Properties

Label 4050.2.a.bw.1.2
Level $4050$
Weight $2$
Character 4050.1
Self dual yes
Analytic conductor $32.339$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4050,2,Mod(1,4050)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4050, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4050.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4050 = 2 \cdot 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4050.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.3394128186\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.37228\) of defining polynomial
Character \(\chi\) \(=\) 4050.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +2.37228 q^{7} +1.00000 q^{8} +1.37228 q^{11} -4.74456 q^{13} +2.37228 q^{14} +1.00000 q^{16} +7.37228 q^{17} +3.37228 q^{19} +1.37228 q^{22} +4.37228 q^{23} -4.74456 q^{26} +2.37228 q^{28} -4.37228 q^{29} -6.74456 q^{31} +1.00000 q^{32} +7.37228 q^{34} +4.00000 q^{37} +3.37228 q^{38} -3.00000 q^{41} +11.3723 q^{43} +1.37228 q^{44} +4.37228 q^{46} +1.62772 q^{47} -1.37228 q^{49} -4.74456 q^{52} -11.4891 q^{53} +2.37228 q^{56} -4.37228 q^{58} -1.37228 q^{59} +9.11684 q^{61} -6.74456 q^{62} +1.00000 q^{64} +7.00000 q^{67} +7.37228 q^{68} -6.00000 q^{71} +14.1168 q^{73} +4.00000 q^{74} +3.37228 q^{76} +3.25544 q^{77} +2.00000 q^{79} -3.00000 q^{82} -1.62772 q^{83} +11.3723 q^{86} +1.37228 q^{88} -1.11684 q^{89} -11.2554 q^{91} +4.37228 q^{92} +1.62772 q^{94} +2.62772 q^{97} -1.37228 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} - q^{7} + 2 q^{8} - 3 q^{11} + 2 q^{13} - q^{14} + 2 q^{16} + 9 q^{17} + q^{19} - 3 q^{22} + 3 q^{23} + 2 q^{26} - q^{28} - 3 q^{29} - 2 q^{31} + 2 q^{32} + 9 q^{34} + 8 q^{37}+ \cdots + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) 2.37228 0.896638 0.448319 0.893874i \(-0.352023\pi\)
0.448319 + 0.893874i \(0.352023\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) 1.37228 0.413758 0.206879 0.978366i \(-0.433669\pi\)
0.206879 + 0.978366i \(0.433669\pi\)
\(12\) 0 0
\(13\) −4.74456 −1.31590 −0.657952 0.753059i \(-0.728577\pi\)
−0.657952 + 0.753059i \(0.728577\pi\)
\(14\) 2.37228 0.634019
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 7.37228 1.78804 0.894020 0.448026i \(-0.147873\pi\)
0.894020 + 0.448026i \(0.147873\pi\)
\(18\) 0 0
\(19\) 3.37228 0.773654 0.386827 0.922152i \(-0.373571\pi\)
0.386827 + 0.922152i \(0.373571\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 1.37228 0.292571
\(23\) 4.37228 0.911684 0.455842 0.890061i \(-0.349338\pi\)
0.455842 + 0.890061i \(0.349338\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −4.74456 −0.930485
\(27\) 0 0
\(28\) 2.37228 0.448319
\(29\) −4.37228 −0.811912 −0.405956 0.913893i \(-0.633061\pi\)
−0.405956 + 0.913893i \(0.633061\pi\)
\(30\) 0 0
\(31\) −6.74456 −1.21136 −0.605680 0.795709i \(-0.707099\pi\)
−0.605680 + 0.795709i \(0.707099\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 7.37228 1.26434
\(35\) 0 0
\(36\) 0 0
\(37\) 4.00000 0.657596 0.328798 0.944400i \(-0.393356\pi\)
0.328798 + 0.944400i \(0.393356\pi\)
\(38\) 3.37228 0.547056
\(39\) 0 0
\(40\) 0 0
\(41\) −3.00000 −0.468521 −0.234261 0.972174i \(-0.575267\pi\)
−0.234261 + 0.972174i \(0.575267\pi\)
\(42\) 0 0
\(43\) 11.3723 1.73426 0.867128 0.498085i \(-0.165963\pi\)
0.867128 + 0.498085i \(0.165963\pi\)
\(44\) 1.37228 0.206879
\(45\) 0 0
