Properties

Label 4050.2.c.y.649.4
Level 40504050
Weight 22
Character 4050.649
Analytic conductor 32.33932.339
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4050,2,Mod(649,4050)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4050, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4050.649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4050=23452 4050 = 2 \cdot 3^{4} \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4050.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 32.339412818632.3394128186
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,6)\Q(i, \sqrt{6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+9 x^{4} + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 450)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 649.4
Root 1.224741.22474i1.22474 - 1.22474i of defining polynomial
Character χ\chi == 4050.649
Dual form 4050.2.c.y.649.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.00000iq21.00000q4+0.449490iq71.00000iq84.89898q110.449490iq130.449490q14+1.00000q164.89898iq177.44949q194.89898iq222.44949iq23+0.449490q260.449490iq28+2.44949q29+4.44949q31+1.00000iq32+4.89898q34+11.3485iq377.44949iq38+9.00000q41+2.55051iq43+4.89898q44+2.44949q46+10.8990iq47+6.79796q49+0.449490iq523.55051iq53+0.449490q56+2.44949iq58+5.44949q59+8.00000q61+4.44949iq621.00000q640.348469iq67+4.89898iq68+13.3485q711.00000iq7311.3485q74+7.44949q762.20204iq7716.6969q79+9.00000iq825.44949iq832.55051q86+4.89898iq88+9.00000q89+0.202041q91+2.44949iq9210.8990q948.79796iq97+6.79796iq98+O(q100)q+1.00000i q^{2} -1.00000 q^{4} +0.449490i q^{7} -1.00000i q^{8} -4.89898 q^{11} -0.449490i q^{13} -0.449490 q^{14} +1.00000 q^{16} -4.89898i q^{17} -7.44949 q^{19} -4.89898i q^{22} -2.44949i q^{23} +0.449490 q^{26} -0.449490i q^{28} +2.44949 q^{29} +4.44949 q^{31} +1.00000i q^{32} +4.89898 q^{34} +11.3485i q^{37} -7.44949i q^{38} +9.00000 q^{41} +2.55051i q^{43} +4.89898 q^{44} +2.44949 q^{46} +10.8990i q^{47} +6.79796 q^{49} +0.449490i q^{52} -3.55051i q^{53} +0.449490 q^{56} +2.44949i q^{58} +5.44949 q^{59} +8.00000 q^{61} +4.44949i q^{62} -1.00000 q^{64} -0.348469i q^{67} +4.89898i q^{68} +13.3485 q^{71} -1.00000i q^{73} -11.3485 q^{74} +7.44949 q^{76} -2.20204i q^{77} -16.6969 q^{79} +9.00000i q^{82} -5.44949i q^{83} -2.55051 q^{86} +4.89898i q^{88} +9.00000 q^{89} +0.202041 q^{91} +2.44949i q^{92} -10.8990 q^{94} -8.79796i q^{97} +6.79796i q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q4+8q14+4q1620q198q26+8q31+36q4112q498q56+12q59+32q614q64+24q7116q74+20q768q7920q86+36q89+24q94+O(q100) 4 q - 4 q^{4} + 8 q^{14} + 4 q^{16} - 20 q^{19} - 8 q^{26} + 8 q^{31} + 36 q^{41} - 12 q^{49} - 8 q^{56} + 12 q^{59} + 32 q^{61} - 4 q^{64} + 24 q^{71} - 16 q^{74} + 20 q^{76} - 8 q^{79} - 20 q^{86} + 36 q^{89}+ \cdots - 24 q^{94}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/4050Z)×\left(\mathbb{Z}/4050\mathbb{Z}\right)^\times.

nn 23512351 37273727
χ(n)\chi(n) 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.00000i 0.707107i
33 0 0
44 −1.00000 −0.500000
55 0 0
66 0 0
77 0.449490i 0.169891i 0.996386 + 0.0849456i 0.0270716π0.0270716\pi
−0.996386 + 0.0849456i 0.972928π0.972928\pi
88 − 1.00000i − 0.353553i
99 0 0
1010 0 0
1111 −4.89898 −1.47710 −0.738549 0.674200i 0.764489π-0.764489\pi
−0.738549 + 0.674200i 0.764489π0.764489\pi
1212 0 0
1313 − 0.449490i − 0.124666i −0.998055 0.0623330i 0.980146π-0.980146\pi
0.998055 0.0623330i 0.0198541π-0.0198541\pi
1414 −0.449490 −0.120131
1515 0 0
1616 1.00000 0.250000
1717 − 4.89898i − 1.18818i −0.804400 0.594089i 0.797513π-0.797513\pi
0.804400 0.594089i 0.202487π-0.202487\pi
1818 0 0
1919 −7.44949 −1.70903 −0.854515 0.519427i 0.826146π-0.826146\pi
−0.854515 + 0.519427i 0.826146π0.826146\pi
2020 0 0
2121 0 0
2222 − 4.89898i − 1.04447i
2323 − 2.44949i − 0.510754i −0.966842 0.255377i 0.917800π-0.917800\pi
0.966842 0.255377i 0.0821996π-0.0821996\pi
2424 0 0
2525 0 0
2626 0.449490 0.0881522
2727 0 0
2828 − 0.449490i − 0.0849456i
2929 2.44949 0.454859 0.227429 0.973795i 0.426968π-0.426968\pi
0.227429 + 0.973795i 0.426968π0.426968\pi
3030 0 0
3131 4.44949 0.799152 0.399576 0.916700i 0.369157π-0.369157\pi
0.399576 + 0.916700i 0.369157π0.369157\pi
3232 1.00000i 0.176777i
3333 0 0
3434 4.89898 0.840168
3535 0 0
3636 0 0
3737 11.3485i 1.86568i 0.360295 + 0.932838i 0.382676π0.382676\pi
−0.360295 + 0.932838i 0.617324π0.617324\pi
3838 − 7.44949i − 1.20847i
3939 0 0
4040 0 0
4141 9.00000 1.40556 0.702782 0.711405i 0.251941π-0.251941\pi
0.702782 + 0.711405i 0.251941π0.251941\pi
4242 0 0
4343 2.55051i 0.388949i 0.980908 + 0.194475i 0.0623002π0.0623002\pi
−0.980908 + 0.194475i 0.937700π0.937700\pi
4444 4.89898 0.738549
4545 0 0
4646 2.44949 0.361158
