Properties

Label 4050.2.c.y.649.4
Level $4050$
Weight $2$
Character 4050.649
Analytic conductor $32.339$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4050,2,Mod(649,4050)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4050, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4050.649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4050 = 2 \cdot 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4050.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.3394128186\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 450)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.4
Root \(1.22474 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 4050.649
Dual form 4050.2.c.y.649.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} +0.449490i q^{7} -1.00000i q^{8} +O(q^{10})\) \(q+1.00000i q^{2} -1.00000 q^{4} +0.449490i q^{7} -1.00000i q^{8} -4.89898 q^{11} -0.449490i q^{13} -0.449490 q^{14} +1.00000 q^{16} -4.89898i q^{17} -7.44949 q^{19} -4.89898i q^{22} -2.44949i q^{23} +0.449490 q^{26} -0.449490i q^{28} +2.44949 q^{29} +4.44949 q^{31} +1.00000i q^{32} +4.89898 q^{34} +11.3485i q^{37} -7.44949i q^{38} +9.00000 q^{41} +2.55051i q^{43} +4.89898 q^{44} +2.44949 q^{46} +10.8990i q^{47} +6.79796 q^{49} +0.449490i q^{52} -3.55051i q^{53} +0.449490 q^{56} +2.44949i q^{58} +5.44949 q^{59} +8.00000 q^{61} +4.44949i q^{62} -1.00000 q^{64} -0.348469i q^{67} +4.89898i q^{68} +13.3485 q^{71} -1.00000i q^{73} -11.3485 q^{74} +7.44949 q^{76} -2.20204i q^{77} -16.6969 q^{79} +9.00000i q^{82} -5.44949i q^{83} -2.55051 q^{86} +4.89898i q^{88} +9.00000 q^{89} +0.202041 q^{91} +2.44949i q^{92} -10.8990 q^{94} -8.79796i q^{97} +6.79796i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{4} + 8 q^{14} + 4 q^{16} - 20 q^{19} - 8 q^{26} + 8 q^{31} + 36 q^{41} - 12 q^{49} - 8 q^{56} + 12 q^{59} + 32 q^{61} - 4 q^{64} + 24 q^{71} - 16 q^{74} + 20 q^{76} - 8 q^{79} - 20 q^{86} + 36 q^{89} + 40 q^{91} - 24 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4050\mathbb{Z}\right)^\times\).

\(n\) \(2351\) \(3727\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) 0.449490i 0.169891i 0.996386 + 0.0849456i \(0.0270716\pi\)
−0.996386 + 0.0849456i \(0.972928\pi\)
\(8\) − 1.00000i − 0.353553i
\(9\) 0 0
\(10\) 0 0
\(11\) −4.89898 −1.47710 −0.738549 0.674200i \(-0.764489\pi\)
−0.738549 + 0.674200i \(0.764489\pi\)
\(12\) 0 0
\(13\) − 0.449490i − 0.124666i −0.998055 0.0623330i \(-0.980146\pi\)
0.998055 0.0623330i \(-0.0198541\pi\)
\(14\) −0.449490 −0.120131
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) − 4.89898i − 1.18818i −0.804400 0.594089i \(-0.797513\pi\)
0.804400 0.594089i \(-0.202487\pi\)
\(18\) 0 0
\(19\) −7.44949 −1.70903 −0.854515 0.519427i \(-0.826146\pi\)
−0.854515 + 0.519427i \(0.826146\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) − 4.89898i − 1.04447i
\(23\) − 2.44949i − 0.510754i −0.966842 0.255377i \(-0.917800\pi\)
0.966842 0.255377i \(-0.0821996\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0.449490 0.0881522
\(27\) 0 0
\(28\) − 0.449490i − 0.0849456i
\(29\) 2.44949 0.454859 0.227429 0.973795i \(-0.426968\pi\)
0.227429 + 0.973795i \(0.426968\pi\)
\(30\) 0 0
\(31\) 4.44949 0.799152 0.399576 0.916700i \(-0.369157\pi\)
0.399576 + 0.916700i \(0.369157\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 4.89898 0.840168
\(35\) 0 0
\(36\) 0 0
\(37\) 11.3485i 1.86568i 0.360295 + 0.932838i \(0.382676\pi\)
−0.360295 + 0.932838i \(0.617324\pi\)
\(38\) − 7.44949i − 1.20847i
\(39\) 0 0
\(40\) 0 0
\(41\) 9.00000 1.40556 0.702782 0.711405i \(-0.251941\pi\)
0.702782 + 0.711405i \(0.251941\pi\)
\(42\) 0 0
\(43\) 2.55051i 0.388949i 0.980908 + 0.194475i \(0.0623002\pi\)
−0.980908 + 0.194475i \(0.937700\pi\)
\(44\) 4.89898 0.738549
\(45\) 0 0
\(46\) 2.44949 0.361158
\(47\) 10.8990i 1.58978i 0.606754 + 0.794890i \(0.292471\pi\)
−0.606754 + 0.794890i \(0.707529\pi\)
\(48\) 0 0
\(49\) 6.79796 0.971137
\(50\) 0 0
\(51\) 0 0
\(52\) 0.449490i 0.0623330i
\(53\) − 3.55051i − 0.487700i −0.969813 0.243850i \(-0.921590\pi\)
0.969813 0.243850i \(-0.0784105\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0.449490 0.0600656
\(57\) 0 0
\(58\) 2.44949i 0.321634i
\(59\) 5.44949 0.709463 0.354732 0.934968i \(-0.384572\pi\)
0.354732 + 0.934968i \(0.384572\pi\)
\(60\) 0 0
\(61\) 8.00000 1.02430 0.512148 0.858898i \(-0.328850\pi\)
0.512148 + 0.858898i \(0.328850\pi\)
\(62\) 4.44949i 0.565086i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) − 0.348469i − 0.0425723i −0.999773 0.0212861i \(-0.993224\pi\)
0.999773 0.0212861i \(-0.00677610\pi\)
\(68\) 4.89898i 0.594089i
