Properties

Label 1350.2.j.g.199.3
Level $1350$
Weight $2$
Character 1350.199
Analytic conductor $10.780$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1350,2,Mod(199,1350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1350, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1350.199");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1350.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.7798042729\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 450)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 199.3
Root \(-0.258819 + 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 1350.199
Dual form 1350.2.j.g.1099.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +(-0.389270 + 0.224745i) q^{7} -1.00000i q^{8} +O(q^{10})\) \(q+(0.866025 - 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +(-0.389270 + 0.224745i) q^{7} -1.00000i q^{8} +(-2.44949 - 4.24264i) q^{11} +(-0.389270 - 0.224745i) q^{13} +(-0.224745 + 0.389270i) q^{14} +(-0.500000 - 0.866025i) q^{16} -4.89898i q^{17} -7.44949 q^{19} +(-4.24264 - 2.44949i) q^{22} +(2.12132 + 1.22474i) q^{23} -0.449490 q^{26} +0.449490i q^{28} +(1.22474 + 2.12132i) q^{29} +(-2.22474 + 3.85337i) q^{31} +(-0.866025 - 0.500000i) q^{32} +(-2.44949 - 4.24264i) q^{34} -11.3485i q^{37} +(-6.45145 + 3.72474i) q^{38} +(4.50000 - 7.79423i) q^{41} +(-2.20881 + 1.27526i) q^{43} -4.89898 q^{44} +2.44949 q^{46} +(9.43879 - 5.44949i) q^{47} +(-3.39898 + 5.88721i) q^{49} +(-0.389270 + 0.224745i) q^{52} -3.55051i q^{53} +(0.224745 + 0.389270i) q^{56} +(2.12132 + 1.22474i) q^{58} +(2.72474 - 4.71940i) q^{59} +(-4.00000 - 6.92820i) q^{61} +4.44949i q^{62} -1.00000 q^{64} +(-0.301783 - 0.174235i) q^{67} +(-4.24264 - 2.44949i) q^{68} -13.3485 q^{71} +1.00000i q^{73} +(-5.67423 - 9.82806i) q^{74} +(-3.72474 + 6.45145i) q^{76} +(1.90702 + 1.10102i) q^{77} +(8.34847 + 14.4600i) q^{79} -9.00000i q^{82} +(-4.71940 + 2.72474i) q^{83} +(-1.27526 + 2.20881i) q^{86} +(-4.24264 + 2.44949i) q^{88} -9.00000 q^{89} +0.202041 q^{91} +(2.12132 - 1.22474i) q^{92} +(5.44949 - 9.43879i) q^{94} +(7.61926 - 4.39898i) q^{97} +6.79796i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 4 q^{4} + 8 q^{14} - 4 q^{16} - 40 q^{19} + 16 q^{26} - 8 q^{31} + 36 q^{41} + 12 q^{49} - 8 q^{56} + 12 q^{59} - 32 q^{61} - 8 q^{64} - 48 q^{71} - 16 q^{74} - 20 q^{76} + 8 q^{79} - 20 q^{86} - 72 q^{89} + 80 q^{91} + 24 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1350\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1027\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 0 0
\(6\) 0 0
\(7\) −0.389270 + 0.224745i −0.147130 + 0.0849456i −0.571758 0.820422i \(-0.693738\pi\)
0.424628 + 0.905368i \(0.360405\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 0 0
\(11\) −2.44949 4.24264i −0.738549 1.27920i −0.953149 0.302502i \(-0.902178\pi\)
0.214600 0.976702i \(-0.431155\pi\)
\(12\) 0 0
\(13\) −0.389270 0.224745i −0.107964 0.0623330i 0.445046 0.895508i \(-0.353187\pi\)
−0.553010 + 0.833175i \(0.686521\pi\)
\(14\) −0.224745 + 0.389270i −0.0600656 + 0.104037i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 4.89898i 1.18818i −0.804400 0.594089i \(-0.797513\pi\)
0.804400 0.594089i \(-0.202487\pi\)
\(18\) 0 0
\(19\) −7.44949 −1.70903 −0.854515 0.519427i \(-0.826146\pi\)
−0.854515 + 0.519427i \(0.826146\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −4.24264 2.44949i −0.904534 0.522233i
\(23\) 2.12132 + 1.22474i 0.442326 + 0.255377i 0.704584 0.709621i \(-0.251134\pi\)
−0.262258 + 0.964998i \(0.584467\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −0.449490 −0.0881522
\(27\) 0 0
\(28\) 0.449490i 0.0849456i
\(29\) 1.22474 + 2.12132i 0.227429 + 0.393919i 0.957046 0.289938i \(-0.0936346\pi\)
−0.729616 + 0.683857i \(0.760301\pi\)
\(30\) 0 0
\(31\) −2.22474 + 3.85337i −0.399576 + 0.692086i −0.993674 0.112307i \(-0.964176\pi\)
0.594098 + 0.804393i \(0.297509\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 0 0
\(34\) −2.44949 4.24264i −0.420084 0.727607i
\(35\) 0 0
\(36\) 0 0
\(37\) 11.3485i 1.86568i −0.360295 0.932838i \(-0.617324\pi\)
0.360295 0.932838i \(-0.382676\pi\)
\(38\) −6.45145 + 3.72474i −1.04656 + 0.604233i
\(39\) 0 0
\(40\) 0 0
\(41\) 4.50000 7.79423i 0.702782 1.21725i −0.264704 0.964330i \(-0.585274\pi\)
0.967486 0.252924i \(-0.0813924\pi\)
\(42\) 0 0
\(43\) −2.20881 + 1.27526i −0.336840 + 0.194475i −0.658874 0.752254i \(-0.728967\pi\)
0.322034 + 0.946728i \(0.395634\pi\)
\(44\) −4.89898 −0.738549
\(45\) 0 0
\(46\) 2.44949 0.361158
\(47\) 9.43879 5.44949i 1.37679 0.794890i 0.385018 0.922909i \(-0.374195\pi\)
0.991772 + 0.128019i \(0.0408620\pi\)
\(48\) 0 0
\(49\) −3.39898 + 5.88721i −0.485568 + 0.841029i
\(50\) 0 0
\(51\) 0 0
\(52\) −0.389270 + 0.224745i −0.0539820 + 0.0311665i
\(53\) 3.55051i 0.487700i −0.969813 0.243850i \(-0.921590\pi\)
0.969813 0.243850i \(-0.0784105\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0.224745 + 0.389270i 0.0300328 + 0.0520183i
\(57\) 0 0
\(58\) 2.12132 + 1.22474i 0.278543 + 0.160817i
\(59\) 2.72474 4.71940i 0.354732 0.614413i −0.632340 0.774691i \(-0.717906\pi\)
0.987072 + 0.160278i \(0.0512389\pi\)
\(60\) 0 0
\(61\) −4.00000 6.92820i −0.512148 0.887066i −0.999901 0.0140840i \(-0.995517\pi\)
0.487753 0.872982i \(-0.337817\pi\)
\(62\) 4.44949i 0.565086i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −0.301783 0.174235i −0.0368687 0.0212861i 0.481452 0.876472i \(-0.340109\pi\)
−0.518321 + 0.855186i \(0.673443\pi\)
\(68\) −4.24264 2.44949i −0.514496 0.297044i
\(69\) 0 0
\(70\) 0 0