4747 10.8990i 1.58978i 0.606754 + 0.794890i 0.292471π0.292471\pi
−0.606754 + 0.794890i 0.707529π0.707529\pi
4848 0 0
4949 6.79796 0.971137
5050 0 0
5151 0 0
5252 0.449490i 0.0623330i
5353 − 3.55051i − 0.487700i −0.969813 0.243850i 0.921590π-0.921590\pi
0.969813 0.243850i 0.0784105π-0.0784105\pi
5454 0 0
5555 0 0
5656 0.449490 0.0600656
5757 0 0
5858 2.44949i 0.321634i
5959 5.44949 0.709463 0.354732 0.934968i 0.384572π-0.384572\pi
0.354732 + 0.934968i 0.384572π0.384572\pi
6060 0 0
6161 8.00000 1.02430 0.512148 0.858898i 0.328850π-0.328850\pi
0.512148 + 0.858898i 0.328850π0.328850\pi
6262 4.44949i 0.565086i
6363 0 0
6464 −1.00000 −0.125000
6565 0 0
6666 0 0
6767 − 0.348469i − 0.0425723i −0.999773 0.0212861i 0.993224π-0.993224\pi
0.999773 0.0212861i 0.00677610π-0.00677610\pi
6868 4.89898i 0.594089i
6969 0 0
7070 0 0
7171 13.3485 1.58417 0.792086 0.610410i 0.208995π-0.208995\pi
0.792086 + 0.610410i 0.208995π0.208995\pi
7272 0 0
7373 − 1.00000i − 0.117041i −0.998286 0.0585206i 0.981362π-0.981362\pi
0.998286 0.0585206i 0.0186383π-0.0186383\pi
7474 −11.3485 −1.31923
7575 0 0
7676 7.44949 0.854515
7777 − 2.20204i − 0.250946i
7878 0 0
7979 −16.6969 −1.87855 −0.939276 0.343162i 0.888502π-0.888502\pi
−0.939276 + 0.343162i 0.888502π0.888502\pi
8080 0 0
8181 0 0
8282 9.00000i 0.993884i
8383 − 5.44949i − 0.598159i −0.954228 0.299080i 0.903320π-0.903320\pi
0.954228 0.299080i 0.0966796π-0.0966796\pi
8484 0 0
8585 0 0
8686 −2.55051 −0.275029
8787 0 0
8888 4.89898i 0.522233i
8989 9.00000 0.953998 0.476999 0.878904i 0.341725π-0.341725\pi
0.476999 + 0.878904i 0.341725π0.341725\pi
9090 0 0
9191 0.202041 0.0211797
9292 2.44949i 0.255377i
9393 0 0
9494 −10.8990 −1.12414
9595 0 0
9696 0 0
9797 − 8.79796i − 0.893297i −0.894709 0.446649i 0.852617π-0.852617\pi
0.894709 0.446649i 0.147383π-0.147383\pi
9898 6.79796i 0.686698i
9999 0 0
100100 0 0
101101 8.44949 0.840756 0.420378 0.907349i 0.361898π-0.361898\pi
0.420378 + 0.907349i 0.361898π0.361898\pi
102102 0 0
103103 16.6969i 1.64520i 0.568622 + 0.822599i 0.307477π0.307477\pi
−0.568622 + 0.822599i 0.692523π0.692523\pi
104104 −0.449490 −0.0440761
105105 0 0
106106 3.55051 0.344856
107107 − 9.24745i − 0.893985i −0.894538 0.446992i 0.852495π-0.852495\pi
0.894538 0.446992i 0.147505π-0.147505\pi
108108 0 0
109109 −5.55051 −0.531642 −0.265821 0.964022i 0.585643π-0.585643\pi
−0.265821 + 0.964022i 0.585643π0.585643\pi
110110 0 0
111111 0 0
112112 0.449490i 0.0424728i
113113 − 4.10102i − 0.385792i −0.981219 0.192896i 0.938212π-0.938212\pi
0.981219 0.192896i 0.0617879π-0.0617879\pi
114114 0 0
115115 0 0
116116 −2.44949 −0.227429
117117 0 0
118118 5.44949i 0.501666i
119119 2.20204 0.201861
120120 0 0
121121 13.0000 1.18182
122122 8.00000i 0.724286i
123123 0 0
124124 −4.44949 −0.399576
125125 0 0
126126 0 0
127127 − 3.34847i − 0.297129i −0.988903 0.148564i 0.952535π-0.952535\pi
0.988903 0.148564i 0.0474652π-0.0474652\pi
128128 − 1.00000i − 0.0883883i
129129 0 0
130130 0 0
131131 −3.79796 −0.331829 −0.165915 0.986140i 0.553058π-0.553058\pi
−0.165915 + 0.986140i 0.553058π0.553058\pi
132132 0 0
133133 − 3.34847i − 0.290349i
134134 0.348469 0.0301032
135135 0 0
136136 −4.89898 −0.420084
137137 − 3.00000i − 0.256307i −0.991754 0.128154i 0.959095π-0.959095\pi
0.991754 0.128154i 0.0409051π-0.0409051\pi
138138 0 0
139139 4.00000 0.339276 0.169638 0.985506i 0.445740π-0.445740\pi
0.169638 + 0.985506i 0.445740π0.445740\pi
140140 0 0
141141 0 0
142142 13.3485i 1.12018i
143143 2.20204i 0.184144i
144144 0 0
145145 0 0
146146 1.00000 0.0827606
147147 0 0
148148 − 11.3485i − 0.932838i
149149 6.00000 0.491539 0.245770 0.969328i 0.420959π-0.420959\pi
0.245770 + 0.969328i 0.420959π0.420959\pi
150150 0 0
151151 20.0000 1.62758 0.813788 0.581161i 0.197401π-0.197401\pi
0.813788 + 0.581161i 0.197401π0.197401\pi
152152 7.44949i 0.604233i
153153 0 0
154154 2.20204 0.177446
155155 0 0
156156 0 0
157157 19.7980i 1.58005i 0.613075 + 0.790025i 0.289932π0.289932\pi
−0.613075 + 0.790025i 0.710068π0.710068\pi
158158 − 16.6969i − 1.32834i
159159 0 0
160160 0 0
161161 1.10102 0.0867726
162162 0 0
163163 7.44949i 0.583489i 0.956496 + 0.291745i 0.0942357π0.0942357\pi
−0.956496 + 0.291745i 0.905764π0.905764\pi
164164 −9.00000 −0.702782
165165 0 0
166166 5.44949 0.422962
167167 − 19.5959i − 1.51638i −0.652035 0.758189i 0.726085π-0.726085\pi
0.652035 0.758189i 0.273915π-0.273915\pi
168168 0 0
169169 12.7980 0.984458
170170 0 0
171171 0 0
172172 − 2.55051i − 0.194475i
173173 9.79796i 0.744925i 0.928047 + 0.372463i 0.121486π0.121486\pi
−0.928047 + 0.372463i 0.878514π0.878514\pi
174174 0 0
175175 0 0
176176 −4.89898 −0.369274
177177 0 0
178178 9.00000i 0.674579i
179179 −9.24745 −0.691187 −0.345593 0.938384i 0.612322π-0.612322\pi
−0.345593 + 0.938384i 0.612322π0.612322\pi
