Properties

Label 4050.2.a.bu.1.2
Level $4050$
Weight $2$
Character 4050.1
Self dual yes
Analytic conductor $32.339$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4050,2,Mod(1,4050)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4050, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4050.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4050 = 2 \cdot 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4050.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.3394128186\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 450)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.44949\) of defining polynomial
Character \(\chi\) \(=\) 4050.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +0.449490 q^{7} +1.00000 q^{8} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{4} +0.449490 q^{7} +1.00000 q^{8} -4.89898 q^{11} +0.449490 q^{13} +0.449490 q^{14} +1.00000 q^{16} -4.89898 q^{17} +7.44949 q^{19} -4.89898 q^{22} +2.44949 q^{23} +0.449490 q^{26} +0.449490 q^{28} -2.44949 q^{29} +4.44949 q^{31} +1.00000 q^{32} -4.89898 q^{34} +11.3485 q^{37} +7.44949 q^{38} +9.00000 q^{41} -2.55051 q^{43} -4.89898 q^{44} +2.44949 q^{46} +10.8990 q^{47} -6.79796 q^{49} +0.449490 q^{52} +3.55051 q^{53} +0.449490 q^{56} -2.44949 q^{58} -5.44949 q^{59} +8.00000 q^{61} +4.44949 q^{62} +1.00000 q^{64} -0.348469 q^{67} -4.89898 q^{68} +13.3485 q^{71} +1.00000 q^{73} +11.3485 q^{74} +7.44949 q^{76} -2.20204 q^{77} +16.6969 q^{79} +9.00000 q^{82} +5.44949 q^{83} -2.55051 q^{86} -4.89898 q^{88} -9.00000 q^{89} +0.202041 q^{91} +2.44949 q^{92} +10.8990 q^{94} -8.79796 q^{97} -6.79796 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} - 4 q^{7} + 2 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} + 2 q^{4} - 4 q^{7} + 2 q^{8} - 4 q^{13} - 4 q^{14} + 2 q^{16} + 10 q^{19} - 4 q^{26} - 4 q^{28} + 4 q^{31} + 2 q^{32} + 8 q^{37} + 10 q^{38} + 18 q^{41} - 10 q^{43} + 12 q^{47} + 6 q^{49} - 4 q^{52} + 12 q^{53} - 4 q^{56} - 6 q^{59} + 16 q^{61} + 4 q^{62} + 2 q^{64} + 14 q^{67} + 12 q^{71} + 2 q^{73} + 8 q^{74} + 10 q^{76} - 24 q^{77} + 4 q^{79} + 18 q^{82} + 6 q^{83} - 10 q^{86} - 18 q^{89} + 20 q^{91} + 12 q^{94} + 2 q^{97} + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) 0.449490 0.169891 0.0849456 0.996386i \(-0.472928\pi\)
0.0849456 + 0.996386i \(0.472928\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) −4.89898 −1.47710 −0.738549 0.674200i \(-0.764489\pi\)
−0.738549 + 0.674200i \(0.764489\pi\)
\(12\) 0 0
\(13\) 0.449490 0.124666 0.0623330 0.998055i \(-0.480146\pi\)
0.0623330 + 0.998055i \(0.480146\pi\)
\(14\) 0.449490 0.120131
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −4.89898 −1.18818 −0.594089 0.804400i \(-0.702487\pi\)
−0.594089 + 0.804400i \(0.702487\pi\)
\(18\) 0 0
\(19\) 7.44949 1.70903 0.854515 0.519427i \(-0.173854\pi\)
0.854515 + 0.519427i \(0.173854\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −4.89898 −1.04447
\(23\) 2.44949 0.510754 0.255377 0.966842i \(-0.417800\pi\)
0.255377 + 0.966842i \(0.417800\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0.449490 0.0881522
\(27\) 0 0
\(28\) 0.449490 0.0849456
\(29\) −2.44949 −0.454859 −0.227429 0.973795i \(-0.573032\pi\)
−0.227429 + 0.973795i \(0.573032\pi\)
\(30\) 0 0
\(31\) 4.44949 0.799152 0.399576 0.916700i \(-0.369157\pi\)
0.399576 + 0.916700i \(0.369157\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −4.89898 −0.840168
\(35\) 0 0
\(36\) 0 0
\(37\) 11.3485 1.86568 0.932838 0.360295i \(-0.117324\pi\)
0.932838 + 0.360295i \(0.117324\pi\)
\(38\) 7.44949 1.20847
\(39\) 0 0
\(40\) 0 0
\(41\) 9.00000 1.40556 0.702782 0.711405i \(-0.251941\pi\)
0.702782 + 0.711405i \(0.251941\pi\)
\(42\) 0 0
\(43\) −2.55051 −0.388949 −0.194475 0.980908i \(-0.562300\pi\)
−0.194475 + 0.980908i \(0.562300\pi\)
\(44\) −4.89898 −0.738549
\(45\) 0 0
\(46\) 2.44949 0.361158
\(47\) 10.8990 1.58978 0.794890 0.606754i \(-0.207529\pi\)
0.794890 + 0.606754i \(0.207529\pi\)
\(48\) 0 0
\(49\) −6.79796 −0.971137
\(50\) 0 0
\(51\) 0 0
\(52\) 0.449490 0.0623330
\(53\) 3.55051 0.487700 0.243850 0.969813i \(-0.421590\pi\)
0.243850 + 0.969813i \(0.421590\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0.449490 0.0600656
\(57\) 0 0
\(58\) −2.44949 −0.321634
\(59\) −5.44949 −0.709463 −0.354732 0.934968i \(-0.615428\pi\)
−0.354732 + 0.934968i \(0.615428\pi\)
\(60\) 0 0
\(61\) 8.00000 1.02430 0.512148 0.858898i \(-0.328850\pi\)
0.512148 + 0.858898i \(0.328850\pi\)
\(62\) 4.44949 0.565086