\(71\) −13.3485 −1.58417 −0.792086 0.610410i \(-0.791005\pi\)
−0.792086 + 0.610410i \(0.791005\pi\)
\(72\) 0 0
\(73\) 1.00000i 0.117041i 0.998286 + 0.0585206i \(0.0186383\pi\)
−0.998286 + 0.0585206i \(0.981362\pi\)
\(74\) −5.67423 9.82806i −0.659616 1.14249i
\(75\) 0 0
\(76\) −3.72474 + 6.45145i −0.427258 + 0.740032i
\(77\) 1.90702 + 1.10102i 0.217325 + 0.125473i
\(78\) 0 0
\(79\) 8.34847 + 14.4600i 0.939276 + 1.62687i 0.766825 + 0.641856i \(0.221835\pi\)
0.172451 + 0.985018i \(0.444831\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 9.00000i 0.993884i
\(83\) −4.71940 + 2.72474i −0.518021 + 0.299080i −0.736125 0.676846i \(-0.763346\pi\)
0.218104 + 0.975926i \(0.430013\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −1.27526 + 2.20881i −0.137514 + 0.238182i
\(87\) 0 0
\(88\) −4.24264 + 2.44949i −0.452267 + 0.261116i
\(89\) −9.00000 −0.953998 −0.476999 0.878904i \(-0.658275\pi\)
−0.476999 + 0.878904i \(0.658275\pi\)
\(90\) 0 0
\(91\) 0.202041 0.0211797
\(92\) 2.12132 1.22474i 0.221163 0.127688i
\(93\) 0 0
\(94\) 5.44949 9.43879i 0.562072 0.973537i
\(95\) 0 0
\(96\) 0 0
\(97\) 7.61926 4.39898i 0.773618 0.446649i −0.0605456 0.998165i \(-0.519284\pi\)
0.834164 + 0.551517i \(0.185951\pi\)
\(98\) 6.79796i 0.686698i
\(99\) 0 0
\(100\) 0 0
\(101\) 4.22474 + 7.31747i 0.420378 + 0.728116i 0.995976 0.0896167i \(-0.0285642\pi\)
−0.575599 + 0.817732i \(0.695231\pi\)
\(102\) 0 0
\(103\) 14.4600 + 8.34847i 1.42478 + 0.822599i 0.996703 0.0811413i \(-0.0258565\pi\)
0.428081 + 0.903740i \(0.359190\pi\)
\(104\) −0.224745 + 0.389270i −0.0220380 + 0.0381710i
\(105\) 0 0
\(106\) −1.77526 3.07483i −0.172428 0.298654i
\(107\) 9.24745i 0.893985i −0.894538 0.446992i \(-0.852495\pi\)
0.894538 0.446992i \(-0.147505\pi\)
\(108\) 0 0
\(109\) −5.55051 −0.531642 −0.265821 0.964022i \(-0.585643\pi\)
−0.265821 + 0.964022i \(0.585643\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.389270 + 0.224745i 0.0367825 + 0.0212364i
\(113\) 3.55159 + 2.05051i 0.334105 + 0.192896i 0.657662 0.753313i \(-0.271545\pi\)
−0.323557 + 0.946209i \(0.604879\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 2.44949 0.227429
\(117\) 0 0
\(118\) 5.44949i 0.501666i
\(119\) 1.10102 + 1.90702i 0.100930 + 0.174817i
\(120\) 0 0
\(121\) −6.50000 + 11.2583i −0.590909 + 1.02348i
\(122\) −6.92820 4.00000i −0.627250 0.362143i
\(123\) 0 0
\(124\) 2.22474 + 3.85337i 0.199788 + 0.346043i
\(125\) 0 0
\(126\) 0 0
\(127\) 3.34847i 0.297129i 0.988903 + 0.148564i \(0.0474652\pi\)
−0.988903 + 0.148564i \(0.952535\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) 0 0
\(131\) −1.89898 + 3.28913i −0.165915 + 0.287373i −0.936980 0.349384i \(-0.886391\pi\)
0.771065 + 0.636756i \(0.219724\pi\)
\(132\) 0 0
\(133\) 2.89986 1.67423i 0.251450 0.145175i
\(134\) −0.348469 −0.0301032
\(135\) 0 0
\(136\) −4.89898 −0.420084
\(137\) −2.59808 + 1.50000i −0.221969 + 0.128154i −0.606861 0.794808i \(-0.707572\pi\)
0.384893 + 0.922961i \(0.374238\pi\)
\(138\) 0 0
\(139\) −2.00000 + 3.46410i −0.169638 + 0.293821i −0.938293 0.345843i \(-0.887593\pi\)
0.768655 + 0.639664i \(0.220926\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −11.5601 + 6.67423i −0.970103 + 0.560089i
\(143\) 2.20204i 0.184144i
\(144\) 0 0
\(145\) 0 0
\(146\) 0.500000 + 0.866025i 0.0413803 + 0.0716728i
\(147\) 0 0
\(148\) −9.82806 5.67423i −0.807862 0.466419i
\(149\) 3.00000 5.19615i 0.245770 0.425685i −0.716578 0.697507i \(-0.754293\pi\)
0.962348 + 0.271821i \(0.0876260\pi\)
\(150\) 0 0
\(151\) −10.0000 17.3205i −0.813788 1.40952i −0.910195 0.414181i \(-0.864068\pi\)
0.0964061 0.995342i \(-0.469265\pi\)
\(152\) 7.44949i 0.604233i
\(153\) 0 0
\(154\) 2.20204 0.177446
\(155\) 0 0
\(156\) 0 0
\(157\) 17.1455 + 9.89898i 1.36836 + 0.790025i 0.990719 0.135926i \(-0.0434011\pi\)
0.377644 + 0.925951i \(0.376734\pi\)
\(158\) 14.4600 + 8.34847i 1.15037 + 0.664169i
\(159\) 0 0
\(160\) 0 0
\(161\) −1.10102 −0.0867726
\(162\) 0 0
\(163\) 7.44949i 0.583489i −0.956496 0.291745i \(-0.905764\pi\)
0.956496 0.291745i \(-0.0942357\pi\)
\(164\) −4.50000 7.79423i −0.351391 0.608627i
\(165\) 0 0
\(166\) −2.72474 + 4.71940i −0.211481 + 0.366296i
\(167\) 16.9706 + 9.79796i 1.31322 + 0.758189i 0.982628 0.185584i \(-0.0594178\pi\)
0.330593 + 0.943773i \(0.392751\pi\)
\(168\) 0 0
\(169\) −6.39898 11.0834i −0.492229 0.852566i
\(170\) 0 0
\(171\) 0 0
\(172\) 2.55051i 0.194475i
\(173\) 8.48528 4.89898i 0.645124 0.372463i −0.141462 0.989944i \(-0.545180\pi\)
0.786586 + 0.617481i \(0.211847\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −2.44949 + 4.24264i −0.184637 + 0.319801i
\(177\) 0 0
\(178\) −7.79423 + 4.50000i −0.584202 + 0.337289i
\(179\) 9.24745 0.691187 0.345593 0.938384i \(-0.387678\pi\)
0.345593 + 0.938384i \(0.387678\pi\)
\(180\) 0 0
\(181\) 17.7980 1.32291 0.661456 0.749984i \(-0.269939\pi\)
0.661456 + 0.749984i \(0.269939\pi\)
\(182\) 0.174973 0.101021i 0.0129698 0.00748814i
\(183\) 0 0
\(184\) 1.22474 2.12132i 0.0902894 0.156386i
\(185\) 0 0
\(186\) 0 0
\(187\) −20.7846 + 12.0000i −1.51992 + 0.877527i
\(188\) 10.8990i 0.794890i
\(189\) 0 0
\(190\) 0 0
\(191\) −0.550510 0.953512i −0.0398335 0.0689937i 0.845421 0.534100i \(-0.179349\pi\)
−0.885255 + 0.465106i \(0.846016\pi\)
\(192\) 0 0
\(193\) 17.3205 + 10.0000i 1.24676 + 0.719816i 0.970461 0.241257i \(-0.0775596\pi\)
0.276296 + 0.961073i \(0.410893\pi\)
\(194\) 4.39898 7.61926i 0.315828 0.547031i
\(195\) 0 0
\(196\) 3.39898 + 5.88721i 0.242784 + 0.420515i
\(197\) 0.247449i 0.0176300i 0.999961 + 0.00881500i \(0.00280594\pi\)
−0.999961 + 0.00881500i \(0.997194\pi\)