\(69\) 0 0
\(70\) 0 0
\(71\) 13.3485 1.58417 0.792086 0.610410i \(-0.208995\pi\)
0.792086 + 0.610410i \(0.208995\pi\)
\(72\) 0 0
\(73\) − 1.00000i − 0.117041i −0.998286 0.0585206i \(-0.981362\pi\)
0.998286 0.0585206i \(-0.0186383\pi\)
\(74\) −11.3485 −1.31923
\(75\) 0 0
\(76\) 7.44949 0.854515
\(77\) − 2.20204i − 0.250946i
\(78\) 0 0
\(79\) −16.6969 −1.87855 −0.939276 0.343162i \(-0.888502\pi\)
−0.939276 + 0.343162i \(0.888502\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 9.00000i 0.993884i
\(83\) − 5.44949i − 0.598159i −0.954228 0.299080i \(-0.903320\pi\)
0.954228 0.299080i \(-0.0966796\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −2.55051 −0.275029
\(87\) 0 0
\(88\) 4.89898i 0.522233i
\(89\) 9.00000 0.953998 0.476999 0.878904i \(-0.341725\pi\)
0.476999 + 0.878904i \(0.341725\pi\)
\(90\) 0 0
\(91\) 0.202041 0.0211797
\(92\) 2.44949i 0.255377i
\(93\) 0 0
\(94\) −10.8990 −1.12414
\(95\) 0 0
\(96\) 0 0
\(97\) − 8.79796i − 0.893297i −0.894709 0.446649i \(-0.852617\pi\)
0.894709 0.446649i \(-0.147383\pi\)
\(98\) 6.79796i 0.686698i
\(99\) 0 0
\(100\) 0 0
\(101\) 8.44949 0.840756 0.420378 0.907349i \(-0.361898\pi\)
0.420378 + 0.907349i \(0.361898\pi\)
\(102\) 0 0
\(103\) 16.6969i 1.64520i 0.568622 + 0.822599i \(0.307477\pi\)
−0.568622 + 0.822599i \(0.692523\pi\)
\(104\) −0.449490 −0.0440761
\(105\) 0 0
\(106\) 3.55051 0.344856
\(107\) − 9.24745i − 0.893985i −0.894538 0.446992i \(-0.852495\pi\)
0.894538 0.446992i \(-0.147505\pi\)
\(108\) 0 0
\(109\) −5.55051 −0.531642 −0.265821 0.964022i \(-0.585643\pi\)
−0.265821 + 0.964022i \(0.585643\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.449490i 0.0424728i
\(113\) − 4.10102i − 0.385792i −0.981219 0.192896i \(-0.938212\pi\)
0.981219 0.192896i \(-0.0617879\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −2.44949 −0.227429
\(117\) 0 0
\(118\) 5.44949i 0.501666i
\(119\) 2.20204 0.201861
\(120\) 0 0
\(121\) 13.0000 1.18182
\(122\) 8.00000i 0.724286i
\(123\) 0 0
\(124\) −4.44949 −0.399576
\(125\) 0 0
\(126\) 0 0
\(127\) − 3.34847i − 0.297129i −0.988903 0.148564i \(-0.952535\pi\)
0.988903 0.148564i \(-0.0474652\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) 0 0
\(130\) 0 0
\(131\) −3.79796 −0.331829 −0.165915 0.986140i \(-0.553058\pi\)
−0.165915 + 0.986140i \(0.553058\pi\)
\(132\) 0 0
\(133\) − 3.34847i − 0.290349i
\(134\) 0.348469 0.0301032
\(135\) 0 0
\(136\) −4.89898 −0.420084
\(137\) − 3.00000i − 0.256307i −0.991754 0.128154i \(-0.959095\pi\)
0.991754 0.128154i \(-0.0409051\pi\)
\(138\) 0 0
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 13.3485i 1.12018i
\(143\) 2.20204i 0.184144i
\(144\) 0 0
\(145\) 0 0
\(146\) 1.00000 0.0827606
\(147\) 0 0
\(148\) − 11.3485i − 0.932838i
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) 20.0000 1.62758 0.813788 0.581161i \(-0.197401\pi\)
0.813788 + 0.581161i \(0.197401\pi\)
\(152\) 7.44949i 0.604233i
\(153\) 0 0
\(154\) 2.20204 0.177446
\(155\) 0 0
\(156\) 0 0
\(157\) 19.7980i 1.58005i 0.613075 + 0.790025i \(0.289932\pi\)
−0.613075 + 0.790025i \(0.710068\pi\)
\(158\) − 16.6969i − 1.32834i
\(159\) 0 0
\(160\) 0 0
\(161\) 1.10102 0.0867726
\(162\) 0 0
\(163\) 7.44949i 0.583489i 0.956496 + 0.291745i \(0.0942357\pi\)
−0.956496 + 0.291745i \(0.905764\pi\)
\(164\) −9.00000 −0.702782
\(165\) 0 0
\(166\) 5.44949 0.422962
\(167\) − 19.5959i − 1.51638i −0.652035 0.758189i \(-0.726085\pi\)
0.652035 0.758189i \(-0.273915\pi\)
\(168\) 0 0
\(169\) 12.7980 0.984458
\(170\) 0 0
\(171\) 0 0
\(172\) − 2.55051i − 0.194475i
\(173\) 9.79796i 0.744925i 0.928047 + 0.372463i \(0.121486\pi\)
−0.928047 + 0.372463i \(0.878514\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −4.89898 −0.369274
\(177\) 0 0
\(178\) 9.00000i 0.674579i
\(179\) −9.24745 −0.691187 −0.345593 0.938384i \(-0.612322\pi\)
−0.345593 + 0.938384i \(0.612322\pi\)
\(180\) 0 0
\(181\) 17.7980 1.32291 0.661456 0.749984i \(-0.269939\pi\)
0.661456 + 0.749984i \(0.269939\pi\)
\(182\) 0.202041i 0.0149763i
\(183\) 0 0
\(184\) −2.44949 −0.180579
\(185\) 0 0
\(186\) 0 0
\(187\) 24.0000i 1.75505i
\(188\) − 10.8990i − 0.794890i
\(189\) 0 0
\(190\) 0 0
\(191\) −1.10102 −0.0796670 −0.0398335 0.999206i \(-0.512683\pi\)
−0.0398335 + 0.999206i \(0.512683\pi\)
\(192\) 0 0
\(193\) 20.0000i 1.43963i 0.694165 + 0.719816i \(0.255774\pi\)
−0.694165 + 0.719816i \(0.744226\pi\)
\(194\) 8.79796 0.631657
\(195\) 0 0
\(196\) −6.79796 −0.485568
\(197\) 0.247449i 0.0176300i 0.999961 + 0.00881500i \(0.00280594\pi\)
−0.999961 + 0.00881500i \(0.997194\pi\)
\(198\) 0 0
\(199\) 13.7980 0.978111 0.489056 0.872253i \(-0.337341\pi\)