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −0.348469 −0.0425723 −0.0212861 0.999773i \(-0.506776\pi\)
−0.0212861 + 0.999773i \(0.506776\pi\)
\(68\) −4.89898 −0.594089
\(69\) 0 0
\(70\) 0 0
\(71\) 13.3485 1.58417 0.792086 0.610410i \(-0.208995\pi\)
0.792086 + 0.610410i \(0.208995\pi\)
\(72\) 0 0
\(73\) 1.00000 0.117041 0.0585206 0.998286i \(-0.481362\pi\)
0.0585206 + 0.998286i \(0.481362\pi\)
\(74\) 11.3485 1.31923
\(75\) 0 0
\(76\) 7.44949 0.854515
\(77\) −2.20204 −0.250946
\(78\) 0 0
\(79\) 16.6969 1.87855 0.939276 0.343162i \(-0.111498\pi\)
0.939276 + 0.343162i \(0.111498\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 9.00000 0.993884
\(83\) 5.44949 0.598159 0.299080 0.954228i \(-0.403320\pi\)
0.299080 + 0.954228i \(0.403320\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −2.55051 −0.275029
\(87\) 0 0
\(88\) −4.89898 −0.522233
\(89\) −9.00000 −0.953998 −0.476999 0.878904i \(-0.658275\pi\)
−0.476999 + 0.878904i \(0.658275\pi\)
\(90\) 0 0
\(91\) 0.202041 0.0211797
\(92\) 2.44949 0.255377
\(93\) 0 0
\(94\) 10.8990 1.12414
\(95\) 0 0
\(96\) 0 0
\(97\) −8.79796 −0.893297 −0.446649 0.894709i \(-0.647383\pi\)
−0.446649 + 0.894709i \(0.647383\pi\)
\(98\) −6.79796 −0.686698
\(99\) 0 0
\(100\) 0 0
\(101\) 8.44949 0.840756 0.420378 0.907349i \(-0.361898\pi\)
0.420378 + 0.907349i \(0.361898\pi\)
\(102\) 0 0
\(103\) −16.6969 −1.64520 −0.822599 0.568622i \(-0.807477\pi\)
−0.822599 + 0.568622i \(0.807477\pi\)
\(104\) 0.449490 0.0440761
\(105\) 0 0
\(106\) 3.55051 0.344856
\(107\) −9.24745 −0.893985 −0.446992 0.894538i \(-0.647505\pi\)
−0.446992 + 0.894538i \(0.647505\pi\)
\(108\) 0 0
\(109\) 5.55051 0.531642 0.265821 0.964022i \(-0.414357\pi\)
0.265821 + 0.964022i \(0.414357\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.449490 0.0424728
\(113\) 4.10102 0.385792 0.192896 0.981219i \(-0.438212\pi\)
0.192896 + 0.981219i \(0.438212\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −2.44949 −0.227429
\(117\) 0 0
\(118\) −5.44949 −0.501666
\(119\) −2.20204 −0.201861
\(120\) 0 0
\(121\) 13.0000 1.18182
\(122\) 8.00000 0.724286
\(123\) 0 0
\(124\) 4.44949 0.399576
\(125\) 0 0
\(126\) 0 0
\(127\) −3.34847 −0.297129 −0.148564 0.988903i \(-0.547465\pi\)
−0.148564 + 0.988903i \(0.547465\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) −3.79796 −0.331829 −0.165915 0.986140i \(-0.553058\pi\)
−0.165915 + 0.986140i \(0.553058\pi\)
\(132\) 0 0
\(133\) 3.34847 0.290349
\(134\) −0.348469 −0.0301032
\(135\) 0 0
\(136\) −4.89898 −0.420084
\(137\) −3.00000 −0.256307 −0.128154 0.991754i \(-0.540905\pi\)
−0.128154 + 0.991754i \(0.540905\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 13.3485 1.12018
\(143\) −2.20204 −0.184144
\(144\) 0 0
\(145\) 0 0
\(146\) 1.00000 0.0827606
\(147\) 0 0
\(148\) 11.3485 0.932838
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) 20.0000 1.62758 0.813788 0.581161i \(-0.197401\pi\)
0.813788 + 0.581161i \(0.197401\pi\)
\(152\) 7.44949 0.604233
\(153\) 0 0
\(154\) −2.20204 −0.177446
\(155\) 0 0
\(156\) 0 0
\(157\) 19.7980 1.58005 0.790025 0.613075i \(-0.210068\pi\)
0.790025 + 0.613075i \(0.210068\pi\)
\(158\) 16.6969 1.32834
\(159\) 0 0
\(160\) 0 0
\(161\) 1.10102 0.0867726
\(162\) 0 0
\(163\) −7.44949 −0.583489 −0.291745 0.956496i \(-0.594236\pi\)
−0.291745 + 0.956496i \(0.594236\pi\)
\(164\) 9.00000 0.702782
\(165\) 0 0
\(166\) 5.44949 0.422962
\(167\) −19.5959 −1.51638 −0.758189 0.652035i \(-0.773915\pi\)
−0.758189 + 0.652035i \(0.773915\pi\)
\(168\) 0 0
\(169\) −12.7980 −0.984458
\(170\) 0 0
\(171\) 0 0
\(172\) −2.55051 −0.194475
\(173\) −9.79796 −0.744925 −0.372463 0.928047i \(-0.621486\pi\)
−0.372463 + 0.928047i \(0.621486\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −4.89898 −0.369274
\(177\) 0 0
\(178\) −9.00000 −0.674579
\(179\) 9.24745 0.691187 0.345593 0.938384i \(-0.387678\pi\)
0.345593 + 0.938384i \(0.387678\pi\)
\(180\) 0 0
\(181\) 17.7980 1.32291 0.661456 0.749984i \(-0.269939\pi\)
0.661456 + 0.749984i \(0.269939\pi\)
\(182\) 0.202041 0.0149763
\(183\) 0 0
\(184\) 2.44949 0.180579
\(185\) 0 0
\(186\) 0 0
\(187\) 24.0000 1.75505
\(188\) 10.8990 0.794890
\(189\) 0 0
\(190\) 0 0
\(191\) −1.10102 −0.0796670 −0.0398335 0.999206i \(-0.512683\pi\)
−0.0398335 + 0.999206i \(0.512683\pi\)
\(192\) 0 0
\(193\) −20.0000 −1.43963 −0.719816 0.694165i \(-0.755774\pi\)
−0.719816 + 0.694165i \(0.755774\pi\)
\(194\) −8.79796 −0.631657
\(195\) 0 0
\(196\) −6.79796 −0.485568
\(197\) 0.247449 0.0176300 0.00881500 0.999961i \(-0.497194\pi\)