\(198\) 0 0
\(199\) 13.7980 0.978111 0.489056 0.872253i \(-0.337341\pi\)
0.489056 + 0.872253i \(0.337341\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 7.31747 + 4.22474i 0.514856 + 0.297252i
\(203\) −0.953512 0.550510i −0.0669234 0.0386382i
\(204\) 0 0
\(205\) 0 0
\(206\) 16.6969 1.16333
\(207\) 0 0
\(208\) 0.449490i 0.0311665i
\(209\) 18.2474 + 31.6055i 1.26220 + 2.18620i
\(210\) 0 0
\(211\) 1.72474 2.98735i 0.118736 0.205657i −0.800531 0.599292i \(-0.795449\pi\)
0.919267 + 0.393634i \(0.128782\pi\)
\(212\) −3.07483 1.77526i −0.211180 0.121925i
\(213\) 0 0
\(214\) −4.62372 8.00853i −0.316071 0.547452i
\(215\) 0 0
\(216\) 0 0
\(217\) 2.00000i 0.135769i
\(218\) −4.80688 + 2.77526i −0.325563 + 0.187964i
\(219\) 0 0
\(220\) 0 0
\(221\) −1.10102 + 1.90702i −0.0740627 + 0.128280i
\(222\) 0 0
\(223\) −15.4135 + 8.89898i −1.03216 + 0.595920i −0.917604 0.397497i \(-0.869879\pi\)
−0.114560 + 0.993416i \(0.536546\pi\)
\(224\) 0.449490 0.0300328
\(225\) 0 0
\(226\) 4.10102 0.272796
\(227\) −11.8226 + 6.82577i −0.784692 + 0.453042i −0.838090 0.545531i \(-0.816328\pi\)
0.0533987 + 0.998573i \(0.482995\pi\)
\(228\) 0 0
\(229\) 6.57321 11.3851i 0.434370 0.752351i −0.562874 0.826543i \(-0.690304\pi\)
0.997244 + 0.0741916i \(0.0236376\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 2.12132 1.22474i 0.139272 0.0804084i
\(233\) 23.6969i 1.55244i −0.630463 0.776219i \(-0.717135\pi\)
0.630463 0.776219i \(-0.282865\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −2.72474 4.71940i −0.177366 0.307207i
\(237\) 0 0
\(238\) 1.90702 + 1.10102i 0.123614 + 0.0713686i
\(239\) −7.22474 + 12.5136i −0.467330 + 0.809439i −0.999303 0.0373219i \(-0.988117\pi\)
0.531973 + 0.846761i \(0.321451\pi\)
\(240\) 0 0
\(241\) 1.60102 + 2.77305i 0.103131 + 0.178628i 0.912973 0.408020i \(-0.133781\pi\)
−0.809842 + 0.586648i \(0.800447\pi\)
\(242\) 13.0000i 0.835672i
\(243\) 0 0
\(244\) −8.00000 −0.512148
\(245\) 0 0
\(246\) 0 0
\(247\) 2.89986 + 1.67423i 0.184514 + 0.106529i
\(248\) 3.85337 + 2.22474i 0.244689 + 0.141271i
\(249\) 0 0
\(250\) 0 0
\(251\) 0.550510 0.0347479 0.0173739 0.999849i \(-0.494469\pi\)
0.0173739 + 0.999849i \(0.494469\pi\)
\(252\) 0 0
\(253\) 12.0000i 0.754434i
\(254\) 1.67423 + 2.89986i 0.105051 + 0.181953i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −11.0834 6.39898i −0.691361 0.399157i 0.112761 0.993622i \(-0.464031\pi\)
−0.804122 + 0.594465i \(0.797364\pi\)
\(258\) 0 0
\(259\) 2.55051 + 4.41761i 0.158481 + 0.274497i
\(260\) 0 0
\(261\) 0 0
\(262\) 3.79796i 0.234639i
\(263\) 17.7098 10.2247i 1.09203 0.630485i 0.157915 0.987453i \(-0.449523\pi\)
0.934117 + 0.356968i \(0.116189\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1.67423 2.89986i 0.102654 0.177802i
\(267\) 0 0
\(268\) −0.301783 + 0.174235i −0.0184343 + 0.0106431i
\(269\) 14.4495 0.881001 0.440500 0.897752i \(-0.354801\pi\)
0.440500 + 0.897752i \(0.354801\pi\)
\(270\) 0 0
\(271\) 15.3485 0.932353 0.466177 0.884692i \(-0.345631\pi\)
0.466177 + 0.884692i \(0.345631\pi\)
\(272\) −4.24264 + 2.44949i −0.257248 + 0.148522i
\(273\) 0 0
\(274\) −1.50000 + 2.59808i −0.0906183 + 0.156956i
\(275\) 0 0
\(276\) 0 0
\(277\) −1.34278 + 0.775255i −0.0806799 + 0.0465806i −0.539797 0.841795i \(-0.681499\pi\)
0.459117 + 0.888376i \(0.348166\pi\)
\(278\) 4.00000i 0.239904i
\(279\) 0 0
\(280\) 0 0
\(281\) 9.55051 + 16.5420i 0.569736 + 0.986811i 0.996592 + 0.0824916i \(0.0262878\pi\)
−0.426856 + 0.904320i \(0.640379\pi\)
\(282\) 0 0
\(283\) −11.4726 6.62372i −0.681977 0.393740i 0.118623 0.992939i \(-0.462152\pi\)
−0.800599 + 0.599200i \(0.795485\pi\)
\(284\) −6.67423 + 11.5601i −0.396043 + 0.685967i
\(285\) 0 0
\(286\) 1.10102 + 1.90702i 0.0651047 + 0.112765i
\(287\) 4.04541i 0.238793i
\(288\) 0 0
\(289\) −7.00000 −0.411765
\(290\) 0 0
\(291\) 0 0
\(292\) 0.866025 + 0.500000i 0.0506803 + 0.0292603i
\(293\) −13.8957 8.02270i −0.811797 0.468691i 0.0357824 0.999360i \(-0.488608\pi\)
−0.847580 + 0.530668i \(0.821941\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −11.3485 −0.659616
\(297\) 0 0
\(298\) 6.00000i 0.347571i
\(299\) −0.550510 0.953512i −0.0318368 0.0551430i
\(300\) 0 0
\(301\) 0.573214 0.992836i 0.0330395 0.0572261i
\(302\) −17.3205 10.0000i −0.996683 0.575435i
\(303\) 0 0
\(304\) 3.72474 + 6.45145i 0.213629 + 0.370016i
\(305\) 0 0
\(306\) 0 0
\(307\) 22.6969i 1.29538i 0.761903 + 0.647691i \(0.224265\pi\)
−0.761903 + 0.647691i \(0.775735\pi\)
\(308\) 1.90702 1.10102i 0.108663 0.0627365i
\(309\) 0 0
\(310\) 0 0
\(311\) −0.550510 + 0.953512i −0.0312166 + 0.0540687i −0.881212 0.472722i \(-0.843271\pi\)
0.849995 + 0.526791i \(0.176605\pi\)
\(312\) 0 0
\(313\) 5.10867 2.94949i 0.288759 0.166715i −0.348623 0.937263i \(-0.613351\pi\)
0.637382 + 0.770548i \(0.280017\pi\)
\(314\) 19.7980 1.11726
\(315\) 0 0
\(316\) 16.6969 0.939276
\(317\) −14.8492 + 8.57321i −0.834017 + 0.481520i −0.855226 0.518255i \(-0.826582\pi\)
0.0212094 + 0.999775i \(0.493248\pi\)
\(318\) 0 0
\(319\) 6.00000 10.3923i 0.335936 0.581857i
\(320\) 0 0
\(321\) 0 0
\(322\) −0.953512 + 0.550510i −0.0531371 + 0.0306787i
\(323\) 36.4949i 2.03063i
\(324\) 0 0
\(325\) 0 0
\(326\) −3.72474 6.45145i −0.206295 0.357313i
\(327\) 0 0
\(328\) −7.79423 4.50000i −0.430364 0.248471i
\(329\) −2.44949 + 4.24264i −0.135045 + 0.233904i
\(330\) 0 0
\(331\) −3.17423 5.49794i −0.174472 0.302194i 0.765507 0.643428i \(-0.222488\pi\)
−0.939978 + 0.341234i \(0.889155\pi\)
\(332\) 5.44949i 0.299080i
\(333\) 0 0
\(334\) 19.5959 1.07224
\(335\) 0 0
\(336\) 0 0