\(46\) 4.37228 0.644658
\(47\) 1.62772 0.237427 0.118714 0.992929i \(-0.462123\pi\)
0.118714 + 0.992929i \(0.462123\pi\)
\(48\) 0 0
\(49\) −1.37228 −0.196040
\(50\) 0 0
\(51\) 0 0
\(52\) −4.74456 −0.657952
\(53\) −11.4891 −1.57815 −0.789076 0.614295i \(-0.789440\pi\)
−0.789076 + 0.614295i \(0.789440\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 2.37228 0.317009
\(57\) 0 0
\(58\) −4.37228 −0.574109
\(59\) −1.37228 −0.178656 −0.0893279 0.996002i \(-0.528472\pi\)
−0.0893279 + 0.996002i \(0.528472\pi\)
\(60\) 0 0
\(61\) 9.11684 1.16729 0.583646 0.812008i \(-0.301626\pi\)
0.583646 + 0.812008i \(0.301626\pi\)
\(62\) −6.74456 −0.856560
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 7.00000 0.855186 0.427593 0.903971i \(-0.359362\pi\)
0.427593 + 0.903971i \(0.359362\pi\)
\(68\) 7.37228 0.894020
\(69\) 0 0
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 0 0
\(73\) 14.1168 1.65225 0.826126 0.563486i \(-0.190540\pi\)
0.826126 + 0.563486i \(0.190540\pi\)
\(74\) 4.00000 0.464991
\(75\) 0 0
\(76\) 3.37228 0.386827
\(77\) 3.25544 0.370992
\(78\) 0 0
\(79\) 2.00000 0.225018 0.112509 0.993651i \(-0.464111\pi\)
0.112509 + 0.993651i \(0.464111\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −3.00000 −0.331295
\(83\) −1.62772 −0.178665 −0.0893327 0.996002i \(-0.528473\pi\)
−0.0893327 + 0.996002i \(0.528473\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 11.3723 1.22630
\(87\) 0 0
\(88\) 1.37228 0.146286
\(89\) −1.11684 −0.118385 −0.0591926 0.998247i \(-0.518853\pi\)
−0.0591926 + 0.998247i \(0.518853\pi\)
\(90\) 0 0
\(91\) −11.2554 −1.17989
\(92\) 4.37228 0.455842
\(93\) 0 0
\(94\) 1.62772 0.167886
\(95\) 0 0
\(96\) 0 0
\(97\) 2.62772 0.266804 0.133402 0.991062i \(-0.457410\pi\)
0.133402 + 0.991062i \(0.457410\pi\)
\(98\) −1.37228 −0.138621
\(99\) 0 0
\(100\) 0 0
\(101\) −8.74456 −0.870117 −0.435058 0.900402i \(-0.643272\pi\)
−0.435058 + 0.900402i \(0.643272\pi\)
\(102\) 0 0
\(103\) 16.0000 1.57653 0.788263 0.615338i \(-0.210980\pi\)
0.788263 + 0.615338i \(0.210980\pi\)
\(104\) −4.74456 −0.465243
\(105\) 0 0
\(106\) −11.4891 −1.11592
\(107\) 14.4891 1.40072 0.700358 0.713791i \(-0.253024\pi\)
0.700358 + 0.713791i \(0.253024\pi\)
\(108\) 0 0
\(109\) 9.62772 0.922168 0.461084 0.887356i \(-0.347461\pi\)
0.461084 + 0.887356i \(0.347461\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 2.37228 0.224160
\(113\) −14.7446 −1.38705 −0.693526 0.720432i \(-0.743944\pi\)
−0.693526 + 0.720432i \(0.743944\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −4.37228 −0.405956
\(117\) 0 0
\(118\) −1.37228 −0.126329
\(119\) 17.4891 1.60323
\(120\) 0 0
\(121\) −9.11684 −0.828804
\(122\) 9.11684 0.825400
\(123\) 0 0
\(124\) −6.74456 −0.605680
\(125\) 0 0
\(126\) 0 0
\(127\) −9.11684 −0.808989 −0.404495 0.914540i \(-0.632553\pi\)
−0.404495 + 0.914540i \(0.632553\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) 8.74456 0.764016 0.382008 0.924159i \(-0.375233\pi\)
0.382008 + 0.924159i \(0.375233\pi\)
\(132\) 0 0
\(133\) 8.00000 0.693688
\(134\) 7.00000 0.604708
\(135\) 0 0
\(136\) 7.37228 0.632168
\(137\) 1.88316 0.160889 0.0804444 0.996759i \(-0.474366\pi\)
0.0804444 + 0.996759i \(0.474366\pi\)
\(138\) 0 0
\(139\) 18.1168 1.53665 0.768325 0.640060i \(-0.221090\pi\)
0.768325 + 0.640060i \(0.221090\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −6.00000 −0.503509