0.00881500 + 0.999961i \(0.497194\pi\)
\(198\) 0 0
\(199\) −13.7980 −0.978111 −0.489056 0.872253i \(-0.662659\pi\)
−0.489056 + 0.872253i \(0.662659\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 8.44949 0.594504
\(203\) −1.10102 −0.0772765
\(204\) 0 0
\(205\) 0 0
\(206\) −16.6969 −1.16333
\(207\) 0 0
\(208\) 0.449490 0.0311665
\(209\) −36.4949 −2.52440
\(210\) 0 0
\(211\) −3.44949 −0.237473 −0.118736 0.992926i \(-0.537884\pi\)
−0.118736 + 0.992926i \(0.537884\pi\)
\(212\) 3.55051 0.243850
\(213\) 0 0
\(214\) −9.24745 −0.632143
\(215\) 0 0
\(216\) 0 0
\(217\) 2.00000 0.135769
\(218\) 5.55051 0.375928
\(219\) 0 0
\(220\) 0 0
\(221\) −2.20204 −0.148125
\(222\) 0 0
\(223\) −17.7980 −1.19184 −0.595920 0.803044i \(-0.703212\pi\)
−0.595920 + 0.803044i \(0.703212\pi\)
\(224\) 0.449490 0.0300328
\(225\) 0 0
\(226\) 4.10102 0.272796
\(227\) −13.6515 −0.906084 −0.453042 0.891489i \(-0.649661\pi\)
−0.453042 + 0.891489i \(0.649661\pi\)
\(228\) 0 0
\(229\) 13.1464 0.868740 0.434370 0.900734i \(-0.356971\pi\)
0.434370 + 0.900734i \(0.356971\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −2.44949 −0.160817
\(233\) 23.6969 1.55244 0.776219 0.630463i \(-0.217135\pi\)
0.776219 + 0.630463i \(0.217135\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −5.44949 −0.354732
\(237\) 0 0
\(238\) −2.20204 −0.142737
\(239\) 14.4495 0.934660 0.467330 0.884083i \(-0.345216\pi\)
0.467330 + 0.884083i \(0.345216\pi\)
\(240\) 0 0
\(241\) −3.20204 −0.206262 −0.103131 0.994668i \(-0.532886\pi\)
−0.103131 + 0.994668i \(0.532886\pi\)
\(242\) 13.0000 0.835672
\(243\) 0 0
\(244\) 8.00000 0.512148
\(245\) 0 0
\(246\) 0 0
\(247\) 3.34847 0.213058
\(248\) 4.44949 0.282543
\(249\) 0 0
\(250\) 0 0
\(251\) −0.550510 −0.0347479 −0.0173739 0.999849i \(-0.505531\pi\)
−0.0173739 + 0.999849i \(0.505531\pi\)
\(252\) 0 0
\(253\) −12.0000 −0.754434
\(254\) −3.34847 −0.210102
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 12.7980 0.798315 0.399157 0.916882i \(-0.369303\pi\)
0.399157 + 0.916882i \(0.369303\pi\)
\(258\) 0 0
\(259\) 5.10102 0.316962
\(260\) 0 0
\(261\) 0 0
\(262\) −3.79796 −0.234639
\(263\) −20.4495 −1.26097 −0.630485 0.776202i \(-0.717144\pi\)
−0.630485 + 0.776202i \(0.717144\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 3.34847 0.205308
\(267\) 0 0
\(268\) −0.348469 −0.0212861
\(269\) 14.4495 0.881001 0.440500 0.897752i \(-0.354801\pi\)
0.440500 + 0.897752i \(0.354801\pi\)
\(270\) 0 0
\(271\) 15.3485 0.932353 0.466177 0.884692i \(-0.345631\pi\)
0.466177 + 0.884692i \(0.345631\pi\)
\(272\) −4.89898 −0.297044
\(273\) 0 0
\(274\) −3.00000 −0.181237
\(275\) 0 0
\(276\) 0 0
\(277\) 1.55051 0.0931611 0.0465806 0.998915i \(-0.485168\pi\)
0.0465806 + 0.998915i \(0.485168\pi\)
\(278\) −4.00000 −0.239904
\(279\) 0 0
\(280\) 0 0
\(281\) 19.1010 1.13947 0.569736 0.821828i \(-0.307046\pi\)
0.569736 + 0.821828i \(0.307046\pi\)
\(282\) 0 0
\(283\) 13.2474 0.787479 0.393740 0.919222i \(-0.371181\pi\)
0.393740 + 0.919222i \(0.371181\pi\)
\(284\) 13.3485 0.792086
\(285\) 0 0
\(286\) −2.20204 −0.130209
\(287\) 4.04541 0.238793
\(288\) 0 0
\(289\) 7.00000 0.411765
\(290\) 0 0
\(291\) 0 0
\(292\) 1.00000 0.0585206
\(293\) −16.0454 −0.937383 −0.468691 0.883362i \(-0.655274\pi\)
−0.468691 + 0.883362i \(0.655274\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 11.3485 0.659616
\(297\) 0 0
\(298\) −6.00000 −0.347571
\(299\) 1.10102 0.0636737
\(300\) 0 0
\(301\) −1.14643 −0.0660790
\(302\) 20.0000 1.15087
\(303\) 0 0
\(304\) 7.44949 0.427258
\(305\) 0 0
\(306\) 0 0
\(307\) −22.6969 −1.29538 −0.647691 0.761903i \(-0.724265\pi\)
−0.647691 + 0.761903i \(0.724265\pi\)
\(308\) −2.20204 −0.125473
\(309\) 0 0
\(310\) 0 0
\(311\) −1.10102 −0.0624331 −0.0312166 0.999513i \(-0.509938\pi\)
−0.0312166 + 0.999513i \(0.509938\pi\)
\(312\) 0 0
\(313\) 5.89898 0.333430 0.166715 0.986005i \(-0.446684\pi\)
0.166715 + 0.986005i \(0.446684\pi\)
\(314\) 19.7980 1.11726
\(315\) 0 0
\(316\) 16.6969 0.939276
\(317\) −17.1464 −0.963039 −0.481520 0.876435i \(-0.659915\pi\)
−0.481520 + 0.876435i \(0.659915\pi\)
\(318\) 0 0
\(319\) 12.0000 0.671871
\(320\) 0 0
\(321\) 0 0
\(322\) 1.10102 0.0613575
\(323\) −36.4949 −2.03063
\(324\) 0 0
\(325\) 0 0
\(326\) −7.44949 −0.412589
\(327\) 0 0
\(328\) 9.00000 0.496942
\(329\) 4.89898 0.270089
\(330\) 0 0
\(331\) 6.34847 0.348943 0.174472 0.984662i \(-0.444178\pi\)
0.174472 + 0.984662i \(0.444178\pi\)
\(332\) 5.44949 0.299080
\(333\) 0 0
\(334\) −19.5959 −1.07224