\(337\) 18.0990 + 10.4495i 0.985918 + 0.569220i 0.904052 0.427423i \(-0.140579\pi\)
0.0818663 + 0.996643i \(0.473912\pi\)
\(338\) −11.0834 6.39898i −0.602855 0.348059i
\(339\) 0 0
\(340\) 0 0
\(341\) 21.7980 1.18043
\(342\) 0 0
\(343\) 6.20204i 0.334879i
\(344\) 1.27526 + 2.20881i 0.0687571 + 0.119091i
\(345\) 0 0
\(346\) 4.89898 8.48528i 0.263371 0.456172i
\(347\) 10.3923 + 6.00000i 0.557888 + 0.322097i 0.752297 0.658824i \(-0.228946\pi\)
−0.194409 + 0.980921i \(0.562279\pi\)
\(348\) 0 0
\(349\) 7.00000 + 12.1244i 0.374701 + 0.649002i 0.990282 0.139072i \(-0.0444119\pi\)
−0.615581 + 0.788074i \(0.711079\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 4.89898i 0.261116i
\(353\) −7.79423 + 4.50000i −0.414845 + 0.239511i −0.692869 0.721063i \(-0.743654\pi\)
0.278024 + 0.960574i \(0.410320\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −4.50000 + 7.79423i −0.238500 + 0.413093i
\(357\) 0 0
\(358\) 8.00853 4.62372i 0.423264 0.244371i
\(359\) −14.2020 −0.749555 −0.374778 0.927115i \(-0.622281\pi\)
−0.374778 + 0.927115i \(0.622281\pi\)
\(360\) 0 0
\(361\) 36.4949 1.92078
\(362\) 15.4135 8.89898i 0.810115 0.467720i
\(363\) 0 0
\(364\) 0.101021 0.174973i 0.00529491 0.00917106i
\(365\) 0 0
\(366\) 0 0
\(367\) −10.9959 + 6.34847i −0.573980 + 0.331387i −0.758737 0.651397i \(-0.774183\pi\)
0.184757 + 0.982784i \(0.440850\pi\)
\(368\) 2.44949i 0.127688i
\(369\) 0 0
\(370\) 0 0
\(371\) 0.797959 + 1.38211i 0.0414280 + 0.0717553i
\(372\) 0 0
\(373\) −20.4347 11.7980i −1.05807 0.610875i −0.133170 0.991093i \(-0.542516\pi\)
−0.924897 + 0.380218i \(0.875849\pi\)
\(374\) −12.0000 + 20.7846i −0.620505 + 1.07475i
\(375\) 0 0
\(376\) −5.44949 9.43879i −0.281036 0.486769i
\(377\) 1.10102i 0.0567054i
\(378\) 0 0
\(379\) 8.89898 0.457110 0.228555 0.973531i \(-0.426600\pi\)
0.228555 + 0.973531i \(0.426600\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −0.953512 0.550510i −0.0487859 0.0281666i
\(383\) −18.6633 10.7753i −0.953650 0.550590i −0.0594368 0.998232i \(-0.518930\pi\)
−0.894213 + 0.447642i \(0.852264\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 20.0000 1.01797
\(387\) 0 0
\(388\) 8.79796i 0.446649i
\(389\) −12.7980 22.1667i −0.648882 1.12390i −0.983390 0.181504i \(-0.941903\pi\)
0.334508 0.942393i \(-0.391430\pi\)
\(390\) 0 0
\(391\) 6.00000 10.3923i 0.303433 0.525561i
\(392\) 5.88721 + 3.39898i 0.297349 + 0.171674i
\(393\) 0 0
\(394\) 0.123724 + 0.214297i 0.00623314 + 0.0107961i
\(395\) 0 0
\(396\) 0 0
\(397\) 17.5959i 0.883114i −0.897233 0.441557i \(-0.854426\pi\)
0.897233 0.441557i \(-0.145574\pi\)
\(398\) 11.9494 6.89898i 0.598968 0.345815i
\(399\) 0 0
\(400\) 0 0
\(401\) 19.3485 33.5125i 0.966216 1.67354i 0.259906 0.965634i \(-0.416308\pi\)
0.706311 0.707902i \(-0.250358\pi\)
\(402\) 0 0
\(403\) 1.73205 1.00000i 0.0862796 0.0498135i
\(404\) 8.44949 0.420378
\(405\) 0 0
\(406\) −1.10102 −0.0546427
\(407\) −48.1475 + 27.7980i −2.38658 + 1.37789i
\(408\) 0 0
\(409\) 0.0505103 0.0874863i 0.00249757 0.00432592i −0.864774 0.502161i \(-0.832538\pi\)
0.867271 + 0.497835i \(0.165872\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 14.4600 8.34847i 0.712392 0.411300i
\(413\) 2.44949i 0.120532i
\(414\) 0 0
\(415\) 0 0
\(416\) 0.224745 + 0.389270i 0.0110190 + 0.0190855i
\(417\) 0 0
\(418\) 31.6055 + 18.2474i 1.54588 + 0.892512i
\(419\) 13.0732 22.6435i 0.638668 1.10621i −0.347057 0.937844i \(-0.612819\pi\)
0.985725 0.168362i \(-0.0538477\pi\)
\(420\) 0 0
\(421\) 13.0227 + 22.5560i 0.634688 + 1.09931i 0.986581 + 0.163271i \(0.0522046\pi\)
−0.351893 + 0.936040i \(0.614462\pi\)
\(422\) 3.44949i 0.167919i
\(423\) 0 0
\(424\) −3.55051 −0.172428
\(425\) 0 0
\(426\) 0 0
\(427\) 3.11416 + 1.79796i 0.150705 + 0.0870093i
\(428\) −8.00853 4.62372i −0.387107 0.223496i
\(429\) 0 0
\(430\) 0 0
\(431\) −25.3485 −1.22099 −0.610496 0.792019i \(-0.709030\pi\)
−0.610496 + 0.792019i \(0.709030\pi\)
\(432\) 0 0
\(433\) 9.59592i 0.461150i −0.973055 0.230575i \(-0.925939\pi\)
0.973055 0.230575i \(-0.0740608\pi\)
\(434\) −1.00000 1.73205i −0.0480015 0.0831411i
\(435\) 0 0
\(436\) −2.77526 + 4.80688i −0.132911 + 0.230208i
\(437\) −15.8028 9.12372i −0.755948 0.436447i
\(438\) 0 0
\(439\) 1.67423 + 2.89986i 0.0799069 + 0.138403i 0.903210 0.429200i \(-0.141204\pi\)
−0.823303 + 0.567603i \(0.807871\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 2.20204i 0.104740i
\(443\) 7.10318 4.10102i 0.337482 0.194845i −0.321676 0.946850i \(-0.604246\pi\)
0.659158 + 0.752004i \(0.270913\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −8.89898 + 15.4135i −0.421379 + 0.729850i
\(447\) 0 0
\(448\) 0.389270 0.224745i 0.0183913 0.0106182i
\(449\) −28.5959 −1.34952 −0.674762 0.738035i \(-0.735754\pi\)
−0.674762 + 0.738035i \(0.735754\pi\)
\(450\) 0 0
\(451\) −44.0908 −2.07616
\(452\) 3.55159 2.05051i 0.167053 0.0964479i
\(453\) 0 0
\(454\) −6.82577 + 11.8226i −0.320349 + 0.554861i
\(455\) 0 0
\(456\) 0 0
\(457\) 11.8619 6.84847i 0.554876 0.320358i −0.196210 0.980562i \(-0.562864\pi\)
0.751086 + 0.660204i \(0.229530\pi\)
\(458\) 13.1464i 0.614292i
\(459\) 0 0
\(460\) 0 0
\(461\) 2.32577 + 4.02834i 0.108322 + 0.187619i 0.915090 0.403249i \(-0.132119\pi\)
−0.806769 + 0.590867i \(0.798786\pi\)
\(462\) 0 0
\(463\) −4.63191 2.67423i −0.215263 0.124282i 0.388492 0.921452i \(-0.372996\pi\)
−0.603755 + 0.797170i \(0.706329\pi\)
\(464\) 1.22474 2.12132i 0.0568574 0.0984798i
\(465\) 0 0
\(466\) −11.8485 20.5222i −0.548870 0.950670i
\(467\) 10.3485i 0.478870i 0.970912 + 0.239435i \(0.0769622\pi\)
−0.970912 + 0.239435i \(0.923038\pi\)