\(143\) −6.51087 −0.544467
\(144\) 0 0
\(145\) 0 0
\(146\) 14.1168 1.16832
\(147\) 0 0
\(148\) 4.00000 0.328798
\(149\) 19.1168 1.56611 0.783056 0.621951i \(-0.213660\pi\)
0.783056 + 0.621951i \(0.213660\pi\)
\(150\) 0 0
\(151\) −10.0000 −0.813788 −0.406894 0.913475i \(-0.633388\pi\)
−0.406894 + 0.913475i \(0.633388\pi\)
\(152\) 3.37228 0.273528
\(153\) 0 0
\(154\) 3.25544 0.262331
\(155\) 0 0
\(156\) 0 0
\(157\) −4.74456 −0.378657 −0.189329 0.981914i \(-0.560631\pi\)
−0.189329 + 0.981914i \(0.560631\pi\)
\(158\) 2.00000 0.159111
\(159\) 0 0
\(160\) 0 0
\(161\) 10.3723 0.817450
\(162\) 0 0
\(163\) −1.48913 −0.116637 −0.0583186 0.998298i \(-0.518574\pi\)
−0.0583186 + 0.998298i \(0.518574\pi\)
\(164\) −3.00000 −0.234261
\(165\) 0 0
\(166\) −1.62772 −0.126335
\(167\) −7.62772 −0.590251 −0.295125 0.955459i \(-0.595361\pi\)
−0.295125 + 0.955459i \(0.595361\pi\)
\(168\) 0 0
\(169\) 9.51087 0.731606
\(170\) 0 0
\(171\) 0 0
\(172\) 11.3723 0.867128
\(173\) −9.25544 −0.703678 −0.351839 0.936061i \(-0.614444\pi\)
−0.351839 + 0.936061i \(0.614444\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.37228 0.103440
\(177\) 0 0
\(178\) −1.11684 −0.0837110
\(179\) −3.25544 −0.243323 −0.121661 0.992572i \(-0.538822\pi\)
−0.121661 + 0.992572i \(0.538822\pi\)
\(180\) 0 0
\(181\) −7.86141 −0.584334 −0.292167 0.956367i \(-0.594376\pi\)
−0.292167 + 0.956367i \(0.594376\pi\)
\(182\) −11.2554 −0.834309
\(183\) 0 0
\(184\) 4.37228 0.322329
\(185\) 0 0
\(186\) 0 0
\(187\) 10.1168 0.739817
\(188\) 1.62772 0.118714
\(189\) 0 0
\(190\) 0 0
\(191\) −5.48913 −0.397179 −0.198590 0.980083i \(-0.563636\pi\)
−0.198590 + 0.980083i \(0.563636\pi\)
\(192\) 0 0
\(193\) −3.88316 −0.279516 −0.139758 0.990186i \(-0.544632\pi\)
−0.139758 + 0.990186i \(0.544632\pi\)
\(194\) 2.62772 0.188659
\(195\) 0 0
\(196\) −1.37228 −0.0980201
\(197\) −17.4891 −1.24605 −0.623024 0.782202i \(-0.714096\pi\)
−0.623024 + 0.782202i \(0.714096\pi\)
\(198\) 0 0
\(199\) −9.48913 −0.672666 −0.336333 0.941743i \(-0.609187\pi\)
−0.336333 + 0.941743i \(0.609187\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −8.74456 −0.615265
\(203\) −10.3723 −0.727991
\(204\) 0 0
\(205\) 0 0
\(206\) 16.0000 1.11477
\(207\) 0 0
\(208\) −4.74456 −0.328976
\(209\) 4.62772 0.320106
\(210\) 0 0
\(211\) −7.25544 −0.499485 −0.249742 0.968312i \(-0.580346\pi\)
−0.249742 + 0.968312i \(0.580346\pi\)
\(212\) −11.4891 −0.789076
\(213\) 0 0
\(214\) 14.4891 0.990456
\(215\) 0 0
\(216\) 0 0
\(217\) −16.0000 −1.08615
\(218\) 9.62772 0.652071
\(219\) 0 0
\(220\) 0 0
\(221\) −34.9783 −2.35289
\(222\) 0 0
\(223\) −12.3723 −0.828509 −0.414255 0.910161i \(-0.635958\pi\)
−0.414255 + 0.910161i \(0.635958\pi\)
\(224\) 2.37228 0.158505
\(225\) 0 0
\(226\) −14.7446 −0.980794
\(227\) −1.88316 −0.124989 −0.0624947 0.998045i \(-0.519906\pi\)
−0.0624947 + 0.998045i \(0.519906\pi\)
\(228\) 0 0
\(229\) 18.3723 1.21407 0.607037 0.794673i \(-0.292358\pi\)
0.607037 + 0.794673i \(0.292358\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −4.37228 −0.287054
\(233\) 10.1168 0.662776 0.331388 0.943494i \(-0.392483\pi\)
0.331388 + 0.943494i \(0.392483\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −1.37228 −0.0893279
\(237\) 0 0
\(238\) 17.4891 1.13365
\(239\) −14.7446 −0.953746 −0.476873 0.878972i \(-0.658230\pi\)
−0.476873 + 0.878972i \(0.658230\pi\)
\(240\) 0 0