180180 0 0
181181 17.7980 1.32291 0.661456 0.749984i 0.269939π-0.269939\pi
0.661456 + 0.749984i 0.269939π0.269939\pi
182182 0.202041i 0.0149763i
183183 0 0
184184 −2.44949 −0.180579
185185 0 0
186186 0 0
187187 24.0000i 1.75505i
188188 − 10.8990i − 0.794890i
189189 0 0
190190 0 0
191191 −1.10102 −0.0796670 −0.0398335 0.999206i 0.512683π-0.512683\pi
−0.0398335 + 0.999206i 0.512683π0.512683\pi
192192 0 0
193193 20.0000i 1.43963i 0.694165 + 0.719816i 0.255774π0.255774\pi
−0.694165 + 0.719816i 0.744226π0.744226\pi
194194 8.79796 0.631657
195195 0 0
196196 −6.79796 −0.485568
197197 0.247449i 0.0176300i 0.999961 + 0.00881500i 0.00280594π0.00280594\pi
−0.999961 + 0.00881500i 0.997194π0.997194\pi
198198 0 0
199199 13.7980 0.978111 0.489056 0.872253i 0.337341π-0.337341\pi
0.489056 + 0.872253i 0.337341π0.337341\pi
200200 0 0
201201 0 0
202202 8.44949i 0.594504i
203203 1.10102i 0.0772765i
204204 0 0
205205 0 0
206206 −16.6969 −1.16333
207207 0 0
208208 − 0.449490i − 0.0311665i
209209 36.4949 2.52440
210210 0 0
211211 −3.44949 −0.237473 −0.118736 0.992926i 0.537884π-0.537884\pi
−0.118736 + 0.992926i 0.537884π0.537884\pi
212212 3.55051i 0.243850i
213213 0 0
214214 9.24745 0.632143
215215 0 0
216216 0 0
217217 2.00000i 0.135769i
218218 − 5.55051i − 0.375928i
219219 0 0
220220 0 0
221221 −2.20204 −0.148125
222222 0 0
223223 17.7980i 1.19184i 0.803044 + 0.595920i 0.203212π0.203212\pi
−0.803044 + 0.595920i 0.796788π0.796788\pi
224224 −0.449490 −0.0300328
225225 0 0
226226 4.10102 0.272796
227227 − 13.6515i − 0.906084i −0.891489 0.453042i 0.850339π-0.850339\pi
0.891489 0.453042i 0.149661π-0.149661\pi
228228 0 0
229229 −13.1464 −0.868740 −0.434370 0.900734i 0.643029π-0.643029\pi
−0.434370 + 0.900734i 0.643029π0.643029\pi
230230 0 0
231231 0 0
232232 − 2.44949i − 0.160817i
233233 − 23.6969i − 1.55244i −0.630463 0.776219i 0.717135π-0.717135\pi
0.630463 0.776219i 0.282865π-0.282865\pi
234234 0 0
235235 0 0
236236 −5.44949 −0.354732
237237 0 0
238238 2.20204i 0.142737i
239239 −14.4495 −0.934660 −0.467330 0.884083i 0.654784π-0.654784\pi
−0.467330 + 0.884083i 0.654784π0.654784\pi
240240 0 0
241241 −3.20204 −0.206262 −0.103131 0.994668i 0.532886π-0.532886\pi
−0.103131 + 0.994668i 0.532886π0.532886\pi
242242 13.0000i 0.835672i
243243 0 0
244244 −8.00000 −0.512148
245245 0 0
246246 0 0
247247 3.34847i 0.213058i
248248 − 4.44949i − 0.282543i
249249 0 0
250250 0 0
251251 −0.550510 −0.0347479 −0.0173739 0.999849i 0.505531π-0.505531\pi
−0.0173739 + 0.999849i 0.505531π0.505531\pi
252252 0 0
253253 12.0000i 0.754434i
254254 3.34847 0.210102
255255 0 0
256256 1.00000 0.0625000
257257 12.7980i 0.798315i 0.916882 + 0.399157i 0.130697π0.130697\pi
−0.916882 + 0.399157i 0.869303π0.869303\pi
258258 0 0
259259 −5.10102 −0.316962
260260 0 0
261261 0 0
262262 − 3.79796i − 0.234639i
263263 20.4495i 1.26097i 0.776202 + 0.630485i 0.217144π0.217144\pi
−0.776202 + 0.630485i 0.782856π0.782856\pi
264264 0 0
265265 0 0
266266 3.34847 0.205308
267267 0 0
268268 0.348469i 0.0212861i
269269 −14.4495 −0.881001 −0.440500 0.897752i 0.645199π-0.645199\pi
−0.440500 + 0.897752i 0.645199π0.645199\pi
270270 0 0
271271 15.3485 0.932353 0.466177 0.884692i 0.345631π-0.345631\pi
0.466177 + 0.884692i 0.345631π0.345631\pi
272272 − 4.89898i − 0.297044i
273273 0 0
274274 3.00000 0.181237
275275 0 0
276276 0 0
277277 1.55051i 0.0931611i 0.998915 + 0.0465806i 0.0148324π0.0148324\pi
−0.998915 + 0.0465806i 0.985168π0.985168\pi
278278 4.00000i 0.239904i
279279 0 0
280280 0 0
281281 19.1010 1.13947 0.569736 0.821828i 0.307046π-0.307046\pi
0.569736 + 0.821828i 0.307046π0.307046\pi
282282 0 0
283283 − 13.2474i − 0.787479i −0.919222 0.393740i 0.871181π-0.871181\pi
0.919222 0.393740i 0.128819π-0.128819\pi
284284 −13.3485 −0.792086
285285 0 0
286286 −2.20204 −0.130209
287287 4.04541i 0.238793i
288288 0 0
289289 −7.00000 −0.411765
290290 0 0
291291 0 0
292292 1.00000i 0.0585206i
293293 16.0454i 0.937383i 0.883362 + 0.468691i 0.155274π0.155274\pi
−0.883362 + 0.468691i 0.844726π0.844726\pi
294294 0 0
295295 0 0
296296 11.3485 0.659616
297297 0 0
298298 6.00000i 0.347571i
299299 −1.10102 −0.0636737
300300 0 0
301301 −1.14643 −0.0660790
302302 20.0000i 1.15087i
303303 0 0
304304 −7.44949 −0.427258
305305 0 0
306306 0 0
307307 − 22.6969i − 1.29538i −0.761903 0.647691i 0.775735π-0.775735\pi
0.761903 0.647691i 0.224265π-0.224265\pi
308308 2.20204i 0.125473i
309309 0 0
310310 0 0
311311 −1.10102 −0.0624331 −0.0312166 0.999513i 0.509938π-0.509938\pi
−0.0312166 + 0.999513i 0.509938π0.509938\pi
312312 0 0
313313 − 5.89898i − 0.333430i −0.986005 0.166715i 0.946684π-0.946684\pi
0.986005 0.166715i 0.0533160π-0.0533160\pi
314314 −19.7980 −1.11726
315315 0 0
316316 16.6969 0.939276