\(468\) 0 0
\(469\) 0.156633 0.00723266
\(470\) 0 0
\(471\) 0 0
\(472\) −4.71940 2.72474i −0.217228 0.125417i
\(473\) 10.8209 + 6.24745i 0.497545 + 0.287258i
\(474\) 0 0
\(475\) 0 0
\(476\) 2.20204 0.100930
\(477\) 0 0
\(478\) 14.4495i 0.660904i
\(479\) −0.123724 0.214297i −0.00565311 0.00979147i 0.863185 0.504888i \(-0.168466\pi\)
−0.868838 + 0.495096i \(0.835133\pi\)
\(480\) 0 0
\(481\) −2.55051 + 4.41761i −0.116293 + 0.201426i
\(482\) 2.77305 + 1.60102i 0.126309 + 0.0729245i
\(483\) 0 0
\(484\) 6.50000 + 11.2583i 0.295455 + 0.511742i
\(485\) 0 0
\(486\) 0 0
\(487\) 24.4495i 1.10791i −0.832546 0.553956i \(-0.813118\pi\)
0.832546 0.553956i \(-0.186882\pi\)
\(488\) −6.92820 + 4.00000i −0.313625 + 0.181071i
\(489\) 0 0
\(490\) 0 0
\(491\) −13.6237 + 23.5970i −0.614830 + 1.06492i 0.375584 + 0.926788i \(0.377442\pi\)
−0.990414 + 0.138129i \(0.955891\pi\)
\(492\) 0 0
\(493\) 10.3923 6.00000i 0.468046 0.270226i
\(494\) 3.34847 0.150655
\(495\) 0 0
\(496\) 4.44949 0.199788
\(497\) 5.19615 3.00000i 0.233079 0.134568i
\(498\) 0 0
\(499\) −4.17423 + 7.22999i −0.186864 + 0.323659i −0.944203 0.329364i \(-0.893166\pi\)
0.757339 + 0.653022i \(0.226499\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0.476756 0.275255i 0.0212787 0.0122852i
\(503\) 21.5505i 0.960890i 0.877025 + 0.480445i \(0.159525\pi\)
−0.877025 + 0.480445i \(0.840475\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −6.00000 10.3923i −0.266733 0.461994i
\(507\) 0 0
\(508\) 2.89986 + 1.67423i 0.128660 + 0.0742821i
\(509\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(510\) 0 0
\(511\) −0.224745 0.389270i −0.00994213 0.0172203i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −12.7980 −0.564494
\(515\) 0 0
\(516\) 0 0
\(517\) −46.2405 26.6969i −2.03365 1.17413i
\(518\) 4.41761 + 2.55051i 0.194099 + 0.112063i
\(519\) 0 0
\(520\) 0 0
\(521\) 29.3939 1.28777 0.643885 0.765123i \(-0.277322\pi\)
0.643885 + 0.765123i \(0.277322\pi\)
\(522\) 0 0
\(523\) 20.3485i 0.889776i 0.895586 + 0.444888i \(0.146757\pi\)
−0.895586 + 0.444888i \(0.853243\pi\)
\(524\) 1.89898 + 3.28913i 0.0829573 + 0.143686i
\(525\) 0 0
\(526\) 10.2247 17.7098i 0.445820 0.772183i
\(527\) 18.8776 + 10.8990i 0.822321 + 0.474767i
\(528\) 0 0
\(529\) −8.50000 14.7224i −0.369565 0.640106i
\(530\) 0 0
\(531\) 0 0
\(532\) 3.34847i 0.145175i
\(533\) −3.50343 + 2.02270i −0.151750 + 0.0876130i
\(534\) 0 0
\(535\) 0 0
\(536\) −0.174235 + 0.301783i −0.00752579 + 0.0130350i
\(537\) 0 0
\(538\) 12.5136 7.22474i 0.539501 0.311481i
\(539\) 33.3031 1.43446
\(540\) 0 0
\(541\) −37.7980 −1.62506 −0.812531 0.582919i \(-0.801911\pi\)
−0.812531 + 0.582919i \(0.801911\pi\)
\(542\) 13.2922 7.67423i 0.570947 0.329637i
\(543\) 0 0
\(544\) −2.44949 + 4.24264i −0.105021 + 0.181902i
\(545\) 0 0
\(546\) 0 0
\(547\) 13.5546 7.82577i 0.579554 0.334606i −0.181402 0.983409i \(-0.558064\pi\)
0.760956 + 0.648803i \(0.224730\pi\)
\(548\) 3.00000i 0.128154i
\(549\) 0 0
\(550\) 0 0
\(551\) −9.12372 15.8028i −0.388684 0.673220i
\(552\) 0 0
\(553\) −6.49961 3.75255i −0.276392 0.159575i
\(554\) −0.775255 + 1.34278i −0.0329374 + 0.0570493i
\(555\) 0 0
\(556\) 2.00000 + 3.46410i 0.0848189 + 0.146911i
\(557\) 41.3939i 1.75391i −0.480568 0.876957i \(-0.659570\pi\)
0.480568 0.876957i \(-0.340430\pi\)
\(558\) 0 0
\(559\) 1.14643 0.0484887
\(560\) 0 0
\(561\) 0 0
\(562\) 16.5420 + 9.55051i 0.697781 + 0.402864i
\(563\) 20.7364 + 11.9722i 0.873937 + 0.504568i 0.868655 0.495418i \(-0.164985\pi\)
0.00528250 + 0.999986i \(0.498319\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −13.2474 −0.556832
\(567\) 0 0
\(568\) 13.3485i 0.560089i
\(569\) −16.8990 29.2699i −0.708442 1.22706i −0.965435 0.260644i \(-0.916065\pi\)
0.256993 0.966413i \(-0.417268\pi\)
\(570\) 0 0
\(571\) −12.9722 + 22.4685i −0.542869 + 0.940277i 0.455868 + 0.890047i \(0.349329\pi\)
−0.998738 + 0.0502301i \(0.984005\pi\)
\(572\) 1.90702 + 1.10102i 0.0797367 + 0.0460360i
\(573\) 0 0
\(574\) 2.02270 + 3.50343i 0.0844260 + 0.146230i
\(575\) 0 0
\(576\) 0 0
\(577\) 40.3939i 1.68162i 0.541331 + 0.840810i \(0.317921\pi\)
−0.541331 + 0.840810i \(0.682079\pi\)
\(578\) −6.06218 + 3.50000i −0.252153 + 0.145581i
\(579\) 0 0
\(580\) 0 0
\(581\) 1.22474 2.12132i 0.0508110 0.0880072i
\(582\) 0 0
\(583\) −15.0635 + 8.69694i −0.623868 + 0.360190i
\(584\) 1.00000 0.0413803
\(585\) 0 0
\(586\) −16.0454 −0.662830
\(587\) 23.1202 13.3485i 0.954274 0.550950i 0.0598679 0.998206i \(-0.480932\pi\)
0.894406 + 0.447256i \(0.147599\pi\)
\(588\) 0 0
\(589\) 16.5732 28.7056i 0.682887 1.18280i
\(590\) 0 0
\(591\) 0 0
\(592\) −9.82806 + 5.67423i −0.403931 + 0.233210i
\(593\) 7.89898i 0.324372i −0.986760 0.162186i \(-0.948146\pi\)
0.986760 0.162186i \(-0.0518545\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −3.00000 5.19615i −0.122885 0.212843i
\(597\) 0 0
\(598\) −0.953512 0.550510i −0.0389920 0.0225120i
\(599\) 11.3258 19.6168i 0.462758 0.801521i −0.536339 0.844003i \(-0.680193\pi\)
0.999097 + 0.0424819i \(0.0135265\pi\)
\(600\) 0 0
\(601\) 8.24745 + 14.2850i 0.336420 + 0.582697i 0.983757 0.179507i \(-0.0574503\pi\)
−0.647336 + 0.762205i \(0.724117\pi\)
\(602\) 1.14643i 0.0467249i
\(603\) 0 0
\(604\) −20.0000 −0.813788
\(605\) 0 0
\(606\) 0 0
\(607\) −2.89986 1.67423i −0.117702 0.0679551i 0.439993 0.898001i \(-0.354981\pi\)
−0.557695 + 0.830046i \(0.688314\pi\)
\(608\) 6.45145 + 3.72474i 0.261641 + 0.151058i
\(609\) 0 0
\(610\) 0 0
\(611\) −4.89898 −0.198191
\(612\) 0 0
\(613\) 12.0454i 0.486509i −0.969962 0.243255i \(-0.921785\pi\)
0.969962 0.243255i \(-0.0782151\pi\)