0.489056 + 0.872253i \(0.337341\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 8.44949i 0.594504i
\(203\) 1.10102i 0.0772765i
\(204\) 0 0
\(205\) 0 0
\(206\) −16.6969 −1.16333
\(207\) 0 0
\(208\) − 0.449490i − 0.0311665i
\(209\) 36.4949 2.52440
\(210\) 0 0
\(211\) −3.44949 −0.237473 −0.118736 0.992926i \(-0.537884\pi\)
−0.118736 + 0.992926i \(0.537884\pi\)
\(212\) 3.55051i 0.243850i
\(213\) 0 0
\(214\) 9.24745 0.632143
\(215\) 0 0
\(216\) 0 0
\(217\) 2.00000i 0.135769i
\(218\) − 5.55051i − 0.375928i
\(219\) 0 0
\(220\) 0 0
\(221\) −2.20204 −0.148125
\(222\) 0 0
\(223\) 17.7980i 1.19184i 0.803044 + 0.595920i \(0.203212\pi\)
−0.803044 + 0.595920i \(0.796788\pi\)
\(224\) −0.449490 −0.0300328
\(225\) 0 0
\(226\) 4.10102 0.272796
\(227\) − 13.6515i − 0.906084i −0.891489 0.453042i \(-0.850339\pi\)
0.891489 0.453042i \(-0.149661\pi\)
\(228\) 0 0
\(229\) −13.1464 −0.868740 −0.434370 0.900734i \(-0.643029\pi\)
−0.434370 + 0.900734i \(0.643029\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) − 2.44949i − 0.160817i
\(233\) − 23.6969i − 1.55244i −0.630463 0.776219i \(-0.717135\pi\)
0.630463 0.776219i \(-0.282865\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −5.44949 −0.354732
\(237\) 0 0
\(238\) 2.20204i 0.142737i
\(239\) −14.4495 −0.934660 −0.467330 0.884083i \(-0.654784\pi\)
−0.467330 + 0.884083i \(0.654784\pi\)
\(240\) 0 0
\(241\) −3.20204 −0.206262 −0.103131 0.994668i \(-0.532886\pi\)
−0.103131 + 0.994668i \(0.532886\pi\)
\(242\) 13.0000i 0.835672i
\(243\) 0 0
\(244\) −8.00000 −0.512148
\(245\) 0 0
\(246\) 0 0
\(247\) 3.34847i 0.213058i
\(248\) − 4.44949i − 0.282543i
\(249\) 0 0
\(250\) 0 0
\(251\) −0.550510 −0.0347479 −0.0173739 0.999849i \(-0.505531\pi\)
−0.0173739 + 0.999849i \(0.505531\pi\)
\(252\) 0 0
\(253\) 12.0000i 0.754434i
\(254\) 3.34847 0.210102
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 12.7980i 0.798315i 0.916882 + 0.399157i \(0.130697\pi\)
−0.916882 + 0.399157i \(0.869303\pi\)
\(258\) 0 0
\(259\) −5.10102 −0.316962
\(260\) 0 0
\(261\) 0 0
\(262\) − 3.79796i − 0.234639i
\(263\) 20.4495i 1.26097i 0.776202 + 0.630485i \(0.217144\pi\)
−0.776202 + 0.630485i \(0.782856\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 3.34847 0.205308
\(267\) 0 0
\(268\) 0.348469i 0.0212861i
\(269\) −14.4495 −0.881001 −0.440500 0.897752i \(-0.645199\pi\)
−0.440500 + 0.897752i \(0.645199\pi\)
\(270\) 0 0
\(271\) 15.3485 0.932353 0.466177 0.884692i \(-0.345631\pi\)
0.466177 + 0.884692i \(0.345631\pi\)
\(272\) − 4.89898i − 0.297044i
\(273\) 0 0
\(274\) 3.00000 0.181237
\(275\) 0 0
\(276\) 0 0
\(277\) 1.55051i 0.0931611i 0.998915 + 0.0465806i \(0.0148324\pi\)
−0.998915 + 0.0465806i \(0.985168\pi\)
\(278\) 4.00000i 0.239904i
\(279\) 0 0
\(280\) 0 0
\(281\) 19.1010 1.13947 0.569736 0.821828i \(-0.307046\pi\)
0.569736 + 0.821828i \(0.307046\pi\)
\(282\) 0 0
\(283\) − 13.2474i − 0.787479i −0.919222 0.393740i \(-0.871181\pi\)
0.919222 0.393740i \(-0.128819\pi\)
\(284\) −13.3485 −0.792086
\(285\) 0 0
\(286\) −2.20204 −0.130209
\(287\) 4.04541i 0.238793i
\(288\) 0 0
\(289\) −7.00000 −0.411765
\(290\) 0 0
\(291\) 0 0
\(292\) 1.00000i 0.0585206i
\(293\) 16.0454i 0.937383i 0.883362 + 0.468691i \(0.155274\pi\)
−0.883362 + 0.468691i \(0.844726\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 11.3485 0.659616
\(297\) 0 0
\(298\) 6.00000i 0.347571i
\(299\) −1.10102 −0.0636737
\(300\) 0 0
\(301\) −1.14643 −0.0660790
\(302\) 20.0000i 1.15087i
\(303\) 0 0
\(304\) −7.44949 −0.427258
\(305\) 0 0
\(306\) 0 0
\(307\) − 22.6969i − 1.29538i −0.761903 0.647691i \(-0.775735\pi\)
0.761903 0.647691i \(-0.224265\pi\)
\(308\) 2.20204i 0.125473i
\(309\) 0 0
\(310\) 0 0
\(311\) −1.10102 −0.0624331 −0.0312166 0.999513i \(-0.509938\pi\)
−0.0312166 + 0.999513i \(0.509938\pi\)
\(312\) 0 0
\(313\) − 5.89898i − 0.333430i −0.986005 0.166715i \(-0.946684\pi\)
0.986005 0.166715i \(-0.0533160\pi\)
\(314\) −19.7980 −1.11726
\(315\) 0 0
\(316\) 16.6969 0.939276
\(317\) − 17.1464i − 0.963039i −0.876435 0.481520i \(-0.840085\pi\)
0.876435 0.481520i \(-0.159915\pi\)
\(318\) 0 0
\(319\) −12.0000 −0.671871
\(320\) 0 0
\(321\) 0 0
\(322\) 1.10102i 0.0613575i
\(323\) 36.4949i 2.03063i
\(324\) 0 0
\(325\) 0 0
\(326\) −7.44949 −0.412589
\(327\) 0 0
\(328\) − 9.00000i − 0.496942i
\(329\) −4.89898 −0.270089
\(330\) 0 0
\(331\) 6.34847 0.348943 0.174472 0.984662i \(-0.444178\pi\)
0.174472 + 0.984662i \(0.444178\pi\)
\(332\) 5.44949i 0.299080i
\(333\) 0 0
\(334\) 19.5959 1.07224
\(335\) 0 0
\(336\) 0 0
\(337\) 20.8990i 1.13844i 0.822185 + 0.569220i \(0.192755\pi\)
−0.822185 + 0.569220i \(0.807245\pi\)