317317 − 17.1464i − 0.963039i −0.876435 0.481520i 0.840085π-0.840085\pi
0.876435 0.481520i 0.159915π-0.159915\pi
318318 0 0
319319 −12.0000 −0.671871
320320 0 0
321321 0 0
322322 1.10102i 0.0613575i
323323 36.4949i 2.03063i
324324 0 0
325325 0 0
326326 −7.44949 −0.412589
327327 0 0
328328 − 9.00000i − 0.496942i
329329 −4.89898 −0.270089
330330 0 0
331331 6.34847 0.348943 0.174472 0.984662i 0.444178π-0.444178\pi
0.174472 + 0.984662i 0.444178π0.444178\pi
332332 5.44949i 0.299080i
333333 0 0
334334 19.5959 1.07224
335335 0 0
336336 0 0
337337 20.8990i 1.13844i 0.822185 + 0.569220i 0.192755π0.192755\pi
−0.822185 + 0.569220i 0.807245π0.807245\pi
338338 12.7980i 0.696117i
339339 0 0
340340 0 0
341341 −21.7980 −1.18043
342342 0 0
343343 6.20204i 0.334879i
344344 2.55051 0.137514
345345 0 0
346346 −9.79796 −0.526742
347347 − 12.0000i − 0.644194i −0.946707 0.322097i 0.895612π-0.895612\pi
0.946707 0.322097i 0.104388π-0.104388\pi
348348 0 0
349349 −14.0000 −0.749403 −0.374701 0.927146i 0.622255π-0.622255\pi
−0.374701 + 0.927146i 0.622255π0.622255\pi
350350 0 0
351351 0 0
352352 − 4.89898i − 0.261116i
353353 − 9.00000i − 0.479022i −0.970894 0.239511i 0.923013π-0.923013\pi
0.970894 0.239511i 0.0769871π-0.0769871\pi
354354 0 0
355355 0 0
356356 −9.00000 −0.476999
357357 0 0
358358 − 9.24745i − 0.488743i
359359 14.2020 0.749555 0.374778 0.927115i 0.377719π-0.377719\pi
0.374778 + 0.927115i 0.377719π0.377719\pi
360360 0 0
361361 36.4949 1.92078
362362 17.7980i 0.935440i
363363 0 0
364364 −0.202041 −0.0105898
365365 0 0
366366 0 0
367367 12.6969i 0.662775i 0.943495 + 0.331387i 0.107517π0.107517\pi
−0.943495 + 0.331387i 0.892483π0.892483\pi
368368 − 2.44949i − 0.127688i
369369 0 0
370370 0 0
371371 1.59592 0.0828559
372372 0 0
373373 − 23.5959i − 1.22175i −0.791727 0.610875i 0.790818π-0.790818\pi
0.791727 0.610875i 0.209182π-0.209182\pi
374374 −24.0000 −1.24101
375375 0 0
376376 10.8990 0.562072
377377 − 1.10102i − 0.0567054i
378378 0 0
379379 8.89898 0.457110 0.228555 0.973531i 0.426600π-0.426600\pi
0.228555 + 0.973531i 0.426600π0.426600\pi
380380 0 0
381381 0 0
382382 − 1.10102i − 0.0563331i
383383 21.5505i 1.10118i 0.834776 + 0.550590i 0.185597π0.185597\pi
−0.834776 + 0.550590i 0.814403π0.814403\pi
384384 0 0
385385 0 0
386386 −20.0000 −1.01797
387387 0 0
388388 8.79796i 0.446649i
389389 −25.5959 −1.29776 −0.648882 0.760889i 0.724763π-0.724763\pi
−0.648882 + 0.760889i 0.724763π0.724763\pi
390390 0 0
391391 −12.0000 −0.606866
392392 − 6.79796i − 0.343349i
393393 0 0
394394 −0.247449 −0.0124663
395395 0 0
396396 0 0
397397 17.5959i 0.883114i 0.897233 + 0.441557i 0.145574π0.145574\pi
−0.897233 + 0.441557i 0.854426π0.854426\pi
398398 13.7980i 0.691629i
399399 0 0
400400 0 0
401401 38.6969 1.93243 0.966216 0.257732i 0.0829752π-0.0829752\pi
0.966216 + 0.257732i 0.0829752π0.0829752\pi
402402 0 0
403403 − 2.00000i − 0.0996271i
404404 −8.44949 −0.420378
405405 0 0
406406 −1.10102 −0.0546427
407407 − 55.5959i − 2.75579i
408408 0 0
409409 −0.101021 −0.00499514 −0.00249757 0.999997i 0.500795π-0.500795\pi
−0.00249757 + 0.999997i 0.500795π0.500795\pi
410410 0 0
411411 0 0
412412 − 16.6969i − 0.822599i
413413 2.44949i 0.120532i
414414 0 0
415415 0 0
416416 0.449490 0.0220380
417417 0 0
418418 36.4949i 1.78502i
419419 26.1464 1.27734 0.638668 0.769482i 0.279486π-0.279486\pi
0.638668 + 0.769482i 0.279486π0.279486\pi
420420 0 0
421421 −26.0454 −1.26938 −0.634688 0.772769i 0.718871π-0.718871\pi
−0.634688 + 0.772769i 0.718871π0.718871\pi
422422 − 3.44949i − 0.167919i
423423 0 0
424424 −3.55051 −0.172428
425425 0 0
426426 0 0
427427 3.59592i 0.174019i
428428 9.24745i 0.446992i
429429 0 0
430430 0 0
431431 25.3485 1.22099 0.610496 0.792019i 0.290970π-0.290970\pi
0.610496 + 0.792019i 0.290970π0.290970\pi
432432 0 0
433433 9.59592i 0.461150i 0.973055 + 0.230575i 0.0740608π0.0740608\pi
−0.973055 + 0.230575i 0.925939π0.925939\pi
434434 −2.00000 −0.0960031
435435 0 0
436436 5.55051 0.265821
437437 18.2474i 0.872894i
438438 0 0
439439 −3.34847 −0.159814 −0.0799069 0.996802i 0.525462π-0.525462\pi
−0.0799069 + 0.996802i 0.525462π0.525462\pi
440440 0 0
441441 0 0
442442 − 2.20204i − 0.104740i
443443 8.20204i 0.389691i 0.980834 + 0.194845i 0.0624205π0.0624205\pi
−0.980834 + 0.194845i 0.937579π0.937579\pi
444444 0 0
445445 0 0
446446 −17.7980 −0.842758
447447 0 0
448448 − 0.449490i − 0.0212364i
449449 28.5959 1.34952 0.674762 0.738035i 0.264246π-0.264246\pi
0.674762 + 0.738035i 0.264246π0.264246\pi
450450 0 0
451451 −44.0908 −2.07616
452452 4.10102i 0.192896i
453453 0 0
454454 13.6515 0.640698
455455 0 0
456456 0 0
457457 − 13.6969i − 0.640716i −0.947297 0.320358i 0.896197π-0.896197\pi
0.947297 0.320358i 0.103803π-0.103803\pi
458458 − 13.1464i − 0.614292i