\(614\) 11.3485 + 19.6561i 0.457987 + 0.793257i
\(615\) 0 0
\(616\) 1.10102 1.90702i 0.0443614 0.0768362i
\(617\) 38.4462 + 22.1969i 1.54779 + 0.893615i 0.998310 + 0.0581058i \(0.0185061\pi\)
0.549476 + 0.835509i \(0.314827\pi\)
\(618\) 0 0
\(619\) −15.8712 27.4897i −0.637916 1.10490i −0.985889 0.167399i \(-0.946463\pi\)
0.347973 0.937505i \(-0.386870\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 1.10102i 0.0441469i
\(623\) 3.50343 2.02270i 0.140362 0.0810379i
\(624\) 0 0
\(625\) 0 0
\(626\) 2.94949 5.10867i 0.117885 0.204183i
\(627\) 0 0
\(628\) 17.1455 9.89898i 0.684181 0.395012i
\(629\) −55.5959 −2.21675
\(630\) 0 0
\(631\) −6.20204 −0.246899 −0.123450 0.992351i \(-0.539396\pi\)
−0.123450 + 0.992351i \(0.539396\pi\)
\(632\) 14.4600 8.34847i 0.575187 0.332084i
\(633\) 0 0
\(634\) −8.57321 + 14.8492i −0.340486 + 0.589739i
\(635\) 0 0
\(636\) 0 0
\(637\) 2.64624 1.52781i 0.104848 0.0605339i
\(638\) 12.0000i 0.475085i
\(639\) 0 0
\(640\) 0 0
\(641\) −7.19694 12.4655i −0.284262 0.492356i 0.688168 0.725551i \(-0.258415\pi\)
−0.972430 + 0.233195i \(0.925082\pi\)
\(642\) 0 0
\(643\) −15.2867 8.82577i −0.602848 0.348054i 0.167313 0.985904i \(-0.446491\pi\)
−0.770161 + 0.637850i \(0.779824\pi\)
\(644\) −0.550510 + 0.953512i −0.0216931 + 0.0375736i
\(645\) 0 0
\(646\) 18.2474 + 31.6055i 0.717936 + 1.24350i
\(647\) 24.2474i 0.953266i −0.879102 0.476633i \(-0.841857\pi\)
0.879102 0.476633i \(-0.158143\pi\)
\(648\) 0 0
\(649\) −26.6969 −1.04795
\(650\) 0 0
\(651\) 0 0
\(652\) −6.45145 3.72474i −0.252658 0.145872i
\(653\) −15.8028 9.12372i −0.618410 0.357039i 0.157840 0.987465i \(-0.449547\pi\)
−0.776250 + 0.630426i \(0.782880\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −9.00000 −0.351391
\(657\) 0 0
\(658\) 4.89898i 0.190982i
\(659\) −4.92679 8.53344i −0.191920 0.332416i 0.753966 0.656913i \(-0.228138\pi\)
−0.945887 + 0.324497i \(0.894805\pi\)
\(660\) 0 0
\(661\) −3.69694 + 6.40329i −0.143794 + 0.249059i −0.928922 0.370274i \(-0.879264\pi\)
0.785128 + 0.619333i \(0.212597\pi\)
\(662\) −5.49794 3.17423i −0.213683 0.123370i
\(663\) 0 0
\(664\) 2.72474 + 4.71940i 0.105741 + 0.183148i
\(665\) 0 0
\(666\) 0 0
\(667\) 6.00000i 0.232321i
\(668\) 16.9706 9.79796i 0.656611 0.379094i
\(669\) 0 0
\(670\) 0 0
\(671\) −19.5959 + 33.9411i −0.756492 + 1.31028i
\(672\) 0 0
\(673\) −19.6561 + 11.3485i −0.757688 + 0.437451i −0.828465 0.560041i \(-0.810785\pi\)
0.0707771 + 0.997492i \(0.477452\pi\)
\(674\) 20.8990 0.804999
\(675\) 0 0
\(676\) −12.7980 −0.492229
\(677\) 22.3810 12.9217i 0.860172 0.496621i −0.00389777 0.999992i \(-0.501241\pi\)
0.864070 + 0.503372i \(0.167907\pi\)
\(678\) 0 0
\(679\) −1.97730 + 3.42478i −0.0758817 + 0.131431i
\(680\) 0 0
\(681\) 0 0
\(682\) 18.8776 10.8990i 0.722860 0.417343i
\(683\) 41.9444i 1.60496i 0.596681 + 0.802479i \(0.296486\pi\)
−0.596681 + 0.802479i \(0.703514\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −3.10102 5.37113i −0.118398 0.205071i
\(687\) 0 0
\(688\) 2.20881 + 1.27526i 0.0842100 + 0.0486186i
\(689\) −0.797959 + 1.38211i −0.0303998 + 0.0526540i
\(690\) 0 0
\(691\) −19.5227 33.8143i −0.742679 1.28636i −0.951271 0.308355i \(-0.900222\pi\)
0.208593 0.978003i \(-0.433112\pi\)
\(692\) 9.79796i 0.372463i
\(693\) 0 0
\(694\) 12.0000 0.455514
\(695\) 0 0
\(696\) 0 0
\(697\) −38.1838 22.0454i −1.44631 0.835029i
\(698\) 12.1244 + 7.00000i 0.458914 + 0.264954i
\(699\) 0 0
\(700\) 0 0
\(701\) −33.7980 −1.27653 −0.638266 0.769816i \(-0.720348\pi\)
−0.638266 + 0.769816i \(0.720348\pi\)
\(702\) 0 0
\(703\) 84.5403i 3.18850i
\(704\) 2.44949 + 4.24264i 0.0923186 + 0.159901i
\(705\) 0 0
\(706\) −4.50000 + 7.79423i −0.169360 + 0.293340i
\(707\) −3.28913 1.89898i −0.123700 0.0714185i
\(708\) 0 0
\(709\) 2.22474 + 3.85337i 0.0835520 + 0.144716i 0.904773 0.425894i \(-0.140040\pi\)
−0.821221 + 0.570610i \(0.806707\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 9.00000i 0.337289i
\(713\) −9.43879 + 5.44949i −0.353486 + 0.204085i
\(714\) 0 0
\(715\) 0 0
\(716\) 4.62372 8.00853i 0.172797 0.299293i
\(717\) 0 0
\(718\) −12.2993 + 7.10102i −0.459007 + 0.265008i
\(719\) 7.95459 0.296656 0.148328 0.988938i \(-0.452611\pi\)
0.148328 + 0.988938i \(0.452611\pi\)
\(720\) 0 0
\(721\) −7.50510 −0.279505
\(722\) 31.6055 18.2474i 1.17624 0.679100i
\(723\) 0 0
\(724\) 8.89898 15.4135i 0.330728 0.572838i
\(725\) 0 0
\(726\) 0 0
\(727\) −13.8564 + 8.00000i −0.513906 + 0.296704i −0.734438 0.678676i \(-0.762554\pi\)
0.220532 + 0.975380i \(0.429221\pi\)
\(728\) 0.202041i 0.00748814i
\(729\) 0 0
\(730\) 0 0
\(731\) 6.24745 + 10.8209i 0.231070 + 0.400225i
\(732\) 0 0
\(733\) 22.5167 + 13.0000i 0.831672 + 0.480166i 0.854425 0.519575i \(-0.173910\pi\)
−0.0227529 + 0.999741i \(0.507243\pi\)
\(734\) −6.34847 + 10.9959i −0.234326 + 0.405865i
\(735\) 0 0
\(736\) −1.22474 2.12132i −0.0451447 0.0781929i
\(737\) 1.70714i 0.0628834i
\(738\) 0 0
\(739\) −3.04541 −0.112027 −0.0560136 0.998430i \(-0.517839\pi\)
−0.0560136 + 0.998430i \(0.517839\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 1.38211 + 0.797959i 0.0507387 + 0.0292940i
\(743\) −42.7370 24.6742i −1.56787 0.905210i −0.996417 0.0845746i \(-0.973047\pi\)
−0.571452 0.820635i \(-0.693620\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −23.5959 −0.863908
\(747\) 0 0
\(748\) 24.0000i 0.877527i
\(749\) 2.07832 + 3.59975i 0.0759400 + 0.131532i
\(750\) 0 0
\(751\) 2.97730 5.15683i 0.108643 0.188175i −0.806578 0.591128i \(-0.798683\pi\)
0.915221 + 0.402953i \(0.132016\pi\)
\(752\) −9.43879 5.44949i −0.344197 0.198722i