\(335\) 0 0
\(336\) 0 0
\(337\) 20.8990 1.13844 0.569220 0.822185i \(-0.307245\pi\)
0.569220 + 0.822185i \(0.307245\pi\)
\(338\) −12.7980 −0.696117
\(339\) 0 0
\(340\) 0 0
\(341\) −21.7980 −1.18043
\(342\) 0 0
\(343\) −6.20204 −0.334879
\(344\) −2.55051 −0.137514
\(345\) 0 0
\(346\) −9.79796 −0.526742
\(347\) −12.0000 −0.644194 −0.322097 0.946707i \(-0.604388\pi\)
−0.322097 + 0.946707i \(0.604388\pi\)
\(348\) 0 0
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −4.89898 −0.261116
\(353\) 9.00000 0.479022 0.239511 0.970894i \(-0.423013\pi\)
0.239511 + 0.970894i \(0.423013\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −9.00000 −0.476999
\(357\) 0 0
\(358\) 9.24745 0.488743
\(359\) −14.2020 −0.749555 −0.374778 0.927115i \(-0.622281\pi\)
−0.374778 + 0.927115i \(0.622281\pi\)
\(360\) 0 0
\(361\) 36.4949 1.92078
\(362\) 17.7980 0.935440
\(363\) 0 0
\(364\) 0.202041 0.0105898
\(365\) 0 0
\(366\) 0 0
\(367\) 12.6969 0.662775 0.331387 0.943495i \(-0.392483\pi\)
0.331387 + 0.943495i \(0.392483\pi\)
\(368\) 2.44949 0.127688
\(369\) 0 0
\(370\) 0 0
\(371\) 1.59592 0.0828559
\(372\) 0 0
\(373\) 23.5959 1.22175 0.610875 0.791727i \(-0.290818\pi\)
0.610875 + 0.791727i \(0.290818\pi\)
\(374\) 24.0000 1.24101
\(375\) 0 0
\(376\) 10.8990 0.562072
\(377\) −1.10102 −0.0567054
\(378\) 0 0
\(379\) −8.89898 −0.457110 −0.228555 0.973531i \(-0.573400\pi\)
−0.228555 + 0.973531i \(0.573400\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −1.10102 −0.0563331
\(383\) −21.5505 −1.10118 −0.550590 0.834776i \(-0.685597\pi\)
−0.550590 + 0.834776i \(0.685597\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −20.0000 −1.01797
\(387\) 0 0
\(388\) −8.79796 −0.446649
\(389\) 25.5959 1.29776 0.648882 0.760889i \(-0.275237\pi\)
0.648882 + 0.760889i \(0.275237\pi\)
\(390\) 0 0
\(391\) −12.0000 −0.606866
\(392\) −6.79796 −0.343349
\(393\) 0 0
\(394\) 0.247449 0.0124663
\(395\) 0 0
\(396\) 0 0
\(397\) 17.5959 0.883114 0.441557 0.897233i \(-0.354426\pi\)
0.441557 + 0.897233i \(0.354426\pi\)
\(398\) −13.7980 −0.691629
\(399\) 0 0
\(400\) 0 0
\(401\) 38.6969 1.93243 0.966216 0.257732i \(-0.0829752\pi\)
0.966216 + 0.257732i \(0.0829752\pi\)
\(402\) 0 0
\(403\) 2.00000 0.0996271
\(404\) 8.44949 0.420378
\(405\) 0 0
\(406\) −1.10102 −0.0546427
\(407\) −55.5959 −2.75579
\(408\) 0 0
\(409\) 0.101021 0.00499514 0.00249757 0.999997i \(-0.499205\pi\)
0.00249757 + 0.999997i \(0.499205\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −16.6969 −0.822599
\(413\) −2.44949 −0.120532
\(414\) 0 0
\(415\) 0 0
\(416\) 0.449490 0.0220380
\(417\) 0 0
\(418\) −36.4949 −1.78502
\(419\) −26.1464 −1.27734 −0.638668 0.769482i \(-0.720514\pi\)
−0.638668 + 0.769482i \(0.720514\pi\)
\(420\) 0 0
\(421\) −26.0454 −1.26938 −0.634688 0.772769i \(-0.718871\pi\)
−0.634688 + 0.772769i \(0.718871\pi\)
\(422\) −3.44949 −0.167919
\(423\) 0 0
\(424\) 3.55051 0.172428
\(425\) 0 0
\(426\) 0 0
\(427\) 3.59592 0.174019
\(428\) −9.24745 −0.446992
\(429\) 0 0
\(430\) 0 0
\(431\) 25.3485 1.22099 0.610496 0.792019i \(-0.290970\pi\)
0.610496 + 0.792019i \(0.290970\pi\)
\(432\) 0 0
\(433\) −9.59592 −0.461150 −0.230575 0.973055i \(-0.574061\pi\)
−0.230575 + 0.973055i \(0.574061\pi\)
\(434\) 2.00000 0.0960031
\(435\) 0 0
\(436\) 5.55051 0.265821
\(437\) 18.2474 0.872894
\(438\) 0 0
\(439\) 3.34847 0.159814 0.0799069 0.996802i \(-0.474538\pi\)
0.0799069 + 0.996802i \(0.474538\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −2.20204 −0.104740
\(443\) −8.20204 −0.389691 −0.194845 0.980834i \(-0.562421\pi\)
−0.194845 + 0.980834i \(0.562421\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −17.7980 −0.842758
\(447\) 0 0
\(448\) 0.449490 0.0212364
\(449\) −28.5959 −1.34952 −0.674762 0.738035i \(-0.735754\pi\)
−0.674762 + 0.738035i \(0.735754\pi\)
\(450\) 0 0
\(451\) −44.0908 −2.07616
\(452\) 4.10102 0.192896
\(453\) 0 0
\(454\) −13.6515 −0.640698
\(455\) 0 0
\(456\) 0 0
\(457\) −13.6969 −0.640716 −0.320358 0.947297i \(-0.603803\pi\)
−0.320358 + 0.947297i \(0.603803\pi\)
\(458\) 13.1464 0.614292
\(459\) 0 0
\(460\) 0 0
\(461\) 4.65153 0.216643 0.108322 0.994116i \(-0.465452\pi\)
0.108322 + 0.994116i \(0.465452\pi\)
\(462\) 0 0
\(463\) 5.34847 0.248564 0.124282 0.992247i \(-0.460337\pi\)
0.124282 + 0.992247i \(0.460337\pi\)
\(464\) −2.44949 −0.113715
\(465\) 0 0
\(466\) 23.6969 1.09774
\(467\) 10.3485 0.478870 0.239435 0.970912i \(-0.423038\pi\)
0.239435 + 0.970912i \(0.423038\pi\)
\(468\) 0 0
\(469\) −0.156633 −0.00723266
\(470\) 0 0