\(338\) 12.7980i 0.696117i
\(339\) 0 0
\(340\) 0 0
\(341\) −21.7980 −1.18043
\(342\) 0 0
\(343\) 6.20204i 0.334879i
\(344\) 2.55051 0.137514
\(345\) 0 0
\(346\) −9.79796 −0.526742
\(347\) − 12.0000i − 0.644194i −0.946707 0.322097i \(-0.895612\pi\)
0.946707 0.322097i \(-0.104388\pi\)
\(348\) 0 0
\(349\) −14.0000 −0.749403 −0.374701 0.927146i \(-0.622255\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) − 4.89898i − 0.261116i
\(353\) − 9.00000i − 0.479022i −0.970894 0.239511i \(-0.923013\pi\)
0.970894 0.239511i \(-0.0769871\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −9.00000 −0.476999
\(357\) 0 0
\(358\) − 9.24745i − 0.488743i
\(359\) 14.2020 0.749555 0.374778 0.927115i \(-0.377719\pi\)
0.374778 + 0.927115i \(0.377719\pi\)
\(360\) 0 0
\(361\) 36.4949 1.92078
\(362\) 17.7980i 0.935440i
\(363\) 0 0
\(364\) −0.202041 −0.0105898
\(365\) 0 0
\(366\) 0 0
\(367\) 12.6969i 0.662775i 0.943495 + 0.331387i \(0.107517\pi\)
−0.943495 + 0.331387i \(0.892483\pi\)
\(368\) − 2.44949i − 0.127688i
\(369\) 0 0
\(370\) 0 0
\(371\) 1.59592 0.0828559
\(372\) 0 0
\(373\) − 23.5959i − 1.22175i −0.791727 0.610875i \(-0.790818\pi\)
0.791727 0.610875i \(-0.209182\pi\)
\(374\) −24.0000 −1.24101
\(375\) 0 0
\(376\) 10.8990 0.562072
\(377\) − 1.10102i − 0.0567054i
\(378\) 0 0
\(379\) 8.89898 0.457110 0.228555 0.973531i \(-0.426600\pi\)
0.228555 + 0.973531i \(0.426600\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) − 1.10102i − 0.0563331i
\(383\) 21.5505i 1.10118i 0.834776 + 0.550590i \(0.185597\pi\)
−0.834776 + 0.550590i \(0.814403\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −20.0000 −1.01797
\(387\) 0 0
\(388\) 8.79796i 0.446649i
\(389\) −25.5959 −1.29776 −0.648882 0.760889i \(-0.724763\pi\)
−0.648882 + 0.760889i \(0.724763\pi\)
\(390\) 0 0
\(391\) −12.0000 −0.606866
\(392\) − 6.79796i − 0.343349i
\(393\) 0 0
\(394\) −0.247449 −0.0124663
\(395\) 0 0
\(396\) 0 0
\(397\) 17.5959i 0.883114i 0.897233 + 0.441557i \(0.145574\pi\)
−0.897233 + 0.441557i \(0.854426\pi\)
\(398\) 13.7980i 0.691629i
\(399\) 0 0
\(400\) 0 0
\(401\) 38.6969 1.93243 0.966216 0.257732i \(-0.0829752\pi\)
0.966216 + 0.257732i \(0.0829752\pi\)
\(402\) 0 0
\(403\) − 2.00000i − 0.0996271i
\(404\) −8.44949 −0.420378
\(405\) 0 0
\(406\) −1.10102 −0.0546427
\(407\) − 55.5959i − 2.75579i
\(408\) 0 0
\(409\) −0.101021 −0.00499514 −0.00249757 0.999997i \(-0.500795\pi\)
−0.00249757 + 0.999997i \(0.500795\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 16.6969i − 0.822599i
\(413\) 2.44949i 0.120532i
\(414\) 0 0
\(415\) 0 0
\(416\) 0.449490 0.0220380
\(417\) 0 0
\(418\) 36.4949i 1.78502i
\(419\) 26.1464 1.27734 0.638668 0.769482i \(-0.279486\pi\)
0.638668 + 0.769482i \(0.279486\pi\)
\(420\) 0 0
\(421\) −26.0454 −1.26938 −0.634688 0.772769i \(-0.718871\pi\)
−0.634688 + 0.772769i \(0.718871\pi\)
\(422\) − 3.44949i − 0.167919i
\(423\) 0 0
\(424\) −3.55051 −0.172428
\(425\) 0 0
\(426\) 0 0
\(427\) 3.59592i 0.174019i
\(428\) 9.24745i 0.446992i
\(429\) 0 0
\(430\) 0 0
\(431\) 25.3485 1.22099 0.610496 0.792019i \(-0.290970\pi\)
0.610496 + 0.792019i \(0.290970\pi\)
\(432\) 0 0
\(433\) 9.59592i 0.461150i 0.973055 + 0.230575i \(0.0740608\pi\)
−0.973055 + 0.230575i \(0.925939\pi\)
\(434\) −2.00000 −0.0960031
\(435\) 0 0
\(436\) 5.55051 0.265821
\(437\) 18.2474i 0.872894i
\(438\) 0 0
\(439\) −3.34847 −0.159814 −0.0799069 0.996802i \(-0.525462\pi\)
−0.0799069 + 0.996802i \(0.525462\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) − 2.20204i − 0.104740i
\(443\) 8.20204i 0.389691i 0.980834 + 0.194845i \(0.0624205\pi\)
−0.980834 + 0.194845i \(0.937579\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −17.7980 −0.842758
\(447\) 0 0
\(448\) − 0.449490i − 0.0212364i
\(449\) 28.5959 1.34952 0.674762 0.738035i \(-0.264246\pi\)
0.674762 + 0.738035i \(0.264246\pi\)
\(450\) 0 0
\(451\) −44.0908 −2.07616
\(452\) 4.10102i 0.192896i
\(453\) 0 0
\(454\) 13.6515 0.640698
\(455\) 0 0
\(456\) 0 0
\(457\) − 13.6969i − 0.640716i −0.947297 0.320358i \(-0.896197\pi\)
0.947297 0.320358i \(-0.103803\pi\)
\(458\) − 13.1464i − 0.614292i
\(459\) 0 0
\(460\) 0 0
\(461\) 4.65153 0.216643 0.108322 0.994116i \(-0.465452\pi\)
0.108322 + 0.994116i \(0.465452\pi\)
\(462\) 0 0
\(463\) − 5.34847i − 0.248564i −0.992247 0.124282i \(-0.960337\pi\)
0.992247 0.124282i \(-0.0396628\pi\)
\(464\) 2.44949 0.113715
\(465\) 0 0
\(466\) 23.6969 1.09774
\(467\) 10.3485i 0.478870i 0.970912 + 0.239435i \(0.0769622\pi\)
−0.970912 + 0.239435i \(0.923038\pi\)
\(468\) 0 0
\(469\) 0.156633 0.00723266
\(470\) 0 0
\(471\) 0 0
\(472\) − 5.44949i − 0.250833i