\(241\) 10.4891 0.675664 0.337832 0.941206i \(-0.390306\pi\)
0.337832 + 0.941206i \(0.390306\pi\)
\(242\) −9.11684 −0.586053
\(243\) 0 0
\(244\) 9.11684 0.583646
\(245\) 0 0
\(246\) 0 0
\(247\) −16.0000 −1.01806
\(248\) −6.74456 −0.428280
\(249\) 0 0
\(250\) 0 0
\(251\) 15.6060 0.985040 0.492520 0.870301i \(-0.336076\pi\)
0.492520 + 0.870301i \(0.336076\pi\)
\(252\) 0 0
\(253\) 6.00000 0.377217
\(254\) −9.11684 −0.572042
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 1.37228 0.0856006 0.0428003 0.999084i \(-0.486372\pi\)
0.0428003 + 0.999084i \(0.486372\pi\)
\(258\) 0 0
\(259\) 9.48913 0.589626
\(260\) 0 0
\(261\) 0 0
\(262\) 8.74456 0.540241
\(263\) −5.48913 −0.338474 −0.169237 0.985575i \(-0.554130\pi\)
−0.169237 + 0.985575i \(0.554130\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 8.00000 0.490511
\(267\) 0 0
\(268\) 7.00000 0.427593
\(269\) 4.37228 0.266583 0.133291 0.991077i \(-0.457445\pi\)
0.133291 + 0.991077i \(0.457445\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 7.37228 0.447010
\(273\) 0 0
\(274\) 1.88316 0.113766
\(275\) 0 0
\(276\) 0 0
\(277\) −5.25544 −0.315769 −0.157884 0.987458i \(-0.550467\pi\)
−0.157884 + 0.987458i \(0.550467\pi\)
\(278\) 18.1168 1.08658
\(279\) 0 0
\(280\) 0 0
\(281\) 4.37228 0.260828 0.130414 0.991460i \(-0.458369\pi\)
0.130414 + 0.991460i \(0.458369\pi\)
\(282\) 0 0
\(283\) 31.8614 1.89396 0.946982 0.321287i \(-0.104115\pi\)
0.946982 + 0.321287i \(0.104115\pi\)
\(284\) −6.00000 −0.356034
\(285\) 0 0
\(286\) −6.51087 −0.384996
\(287\) −7.11684 −0.420094
\(288\) 0 0
\(289\) 37.3505 2.19709
\(290\) 0 0
\(291\) 0 0
\(292\) 14.1168 0.826126
\(293\) 8.23369 0.481017 0.240509 0.970647i \(-0.422686\pi\)
0.240509 + 0.970647i \(0.422686\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 4.00000 0.232495
\(297\) 0 0
\(298\) 19.1168 1.10741
\(299\) −20.7446 −1.19969
\(300\) 0 0
\(301\) 26.9783 1.55500
\(302\) −10.0000 −0.575435
\(303\) 0 0
\(304\) 3.37228 0.193414
\(305\) 0 0
\(306\) 0 0
\(307\) 33.2337 1.89675 0.948373 0.317156i \(-0.102728\pi\)
0.948373 + 0.317156i \(0.102728\pi\)
\(308\) 3.25544 0.185496
\(309\) 0 0
\(310\) 0 0
\(311\) −9.25544 −0.524828 −0.262414 0.964955i \(-0.584519\pi\)
−0.262414 + 0.964955i \(0.584519\pi\)
\(312\) 0 0
\(313\) −9.37228 −0.529753 −0.264876 0.964282i \(-0.585331\pi\)
−0.264876 + 0.964282i \(0.585331\pi\)
\(314\) −4.74456 −0.267751
\(315\) 0 0
\(316\) 2.00000 0.112509
\(317\) 8.74456 0.491144 0.245572 0.969378i \(-0.421024\pi\)
0.245572 + 0.969378i \(0.421024\pi\)
\(318\) 0 0
\(319\) −6.00000 −0.335936
\(320\) 0 0
\(321\) 0 0
\(322\) 10.3723 0.578025
\(323\) 24.8614 1.38333
\(324\) 0 0
\(325\) 0 0
\(326\) −1.48913 −0.0824750
\(327\) 0 0
\(328\) −3.00000 −0.165647
\(329\) 3.86141 0.212886
\(330\) 0 0
\(331\) −18.2337 −1.00221 −0.501107 0.865385i \(-0.667074\pi\)
−0.501107 + 0.865385i \(0.667074\pi\)
\(332\) −1.62772 −0.0893327
\(333\) 0 0
\(334\) −7.62772 −0.417370
\(335\) 0 0
\(336\) 0 0
\(337\) −3.37228 −0.183700 −0.0918499 0.995773i \(-0.529278\pi\)
−0.0918499 + 0.995773i \(0.529278\pi\)
\(338\) 9.51087 0.517323
\(339\) 0 0
\(340\) 0 0
\(341\) −9.25544 −0.501210
\(342\) 0 0
\(343\) −19.8614 −1.07242
\(344\) 11.3723 0.613152
\(345\) 0 0
\(346\) −9.25544 −0.497575
\(347\) 22.1168 1.18729 0.593647 0.804725i \(-0.297687\pi\)
0.593647 + 0.804725i \(0.297687\pi\)
\(348\) 0 0
