 81.6144i 0.0349062 + 0.0959041i
\(852\) 0 0
\(853\) −538.725 + 94.9917i −0.631565 + 0.111362i −0.480261 0.877125i \(-0.659458\pi\)
−0.151303 + 0.988487i \(0.548347\pi\)
\(854\) 2051.35 + 1184.35i 2.40205 + 1.38683i
\(855\) 0 0
\(856\) 328.321 + 568.669i 0.383553 + 0.664333i
\(857\) 1059.56 889.075i 1.23636 1.03743i 0.238558 0.971128i \(-0.423325\pi\)
0.997800 0.0662989i \(-0.0211191\pi\)
\(858\) 0 0
\(859\) −13.3234 + 75.5605i −0.0155103 + 0.0879633i −0.991580 0.129493i \(-0.958665\pi\)
0.976070 + 0.217457i \(0.0697760\pi\)
\(860\) 147.689 + 341.524i 0.171731 + 0.397121i
\(861\) 0 0
\(862\) 122.397 336.284i 0.141992 0.390121i
\(863\) 85.6487 0.0992453 0.0496226 0.998768i \(-0.484198\pi\)
0.0496226 + 0.998768i \(0.484198\pi\)
\(864\) 0 0
\(865\) −86.1096 + 171.849i −0.0995487 + 0.198669i
\(866\) −414.995 + 1140.19i −0.479209 + 1.31662i
\(867\) 0 0
\(868\) −1114.84 + 1328.62i −1.28438 + 1.53067i
\(869\) −1041.69 183.678i −1.19872 0.211367i
\(870\) 0 0
\(871\) 1244.28 1044.07i 1.42856 1.19870i
\(872\) 156.412 + 270.913i 0.179371 + 0.310680i
\(873\) 0 0
\(874\) −549.515 + 951.789i −0.628736 + 1.08900i
\(875\) −1387.15 + 509.181i −1.58531 + 0.581921i
\(876\) 0 0
\(877\) 373.044 + 1024.93i 0.425363 + 1.16868i 0.948597 + 0.316487i \(0.102503\pi\)
−0.523234 + 0.852189i \(0.675275\pi\)
\(878\) −775.326 + 282.196i −0.883059 + 0.321407i
\(879\) 0 0
\(880\) 181.437 608.061i 0.206179 0.690978i
\(881\) −768.700 443.809i −0.872531 0.503756i −0.00434241 0.999991i \(-0.501382\pi\)
−0.868188 + 0.496235i \(0.834716\pi\)
\(882\) 0 0
\(883\) 257.980 148.945i 0.292163 0.168680i −0.346754 0.937956i \(-0.612716\pi\)
0.638917 + 0.769276i \(0.279383\pi\)
\(884\) −482.706 575.266i −0.546047 0.650754i
\(885\) 0 0
\(886\) 432.779 2454.41i 0.488463 2.77021i
\(887\) 978.464 + 821.029i 1.10312 + 0.925624i 0.997631 0.0687965i \(-0.0219159\pi\)
0.105485 + 0.994421i \(0.466360\pi\)
\(888\) 0 0
\(889\) −2299.59 836.981i −2.58671 0.941486i
\(890\) 311.773 + 156.223i 0.350307 + 0.175531i
\(891\) 0 0
\(892\) 397.634i 0.445778i
\(893\) −621.779 226.309i −0.696281 0.253425i
\(894\) 0 0
\(895\) 450.091 + 1040.82i 0.502896 + 1.16293i
\(896\) 1116.26 + 196.828i 1.24583 + 0.219674i
\(897\) 0 0
\(898\) −387.133 461.368i −0.431106 0.513772i
\(899\) −467.822 + 270.097i −0.520381 + 0.300442i
\(900\) 0 0
\(901\) 440.365 762.735i 0.488752 0.846543i
\(902\) 150.734 + 854.854i 0.167111 + 0.947732i
\(903\) 0 0
\(904\) −44.8283 + 16.3162i −0.0495889 + 0.0180489i