\(753\) 0 0
\(754\) −0.550510 0.953512i −0.0200484 0.0347248i
\(755\) 0 0
\(756\) 0 0
\(757\) 38.0454i 1.38278i −0.722480 0.691392i \(-0.756998\pi\)
0.722480 0.691392i \(-0.243002\pi\)
\(758\) 7.70674 4.44949i 0.279921 0.161613i
\(759\) 0 0
\(760\) 0 0
\(761\) 6.94949 12.0369i 0.251919 0.436336i −0.712135 0.702042i \(-0.752272\pi\)
0.964054 + 0.265706i \(0.0856051\pi\)
\(762\) 0 0
\(763\) 2.16064 1.24745i 0.0782206 0.0451607i
\(764\) −1.10102 −0.0398335
\(765\) 0 0
\(766\) −21.5505 −0.778652
\(767\) −2.12132 + 1.22474i −0.0765964 + 0.0442230i
\(768\) 0 0
\(769\) −14.0959 + 24.4148i −0.508312 + 0.880422i 0.491642 + 0.870797i \(0.336397\pi\)
−0.999954 + 0.00962438i \(0.996936\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 17.3205 10.0000i 0.623379 0.359908i
\(773\) 10.4041i 0.374209i −0.982340 0.187104i \(-0.940090\pi\)
0.982340 0.187104i \(-0.0599103\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −4.39898 7.61926i −0.157914 0.273515i
\(777\) 0 0
\(778\) −22.1667 12.7980i −0.794715 0.458829i
\(779\) −33.5227 + 58.0630i −1.20108 + 2.08032i
\(780\) 0 0
\(781\) 32.6969 + 56.6328i 1.16999 + 2.02648i
\(782\) 12.0000i 0.429119i
\(783\) 0 0
\(784\) 6.79796 0.242784
\(785\) 0 0
\(786\) 0 0
\(787\) −30.0484 17.3485i −1.07111 0.618406i −0.142626 0.989777i \(-0.545555\pi\)
−0.928485 + 0.371370i \(0.878888\pi\)
\(788\) 0.214297 + 0.123724i 0.00763401 + 0.00440750i
\(789\) 0 0
\(790\) 0 0
\(791\) −1.84337 −0.0655426
\(792\) 0 0
\(793\) 3.59592i 0.127695i
\(794\) −8.79796 15.2385i −0.312228 0.540795i
\(795\) 0 0
\(796\) 6.89898 11.9494i 0.244528 0.423535i
\(797\) −26.1951 15.1237i −0.927877 0.535710i −0.0417372 0.999129i \(-0.513289\pi\)
−0.886139 + 0.463419i \(0.846623\pi\)
\(798\) 0 0
\(799\) −26.6969 46.2405i −0.944470 1.63587i
\(800\) 0 0
\(801\) 0 0
\(802\) 38.6969i 1.36644i
\(803\) 4.24264 2.44949i 0.149720 0.0864406i
\(804\) 0 0
\(805\) 0 0
\(806\) 1.00000 1.73205i 0.0352235 0.0610089i
\(807\) 0 0
\(808\) 7.31747 4.22474i 0.257428 0.148626i
\(809\) −6.30306 −0.221604 −0.110802 0.993843i \(-0.535342\pi\)
−0.110802 + 0.993843i \(0.535342\pi\)
\(810\) 0 0
\(811\) −28.5505 −1.00254 −0.501272 0.865290i \(-0.667134\pi\)
−0.501272 + 0.865290i \(0.667134\pi\)
\(812\) −0.953512 + 0.550510i −0.0334617 + 0.0193191i
\(813\) 0 0
\(814\) −27.7980 + 48.1475i −0.974318 + 1.68757i
\(815\) 0 0
\(816\) 0 0
\(817\) 16.4545 9.50000i 0.575669 0.332363i
\(818\) 0.101021i 0.00353210i
\(819\) 0 0
\(820\) 0 0
\(821\) 13.5959 + 23.5488i 0.474501 + 0.821860i 0.999574 0.0291978i \(-0.00929526\pi\)
−0.525073 + 0.851057i \(0.675962\pi\)
\(822\) 0 0
\(823\) −14.8099 8.55051i −0.516241 0.298052i 0.219154 0.975690i \(-0.429670\pi\)
−0.735395 + 0.677638i \(0.763004\pi\)
\(824\) 8.34847 14.4600i 0.290833 0.503737i
\(825\) 0 0
\(826\) 1.22474 + 2.12132i 0.0426143 + 0.0738102i
\(827\) 35.9444i 1.24991i 0.780661 + 0.624954i \(0.214882\pi\)
−0.780661 + 0.624954i \(0.785118\pi\)
\(828\) 0 0
\(829\) 46.7423 1.62343 0.811714 0.584055i \(-0.198535\pi\)
0.811714 + 0.584055i \(0.198535\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0.389270 + 0.224745i 0.0134955 + 0.00779163i
\(833\) 28.8413 + 16.6515i 0.999292 + 0.576941i
\(834\) 0 0
\(835\) 0 0
\(836\) 36.4949 1.26220
\(837\) 0 0
\(838\) 26.1464i 0.903213i
\(839\) −18.6742 32.3447i −0.644706 1.11666i −0.984369 0.176117i \(-0.943646\pi\)
0.339663 0.940547i \(-0.389687\pi\)
\(840\) 0 0
\(841\) 11.5000 19.9186i 0.396552 0.686848i
\(842\) 22.5560 + 13.0227i 0.777331 + 0.448792i
\(843\) 0 0
\(844\) −1.72474 2.98735i −0.0593682 0.102829i
\(845\) 0 0
\(846\) 0 0
\(847\) 5.84337i 0.200780i
\(848\) −3.07483 + 1.77526i −0.105590 + 0.0609625i
\(849\) 0 0
\(850\) 0 0
\(851\) 13.8990 24.0737i 0.476451 0.825237i
\(852\) 0 0
\(853\) 39.8372 23.0000i 1.36400 0.787505i 0.373845 0.927491i \(-0.378039\pi\)
0.990153 + 0.139986i \(0.0447058\pi\)
\(854\) 3.59592 0.123050
\(855\) 0 0
\(856\) −9.24745 −0.316071
\(857\) 43.2138 24.9495i 1.47615 0.852258i 0.476517 0.879165i \(-0.341899\pi\)
0.999638 + 0.0269070i \(0.00856581\pi\)
\(858\) 0 0
\(859\) −10.1742 + 17.6223i −0.347140 + 0.601265i −0.985740 0.168274i \(-0.946181\pi\)
0.638600 + 0.769539i \(0.279514\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −21.9524 + 12.6742i −0.747702 + 0.431686i
\(863\) 43.8434i 1.49245i −0.665696 0.746223i \(-0.731865\pi\)
0.665696 0.746223i \(-0.268135\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −4.79796 8.31031i −0.163041 0.282396i
\(867\) 0 0
\(868\) −1.73205 1.00000i −0.0587896 0.0339422i
\(869\) 40.8990 70.8391i 1.38740 2.40305i
\(870\) 0 0
\(871\) 0.0783167 + 0.135648i 0.00265366 + 0.00459627i
\(872\) 5.55051i 0.187964i
\(873\) 0 0
\(874\) −18.2474 −0.617229
\(875\) 0 0
\(876\) 0 0
\(877\) 27.5378 + 15.8990i 0.929887 + 0.536870i 0.886776 0.462200i \(-0.152940\pi\)
0.0431110 + 0.999070i \(0.486273\pi\)
\(878\) 2.89986 + 1.67423i 0.0978655 + 0.0565027i
\(879\) 0 0
\(880\) 0 0
\(881\) −38.6969 −1.30373 −0.651866 0.758334i \(-0.726014\pi\)
−0.651866 + 0.758334i \(0.726014\pi\)
\(882\) 0 0
\(883\) 47.7980i 1.60853i −0.594271 0.804265i \(-0.702559\pi\)
0.594271 0.804265i \(-0.297441\pi\)
\(884\) 1.10102 + 1.90702i 0.0370313 + 0.0641401i
\(885\) 0 0
\(886\) 4.10102 7.10318i 0.137776 0.238636i
\(887\) 4.76756 + 2.75255i 0.160079 + 0.0924216i 0.577899 0.816108i \(-0.303873\pi\)
−0.417821 + 0.908530i \(0.637206\pi\)
\(888\) 0 0
\(889\) −0.752551 1.30346i −0.0252398 0.0437165i
\(890\) 0 0
\(891\) 0 0
\(892\) 17.7980i 0.595920i
\(893\) −70.3142 + 40.5959i −2.35297 + 1.35849i
\(894\) 0 0