\(349\) 0.883156 0.0472743 0.0236371 0.999721i \(-0.492475\pi\)
0.0236371 + 0.999721i \(0.492475\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.37228 0.0731428
\(353\) −30.3505 −1.61540 −0.807698 0.589597i \(-0.799287\pi\)
−0.807698 + 0.589597i \(0.799287\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −1.11684 −0.0591926
\(357\) 0 0
\(358\) −3.25544 −0.172055
\(359\) 5.48913 0.289705 0.144852 0.989453i \(-0.453729\pi\)
0.144852 + 0.989453i \(0.453729\pi\)
\(360\) 0 0
\(361\) −7.62772 −0.401459
\(362\) −7.86141 −0.413186
\(363\) 0 0
\(364\) −11.2554 −0.589945
\(365\) 0 0
\(366\) 0 0
\(367\) 16.0000 0.835193 0.417597 0.908633i \(-0.362873\pi\)
0.417597 + 0.908633i \(0.362873\pi\)
\(368\) 4.37228 0.227921
\(369\) 0 0
\(370\) 0 0
\(371\) −27.2554 −1.41503
\(372\) 0 0
\(373\) −7.48913 −0.387772 −0.193886 0.981024i \(-0.562109\pi\)
−0.193886 + 0.981024i \(0.562109\pi\)
\(374\) 10.1168 0.523130
\(375\) 0 0
\(376\) 1.62772 0.0839432
\(377\) 20.7446 1.06840
\(378\) 0 0
\(379\) −10.8614 −0.557913 −0.278956 0.960304i \(-0.589989\pi\)
−0.278956 + 0.960304i \(0.589989\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −5.48913 −0.280848
\(383\) −22.9783 −1.17413 −0.587067 0.809538i \(-0.699717\pi\)
−0.587067 + 0.809538i \(0.699717\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −3.88316 −0.197647
\(387\) 0 0
\(388\) 2.62772 0.133402
\(389\) −10.3723 −0.525896 −0.262948 0.964810i \(-0.584695\pi\)
−0.262948 + 0.964810i \(0.584695\pi\)
\(390\) 0 0
\(391\) 32.2337 1.63013
\(392\) −1.37228 −0.0693107
\(393\) 0 0
\(394\) −17.4891 −0.881089
\(395\) 0 0
\(396\) 0 0
\(397\) −11.2554 −0.564894 −0.282447 0.959283i \(-0.591146\pi\)
−0.282447 + 0.959283i \(0.591146\pi\)
\(398\) −9.48913 −0.475647
\(399\) 0 0
\(400\) 0 0
\(401\) 16.1168 0.804837 0.402418 0.915456i \(-0.368170\pi\)
0.402418 + 0.915456i \(0.368170\pi\)
\(402\) 0 0
\(403\) 32.0000 1.59403
\(404\) −8.74456 −0.435058
\(405\) 0 0
\(406\) −10.3723 −0.514768
\(407\) 5.48913 0.272086
\(408\) 0 0
\(409\) −10.8614 −0.537062 −0.268531 0.963271i \(-0.586538\pi\)
−0.268531 + 0.963271i \(0.586538\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 16.0000 0.788263
\(413\) −3.25544 −0.160190
\(414\) 0 0
\(415\) 0 0
\(416\) −4.74456 −0.232621
\(417\) 0 0
\(418\) 4.62772 0.226349
\(419\) −31.7228 −1.54976 −0.774880 0.632108i \(-0.782190\pi\)
−0.774880 + 0.632108i \(0.782190\pi\)
\(420\) 0 0
\(421\) −38.4674 −1.87479 −0.937393 0.348274i \(-0.886768\pi\)
−0.937393 + 0.348274i \(0.886768\pi\)
\(422\) −7.25544 −0.353189
\(423\) 0 0
\(424\) −11.4891 −0.557961
\(425\) 0 0
\(426\) 0 0
\(427\) 21.6277 1.04664
\(428\) 14.4891 0.700358
\(429\) 0 0
\(430\) 0 0
\(431\) −26.2337 −1.26363 −0.631816 0.775118i \(-0.717690\pi\)
−0.631816 + 0.775118i \(0.717690\pi\)
\(432\) 0 0
\(433\) −0.627719 −0.0301662 −0.0150831 0.999886i \(-0.504801\pi\)
−0.0150831 + 0.999886i \(0.504801\pi\)
\(434\) −16.0000 −0.768025
\(435\) 0 0
\(436\) 9.62772 0.461084
\(437\) 14.7446 0.705328
\(438\) 0 0
\(439\) 16.2337 0.774792 0.387396 0.921913i \(-0.373375\pi\)
0.387396 + 0.921913i \(0.373375\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −34.9783 −1.66375
\(443\) 26.4891 1.25854 0.629268 0.777188i \(-0.283355\pi\)
0.629268 + 0.777188i \(0.283355\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −12.3723 −0.585845
\(447\) 0 0
\(448\) 2.37228 0.112080