459459 0 0
460460 0 0
461461 4.65153 0.216643 0.108322 0.994116i 0.465452π-0.465452\pi
0.108322 + 0.994116i 0.465452π0.465452\pi
462462 0 0
463463 − 5.34847i − 0.248564i −0.992247 0.124282i 0.960337π-0.960337\pi
0.992247 0.124282i 0.0396628π-0.0396628\pi
464464 2.44949 0.113715
465465 0 0
466466 23.6969 1.09774
467467 10.3485i 0.478870i 0.970912 + 0.239435i 0.0769622π0.0769622\pi
−0.970912 + 0.239435i 0.923038π0.923038\pi
468468 0 0
469469 0.156633 0.00723266
470470 0 0
471471 0 0
472472 − 5.44949i − 0.250833i
473473 − 12.4949i − 0.574516i
474474 0 0
475475 0 0
476476 −2.20204 −0.100930
477477 0 0
478478 − 14.4495i − 0.660904i
479479 −0.247449 −0.0113062 −0.00565311 0.999984i 0.501799π-0.501799\pi
−0.00565311 + 0.999984i 0.501799π0.501799\pi
480480 0 0
481481 5.10102 0.232587
482482 − 3.20204i − 0.145849i
483483 0 0
484484 −13.0000 −0.590909
485485 0 0
486486 0 0
487487 24.4495i 1.10791i 0.832546 + 0.553956i 0.186882π0.186882\pi
−0.832546 + 0.553956i 0.813118π0.813118\pi
488488 − 8.00000i − 0.362143i
489489 0 0
490490 0 0
491491 −27.2474 −1.22966 −0.614830 0.788660i 0.710775π-0.710775\pi
−0.614830 + 0.788660i 0.710775π0.710775\pi
492492 0 0
493493 − 12.0000i − 0.540453i
494494 −3.34847 −0.150655
495495 0 0
496496 4.44949 0.199788
497497 6.00000i 0.269137i
498498 0 0
499499 8.34847 0.373729 0.186864 0.982386i 0.440167π-0.440167\pi
0.186864 + 0.982386i 0.440167π0.440167\pi
500500 0 0
501501 0 0
502502 − 0.550510i − 0.0245705i
503503 21.5505i 0.960890i 0.877025 + 0.480445i 0.159525π0.159525\pi
−0.877025 + 0.480445i 0.840475π0.840475\pi
504504 0 0
505505 0 0
506506 −12.0000 −0.533465
507507 0 0
508508 3.34847i 0.148564i
509509 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
510510 0 0
511511 0.449490 0.0198843
512512 1.00000i 0.0441942i
513513 0 0
514514 −12.7980 −0.564494
515515 0 0
516516 0 0
517517 − 53.3939i − 2.34826i
518518 − 5.10102i − 0.224126i
519519 0 0
520520 0 0
521521 −29.3939 −1.28777 −0.643885 0.765123i 0.722678π-0.722678\pi
−0.643885 + 0.765123i 0.722678π0.722678\pi
522522 0 0
523523 − 20.3485i − 0.889776i −0.895586 0.444888i 0.853243π-0.853243\pi
0.895586 0.444888i 0.146757π-0.146757\pi
524524 3.79796 0.165915
525525 0 0
526526 −20.4495 −0.891640
527527 − 21.7980i − 0.949534i
528528 0 0
529529 17.0000 0.739130
530530 0 0
531531 0 0
532532 3.34847i 0.145175i
533533 − 4.04541i − 0.175226i
534534 0 0
535535 0 0
536536 −0.348469 −0.0150516
537537 0 0
538538 − 14.4495i − 0.622962i
539539 −33.3031 −1.43446
540540 0 0
541541 −37.7980 −1.62506 −0.812531 0.582919i 0.801911π-0.801911\pi
−0.812531 + 0.582919i 0.801911π0.801911\pi
542542 15.3485i 0.659273i
543543 0 0
544544 4.89898 0.210042
545545 0 0
546546 0 0
547547 − 15.6515i − 0.669211i −0.942358 0.334606i 0.891397π-0.891397\pi
0.942358 0.334606i 0.108603π-0.108603\pi
548548 3.00000i 0.128154i
549549 0 0
550550 0 0
551551 −18.2474 −0.777367
552552 0 0
553553 − 7.50510i − 0.319149i
554554 −1.55051 −0.0658749
555555 0 0
556556 −4.00000 −0.169638
557557 − 41.3939i − 1.75391i −0.480568 0.876957i 0.659570π-0.659570\pi
0.480568 0.876957i 0.340430π-0.340430\pi
558558 0 0
559559 1.14643 0.0484887
560560 0 0
561561 0 0
562562 19.1010i 0.805728i
563563 − 23.9444i − 1.00914i −0.863372 0.504568i 0.831652π-0.831652\pi
0.863372 0.504568i 0.168348π-0.168348\pi
564564 0 0
565565 0 0
566566 13.2474 0.556832
567567 0 0
568568 − 13.3485i − 0.560089i
569569 −33.7980 −1.41688 −0.708442 0.705769i 0.750602π-0.750602\pi
−0.708442 + 0.705769i 0.750602π0.750602\pi
570570 0 0
571571 25.9444 1.08574 0.542869 0.839817i 0.317338π-0.317338\pi
0.542869 + 0.839817i 0.317338π0.317338\pi
572572 − 2.20204i − 0.0920720i
573573 0 0
574574 −4.04541 −0.168852
575575 0 0
576576 0 0
577577 − 40.3939i − 1.68162i −0.541331 0.840810i 0.682079π-0.682079\pi
0.541331 0.840810i 0.317921π-0.317921\pi
578578 − 7.00000i − 0.291162i
579579 0 0
580580 0 0
581581 2.44949 0.101622
582582 0 0
583583 17.3939i 0.720381i
584584 −1.00000 −0.0413803
585585 0 0
586586 −16.0454 −0.662830
587587 26.6969i 1.10190i 0.834538 + 0.550950i 0.185735π0.185735\pi
−0.834538 + 0.550950i 0.814265π0.814265\pi
588588 0 0
589589 −33.1464 −1.36577
590590 0 0
591591 0 0
592592 11.3485i 0.466419i
593593 − 7.89898i − 0.324372i −0.986760 0.162186i 0.948146π-0.948146\pi
0.986760 0.162186i 0.0518545π-0.0518545\pi
594594 0 0
595595 0 0
596596 −6.00000 −0.245770
597597 0 0
598598 − 1.10102i − 0.0450241i
599599 22.6515 0.925516 0.462758 0.886485i 0.346860π-0.346860\pi
0.462758 + 0.886485i 0.346860π0.346860\pi
600600 0 0
601601 −16.4949 −0.672841 −0.336420 0.941712i 0.609216π-0.609216\pi
−0.336420 + 0.941712i 0.609216π0.609216\pi
602602 − 1.14643i − 0.0467249i
603603 0 0
604604 −20.0000 −0.813788
605605 0 0
606606 0 0