\(471\) 0 0
\(472\) −5.44949 −0.250833
\(473\) 12.4949 0.574516
\(474\) 0 0
\(475\) 0 0
\(476\) −2.20204 −0.100930
\(477\) 0 0
\(478\) 14.4495 0.660904
\(479\) 0.247449 0.0113062 0.00565311 0.999984i \(-0.498201\pi\)
0.00565311 + 0.999984i \(0.498201\pi\)
\(480\) 0 0
\(481\) 5.10102 0.232587
\(482\) −3.20204 −0.145849
\(483\) 0 0
\(484\) 13.0000 0.590909
\(485\) 0 0
\(486\) 0 0
\(487\) 24.4495 1.10791 0.553956 0.832546i \(-0.313118\pi\)
0.553956 + 0.832546i \(0.313118\pi\)
\(488\) 8.00000 0.362143
\(489\) 0 0
\(490\) 0 0
\(491\) −27.2474 −1.22966 −0.614830 0.788660i \(-0.710775\pi\)
−0.614830 + 0.788660i \(0.710775\pi\)
\(492\) 0 0
\(493\) 12.0000 0.540453
\(494\) 3.34847 0.150655
\(495\) 0 0
\(496\) 4.44949 0.199788
\(497\) 6.00000 0.269137
\(498\) 0 0
\(499\) −8.34847 −0.373729 −0.186864 0.982386i \(-0.559833\pi\)
−0.186864 + 0.982386i \(0.559833\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −0.550510 −0.0245705
\(503\) −21.5505 −0.960890 −0.480445 0.877025i \(-0.659525\pi\)
−0.480445 + 0.877025i \(0.659525\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −12.0000 −0.533465
\(507\) 0 0
\(508\) −3.34847 −0.148564
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0.449490 0.0198843
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 12.7980 0.564494
\(515\) 0 0
\(516\) 0 0
\(517\) −53.3939 −2.34826
\(518\) 5.10102 0.224126
\(519\) 0 0
\(520\) 0 0
\(521\) −29.3939 −1.28777 −0.643885 0.765123i \(-0.722678\pi\)
−0.643885 + 0.765123i \(0.722678\pi\)
\(522\) 0 0
\(523\) 20.3485 0.889776 0.444888 0.895586i \(-0.353243\pi\)
0.444888 + 0.895586i \(0.353243\pi\)
\(524\) −3.79796 −0.165915
\(525\) 0 0
\(526\) −20.4495 −0.891640
\(527\) −21.7980 −0.949534
\(528\) 0 0
\(529\) −17.0000 −0.739130
\(530\) 0 0
\(531\) 0 0
\(532\) 3.34847 0.145175
\(533\) 4.04541 0.175226
\(534\) 0 0
\(535\) 0 0
\(536\) −0.348469 −0.0150516
\(537\) 0 0
\(538\) 14.4495 0.622962
\(539\) 33.3031 1.43446
\(540\) 0 0
\(541\) −37.7980 −1.62506 −0.812531 0.582919i \(-0.801911\pi\)
−0.812531 + 0.582919i \(0.801911\pi\)
\(542\) 15.3485 0.659273
\(543\) 0 0
\(544\) −4.89898 −0.210042
\(545\) 0 0
\(546\) 0 0
\(547\) −15.6515 −0.669211 −0.334606 0.942358i \(-0.608603\pi\)
−0.334606 + 0.942358i \(0.608603\pi\)
\(548\) −3.00000 −0.128154
\(549\) 0 0
\(550\) 0 0
\(551\) −18.2474 −0.777367
\(552\) 0 0
\(553\) 7.50510 0.319149
\(554\) 1.55051 0.0658749
\(555\) 0 0
\(556\) −4.00000 −0.169638
\(557\) −41.3939 −1.75391 −0.876957 0.480568i \(-0.840430\pi\)
−0.876957 + 0.480568i \(0.840430\pi\)
\(558\) 0 0
\(559\) −1.14643 −0.0484887
\(560\) 0 0
\(561\) 0 0
\(562\) 19.1010 0.805728
\(563\) 23.9444 1.00914 0.504568 0.863372i \(-0.331652\pi\)
0.504568 + 0.863372i \(0.331652\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 13.2474 0.556832
\(567\) 0 0
\(568\) 13.3485 0.560089
\(569\) 33.7980 1.41688 0.708442 0.705769i \(-0.249398\pi\)
0.708442 + 0.705769i \(0.249398\pi\)
\(570\) 0 0
\(571\) 25.9444 1.08574 0.542869 0.839817i \(-0.317338\pi\)
0.542869 + 0.839817i \(0.317338\pi\)
\(572\) −2.20204 −0.0920720
\(573\) 0 0
\(574\) 4.04541 0.168852
\(575\) 0 0
\(576\) 0 0
\(577\) −40.3939 −1.68162 −0.840810 0.541331i \(-0.817921\pi\)
−0.840810 + 0.541331i \(0.817921\pi\)
\(578\) 7.00000 0.291162
\(579\) 0 0
\(580\) 0 0
\(581\) 2.44949 0.101622
\(582\) 0 0
\(583\) −17.3939 −0.720381
\(584\) 1.00000 0.0413803
\(585\) 0 0
\(586\) −16.0454 −0.662830
\(587\) 26.6969 1.10190 0.550950 0.834538i \(-0.314265\pi\)
0.550950 + 0.834538i \(0.314265\pi\)
\(588\) 0 0
\(589\) 33.1464 1.36577
\(590\) 0 0
\(591\) 0 0
\(592\) 11.3485 0.466419
\(593\) 7.89898 0.324372 0.162186 0.986760i \(-0.448146\pi\)
0.162186 + 0.986760i \(0.448146\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −6.00000 −0.245770
\(597\) 0 0
\(598\) 1.10102 0.0450241
\(599\) −22.6515 −0.925516 −0.462758 0.886485i \(-0.653140\pi\)
−0.462758 + 0.886485i \(0.653140\pi\)
\(600\) 0 0
\(601\) −16.4949 −0.672841 −0.336420 0.941712i \(-0.609216\pi\)
−0.336420 + 0.941712i \(0.609216\pi\)
\(602\) −1.14643 −0.0467249
\(603\) 0 0
\(604\) 20.0000 0.813788
\(605\) 0 0
\(606\) 0 0
\(607\) −3.34847 −0.135910 −0.0679551 0.997688i \(-0.521647\pi\)
−0.0679551 + 0.997688i \(0.521647\pi\)
\(608\) 7.44949 0.302117
\(609\) 0 0
\(610\) 0 0
\(611\) 4.89898 0.198191
\(612\) 0 0
\(613\) −12.0454 −0.486509 −0.243255 0.969962i \(-0.578215\pi\)
−0.243255 + 0.969962i \(0.578215\pi\)
\(614\) −22.6969 −0.915974
\(615\) 0 0
\(616\) −2.20204 −0.0887228