\(449\) −18.8614 −0.890125 −0.445062 0.895500i \(-0.646819\pi\)
−0.445062 + 0.895500i \(0.646819\pi\)
\(450\) 0 0
\(451\) −4.11684 −0.193855
\(452\) −14.7446 −0.693526
\(453\) 0 0
\(454\) −1.88316 −0.0883809
\(455\) 0 0
\(456\) 0 0
\(457\) −30.1168 −1.40881 −0.704403 0.709800i \(-0.748785\pi\)
−0.704403 + 0.709800i \(0.748785\pi\)
\(458\) 18.3723 0.858480
\(459\) 0 0
\(460\) 0 0
\(461\) 19.1168 0.890360 0.445180 0.895441i \(-0.353140\pi\)
0.445180 + 0.895441i \(0.353140\pi\)
\(462\) 0 0
\(463\) −20.0000 −0.929479 −0.464739 0.885448i \(-0.653852\pi\)
−0.464739 + 0.885448i \(0.653852\pi\)
\(464\) −4.37228 −0.202978
\(465\) 0 0
\(466\) 10.1168 0.468654
\(467\) −25.8832 −1.19773 −0.598865 0.800850i \(-0.704381\pi\)
−0.598865 + 0.800850i \(0.704381\pi\)
\(468\) 0 0
\(469\) 16.6060 0.766792
\(470\) 0 0
\(471\) 0 0
\(472\) −1.37228 −0.0631644
\(473\) 15.6060 0.717563
\(474\) 0 0
\(475\) 0 0
\(476\) 17.4891 0.801613
\(477\) 0 0
\(478\) −14.7446 −0.674401
\(479\) −23.4891 −1.07325 −0.536623 0.843822i \(-0.680300\pi\)
−0.536623 + 0.843822i \(0.680300\pi\)
\(480\) 0 0
\(481\) −18.9783 −0.865334
\(482\) 10.4891 0.477767
\(483\) 0 0
\(484\) −9.11684 −0.414402
\(485\) 0 0
\(486\) 0 0
\(487\) 1.25544 0.0568893 0.0284446 0.999595i \(-0.490945\pi\)
0.0284446 + 0.999595i \(0.490945\pi\)
\(488\) 9.11684 0.412700
\(489\) 0 0
\(490\) 0 0
\(491\) 3.60597 0.162735 0.0813676 0.996684i \(-0.474071\pi\)
0.0813676 + 0.996684i \(0.474071\pi\)
\(492\) 0 0
\(493\) −32.2337 −1.45173
\(494\) −16.0000 −0.719874
\(495\) 0 0
\(496\) −6.74456 −0.302840
\(497\) −14.2337 −0.638468
\(498\) 0 0
\(499\) −2.11684 −0.0947630 −0.0473815 0.998877i \(-0.515088\pi\)
−0.0473815 + 0.998877i \(0.515088\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 15.6060 0.696528
\(503\) −21.8614 −0.974752 −0.487376 0.873192i \(-0.662046\pi\)
−0.487376 + 0.873192i \(0.662046\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 6.00000 0.266733
\(507\) 0 0
\(508\) −9.11684 −0.404495
\(509\) 9.35053 0.414455 0.207228 0.978293i \(-0.433556\pi\)
0.207228 + 0.978293i \(0.433556\pi\)
\(510\) 0 0
\(511\) 33.4891 1.48147
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 1.37228 0.0605287
\(515\) 0 0
\(516\) 0 0
\(517\) 2.23369 0.0982375
\(518\) 9.48913 0.416928
\(519\) 0 0
\(520\) 0 0
\(521\) −41.2337 −1.80648 −0.903240 0.429135i \(-0.858818\pi\)
−0.903240 + 0.429135i \(0.858818\pi\)
\(522\) 0 0
\(523\) 11.1168 0.486106 0.243053 0.970013i \(-0.421851\pi\)
0.243053 + 0.970013i \(0.421851\pi\)
\(524\) 8.74456 0.382008
\(525\) 0 0
\(526\) −5.48913 −0.239337
\(527\) −49.7228 −2.16596
\(528\) 0 0
\(529\) −3.88316 −0.168833
\(530\) 0 0
\(531\) 0 0
\(532\) 8.00000 0.346844
\(533\) 14.2337 0.616529
\(534\) 0 0
\(535\) 0 0
\(536\) 7.00000 0.302354
\(537\) 0 0
\(538\) 4.37228 0.188502
\(539\) −1.88316 −0.0811133
\(540\) 0 0
\(541\) 21.6277 0.929848 0.464924 0.885351i \(-0.346082\pi\)
0.464924 + 0.885351i \(0.346082\pi\)
\(542\) 8.00000 0.343629
\(543\) 0 0
\(544\) 7.37228 0.316084
\(545\) 0 0
\(546\) 0 0
\(547\) −39.4674 −1.68750 −0.843752 0.536734i \(-0.819658\pi\)
−0.843752 + 0.536734i \(0.819658\pi\)
\(548\) 1.88316 0.0804444
\(549\) 0 0
\(550\) 0 0
\(551\) −14.7446 −0.628139
\(552\) 0 0
\(553\) 4.74456 0.201759
\(554\) −5.25544 −0.223282
\(555\) 0 0
\(556\) 18.1168 0.768325
\(557\) 9.76631 0.413812 0.206906 0.978361i \(-0.433661\pi\)