607607 − 3.34847i − 0.135910i −0.997688 0.0679551i 0.978353π-0.978353\pi
0.997688 0.0679551i 0.0216475π-0.0216475\pi
608608 − 7.44949i − 0.302117i
609609 0 0
610610 0 0
611611 4.89898 0.198191
612612 0 0
613613 12.0454i 0.486509i 0.969962 + 0.243255i 0.0782151π0.0782151\pi
−0.969962 + 0.243255i 0.921785π0.921785\pi
614614 22.6969 0.915974
615615 0 0
616616 −2.20204 −0.0887228
617617 − 44.3939i − 1.78723i −0.448834 0.893615i 0.648161π-0.648161\pi
0.448834 0.893615i 0.351839π-0.351839\pi
618618 0 0
619619 31.7423 1.27583 0.637916 0.770106i 0.279797π-0.279797\pi
0.637916 + 0.770106i 0.279797π0.279797\pi
620620 0 0
621621 0 0
622622 − 1.10102i − 0.0441469i
623623 4.04541i 0.162076i
624624 0 0
625625 0 0
626626 5.89898 0.235771
627627 0 0
628628 − 19.7980i − 0.790025i
629629 55.5959 2.21675
630630 0 0
631631 −6.20204 −0.246899 −0.123450 0.992351i 0.539396π-0.539396\pi
−0.123450 + 0.992351i 0.539396π0.539396\pi
632632 16.6969i 0.664169i
633633 0 0
634634 17.1464 0.680972
635635 0 0
636636 0 0
637637 − 3.05561i − 0.121068i
638638 − 12.0000i − 0.475085i
639639 0 0
640640 0 0
641641 −14.3939 −0.568524 −0.284262 0.958747i 0.591749π-0.591749\pi
−0.284262 + 0.958747i 0.591749π0.591749\pi
642642 0 0
643643 − 17.6515i − 0.696108i −0.937474 0.348054i 0.886843π-0.886843\pi
0.937474 0.348054i 0.113157π-0.113157\pi
644644 −1.10102 −0.0433863
645645 0 0
646646 −36.4949 −1.43587
647647 − 24.2474i − 0.953266i −0.879102 0.476633i 0.841857π-0.841857\pi
0.879102 0.476633i 0.158143π-0.158143\pi
648648 0 0
649649 −26.6969 −1.04795
650650 0 0
651651 0 0
652652 − 7.44949i − 0.291745i
653653 18.2474i 0.714078i 0.934090 + 0.357039i 0.116214π0.116214\pi
−0.934090 + 0.357039i 0.883786π0.883786\pi
654654 0 0
655655 0 0
656656 9.00000 0.351391
657657 0 0
658658 − 4.89898i − 0.190982i
659659 −9.85357 −0.383841 −0.191920 0.981411i 0.561472π-0.561472\pi
−0.191920 + 0.981411i 0.561472π0.561472\pi
660660 0 0
661661 7.39388 0.287588 0.143794 0.989608i 0.454070π-0.454070\pi
0.143794 + 0.989608i 0.454070π0.454070\pi
662662 6.34847i 0.246740i
663663 0 0
664664 −5.44949 −0.211481
665665 0 0
666666 0 0
667667 − 6.00000i − 0.232321i
668668 19.5959i 0.758189i
669669 0 0
670670 0 0
671671 −39.1918 −1.51298
672672 0 0
673673 22.6969i 0.874903i 0.899242 + 0.437451i 0.144119π0.144119\pi
−0.899242 + 0.437451i 0.855881π0.855881\pi
674674 −20.8990 −0.804999
675675 0 0
676676 −12.7980 −0.492229
677677 25.8434i 0.993241i 0.867968 + 0.496621i 0.165426π0.165426\pi
−0.867968 + 0.496621i 0.834574π0.834574\pi
678678 0 0
679679 3.95459 0.151763
680680 0 0
681681 0 0
682682 − 21.7980i − 0.834687i
683683 41.9444i 1.60496i 0.596681 + 0.802479i 0.296486π0.296486\pi
−0.596681 + 0.802479i 0.703514π0.703514\pi
684684 0 0
685685 0 0
686686 −6.20204 −0.236795
687687 0 0
688688 2.55051i 0.0972373i
689689 −1.59592 −0.0607996
690690 0 0
691691 39.0454 1.48536 0.742679 0.669648i 0.233555π-0.233555\pi
0.742679 + 0.669648i 0.233555π0.233555\pi
692692 − 9.79796i − 0.372463i
693693 0 0
694694 12.0000 0.455514
695695 0 0
696696 0 0
697697 − 44.0908i − 1.67006i
698698 − 14.0000i − 0.529908i
699699 0 0
700700 0 0
701701 33.7980 1.27653 0.638266 0.769816i 0.279652π-0.279652\pi
0.638266 + 0.769816i 0.279652π0.279652\pi
702702 0 0
703703 − 84.5403i − 3.18850i
704704 4.89898 0.184637
705705 0 0
706706 9.00000 0.338719
707707 3.79796i 0.142837i
708708 0 0
709709 −4.44949 −0.167104 −0.0835520 0.996503i 0.526626π-0.526626\pi
−0.0835520 + 0.996503i 0.526626π0.526626\pi
710710 0 0
711711 0 0
712712 − 9.00000i − 0.337289i
713713 − 10.8990i − 0.408170i
714714 0 0
715715 0 0
716716 9.24745 0.345593
717717 0 0
718718 14.2020i 0.530015i
719719 −7.95459 −0.296656 −0.148328 0.988938i 0.547389π-0.547389\pi
−0.148328 + 0.988938i 0.547389π0.547389\pi
720720 0 0
721721 −7.50510 −0.279505
722722 36.4949i 1.35820i
723723 0 0
724724 −17.7980 −0.661456
725725 0 0
726726 0 0
727727 16.0000i 0.593407i 0.954970 + 0.296704i 0.0958873π0.0958873\pi
−0.954970 + 0.296704i 0.904113π0.904113\pi
728728 − 0.202041i − 0.00748814i
729729 0 0
730730 0 0
731731 12.4949 0.462140
732732 0 0
733733 26.0000i 0.960332i 0.877178 + 0.480166i 0.159424π0.159424\pi
−0.877178 + 0.480166i 0.840576π0.840576\pi
734734 −12.6969 −0.468653
735735 0 0
736736 2.44949 0.0902894
737737 1.70714i 0.0628834i
738738 0 0
739739 −3.04541 −0.112027 −0.0560136 0.998430i 0.517839π-0.517839\pi
−0.0560136 + 0.998430i 0.517839π0.517839\pi
740740 0 0
741741 0 0
742742 1.59592i 0.0585880i
743743 49.3485i 1.81042i 0.424965 + 0.905210i 0.360286π0.360286\pi
−0.424965 + 0.905210i 0.639714π0.639714\pi
744744 0 0
745745 0 0
746746 23.5959 0.863908
747747 0 0
748748 − 24.0000i − 0.877527i
749749 4.15663 0.151880
750750 0 0
751751 −5.95459 −0.217286 −0.108643 0.994081i 0.534651π-0.534651\pi