\(473\) − 12.4949i − 0.574516i
\(474\) 0 0
\(475\) 0 0
\(476\) −2.20204 −0.100930
\(477\) 0 0
\(478\) − 14.4495i − 0.660904i
\(479\) −0.247449 −0.0113062 −0.00565311 0.999984i \(-0.501799\pi\)
−0.00565311 + 0.999984i \(0.501799\pi\)
\(480\) 0 0
\(481\) 5.10102 0.232587
\(482\) − 3.20204i − 0.145849i
\(483\) 0 0
\(484\) −13.0000 −0.590909
\(485\) 0 0
\(486\) 0 0
\(487\) 24.4495i 1.10791i 0.832546 + 0.553956i \(0.186882\pi\)
−0.832546 + 0.553956i \(0.813118\pi\)
\(488\) − 8.00000i − 0.362143i
\(489\) 0 0
\(490\) 0 0
\(491\) −27.2474 −1.22966 −0.614830 0.788660i \(-0.710775\pi\)
−0.614830 + 0.788660i \(0.710775\pi\)
\(492\) 0 0
\(493\) − 12.0000i − 0.540453i
\(494\) −3.34847 −0.150655
\(495\) 0 0
\(496\) 4.44949 0.199788
\(497\) 6.00000i 0.269137i
\(498\) 0 0
\(499\) 8.34847 0.373729 0.186864 0.982386i \(-0.440167\pi\)
0.186864 + 0.982386i \(0.440167\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) − 0.550510i − 0.0245705i
\(503\) 21.5505i 0.960890i 0.877025 + 0.480445i \(0.159525\pi\)
−0.877025 + 0.480445i \(0.840475\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −12.0000 −0.533465
\(507\) 0 0
\(508\) 3.34847i 0.148564i
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0.449490 0.0198843
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −12.7980 −0.564494
\(515\) 0 0
\(516\) 0 0
\(517\) − 53.3939i − 2.34826i
\(518\) − 5.10102i − 0.224126i
\(519\) 0 0
\(520\) 0 0
\(521\) −29.3939 −1.28777 −0.643885 0.765123i \(-0.722678\pi\)
−0.643885 + 0.765123i \(0.722678\pi\)
\(522\) 0 0
\(523\) − 20.3485i − 0.889776i −0.895586 0.444888i \(-0.853243\pi\)
0.895586 0.444888i \(-0.146757\pi\)
\(524\) 3.79796 0.165915
\(525\) 0 0
\(526\) −20.4495 −0.891640
\(527\) − 21.7980i − 0.949534i
\(528\) 0 0
\(529\) 17.0000 0.739130
\(530\) 0 0
\(531\) 0 0
\(532\) 3.34847i 0.145175i
\(533\) − 4.04541i − 0.175226i
\(534\) 0 0
\(535\) 0 0
\(536\) −0.348469 −0.0150516
\(537\) 0 0
\(538\) − 14.4495i − 0.622962i
\(539\) −33.3031 −1.43446
\(540\) 0 0
\(541\) −37.7980 −1.62506 −0.812531 0.582919i \(-0.801911\pi\)
−0.812531 + 0.582919i \(0.801911\pi\)
\(542\) 15.3485i 0.659273i
\(543\) 0 0
\(544\) 4.89898 0.210042
\(545\) 0 0
\(546\) 0 0
\(547\) − 15.6515i − 0.669211i −0.942358 0.334606i \(-0.891397\pi\)
0.942358 0.334606i \(-0.108603\pi\)
\(548\) 3.00000i 0.128154i
\(549\) 0 0
\(550\) 0 0
\(551\) −18.2474 −0.777367
\(552\) 0 0
\(553\) − 7.50510i − 0.319149i
\(554\) −1.55051 −0.0658749
\(555\) 0 0
\(556\) −4.00000 −0.169638
\(557\) − 41.3939i − 1.75391i −0.480568 0.876957i \(-0.659570\pi\)
0.480568 0.876957i \(-0.340430\pi\)
\(558\) 0 0
\(559\) 1.14643 0.0484887
\(560\) 0 0
\(561\) 0 0
\(562\) 19.1010i 0.805728i
\(563\) − 23.9444i − 1.00914i −0.863372 0.504568i \(-0.831652\pi\)
0.863372 0.504568i \(-0.168348\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 13.2474 0.556832
\(567\) 0 0
\(568\) − 13.3485i − 0.560089i
\(569\) −33.7980 −1.41688 −0.708442 0.705769i \(-0.750602\pi\)
−0.708442 + 0.705769i \(0.750602\pi\)
\(570\) 0 0
\(571\) 25.9444 1.08574 0.542869 0.839817i \(-0.317338\pi\)
0.542869 + 0.839817i \(0.317338\pi\)
\(572\) − 2.20204i − 0.0920720i
\(573\) 0 0
\(574\) −4.04541 −0.168852
\(575\) 0 0
\(576\) 0 0
\(577\) − 40.3939i − 1.68162i −0.541331 0.840810i \(-0.682079\pi\)
0.541331 0.840810i \(-0.317921\pi\)
\(578\) − 7.00000i − 0.291162i
\(579\) 0 0
\(580\) 0 0
\(581\) 2.44949 0.101622
\(582\) 0 0
\(583\) 17.3939i 0.720381i
\(584\) −1.00000 −0.0413803
\(585\) 0 0
\(586\) −16.0454 −0.662830
\(587\) 26.6969i 1.10190i 0.834538 + 0.550950i \(0.185735\pi\)
−0.834538 + 0.550950i \(0.814265\pi\)
\(588\) 0 0
\(589\) −33.1464 −1.36577
\(590\) 0 0
\(591\) 0 0
\(592\) 11.3485i 0.466419i
\(593\) − 7.89898i − 0.324372i −0.986760 0.162186i \(-0.948146\pi\)
0.986760 0.162186i \(-0.0518545\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −6.00000 −0.245770
\(597\) 0 0
\(598\) − 1.10102i − 0.0450241i
\(599\) 22.6515 0.925516 0.462758 0.886485i \(-0.346860\pi\)
0.462758 + 0.886485i \(0.346860\pi\)
\(600\) 0 0
\(601\) −16.4949 −0.672841 −0.336420 0.941712i \(-0.609216\pi\)
−0.336420 + 0.941712i \(0.609216\pi\)
\(602\) − 1.14643i − 0.0467249i
\(603\) 0 0
\(604\) −20.0000 −0.813788
\(605\) 0 0
\(606\) 0 0
\(607\) − 3.34847i − 0.135910i −0.997688 0.0679551i \(-0.978353\pi\)
0.997688 0.0679551i \(-0.0216475\pi\)
\(608\) − 7.44949i − 0.302117i
\(609\) 0 0
\(610\) 0 0
\(611\) 4.89898 0.198191
\(612\) 0 0
\(613\) 12.0454i 0.486509i 0.969962 + 0.243255i \(0.0782151\pi\)
−0.969962 + 0.243255i \(0.921785\pi\)
\(614\) 22.6969 0.915974
\(615\) 0 0
\(616\) −2.20204 −0.0887228
\(617\) − 44.3939i − 1.78723i −0.448834 0.893615i \(-0.648161\pi\)