\(905\) −37.0089 + 319.155i −0.0408939 + 0.352658i
\(906\) 0 0
\(907\) −1520.14 + 268.041i −1.67601 + 0.295525i −0.929216 0.369536i \(-0.879517\pi\)
−0.746789 + 0.665061i \(0.768406\pi\)
\(908\) 109.196 189.133i 0.120260 0.208297i
\(909\) 0 0
\(910\) −2532.94 + 149.845i −2.78345 + 0.164665i
\(911\) −536.186 639.001i −0.588568 0.701428i 0.386762 0.922180i \(-0.373593\pi\)
−0.975330 + 0.220751i \(0.929149\pi\)
\(912\) 0 0
\(913\) 614.618 + 108.374i 0.673186 + 0.118701i
\(914\) 1079.74 1286.79i 1.18134 1.40786i
\(915\) 0 0
\(916\) −1523.55 554.525i −1.66326 0.605377i
\(917\) −960.815 −1.04778
\(918\) 0 0
\(919\) −258.168 −0.280923 −0.140461 0.990086i \(-0.544859\pi\)
−0.140461 + 0.990086i \(0.544859\pi\)
\(920\) 268.906 254.163i 0.292289 0.276264i
\(921\) 0 0
\(922\) −330.882 + 394.329i −0.358874 + 0.427689i
\(923\) −15.9067 + 90.2112i −0.0172337 + 0.0977370i
\(924\) 0 0
\(925\) 20.8111 88.5281i 0.0224985 0.0957061i
\(926\) 1359.36 784.826i 1.46799 0.847545i
\(927\) 0 0
\(928\) 720.112 + 415.757i 0.775983 + 0.448014i
\(929\) −68.6412 + 12.1033i −0.0738872 + 0.0130283i −0.210470 0.977600i \(-0.567499\pi\)
0.136582 + 0.990629i \(0.456388\pi\)
\(930\) 0 0
\(931\) −1306.05 + 475.362i −1.40284 + 0.510593i
\(932\) 775.898 282.404i 0.832509 0.303008i
\(933\) 0 0
\(934\) −279.238 1583.64i −0.298970 1.69554i
\(935\) 512.082 337.471i 0.547681 0.360932i
\(936\) 0 0
\(937\) 1193.28 688.938i 1.27351 0.735259i 0.297860 0.954610i \(-0.403727\pi\)
0.975646 + 0.219351i \(0.0703938\pi\)
\(938\) −3094.40 + 2596.51i −3.29894 + 2.76814i
\(939\) 0 0
\(940\) 872.302 + 648.170i 0.927981 + 0.689542i
\(941\) −407.413 + 485.535i −0.432957 + 0.515978i −0.937773 0.347249i \(-0.887116\pi\)
0.504816 + 0.863227i \(0.331560\pi\)
\(942\) 0 0
\(943\) 200.927 552.041i 0.213072 0.585410i
\(944\) 880.524i 0.932759i
\(945\) 0 0
\(946\) −521.803 −0.551589
\(947\) 126.925 + 46.1971i 0.134029 + 0.0487826i 0.408164 0.912909i \(-0.366169\pi\)
−0.274135 + 0.961691i \(0.588391\pi\)
\(948\) 0 0
\(949\) 820.743 + 688.685i 0.864850 + 0.725695i
\(950\) 1027.43 518.342i 1.08150 0.545623i
\(951\) 0 0
\(952\) 246.075 + 293.261i 0.258482 + 0.308047i
\(953\) 629.190 + 1089.79i 0.660220 + 1.14353i 0.980558 + 0.196231i \(0.0628704\pi\)
−0.320337 + 0.947303i \(0.603796\pi\)
\(954\) 0 0
\(955\) 1232.31 812.112i 1.29037 0.850379i
\(956\) 195.296 34.4360i 0.204285 0.0360209i
\(957\) 0 0
\(958\) −542.040 1489.24i −0.565804 1.55453i