−0.108643 + 0.994081i 0.534651π0.534651\pi
752752 10.8990i 0.397445i
753753 0 0
754754 1.10102 0.0400968
755755 0 0
756756 0 0
757757 38.0454i 1.38278i 0.722480 + 0.691392i 0.243002π0.243002\pi
−0.722480 + 0.691392i 0.756998π0.756998\pi
758758 8.89898i 0.323225i
759759 0 0
760760 0 0
761761 13.8990 0.503838 0.251919 0.967748i 0.418938π-0.418938\pi
0.251919 + 0.967748i 0.418938π0.418938\pi
762762 0 0
763763 − 2.49490i − 0.0903214i
764764 1.10102 0.0398335
765765 0 0
766766 −21.5505 −0.778652
767767 − 2.44949i − 0.0884459i
768768 0 0
769769 28.1918 1.01662 0.508312 0.861173i 0.330270π-0.330270\pi
0.508312 + 0.861173i 0.330270π0.330270\pi
770770 0 0
771771 0 0
772772 − 20.0000i − 0.719816i
773773 − 10.4041i − 0.374209i −0.982340 0.187104i 0.940090π-0.940090\pi
0.982340 0.187104i 0.0599103π-0.0599103\pi
774774 0 0
775775 0 0
776776 −8.79796 −0.315828
777777 0 0
778778 − 25.5959i − 0.917658i
779779 −67.0454 −2.40215
780780 0 0
781781 −65.3939 −2.33998
782782 − 12.0000i − 0.429119i
783783 0 0
784784 6.79796 0.242784
785785 0 0
786786 0 0
787787 − 34.6969i − 1.23681i −0.785859 0.618406i 0.787779π-0.787779\pi
0.785859 0.618406i 0.212221π-0.212221\pi
788788 − 0.247449i − 0.00881500i
789789 0 0
790790 0 0
791791 1.84337 0.0655426
792792 0 0
793793 − 3.59592i − 0.127695i
794794 −17.5959 −0.624456
795795 0 0
796796 −13.7980 −0.489056
797797 30.2474i 1.07142i 0.844402 + 0.535710i 0.179956π0.179956\pi
−0.844402 + 0.535710i 0.820044π0.820044\pi
798798 0 0
799799 53.3939 1.88894
800800 0 0
801801 0 0
802802 38.6969i 1.36644i
803803 4.89898i 0.172881i
804804 0 0
805805 0 0
806806 2.00000 0.0704470
807807 0 0
808808 − 8.44949i − 0.297252i
809809 6.30306 0.221604 0.110802 0.993843i 0.464658π-0.464658\pi
0.110802 + 0.993843i 0.464658π0.464658\pi
810810 0 0
811811 −28.5505 −1.00254 −0.501272 0.865290i 0.667134π-0.667134\pi
−0.501272 + 0.865290i 0.667134π0.667134\pi
812812 − 1.10102i − 0.0386382i
813813 0 0
814814 55.5959 1.94864
815815 0 0
816816 0 0
817817 − 19.0000i − 0.664726i
818818 − 0.101021i − 0.00353210i
819819 0 0
820820 0 0
821821 27.1918 0.949002 0.474501 0.880255i 0.342629π-0.342629\pi
0.474501 + 0.880255i 0.342629π0.342629\pi
822822 0 0
823823 − 17.1010i − 0.596104i −0.954550 0.298052i 0.903663π-0.903663\pi
0.954550 0.298052i 0.0963369π-0.0963369\pi
824824 16.6969 0.581665
825825 0 0
826826 −2.44949 −0.0852286
827827 35.9444i 1.24991i 0.780661 + 0.624954i 0.214882π0.214882\pi
−0.780661 + 0.624954i 0.785118π0.785118\pi
828828 0 0
829829 46.7423 1.62343 0.811714 0.584055i 0.198535π-0.198535\pi
0.811714 + 0.584055i 0.198535π0.198535\pi
830830 0 0
831831 0 0
832832 0.449490i 0.0155833i
833833 − 33.3031i − 1.15388i
834834 0 0
835835 0 0
836836 −36.4949 −1.26220
837837 0 0
838838 26.1464i 0.903213i
839839 −37.3485 −1.28941 −0.644706 0.764430i 0.723020π-0.723020\pi
−0.644706 + 0.764430i 0.723020π0.723020\pi
840840 0 0
841841 −23.0000 −0.793103
842842 − 26.0454i − 0.897584i
843843 0 0
844844 3.44949 0.118736
845845 0 0
846846 0 0
847847 5.84337i 0.200780i
848848 − 3.55051i − 0.121925i
849849 0 0
850850 0 0
851851 27.7980 0.952902
852852 0 0
853853 − 46.0000i − 1.57501i −0.616308 0.787505i 0.711372π-0.711372\pi
0.616308 0.787505i 0.288628π-0.288628\pi
854854 −3.59592 −0.123050
855855 0 0
856856 −9.24745 −0.316071
857857 49.8990i 1.70452i 0.523121 + 0.852258i 0.324768π0.324768\pi
−0.523121 + 0.852258i 0.675232π0.675232\pi
858858 0 0
859859 20.3485 0.694281 0.347140 0.937813i 0.387153π-0.387153\pi
0.347140 + 0.937813i 0.387153π0.387153\pi
860860 0 0
861861 0 0
862862 25.3485i 0.863372i
863863 − 43.8434i − 1.49245i −0.665696 0.746223i 0.731865π-0.731865\pi
0.665696 0.746223i 0.268135π-0.268135\pi
864864 0 0
865865 0 0
866866 −9.59592 −0.326083
867867 0 0
868868 − 2.00000i − 0.0678844i
869869 81.7980 2.77481
870870 0 0
871871 −0.156633 −0.00530732
872872 5.55051i 0.187964i
873873 0 0
874874 −18.2474 −0.617229
875875 0 0
876876 0 0
877877 31.7980i 1.07374i 0.843665 + 0.536870i 0.180394π0.180394\pi
−0.843665 + 0.536870i 0.819606π0.819606\pi
878878 − 3.34847i − 0.113005i
879879 0 0
880880 0 0
881881 38.6969 1.30373 0.651866 0.758334i 0.273986π-0.273986\pi
0.651866 + 0.758334i 0.273986π0.273986\pi
882882 0 0
883883 47.7980i 1.60853i 0.594271 + 0.804265i 0.297441π0.297441\pi
−0.594271 + 0.804265i 0.702559π0.702559\pi
884884 2.20204 0.0740627
885885 0 0
886886 −8.20204 −0.275553
887887 − 5.50510i − 0.184843i −0.995720 0.0924216i 0.970539π-0.970539\pi
0.995720 0.0924216i 0.0294608π-0.0294608\pi
888888 0 0
889889 1.50510 0.0504795
890890 0 0
891891 0 0
892892 − 17.7980i − 0.595920i
893893 − 81.1918i − 2.71698i
894894 0 0
895895 0 0
896896 0.449490 0.0150164
897897 0 0
898898 28.5959i 0.954258i
899899 10.8990 0.363501
900900 0 0