0.448834 0.893615i \(-0.351839\pi\)
\(618\) 0 0
\(619\) 31.7423 1.27583 0.637916 0.770106i \(-0.279797\pi\)
0.637916 + 0.770106i \(0.279797\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) − 1.10102i − 0.0441469i
\(623\) 4.04541i 0.162076i
\(624\) 0 0
\(625\) 0 0
\(626\) 5.89898 0.235771
\(627\) 0 0
\(628\) − 19.7980i − 0.790025i
\(629\) 55.5959 2.21675
\(630\) 0 0
\(631\) −6.20204 −0.246899 −0.123450 0.992351i \(-0.539396\pi\)
−0.123450 + 0.992351i \(0.539396\pi\)
\(632\) 16.6969i 0.664169i
\(633\) 0 0
\(634\) 17.1464 0.680972
\(635\) 0 0
\(636\) 0 0
\(637\) − 3.05561i − 0.121068i
\(638\) − 12.0000i − 0.475085i
\(639\) 0 0
\(640\) 0 0
\(641\) −14.3939 −0.568524 −0.284262 0.958747i \(-0.591749\pi\)
−0.284262 + 0.958747i \(0.591749\pi\)
\(642\) 0 0
\(643\) − 17.6515i − 0.696108i −0.937474 0.348054i \(-0.886843\pi\)
0.937474 0.348054i \(-0.113157\pi\)
\(644\) −1.10102 −0.0433863
\(645\) 0 0
\(646\) −36.4949 −1.43587
\(647\) − 24.2474i − 0.953266i −0.879102 0.476633i \(-0.841857\pi\)
0.879102 0.476633i \(-0.158143\pi\)
\(648\) 0 0
\(649\) −26.6969 −1.04795
\(650\) 0 0
\(651\) 0 0
\(652\) − 7.44949i − 0.291745i
\(653\) 18.2474i 0.714078i 0.934090 + 0.357039i \(0.116214\pi\)
−0.934090 + 0.357039i \(0.883786\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 9.00000 0.351391
\(657\) 0 0
\(658\) − 4.89898i − 0.190982i
\(659\) −9.85357 −0.383841 −0.191920 0.981411i \(-0.561472\pi\)
−0.191920 + 0.981411i \(0.561472\pi\)
\(660\) 0 0
\(661\) 7.39388 0.287588 0.143794 0.989608i \(-0.454070\pi\)
0.143794 + 0.989608i \(0.454070\pi\)
\(662\) 6.34847i 0.246740i
\(663\) 0 0
\(664\) −5.44949 −0.211481
\(665\) 0 0
\(666\) 0 0
\(667\) − 6.00000i − 0.232321i
\(668\) 19.5959i 0.758189i
\(669\) 0 0
\(670\) 0 0
\(671\) −39.1918 −1.51298
\(672\) 0 0
\(673\) 22.6969i 0.874903i 0.899242 + 0.437451i \(0.144119\pi\)
−0.899242 + 0.437451i \(0.855881\pi\)
\(674\) −20.8990 −0.804999
\(675\) 0 0
\(676\) −12.7980 −0.492229
\(677\) 25.8434i 0.993241i 0.867968 + 0.496621i \(0.165426\pi\)
−0.867968 + 0.496621i \(0.834574\pi\)
\(678\) 0 0
\(679\) 3.95459 0.151763
\(680\) 0 0
\(681\) 0 0
\(682\) − 21.7980i − 0.834687i
\(683\) 41.9444i 1.60496i 0.596681 + 0.802479i \(0.296486\pi\)
−0.596681 + 0.802479i \(0.703514\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −6.20204 −0.236795
\(687\) 0 0
\(688\) 2.55051i 0.0972373i
\(689\) −1.59592 −0.0607996
\(690\) 0 0
\(691\) 39.0454 1.48536 0.742679 0.669648i \(-0.233555\pi\)
0.742679 + 0.669648i \(0.233555\pi\)
\(692\) − 9.79796i − 0.372463i
\(693\) 0 0
\(694\) 12.0000 0.455514
\(695\) 0 0
\(696\) 0 0
\(697\) − 44.0908i − 1.67006i
\(698\) − 14.0000i − 0.529908i
\(699\) 0 0
\(700\) 0 0
\(701\) 33.7980 1.27653 0.638266 0.769816i \(-0.279652\pi\)
0.638266 + 0.769816i \(0.279652\pi\)
\(702\) 0 0
\(703\) − 84.5403i − 3.18850i
\(704\) 4.89898 0.184637
\(705\) 0 0
\(706\) 9.00000 0.338719
\(707\) 3.79796i 0.142837i
\(708\) 0 0
\(709\) −4.44949 −0.167104 −0.0835520 0.996503i \(-0.526626\pi\)
−0.0835520 + 0.996503i \(0.526626\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) − 9.00000i − 0.337289i
\(713\) − 10.8990i − 0.408170i
\(714\) 0 0
\(715\) 0 0
\(716\) 9.24745 0.345593
\(717\) 0 0
\(718\) 14.2020i 0.530015i
\(719\) −7.95459 −0.296656 −0.148328 0.988938i \(-0.547389\pi\)
−0.148328 + 0.988938i \(0.547389\pi\)
\(720\) 0 0
\(721\) −7.50510 −0.279505
\(722\) 36.4949i 1.35820i
\(723\) 0 0
\(724\) −17.7980 −0.661456
\(725\) 0 0
\(726\) 0 0
\(727\) 16.0000i 0.593407i 0.954970 + 0.296704i \(0.0958873\pi\)
−0.954970 + 0.296704i \(0.904113\pi\)
\(728\) − 0.202041i − 0.00748814i
\(729\) 0 0
\(730\) 0 0
\(731\) 12.4949 0.462140
\(732\) 0 0
\(733\) 26.0000i 0.960332i 0.877178 + 0.480166i \(0.159424\pi\)
−0.877178 + 0.480166i \(0.840576\pi\)
\(734\) −12.6969 −0.468653
\(735\) 0 0
\(736\) 2.44949 0.0902894
\(737\) 1.70714i 0.0628834i
\(738\) 0 0
\(739\) −3.04541 −0.112027 −0.0560136 0.998430i \(-0.517839\pi\)
−0.0560136 + 0.998430i \(0.517839\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 1.59592i 0.0585880i
\(743\) 49.3485i 1.81042i 0.424965 + 0.905210i \(0.360286\pi\)
−0.424965 + 0.905210i \(0.639714\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 23.5959 0.863908
\(747\) 0 0
\(748\) − 24.0000i − 0.877527i
\(749\) 4.15663 0.151880
\(750\) 0 0
\(751\) −5.95459 −0.217286 −0.108643 0.994081i \(-0.534651\pi\)
−0.108643 + 0.994081i \(0.534651\pi\)
\(752\) 10.8990i 0.397445i
\(753\) 0 0
\(754\) 1.10102 0.0400968
\(755\) 0 0
\(756\) 0 0
\(757\) 38.0454i 1.38278i 0.722480 + 0.691392i \(0.243002\pi\)
−0.722480 + 0.691392i \(0.756998\pi\)