\(617\) −44.3939 −1.78723 −0.893615 0.448834i \(-0.851839\pi\)
−0.893615 + 0.448834i \(0.851839\pi\)
\(618\) 0 0
\(619\) −31.7423 −1.27583 −0.637916 0.770106i \(-0.720203\pi\)
−0.637916 + 0.770106i \(0.720203\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −1.10102 −0.0441469
\(623\) −4.04541 −0.162076
\(624\) 0 0
\(625\) 0 0
\(626\) 5.89898 0.235771
\(627\) 0 0
\(628\) 19.7980 0.790025
\(629\) −55.5959 −2.21675
\(630\) 0 0
\(631\) −6.20204 −0.246899 −0.123450 0.992351i \(-0.539396\pi\)
−0.123450 + 0.992351i \(0.539396\pi\)
\(632\) 16.6969 0.664169
\(633\) 0 0
\(634\) −17.1464 −0.680972
\(635\) 0 0
\(636\) 0 0
\(637\) −3.05561 −0.121068
\(638\) 12.0000 0.475085
\(639\) 0 0
\(640\) 0 0
\(641\) −14.3939 −0.568524 −0.284262 0.958747i \(-0.591749\pi\)
−0.284262 + 0.958747i \(0.591749\pi\)
\(642\) 0 0
\(643\) 17.6515 0.696108 0.348054 0.937474i \(-0.386843\pi\)
0.348054 + 0.937474i \(0.386843\pi\)
\(644\) 1.10102 0.0433863
\(645\) 0 0
\(646\) −36.4949 −1.43587
\(647\) −24.2474 −0.953266 −0.476633 0.879102i \(-0.658143\pi\)
−0.476633 + 0.879102i \(0.658143\pi\)
\(648\) 0 0
\(649\) 26.6969 1.04795
\(650\) 0 0
\(651\) 0 0
\(652\) −7.44949 −0.291745
\(653\) −18.2474 −0.714078 −0.357039 0.934090i \(-0.616214\pi\)
−0.357039 + 0.934090i \(0.616214\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 9.00000 0.351391
\(657\) 0 0
\(658\) 4.89898 0.190982
\(659\) 9.85357 0.383841 0.191920 0.981411i \(-0.438528\pi\)
0.191920 + 0.981411i \(0.438528\pi\)
\(660\) 0 0
\(661\) 7.39388 0.287588 0.143794 0.989608i \(-0.454070\pi\)
0.143794 + 0.989608i \(0.454070\pi\)
\(662\) 6.34847 0.246740
\(663\) 0 0
\(664\) 5.44949 0.211481
\(665\) 0 0
\(666\) 0 0
\(667\) −6.00000 −0.232321
\(668\) −19.5959 −0.758189
\(669\) 0 0
\(670\) 0 0
\(671\) −39.1918 −1.51298
\(672\) 0 0
\(673\) −22.6969 −0.874903 −0.437451 0.899242i \(-0.644119\pi\)
−0.437451 + 0.899242i \(0.644119\pi\)
\(674\) 20.8990 0.804999
\(675\) 0 0
\(676\) −12.7980 −0.492229
\(677\) 25.8434 0.993241 0.496621 0.867968i \(-0.334574\pi\)
0.496621 + 0.867968i \(0.334574\pi\)
\(678\) 0 0
\(679\) −3.95459 −0.151763
\(680\) 0 0
\(681\) 0 0
\(682\) −21.7980 −0.834687
\(683\) −41.9444 −1.60496 −0.802479 0.596681i \(-0.796486\pi\)
−0.802479 + 0.596681i \(0.796486\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −6.20204 −0.236795
\(687\) 0 0
\(688\) −2.55051 −0.0972373
\(689\) 1.59592 0.0607996
\(690\) 0 0
\(691\) 39.0454 1.48536 0.742679 0.669648i \(-0.233555\pi\)
0.742679 + 0.669648i \(0.233555\pi\)
\(692\) −9.79796 −0.372463
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) 0 0
\(696\) 0 0
\(697\) −44.0908 −1.67006
\(698\) 14.0000 0.529908
\(699\) 0 0
\(700\) 0 0
\(701\) 33.7980 1.27653 0.638266 0.769816i \(-0.279652\pi\)
0.638266 + 0.769816i \(0.279652\pi\)
\(702\) 0 0
\(703\) 84.5403 3.18850
\(704\) −4.89898 −0.184637
\(705\) 0 0
\(706\) 9.00000 0.338719
\(707\) 3.79796 0.142837
\(708\) 0 0
\(709\) 4.44949 0.167104 0.0835520 0.996503i \(-0.473374\pi\)
0.0835520 + 0.996503i \(0.473374\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −9.00000 −0.337289
\(713\) 10.8990 0.408170
\(714\) 0 0
\(715\) 0 0
\(716\) 9.24745 0.345593
\(717\) 0 0
\(718\) −14.2020 −0.530015
\(719\) 7.95459 0.296656 0.148328 0.988938i \(-0.452611\pi\)
0.148328 + 0.988938i \(0.452611\pi\)
\(720\) 0 0
\(721\) −7.50510 −0.279505
\(722\) 36.4949 1.35820
\(723\) 0 0
\(724\) 17.7980 0.661456
\(725\) 0 0
\(726\) 0 0
\(727\) 16.0000 0.593407 0.296704 0.954970i \(-0.404113\pi\)
0.296704 + 0.954970i \(0.404113\pi\)
\(728\) 0.202041 0.00748814
\(729\) 0 0
\(730\) 0 0
\(731\) 12.4949 0.462140
\(732\) 0 0
\(733\) −26.0000 −0.960332 −0.480166 0.877178i \(-0.659424\pi\)
−0.480166 + 0.877178i \(0.659424\pi\)
\(734\) 12.6969 0.468653
\(735\) 0 0
\(736\) 2.44949 0.0902894
\(737\) 1.70714 0.0628834
\(738\) 0 0
\(739\) 3.04541 0.112027 0.0560136 0.998430i \(-0.482161\pi\)
0.0560136 + 0.998430i \(0.482161\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 1.59592 0.0585880
\(743\) −49.3485 −1.81042 −0.905210 0.424965i \(-0.860286\pi\)
−0.905210 + 0.424965i \(0.860286\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 23.5959 0.863908
\(747\) 0 0
\(748\) 24.0000 0.877527
\(749\) −4.15663 −0.151880
\(750\) 0 0
\(751\) −5.95459 −0.217286 −0.108643 0.994081i \(-0.534651\pi\)
−0.108643 + 0.994081i \(0.534651\pi\)
\(752\) 10.8990 0.397445
\(753\) 0 0
\(754\) −1.10102 −0.0400968
\(755\) 0 0
\(756\) 0 0
\(757\) 38.0454 1.38278 0.691392 0.722480i \(-0.256998\pi\)
0.691392 + 0.722480i \(0.256998\pi\)