0.206906 + 0.978361i \(0.433661\pi\)
\(558\) 0 0
\(559\) −53.9565 −2.28212
\(560\) 0 0
\(561\) 0 0
\(562\) 4.37228 0.184434
\(563\) −16.7228 −0.704783 −0.352391 0.935853i \(-0.614631\pi\)
−0.352391 + 0.935853i \(0.614631\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 31.8614 1.33923
\(567\) 0 0
\(568\) −6.00000 −0.251754
\(569\) 9.60597 0.402703 0.201352 0.979519i \(-0.435467\pi\)
0.201352 + 0.979519i \(0.435467\pi\)
\(570\) 0 0
\(571\) −31.6060 −1.32267 −0.661334 0.750091i \(-0.730010\pi\)
−0.661334 + 0.750091i \(0.730010\pi\)
\(572\) −6.51087 −0.272233
\(573\) 0 0
\(574\) −7.11684 −0.297051
\(575\) 0 0
\(576\) 0 0
\(577\) 23.8832 0.994269 0.497134 0.867674i \(-0.334386\pi\)
0.497134 + 0.867674i \(0.334386\pi\)
\(578\) 37.3505 1.55358
\(579\) 0 0
\(580\) 0 0
\(581\) −3.86141 −0.160198
\(582\) 0 0
\(583\) −15.7663 −0.652974
\(584\) 14.1168 0.584159
\(585\) 0 0
\(586\) 8.23369 0.340131
\(587\) −27.0000 −1.11441 −0.557205 0.830375i \(-0.688126\pi\)
−0.557205 + 0.830375i \(0.688126\pi\)
\(588\) 0 0
\(589\) −22.7446 −0.937173
\(590\) 0 0
\(591\) 0 0
\(592\) 4.00000 0.164399
\(593\) −37.7228 −1.54909 −0.774545 0.632519i \(-0.782021\pi\)
−0.774545 + 0.632519i \(0.782021\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 19.1168 0.783056
\(597\) 0 0
\(598\) −20.7446 −0.848308
\(599\) −38.2337 −1.56219 −0.781093 0.624415i \(-0.785338\pi\)
−0.781093 + 0.624415i \(0.785338\pi\)
\(600\) 0 0
\(601\) 26.8614 1.09570 0.547850 0.836577i \(-0.315447\pi\)
0.547850 + 0.836577i \(0.315447\pi\)
\(602\) 26.9783 1.09955
\(603\) 0 0
\(604\) −10.0000 −0.406894
\(605\) 0 0
\(606\) 0 0
\(607\) −0.883156 −0.0358462 −0.0179231 0.999839i \(-0.505705\pi\)
−0.0179231 + 0.999839i \(0.505705\pi\)
\(608\) 3.37228 0.136764
\(609\) 0 0
\(610\) 0 0
\(611\) −7.72281 −0.312432
\(612\) 0 0
\(613\) 0.233688 0.00943857 0.00471928 0.999989i \(-0.498498\pi\)
0.00471928 + 0.999989i \(0.498498\pi\)
\(614\) 33.2337 1.34120
\(615\) 0 0
\(616\) 3.25544 0.131165
\(617\) 22.1168 0.890391 0.445195 0.895433i \(-0.353134\pi\)
0.445195 + 0.895433i \(0.353134\pi\)
\(618\) 0 0
\(619\) −38.1168 −1.53205 −0.766023 0.642814i \(-0.777767\pi\)
−0.766023 + 0.642814i \(0.777767\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −9.25544 −0.371109
\(623\) −2.64947 −0.106149
\(624\) 0 0
\(625\) 0 0
\(626\) −9.37228 −0.374592
\(627\) 0 0
\(628\) −4.74456 −0.189329
\(629\) 29.4891 1.17581
\(630\) 0 0
\(631\) 33.7228 1.34248 0.671242 0.741238i \(-0.265761\pi\)
0.671242 + 0.741238i \(0.265761\pi\)
\(632\) 2.00000 0.0795557
\(633\) 0 0
\(634\) 8.74456 0.347291
\(635\) 0 0
\(636\) 0 0
\(637\) 6.51087 0.257970
\(638\) −6.00000 −0.237542
\(639\) 0 0
\(640\) 0 0
\(641\) −39.0000 −1.54041 −0.770204 0.637798i \(-0.779845\pi\)
−0.770204 + 0.637798i \(0.779845\pi\)
\(642\) 0 0
\(643\) −11.0000 −0.433798 −0.216899 0.976194i \(-0.569594\pi\)
−0.216899 + 0.976194i \(0.569594\pi\)
\(644\) 10.3723 0.408725
\(645\) 0 0
\(646\) 24.8614 0.978159
\(647\) −24.0951 −0.947276 −0.473638 0.880720i \(-0.657059\pi\)
−0.473638 + 0.880720i \(0.657059\pi\)
\(648\) 0 0
\(649\) −1.88316 −0.0739203
\(650\) 0 0
\(651\) 0 0
\(652\) −1.48913 −0.0583186
\(653\) 37.7228 1.47621 0.738104 0.674687i \(-0.235721\pi\)
0.738104 + 0.674687i \(0.235721\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −3.00000 −0.117130
\(657\) 0 0
\(658\) 3.86141 0.150533