\(758\) 8.89898i 0.323225i
\(759\) 0 0
\(760\) 0 0
\(761\) 13.8990 0.503838 0.251919 0.967748i \(-0.418938\pi\)
0.251919 + 0.967748i \(0.418938\pi\)
\(762\) 0 0
\(763\) − 2.49490i − 0.0903214i
\(764\) 1.10102 0.0398335
\(765\) 0 0
\(766\) −21.5505 −0.778652
\(767\) − 2.44949i − 0.0884459i
\(768\) 0 0
\(769\) 28.1918 1.01662 0.508312 0.861173i \(-0.330270\pi\)
0.508312 + 0.861173i \(0.330270\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 20.0000i − 0.719816i
\(773\) − 10.4041i − 0.374209i −0.982340 0.187104i \(-0.940090\pi\)
0.982340 0.187104i \(-0.0599103\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −8.79796 −0.315828
\(777\) 0 0
\(778\) − 25.5959i − 0.917658i
\(779\) −67.0454 −2.40215
\(780\) 0 0
\(781\) −65.3939 −2.33998
\(782\) − 12.0000i − 0.429119i
\(783\) 0 0
\(784\) 6.79796 0.242784
\(785\) 0 0
\(786\) 0 0
\(787\) − 34.6969i − 1.23681i −0.785859 0.618406i \(-0.787779\pi\)
0.785859 0.618406i \(-0.212221\pi\)
\(788\) − 0.247449i − 0.00881500i
\(789\) 0 0
\(790\) 0 0
\(791\) 1.84337 0.0655426
\(792\) 0 0
\(793\) − 3.59592i − 0.127695i
\(794\) −17.5959 −0.624456
\(795\) 0 0
\(796\) −13.7980 −0.489056
\(797\) 30.2474i 1.07142i 0.844402 + 0.535710i \(0.179956\pi\)
−0.844402 + 0.535710i \(0.820044\pi\)
\(798\) 0 0
\(799\) 53.3939 1.88894
\(800\) 0 0
\(801\) 0 0
\(802\) 38.6969i 1.36644i
\(803\) 4.89898i 0.172881i
\(804\) 0 0
\(805\) 0 0
\(806\) 2.00000 0.0704470
\(807\) 0 0
\(808\) − 8.44949i − 0.297252i
\(809\) 6.30306 0.221604 0.110802 0.993843i \(-0.464658\pi\)
0.110802 + 0.993843i \(0.464658\pi\)
\(810\) 0 0
\(811\) −28.5505 −1.00254 −0.501272 0.865290i \(-0.667134\pi\)
−0.501272 + 0.865290i \(0.667134\pi\)
\(812\) − 1.10102i − 0.0386382i
\(813\) 0 0
\(814\) 55.5959 1.94864
\(815\) 0 0
\(816\) 0 0
\(817\) − 19.0000i − 0.664726i
\(818\) − 0.101021i − 0.00353210i
\(819\) 0 0
\(820\) 0 0
\(821\) 27.1918 0.949002 0.474501 0.880255i \(-0.342629\pi\)
0.474501 + 0.880255i \(0.342629\pi\)
\(822\) 0 0
\(823\) − 17.1010i − 0.596104i −0.954550 0.298052i \(-0.903663\pi\)
0.954550 0.298052i \(-0.0963369\pi\)
\(824\) 16.6969 0.581665
\(825\) 0 0
\(826\) −2.44949 −0.0852286
\(827\) 35.9444i 1.24991i 0.780661 + 0.624954i \(0.214882\pi\)
−0.780661 + 0.624954i \(0.785118\pi\)
\(828\) 0 0
\(829\) 46.7423 1.62343 0.811714 0.584055i \(-0.198535\pi\)
0.811714 + 0.584055i \(0.198535\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0.449490i 0.0155833i
\(833\) − 33.3031i − 1.15388i
\(834\) 0 0
\(835\) 0 0
\(836\) −36.4949 −1.26220
\(837\) 0 0
\(838\) 26.1464i 0.903213i
\(839\) −37.3485 −1.28941 −0.644706 0.764430i \(-0.723020\pi\)
−0.644706 + 0.764430i \(0.723020\pi\)
\(840\) 0 0
\(841\) −23.0000 −0.793103
\(842\) − 26.0454i − 0.897584i
\(843\) 0 0
\(844\) 3.44949 0.118736
\(845\) 0 0
\(846\) 0 0
\(847\) 5.84337i 0.200780i
\(848\) − 3.55051i − 0.121925i
\(849\) 0 0
\(850\) 0 0
\(851\) 27.7980 0.952902
\(852\) 0 0
\(853\) − 46.0000i − 1.57501i −0.616308 0.787505i \(-0.711372\pi\)
0.616308 0.787505i \(-0.288628\pi\)
\(854\) −3.59592 −0.123050
\(855\) 0 0
\(856\) −9.24745 −0.316071
\(857\) 49.8990i 1.70452i 0.523121 + 0.852258i \(0.324768\pi\)
−0.523121 + 0.852258i \(0.675232\pi\)
\(858\) 0 0
\(859\) 20.3485 0.694281 0.347140 0.937813i \(-0.387153\pi\)
0.347140 + 0.937813i \(0.387153\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 25.3485i 0.863372i
\(863\) − 43.8434i − 1.49245i −0.665696 0.746223i \(-0.731865\pi\)
0.665696 0.746223i \(-0.268135\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −9.59592 −0.326083
\(867\) 0 0
\(868\) − 2.00000i − 0.0678844i
\(869\) 81.7980 2.77481
\(870\) 0 0
\(871\) −0.156633 −0.00530732
\(872\) 5.55051i 0.187964i
\(873\) 0 0
\(874\) −18.2474 −0.617229
\(875\) 0 0
\(876\) 0 0
\(877\) 31.7980i 1.07374i 0.843665 + 0.536870i \(0.180394\pi\)
−0.843665 + 0.536870i \(0.819606\pi\)
\(878\) − 3.34847i − 0.113005i
\(879\) 0 0
\(880\) 0 0
\(881\) 38.6969 1.30373 0.651866 0.758334i \(-0.273986\pi\)
0.651866 + 0.758334i \(0.273986\pi\)
\(882\) 0 0
\(883\) 47.7980i 1.60853i 0.594271 + 0.804265i \(0.297441\pi\)
−0.594271 + 0.804265i \(0.702559\pi\)
\(884\) 2.20204 0.0740627
\(885\) 0 0
\(886\) −8.20204 −0.275553
\(887\) − 5.50510i − 0.184843i −0.995720 0.0924216i \(-0.970539\pi\)
0.995720 0.0924216i \(-0.0294608\pi\)
\(888\) 0 0
\(889\) 1.50510 0.0504795
\(890\) 0 0
\(891\) 0 0
\(892\) − 17.7980i − 0.595920i
\(893\) − 81.1918i − 2.71698i
\(894\) 0 0
\(895\) 0 0
\(896\) 0.449490 0.0150164
\(897\) 0 0
\(898\) 28.5959i 0.954258i
\(899\) 10.8990 0.363501
\(900\) 0 0
\(901\) −17.3939 −0.579474
\(902\) − 44.0908i − 1.46806i
\(903\) 0 0