\(959\) 125.238 + 344.090i 0.130593 + 0.358801i
\(960\) 0 0
\(961\) −19.2133 108.964i −0.0199930 0.113386i
\(962\) 78.0810 135.240i 0.0811652 0.140582i
\(963\) 0 0
\(964\) 1125.81 + 1949.96i 1.16785 + 2.02278i
\(965\) −1032.27 + 245.647i −1.06971 + 0.254556i
\(966\) 0 0
\(967\) −599.358 105.683i −0.619812 0.109290i −0.145080 0.989420i \(-0.546344\pi\)
−0.474732 + 0.880130i \(0.657455\pi\)
\(968\) −39.9084 33.4871i −0.0412277 0.0345941i
\(969\) 0 0
\(970\) −183.658 194.311i −0.189339 0.200321i
\(971\) 667.066i 0.686988i −0.939155 0.343494i \(-0.888389\pi\)
0.939155 0.343494i \(-0.111611\pi\)
\(972\) 0 0
\(973\) 1990.02i 2.04524i
\(974\) 656.928 1804.89i 0.674464 1.85307i
\(975\) 0 0
\(976\) −552.188 463.341i −0.565766 0.474734i
\(977\) 138.429 785.069i 0.141688 0.803551i −0.828280 0.560315i \(-0.810680\pi\)
0.969967 0.243236i \(-0.0782088\pi\)
\(978\) 0 0
\(979\) −208.702 + 175.122i −0.213179 + 0.178878i
\(980\) 2278.75 134.807i 2.32525 0.137558i
\(981\) 0 0
\(982\) 905.538 + 522.812i 0.922136 + 0.532396i
\(983\) −81.4145 461.724i −0.0828225 0.469710i −0.997805 0.0662167i \(-0.978907\pi\)
0.914983 0.403493i \(-0.132204\pi\)
\(984\) 0 0
\(985\) 4.02903 34.7452i 0.00409038 0.0352744i
\(986\) 198.944 + 546.594i 0.201769 + 0.554355i
\(987\) 0 0
\(988\) 1084.15 191.164i 1.09731 0.193486i
\(989\) 305.831 + 176.572i 0.309233 + 0.178536i
\(990\) 0 0
\(991\) −467.836 810.316i −0.472085 0.817675i 0.527405 0.849614i \(-0.323165\pi\)
−0.999490 + 0.0319388i \(0.989832\pi\)
\(992\) 1002.71 841.370i 1.01079 0.848156i
\(993\) 0 0
\(994\) 39.5585 224.347i 0.0397973 0.225701i
\(995\) −488.493 + 211.244i −0.490948 + 0.212305i
\(996\) 0 0
\(997\) −248.507 + 682.768i −0.249255 + 0.684822i 0.750459 + 0.660917i \(0.229832\pi\)
−0.999714 + 0.0239057i \(0.992390\pi\)
\(998\) 1019.84 1.02188
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.n.a.179.6 204
3.2 odd 2 135.3.n.a.104.29 yes 204
5.4 even 2 inner 405.3.n.a.179.29 204
15.14 odd 2 135.3.n.a.104.6 yes 204
27.7 even 9 135.3.n.a.74.6 204
27.20 odd 18 inner 405.3.n.a.224.29 204
135.34 even 18 135.3.n.a.74.29 yes 204
135.74 odd 18 inner 405.3.n.a.224.6 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.n.a.74.6 204 27.7 even 9
135.3.n.a.74.29 yes 204 135.34 even 18
135.3.n.a.104.6 yes 204 15.14 odd 2
135.3.n.a.104.29 yes 204 3.2 odd 2
405.3.n.a.179.6 204 1.1 even 1 trivial
405.3.n.a.179.29 204 5.4 even 2 inner
405.3.n.a.224.6 204 135.74 odd 18 inner
405.3.n.a.224.29 204 27.20 odd 18 inner