\(895\) 0 0
\(896\) 0.224745 0.389270i 0.00750820 0.0130046i
\(897\) 0 0
\(898\) −24.7648 + 14.2980i −0.826412 + 0.477129i
\(899\) −10.8990 −0.363501
\(900\) 0 0
\(901\) −17.3939 −0.579474
\(902\) −38.1838 + 22.0454i −1.27138 + 0.734032i
\(903\) 0 0
\(904\) 2.05051 3.55159i 0.0681990 0.118124i
\(905\) 0 0
\(906\) 0 0
\(907\) 31.4787 18.1742i 1.04523 0.603466i 0.123922 0.992292i \(-0.460453\pi\)
0.921311 + 0.388826i \(0.127119\pi\)
\(908\) 13.6515i 0.453042i
\(909\) 0 0
\(910\) 0 0
\(911\) −3.67423 6.36396i −0.121733 0.210847i 0.798718 0.601705i \(-0.205512\pi\)
−0.920451 + 0.390858i \(0.872178\pi\)
\(912\) 0 0
\(913\) 23.1202 + 13.3485i 0.765168 + 0.441770i
\(914\) 6.84847 11.8619i 0.226527 0.392357i
\(915\) 0 0
\(916\) −6.57321 11.3851i −0.217185 0.376176i
\(917\) 1.70714i 0.0563748i
\(918\) 0 0
\(919\) −3.34847 −0.110456 −0.0552279 0.998474i \(-0.517589\pi\)
−0.0552279 + 0.998474i \(0.517589\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 4.02834 + 2.32577i 0.132666 + 0.0765950i
\(923\) 5.19615 + 3.00000i 0.171033 + 0.0987462i
\(924\) 0 0
\(925\) 0 0
\(926\) −5.34847 −0.175762
\(927\) 0 0
\(928\) 2.44949i 0.0804084i
\(929\) 25.5959 + 44.3334i 0.839775 + 1.45453i 0.890083 + 0.455799i \(0.150646\pi\)
−0.0503079 + 0.998734i \(0.516020\pi\)
\(930\) 0 0
\(931\) 25.3207 43.8567i 0.829851 1.43734i
\(932\) −20.5222 11.8485i −0.672225 0.388110i
\(933\) 0 0
\(934\) 5.17423 + 8.96204i 0.169306 + 0.293247i
\(935\) 0 0
\(936\) 0 0
\(937\) 7.20204i 0.235280i 0.993056 + 0.117640i \(0.0375330\pi\)
−0.993056 + 0.117640i \(0.962467\pi\)
\(938\) 0.135648 0.0783167i 0.00442908 0.00255713i
\(939\) 0 0
\(940\) 0 0
\(941\) 26.8207 46.4548i 0.874329 1.51438i 0.0168524 0.999858i \(-0.494635\pi\)
0.857476 0.514524i \(-0.172031\pi\)
\(942\) 0 0
\(943\) 19.0919 11.0227i 0.621717 0.358949i
\(944\) −5.44949 −0.177366
\(945\) 0 0
\(946\) 12.4949 0.406244
\(947\) −22.6435 + 13.0732i −0.735814 + 0.424822i −0.820545 0.571581i \(-0.806330\pi\)
0.0847314 + 0.996404i \(0.472997\pi\)
\(948\) 0 0
\(949\) 0.224745 0.389270i 0.00729553 0.0126362i
\(950\) 0 0
\(951\) 0 0
\(952\) 1.90702 1.10102i 0.0618070 0.0356843i
\(953\) 2.20204i 0.0713311i 0.999364 + 0.0356656i \(0.0113551\pi\)
−0.999364 + 0.0356656i \(0.988645\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 7.22474 + 12.5136i 0.233665 + 0.404720i
\(957\) 0 0
\(958\) −0.214297 0.123724i −0.00692362 0.00399735i
\(959\) 0.674235 1.16781i 0.0217722 0.0377105i
\(960\) 0 0
\(961\) 5.60102 + 9.70125i 0.180678 + 0.312944i
\(962\) 5.10102i 0.164464i
\(963\) 0 0
\(964\) 3.20204 0.103131
\(965\) 0 0
\(966\) 0 0
\(967\) −27.7128 16.0000i −0.891184 0.514525i −0.0168544 0.999858i \(-0.505365\pi\)
−0.874330 + 0.485333i \(0.838699\pi\)
\(968\) 11.2583 + 6.50000i 0.361856 + 0.208918i
\(969\) 0 0
\(970\) 0 0
\(971\) 40.8434 1.31073 0.655363 0.755314i \(-0.272516\pi\)
0.655363 + 0.755314i \(0.272516\pi\)
\(972\) 0 0
\(973\) 1.79796i 0.0576399i
\(974\) −12.2247 21.1739i −0.391706 0.678455i
\(975\) 0 0
\(976\) −4.00000 + 6.92820i −0.128037 + 0.221766i
\(977\) −7.79423 4.50000i −0.249359 0.143968i 0.370111 0.928987i \(-0.379319\pi\)
−0.619471 + 0.785020i \(0.712653\pi\)
\(978\) 0 0
\(979\) 22.0454 + 38.1838i 0.704574 + 1.22036i
\(980\) 0 0
\(981\) 0 0
\(982\) 27.2474i 0.869501i
\(983\) −11.3458 + 6.55051i −0.361875 + 0.208929i −0.669903 0.742449i \(-0.733664\pi\)
0.308028 + 0.951377i \(0.400331\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 6.00000 10.3923i 0.191079 0.330958i
\(987\) 0 0
\(988\) 2.89986 1.67423i 0.0922568 0.0532645i
\(989\) −6.24745 −0.198657
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) 3.85337 2.22474i 0.122345 0.0706357i
\(993\) 0 0
\(994\) 3.00000 5.19615i 0.0951542 0.164812i
\(995\) 0 0
\(996\) 0 0
\(997\) −6.96753 + 4.02270i −0.220664 + 0.127400i −0.606258 0.795268i \(-0.707330\pi\)
0.385594 + 0.922669i \(0.373997\pi\)
\(998\) 8.34847i 0.264266i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1350.2.j.g.199.3 8
3.2 odd 2 450.2.j.f.49.1 8
5.2 odd 4 1350.2.e.n.901.1 4
5.3 odd 4 1350.2.e.k.901.2 4
5.4 even 2 inner 1350.2.j.g.199.2 8
9.2 odd 6 450.2.j.f.349.4 8
9.4 even 3 4050.2.c.w.649.3 4
9.5 odd 6 4050.2.c.y.649.1 4
9.7 even 3 inner 1350.2.j.g.1099.2 8
15.2 even 4 450.2.e.l.301.2 yes 4
15.8 even 4 450.2.e.m.301.1 yes 4
15.14 odd 2 450.2.j.f.49.4 8
45.2 even 12 450.2.e.l.151.1 4
45.4 even 6 4050.2.c.w.649.2 4
45.7 odd 12 1350.2.e.n.451.1 4
45.13 odd 12 4050.2.a.by.1.1 2
45.14 odd 6 4050.2.c.y.649.4 4
45.22 odd 12 4050.2.a.bl.1.2 2
45.23 even 12 4050.2.a.br.1.1 2
45.29 odd 6 450.2.j.f.349.1 8
45.32 even 12 4050.2.a.bu.1.2 2
45.34 even 6 inner 1350.2.j.g.1099.3 8
45.38 even 12 450.2.e.m.151.2 yes 4
45.43 odd 12 1350.2.e.k.451.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
450.2.e.l.151.1 4 45.2 even 12
450.2.e.l.301.2 yes 4 15.2 even 4
450.2.e.m.151.2 yes 4 45.38 even 12
450.2.e.m.301.1 yes 4 15.8 even 4
450.2.j.f.49.1 8 3.2 odd 2
450.2.j.f.49.4 8 15.14 odd 2
450.2.j.f.349.1 8 45.29 odd 6
450.2.j.f.349.4 8 9.2 odd 6
1350.2.e.k.451.2 4 45.43 odd 12
1350.2.e.k.901.2 4 5.3 odd 4
1350.2.e.n.451.1 4 45.7 odd 12
1350.2.e.n.901.1 4 5.2 odd 4
1350.2.j.g.199.2 8 5.4 even 2 inner
1350.2.j.g.199.3 8 1.1 even 1 trivial
1350.2.j.g.1099.2 8 9.7 even 3 inner
1350.2.j.g.1099.3 8 45.34 even 6 inner
4050.2.a.bl.1.2 2 45.22 odd 12
4050.2.a.br.1.1 2 45.23 even 12
4050.2.a.bu.1.2 2 45.32 even 12
4050.2.a.by.1.1 2 45.13 odd 12
4050.2.c.w.649.2 4 45.4 even 6
4050.2.c.w.649.3 4 9.4 even 3
4050.2.c.y.649.1 4 9.5 odd 6
4050.2.c.y.649.4 4 45.14 odd 6