\(904\) −4.10102 −0.136398
\(905\) 0 0
\(906\) 0 0
\(907\) − 36.3485i − 1.20693i −0.797389 0.603466i \(-0.793786\pi\)
0.797389 0.603466i \(-0.206214\pi\)
\(908\) 13.6515i 0.453042i
\(909\) 0 0
\(910\) 0 0
\(911\) −7.34847 −0.243466 −0.121733 0.992563i \(-0.538845\pi\)
−0.121733 + 0.992563i \(0.538845\pi\)
\(912\) 0 0
\(913\) 26.6969i 0.883540i
\(914\) 13.6969 0.453054
\(915\) 0 0
\(916\) 13.1464 0.434370
\(917\) − 1.70714i − 0.0563748i
\(918\) 0 0
\(919\) −3.34847 −0.110456 −0.0552279 0.998474i \(-0.517589\pi\)
−0.0552279 + 0.998474i \(0.517589\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 4.65153i 0.153190i
\(923\) − 6.00000i − 0.197492i
\(924\) 0 0
\(925\) 0 0
\(926\) 5.34847 0.175762
\(927\) 0 0
\(928\) 2.44949i 0.0804084i
\(929\) 51.1918 1.67955 0.839775 0.542935i \(-0.182687\pi\)
0.839775 + 0.542935i \(0.182687\pi\)
\(930\) 0 0
\(931\) −50.6413 −1.65970
\(932\) 23.6969i 0.776219i
\(933\) 0 0
\(934\) −10.3485 −0.338612
\(935\) 0 0
\(936\) 0 0
\(937\) − 7.20204i − 0.235280i −0.993056 0.117640i \(-0.962467\pi\)
0.993056 0.117640i \(-0.0375330\pi\)
\(938\) 0.156633i 0.00511426i
\(939\) 0 0
\(940\) 0 0
\(941\) 53.6413 1.74866 0.874329 0.485334i \(-0.161302\pi\)
0.874329 + 0.485334i \(0.161302\pi\)
\(942\) 0 0
\(943\) − 22.0454i − 0.717897i
\(944\) 5.44949 0.177366
\(945\) 0 0
\(946\) 12.4949 0.406244
\(947\) − 26.1464i − 0.849645i −0.905277 0.424822i \(-0.860337\pi\)
0.905277 0.424822i \(-0.139663\pi\)
\(948\) 0 0
\(949\) −0.449490 −0.0145911
\(950\) 0 0
\(951\) 0 0
\(952\) − 2.20204i − 0.0713686i
\(953\) 2.20204i 0.0713311i 0.999364 + 0.0356656i \(0.0113551\pi\)
−0.999364 + 0.0356656i \(0.988645\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 14.4495 0.467330
\(957\) 0 0
\(958\) − 0.247449i − 0.00799471i
\(959\) 1.34847 0.0435443
\(960\) 0 0
\(961\) −11.2020 −0.361356
\(962\) 5.10102i 0.164464i
\(963\) 0 0
\(964\) 3.20204 0.103131
\(965\) 0 0
\(966\) 0 0
\(967\) − 32.0000i − 1.02905i −0.857475 0.514525i \(-0.827968\pi\)
0.857475 0.514525i \(-0.172032\pi\)
\(968\) − 13.0000i − 0.417836i
\(969\) 0 0
\(970\) 0 0
\(971\) −40.8434 −1.31073 −0.655363 0.755314i \(-0.727484\pi\)
−0.655363 + 0.755314i \(0.727484\pi\)
\(972\) 0 0
\(973\) 1.79796i 0.0576399i
\(974\) −24.4495 −0.783412
\(975\) 0 0
\(976\) 8.00000 0.256074
\(977\) 9.00000i 0.287936i 0.989582 + 0.143968i \(0.0459862\pi\)
−0.989582 + 0.143968i \(0.954014\pi\)
\(978\) 0 0
\(979\) −44.0908 −1.40915
\(980\) 0 0
\(981\) 0 0
\(982\) − 27.2474i − 0.869501i
\(983\) − 13.1010i − 0.417858i −0.977931 0.208929i \(-0.933002\pi\)
0.977931 0.208929i \(-0.0669977\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 12.0000 0.382158
\(987\) 0 0
\(988\) − 3.34847i − 0.106529i
\(989\) 6.24745 0.198657
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) 4.44949i 0.141271i
\(993\) 0 0
\(994\) −6.00000 −0.190308
\(995\) 0 0
\(996\) 0 0
\(997\) 8.04541i 0.254801i 0.991851 + 0.127400i \(0.0406633\pi\)
−0.991851 + 0.127400i \(0.959337\pi\)
\(998\) 8.34847i 0.264266i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4050.2.c.y.649.4 4
3.2 odd 2 4050.2.c.w.649.2 4
5.2 odd 4 4050.2.a.br.1.1 2
5.3 odd 4 4050.2.a.bu.1.2 2
5.4 even 2 inner 4050.2.c.y.649.1 4
9.2 odd 6 1350.2.j.g.199.2 8
9.4 even 3 450.2.j.f.349.1 8
9.5 odd 6 1350.2.j.g.1099.3 8
9.7 even 3 450.2.j.f.49.4 8
15.2 even 4 4050.2.a.by.1.1 2
15.8 even 4 4050.2.a.bl.1.2 2
15.14 odd 2 4050.2.c.w.649.3 4
45.2 even 12 1350.2.e.k.901.2 4
45.4 even 6 450.2.j.f.349.4 8
45.7 odd 12 450.2.e.m.301.1 yes 4
45.13 odd 12 450.2.e.l.151.1 4
45.14 odd 6 1350.2.j.g.1099.2 8
45.22 odd 12 450.2.e.m.151.2 yes 4
45.23 even 12 1350.2.e.n.451.1 4
45.29 odd 6 1350.2.j.g.199.3 8
45.32 even 12 1350.2.e.k.451.2 4
45.34 even 6 450.2.j.f.49.1 8
45.38 even 12 1350.2.e.n.901.1 4
45.43 odd 12 450.2.e.l.301.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
450.2.e.l.151.1 4 45.13 odd 12
450.2.e.l.301.2 yes 4 45.43 odd 12
450.2.e.m.151.2 yes 4 45.22 odd 12
450.2.e.m.301.1 yes 4 45.7 odd 12
450.2.j.f.49.1 8 45.34 even 6
450.2.j.f.49.4 8 9.7 even 3
450.2.j.f.349.1 8 9.4 even 3
450.2.j.f.349.4 8 45.4 even 6
1350.2.e.k.451.2 4 45.32 even 12
1350.2.e.k.901.2 4 45.2 even 12
1350.2.e.n.451.1 4 45.23 even 12
1350.2.e.n.901.1 4 45.38 even 12
1350.2.j.g.199.2 8 9.2 odd 6
1350.2.j.g.199.3 8 45.29 odd 6
1350.2.j.g.1099.2 8 45.14 odd 6
1350.2.j.g.1099.3 8 9.5 odd 6
4050.2.a.bl.1.2 2 15.8 even 4
4050.2.a.br.1.1 2 5.2 odd 4
4050.2.a.bu.1.2 2 5.3 odd 4
4050.2.a.by.1.1 2 15.2 even 4
4050.2.c.w.649.2 4 3.2 odd 2
4050.2.c.w.649.3 4 15.14 odd 2
4050.2.c.y.649.1 4 5.4 even 2 inner
4050.2.c.y.649.4 4 1.1 even 1 trivial