901901 −17.3939 −0.579474
902902 − 44.0908i − 1.46806i
903903 0 0
904904 −4.10102 −0.136398
905905 0 0
906906 0 0
907907 − 36.3485i − 1.20693i −0.797389 0.603466i 0.793786π-0.793786\pi
0.797389 0.603466i 0.206214π-0.206214\pi
908908 13.6515i 0.453042i
909909 0 0
910910 0 0
911911 −7.34847 −0.243466 −0.121733 0.992563i 0.538845π-0.538845\pi
−0.121733 + 0.992563i 0.538845π0.538845\pi
912912 0 0
913913 26.6969i 0.883540i
914914 13.6969 0.453054
915915 0 0
916916 13.1464 0.434370
917917 − 1.70714i − 0.0563748i
918918 0 0
919919 −3.34847 −0.110456 −0.0552279 0.998474i 0.517589π-0.517589\pi
−0.0552279 + 0.998474i 0.517589π0.517589\pi
920920 0 0
921921 0 0
922922 4.65153i 0.153190i
923923 − 6.00000i − 0.197492i
924924 0 0
925925 0 0
926926 5.34847 0.175762
927927 0 0
928928 2.44949i 0.0804084i
929929 51.1918 1.67955 0.839775 0.542935i 0.182687π-0.182687\pi
0.839775 + 0.542935i 0.182687π0.182687\pi
930930 0 0
931931 −50.6413 −1.65970
932932 23.6969i 0.776219i
933933 0 0
934934 −10.3485 −0.338612
935935 0 0
936936 0 0
937937 − 7.20204i − 0.235280i −0.993056 0.117640i 0.962467π-0.962467\pi
0.993056 0.117640i 0.0375330π-0.0375330\pi
938938 0.156633i 0.00511426i
939939 0 0
940940 0 0
941941 53.6413 1.74866 0.874329 0.485334i 0.161302π-0.161302\pi
0.874329 + 0.485334i 0.161302π0.161302\pi
942942 0 0
943943 − 22.0454i − 0.717897i
944944 5.44949 0.177366
945945 0 0
946946 12.4949 0.406244
947947 − 26.1464i − 0.849645i −0.905277 0.424822i 0.860337π-0.860337\pi
0.905277 0.424822i 0.139663π-0.139663\pi
948948 0 0
949949 −0.449490 −0.0145911
950950 0 0
951951 0 0
952952 − 2.20204i − 0.0713686i
953953 2.20204i 0.0713311i 0.999364 + 0.0356656i 0.0113551π0.0113551\pi
−0.999364 + 0.0356656i 0.988645π0.988645\pi
954954 0 0
955955 0 0
956956 14.4495 0.467330
957957 0 0
958958 − 0.247449i − 0.00799471i
959959 1.34847 0.0435443
960960 0 0
961961 −11.2020 −0.361356
962962 5.10102i 0.164464i
963963 0 0
964964 3.20204 0.103131
965965 0 0
966966 0 0
967967 − 32.0000i − 1.02905i −0.857475 0.514525i 0.827968π-0.827968\pi
0.857475 0.514525i 0.172032π-0.172032\pi
968968 − 13.0000i − 0.417836i
969969 0 0
970970 0 0
971971 −40.8434 −1.31073 −0.655363 0.755314i 0.727484π-0.727484\pi
−0.655363 + 0.755314i 0.727484π0.727484\pi
972972 0 0
973973 1.79796i 0.0576399i
974974 −24.4495 −0.783412
975975 0 0
976976 8.00000 0.256074
977977 9.00000i 0.287936i 0.989582 + 0.143968i 0.0459862π0.0459862\pi
−0.989582 + 0.143968i 0.954014π0.954014\pi
978978 0 0
979979 −44.0908 −1.40915
980980 0 0
981981 0 0
982982 − 27.2474i − 0.869501i
983983 − 13.1010i − 0.417858i −0.977931 0.208929i 0.933002π-0.933002\pi
0.977931 0.208929i 0.0669977π-0.0669977\pi
984984 0 0
985985 0 0
986986 12.0000 0.382158
987987 0 0
988988 − 3.34847i − 0.106529i
989989 6.24745 0.198657
990990 0 0
991991 −16.0000 −0.508257 −0.254128 0.967170i 0.581789π-0.581789\pi
−0.254128 + 0.967170i 0.581789π0.581789\pi
992992 4.44949i 0.141271i
993993 0 0
994994 −6.00000 −0.190308
995995 0 0
996996 0 0
997997 8.04541i 0.254801i 0.991851 + 0.127400i 0.0406633π0.0406633\pi
−0.991851 + 0.127400i 0.959337π0.959337\pi
998998 8.34847i 0.264266i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4050.2.c.y.649.4 4
3.2 odd 2 4050.2.c.w.649.2 4
5.2 odd 4 4050.2.a.br.1.1 2
5.3 odd 4 4050.2.a.bu.1.2 2
5.4 even 2 inner 4050.2.c.y.649.1 4
9.2 odd 6 1350.2.j.g.199.2 8
9.4 even 3 450.2.j.f.349.1 8
9.5 odd 6 1350.2.j.g.1099.3 8
9.7 even 3 450.2.j.f.49.4 8
15.2 even 4 4050.2.a.by.1.1 2
15.8 even 4 4050.2.a.bl.1.2 2
15.14 odd 2 4050.2.c.w.649.3 4
45.2 even 12 1350.2.e.k.901.2 4
45.4 even 6 450.2.j.f.349.4 8
45.7 odd 12 450.2.e.m.301.1 yes 4
45.13 odd 12 450.2.e.l.151.1 4
45.14 odd 6 1350.2.j.g.1099.2 8
45.22 odd 12 450.2.e.m.151.2 yes 4
45.23 even 12 1350.2.e.n.451.1 4
45.29 odd 6 1350.2.j.g.199.3 8
45.32 even 12 1350.2.e.k.451.2 4
45.34 even 6 450.2.j.f.49.1 8
45.38 even 12 1350.2.e.n.901.1 4
45.43 odd 12 450.2.e.l.301.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
450.2.e.l.151.1 4 45.13 odd 12
450.2.e.l.301.2 yes 4 45.43 odd 12
450.2.e.m.151.2 yes 4 45.22 odd 12
450.2.e.m.301.1 yes 4 45.7 odd 12
450.2.j.f.49.1 8 45.34 even 6
450.2.j.f.49.4 8 9.7 even 3
450.2.j.f.349.1 8 9.4 even 3
450.2.j.f.349.4 8 45.4 even 6
1350.2.e.k.451.2 4 45.32 even 12
1350.2.e.k.901.2 4 45.2 even 12
1350.2.e.n.451.1 4 45.23 even 12
1350.2.e.n.901.1 4 45.38 even 12
1350.2.j.g.199.2 8 9.2 odd 6
1350.2.j.g.199.3 8 45.29 odd 6
1350.2.j.g.1099.2 8 45.14 odd 6
1350.2.j.g.1099.3 8 9.5 odd 6
4050.2.a.bl.1.2 2 15.8 even 4
4050.2.a.br.1.1 2 5.2 odd 4
4050.2.a.bu.1.2 2 5.3 odd 4
4050.2.a.by.1.1 2 15.2 even 4
4050.2.c.w.649.2 4 3.2 odd 2
4050.2.c.w.649.3 4 15.14 odd 2
4050.2.c.y.649.1 4 5.4 even 2 inner
4050.2.c.y.649.4 4 1.1 even 1 trivial