\(758\) −8.89898 −0.323225
\(759\) 0 0
\(760\) 0 0
\(761\) 13.8990 0.503838 0.251919 0.967748i \(-0.418938\pi\)
0.251919 + 0.967748i \(0.418938\pi\)
\(762\) 0 0
\(763\) 2.49490 0.0903214
\(764\) −1.10102 −0.0398335
\(765\) 0 0
\(766\) −21.5505 −0.778652
\(767\) −2.44949 −0.0884459
\(768\) 0 0
\(769\) −28.1918 −1.01662 −0.508312 0.861173i \(-0.669730\pi\)
−0.508312 + 0.861173i \(0.669730\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −20.0000 −0.719816
\(773\) 10.4041 0.374209 0.187104 0.982340i \(-0.440090\pi\)
0.187104 + 0.982340i \(0.440090\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −8.79796 −0.315828
\(777\) 0 0
\(778\) 25.5959 0.917658
\(779\) 67.0454 2.40215
\(780\) 0 0
\(781\) −65.3939 −2.33998
\(782\) −12.0000 −0.429119
\(783\) 0 0
\(784\) −6.79796 −0.242784
\(785\) 0 0
\(786\) 0 0
\(787\) −34.6969 −1.23681 −0.618406 0.785859i \(-0.712221\pi\)
−0.618406 + 0.785859i \(0.712221\pi\)
\(788\) 0.247449 0.00881500
\(789\) 0 0
\(790\) 0 0
\(791\) 1.84337 0.0655426
\(792\) 0 0
\(793\) 3.59592 0.127695
\(794\) 17.5959 0.624456
\(795\) 0 0
\(796\) −13.7980 −0.489056
\(797\) 30.2474 1.07142 0.535710 0.844402i \(-0.320044\pi\)
0.535710 + 0.844402i \(0.320044\pi\)
\(798\) 0 0
\(799\) −53.3939 −1.88894
\(800\) 0 0
\(801\) 0 0
\(802\) 38.6969 1.36644
\(803\) −4.89898 −0.172881
\(804\) 0 0
\(805\) 0 0
\(806\) 2.00000 0.0704470
\(807\) 0 0
\(808\) 8.44949 0.297252
\(809\) −6.30306 −0.221604 −0.110802 0.993843i \(-0.535342\pi\)
−0.110802 + 0.993843i \(0.535342\pi\)
\(810\) 0 0
\(811\) −28.5505 −1.00254 −0.501272 0.865290i \(-0.667134\pi\)
−0.501272 + 0.865290i \(0.667134\pi\)
\(812\) −1.10102 −0.0386382
\(813\) 0 0
\(814\) −55.5959 −1.94864
\(815\) 0 0
\(816\) 0 0
\(817\) −19.0000 −0.664726
\(818\) 0.101021 0.00353210
\(819\) 0 0
\(820\) 0 0
\(821\) 27.1918 0.949002 0.474501 0.880255i \(-0.342629\pi\)
0.474501 + 0.880255i \(0.342629\pi\)
\(822\) 0 0
\(823\) 17.1010 0.596104 0.298052 0.954550i \(-0.403663\pi\)
0.298052 + 0.954550i \(0.403663\pi\)
\(824\) −16.6969 −0.581665
\(825\) 0 0
\(826\) −2.44949 −0.0852286
\(827\) 35.9444 1.24991 0.624954 0.780661i \(-0.285118\pi\)
0.624954 + 0.780661i \(0.285118\pi\)
\(828\) 0 0
\(829\) −46.7423 −1.62343 −0.811714 0.584055i \(-0.801465\pi\)
−0.811714 + 0.584055i \(0.801465\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0.449490 0.0155833
\(833\) 33.3031 1.15388
\(834\) 0 0
\(835\) 0 0
\(836\) −36.4949 −1.26220
\(837\) 0 0
\(838\) −26.1464 −0.903213
\(839\) 37.3485 1.28941 0.644706 0.764430i \(-0.276980\pi\)
0.644706 + 0.764430i \(0.276980\pi\)
\(840\) 0 0
\(841\) −23.0000 −0.793103
\(842\) −26.0454 −0.897584
\(843\) 0 0
\(844\) −3.44949 −0.118736
\(845\) 0 0
\(846\) 0 0
\(847\) 5.84337 0.200780
\(848\) 3.55051 0.121925
\(849\) 0 0
\(850\) 0 0
\(851\) 27.7980 0.952902
\(852\) 0 0
\(853\) 46.0000 1.57501 0.787505 0.616308i \(-0.211372\pi\)
0.787505 + 0.616308i \(0.211372\pi\)
\(854\) 3.59592 0.123050
\(855\) 0 0
\(856\) −9.24745 −0.316071
\(857\) 49.8990 1.70452 0.852258 0.523121i \(-0.175232\pi\)
0.852258 + 0.523121i \(0.175232\pi\)
\(858\) 0 0
\(859\) −20.3485 −0.694281 −0.347140 0.937813i \(-0.612847\pi\)
−0.347140 + 0.937813i \(0.612847\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 25.3485 0.863372
\(863\) 43.8434 1.49245 0.746223 0.665696i \(-0.231865\pi\)
0.746223 + 0.665696i \(0.231865\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −9.59592 −0.326083
\(867\) 0 0
\(868\) 2.00000 0.0678844
\(869\) −81.7980 −2.77481
\(870\) 0 0
\(871\) −0.156633 −0.00530732
\(872\) 5.55051 0.187964
\(873\) 0 0
\(874\) 18.2474 0.617229
\(875\) 0 0
\(876\) 0 0
\(877\) 31.7980 1.07374 0.536870 0.843665i \(-0.319606\pi\)
0.536870 + 0.843665i \(0.319606\pi\)
\(878\) 3.34847 0.113005
\(879\) 0 0
\(880\) 0 0
\(881\) 38.6969 1.30373 0.651866 0.758334i \(-0.273986\pi\)
0.651866 + 0.758334i \(0.273986\pi\)
\(882\) 0 0
\(883\) −47.7980 −1.60853 −0.804265 0.594271i \(-0.797441\pi\)
−0.804265 + 0.594271i \(0.797441\pi\)
\(884\) −2.20204 −0.0740627
\(885\) 0 0
\(886\) −8.20204 −0.275553
\(887\) −5.50510 −0.184843 −0.0924216 0.995720i \(-0.529461\pi\)
−0.0924216 + 0.995720i \(0.529461\pi\)
\(888\) 0 0
\(889\) −1.50510 −0.0504795
\(890\) 0 0
\(891\) 0 0
\(892\) −17.7980 −0.595920
\(893\) 81.1918 2.71698
\(894\) 0 0
\(895\) 0 0
\(896\) 0.449490 0.0150164
\(897\) 0 0
\(898\) −28.5959 −0.954258
\(899\) −10.8990 −0.363501
\(900\) 0 0
\(901\) −17.3939 −0.579474
\(902\) −44.0908 −1.46806
\(903\) 0 0
\(904\) 4.10102 0.136398
\(905\) 0 0
\(906\) 0 0
\(907\) −36.3485 −1.20693 −0.603466 0.797389i \(-0.706214\pi\)
−0.603466 + 0.797389i \(0.706214\pi\)
\(908\) −13.6515 −0.453042
\(909\) 0 0
\(910\) 0 0
\(911\) −7.34847 −0.243466 −0.121733 0.992563i \(-0.538845\pi\)
−0.121733 + 0.992563i \(0.538845\pi\)
\(912\) 0 0
\(913\) −26.6969 −0.883540
\(914\) −13.6969 −0.453054
\(915\) 0 0
\(916\) 13.1464 0.434370
\(917\) −1.70714 −0.0563748
\(918\) 0 0
\(919\) 3.34847 0.110456 0.0552279 0.998474i \(-0.482411\pi\)
0.0552279 + 0.998474i \(0.482411\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 4.65153 0.153190
\(923\) 6.00000 0.197492
\(924\) 0 0
\(925\) 0 0
\(926\) 5.34847 0.175762
\(927\) 0 0
\(928\) −2.44949 −0.0804084
\(929\) −51.1918 −1.67955 −0.839775 0.542935i \(-0.817313\pi\)
−0.839775 + 0.542935i \(0.817313\pi\)
\(930\) 0 0
\(931\) −50.6413 −1.65970
\(932\) 23.6969 0.776219
\(933\) 0 0
\(934\) 10.3485 0.338612
\(935\) 0 0
\(936\) 0 0
\(937\) −7.20204 −0.235280 −0.117640 0.993056i \(-0.537533\pi\)
−0.117640 + 0.993056i \(0.537533\pi\)
\(938\) −0.156633 −0.00511426
\(939\) 0 0
\(940\) 0 0
\(941\) 53.6413 1.74866 0.874329 0.485334i \(-0.161302\pi\)
0.874329 + 0.485334i \(0.161302\pi\)
\(942\) 0 0
\(943\) 22.0454 0.717897
\(944\) −5.44949 −0.177366
\(945\) 0 0
\(946\) 12.4949 0.406244
\(947\) −26.1464 −0.849645 −0.424822 0.905277i \(-0.639663\pi\)
−0.424822 + 0.905277i \(0.639663\pi\)
\(948\) 0 0
\(949\) 0.449490 0.0145911
\(950\) 0 0
\(951\) 0 0
\(952\) −2.20204 −0.0713686
\(953\) −2.20204 −0.0713311 −0.0356656 0.999364i \(-0.511355\pi\)
−0.0356656 + 0.999364i \(0.511355\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 14.4495 0.467330
\(957\) 0 0
\(958\) 0.247449 0.00799471
\(959\) −1.34847 −0.0435443
\(960\) 0 0
\(961\) −11.2020 −0.361356
\(962\) 5.10102 0.164464
\(963\) 0 0
\(964\) −3.20204 −0.103131
\(965\) 0 0
\(966\) 0 0
\(967\) −32.0000 −1.02905 −0.514525 0.857475i \(-0.672032\pi\)
−0.514525 + 0.857475i \(0.672032\pi\)
\(968\) 13.0000 0.417836
\(969\) 0 0
\(970\) 0 0
\(971\) −40.8434 −1.31073 −0.655363 0.755314i \(-0.727484\pi\)
−0.655363 + 0.755314i \(0.727484\pi\)
\(972\) 0 0
\(973\) −1.79796 −0.0576399
\(974\) 24.4495 0.783412
\(975\) 0 0
\(976\) 8.00000 0.256074
\(977\) 9.00000 0.287936 0.143968 0.989582i \(-0.454014\pi\)
0.143968 + 0.989582i \(0.454014\pi\)
\(978\) 0 0
\(979\) 44.0908 1.40915
\(980\) 0 0
\(981\) 0 0
\(982\) −27.2474 −0.869501
\(983\) 13.1010 0.417858 0.208929 0.977931i \(-0.433002\pi\)
0.208929 + 0.977931i \(0.433002\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 12.0000 0.382158
\(987\) 0 0
\(988\) 3.34847 0.106529
\(989\) −6.24745 −0.198657
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) 4.44949 0.141271
\(993\) 0 0
\(994\) 6.00000 0.190308
\(995\) 0 0
\(996\) 0 0
\(997\) 8.04541 0.254801 0.127400 0.991851i \(-0.459337\pi\)
0.127400 + 0.991851i \(0.459337\pi\)
\(998\) −8.34847 −0.264266
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4050.2.a.bu.1.2 2
3.2 odd 2 4050.2.a.bl.1.2 2
5.2 odd 4 4050.2.c.y.649.4 4
5.3 odd 4 4050.2.c.y.649.1 4
5.4 even 2 4050.2.a.br.1.1 2
9.2 odd 6 1350.2.e.n.901.1 4
9.4 even 3 450.2.e.l.151.1 4
9.5 odd 6 1350.2.e.n.451.1 4
9.7 even 3 450.2.e.l.301.2 yes 4
15.2 even 4 4050.2.c.w.649.2 4
15.8 even 4 4050.2.c.w.649.3 4
15.14 odd 2 4050.2.a.by.1.1 2
45.2 even 12 1350.2.j.g.199.2 8
45.4 even 6 450.2.e.m.151.2 yes 4
45.7 odd 12 450.2.j.f.49.4 8
45.13 odd 12 450.2.j.f.349.4 8
45.14 odd 6 1350.2.e.k.451.2 4
45.22 odd 12 450.2.j.f.349.1 8
45.23 even 12 1350.2.j.g.1099.2 8
45.29 odd 6 1350.2.e.k.901.2 4
45.32 even 12 1350.2.j.g.1099.3 8
45.34 even 6 450.2.e.m.301.1 yes 4
45.38 even 12 1350.2.j.g.199.3 8
45.43 odd 12 450.2.j.f.49.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
450.2.e.l.151.1 4 9.4 even 3
450.2.e.l.301.2 yes 4 9.7 even 3
450.2.e.m.151.2 yes 4 45.4 even 6
450.2.e.m.301.1 yes 4 45.34 even 6
450.2.j.f.49.1 8 45.43 odd 12
450.2.j.f.49.4 8 45.7 odd 12
450.2.j.f.349.1 8 45.22 odd 12
450.2.j.f.349.4 8 45.13 odd 12
1350.2.e.k.451.2 4 45.14 odd 6
1350.2.e.k.901.2 4 45.29 odd 6
1350.2.e.n.451.1 4 9.5 odd 6
1350.2.e.n.901.1 4 9.2 odd 6
1350.2.j.g.199.2 8 45.2 even 12
1350.2.j.g.199.3 8 45.38 even 12
1350.2.j.g.1099.2 8 45.23 even 12
1350.2.j.g.1099.3 8 45.32 even 12
4050.2.a.bl.1.2 2 3.2 odd 2
4050.2.a.br.1.1 2 5.4 even 2
4050.2.a.bu.1.2 2 1.1 even 1 trivial
4050.2.a.by.1.1 2 15.14 odd 2
4050.2.c.w.649.2 4 15.2 even 4
4050.2.c.w.649.3 4 15.8 even 4
4050.2.c.y.649.1 4 5.3 odd 4
4050.2.c.y.649.4 4 5.2 odd 4