\(659\) −5.48913 −0.213826 −0.106913 0.994268i \(-0.534097\pi\)
−0.106913 + 0.994268i \(0.534097\pi\)
\(660\) 0 0
\(661\) 22.2337 0.864790 0.432395 0.901684i \(-0.357669\pi\)
0.432395 + 0.901684i \(0.357669\pi\)
\(662\) −18.2337 −0.708672
\(663\) 0 0
\(664\) −1.62772 −0.0631677
\(665\) 0 0
\(666\) 0 0
\(667\) −19.1168 −0.740207
\(668\) −7.62772 −0.295125
\(669\) 0 0
\(670\) 0 0
\(671\) 12.5109 0.482977
\(672\) 0 0
\(673\) 10.0000 0.385472 0.192736 0.981251i \(-0.438264\pi\)
0.192736 + 0.981251i \(0.438264\pi\)
\(674\) −3.37228 −0.129895
\(675\) 0 0
\(676\) 9.51087 0.365803
\(677\) 43.7228 1.68040 0.840202 0.542273i \(-0.182436\pi\)
0.840202 + 0.542273i \(0.182436\pi\)
\(678\) 0 0
\(679\) 6.23369 0.239227
\(680\) 0 0
\(681\) 0 0
\(682\) −9.25544 −0.354409
\(683\) −33.0951 −1.26635 −0.633174 0.774009i \(-0.718248\pi\)
−0.633174 + 0.774009i \(0.718248\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −19.8614 −0.758312
\(687\) 0 0
\(688\) 11.3723 0.433564
\(689\) 54.5109 2.07670
\(690\) 0 0
\(691\) −1.76631 −0.0671937 −0.0335968 0.999435i \(-0.510696\pi\)
−0.0335968 + 0.999435i \(0.510696\pi\)
\(692\) −9.25544 −0.351839
\(693\) 0 0
\(694\) 22.1168 0.839544
\(695\) 0 0
\(696\) 0 0
\(697\) −22.1168 −0.837735
\(698\) 0.883156 0.0334279
\(699\) 0 0
\(700\) 0 0
\(701\) 14.1386 0.534007 0.267004 0.963696i \(-0.413966\pi\)
0.267004 + 0.963696i \(0.413966\pi\)
\(702\) 0 0
\(703\) 13.4891 0.508752
\(704\) 1.37228 0.0517198
\(705\) 0 0
\(706\) −30.3505 −1.14226
\(707\) −20.7446 −0.780180
\(708\) 0 0
\(709\) −25.8614 −0.971246 −0.485623 0.874168i \(-0.661407\pi\)
−0.485623 + 0.874168i \(0.661407\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −1.11684 −0.0418555
\(713\) −29.4891 −1.10438
\(714\) 0 0
\(715\) 0 0
\(716\) −3.25544 −0.121661
\(717\) 0 0
\(718\) 5.48913 0.204852
\(719\) −38.2337 −1.42588 −0.712938 0.701227i \(-0.752636\pi\)
−0.712938 + 0.701227i \(0.752636\pi\)
\(720\) 0 0
\(721\) 37.9565 1.41357
\(722\) −7.62772 −0.283874
\(723\) 0 0
\(724\) −7.86141 −0.292167
\(725\) 0 0
\(726\) 0 0
\(727\) −0.883156 −0.0327544 −0.0163772 0.999866i \(-0.505213\pi\)
−0.0163772 + 0.999866i \(0.505213\pi\)
\(728\) −11.2554 −0.417154
\(729\) 0 0
\(730\) 0 0
\(731\) 83.8397 3.10092
\(732\) 0 0
\(733\) −34.2337 −1.26445 −0.632225 0.774785i \(-0.717858\pi\)
−0.632225 + 0.774785i \(0.717858\pi\)
\(734\) 16.0000 0.590571
\(735\) 0 0
\(736\) 4.37228 0.161164
\(737\) 9.60597 0.353840
\(738\) 0 0
\(739\) −23.8832 −0.878556 −0.439278 0.898351i \(-0.644766\pi\)
−0.439278 + 0.898351i \(0.644766\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −27.2554 −1.00058
\(743\) −25.1168 −0.921448 −0.460724 0.887544i \(-0.652410\pi\)
−0.460724 + 0.887544i \(0.652410\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −7.48913 −0.274196
\(747\) 0 0
\(748\) 10.1168 0.369908
\(749\) 34.3723 1.25594
\(750\) 0 0
\(751\) −18.2337 −0.665357 −0.332678 0.943040i \(-0.607952\pi\)
−0.332678 + 0.943040i \(0.607952\pi\)
\(752\) 1.62772 0.0593568
\(753\) 0 0
\(754\) 20.7446 0.755472
\(755\) 0 0
\(756\) 0 0
\(757\) 10.0000 0.363456 0.181728 0.983349i \(-0.441831\pi\)
0.181728 + 0.983349i \(0.441831\pi\)
\(758\) −10.8614 −0.394504
\(759\) 0 0
\(760\) 0 0
\(761\) 12.0951 0.438447 0.219223 0.975675i \(-0.429648\pi\)
0.219223 + 0.975675i \(0.429648\pi\)
\(762\) 0 0
\(763\) 22.8397 0.826851
\(764\) −5.48913 −0.198590
\(765\) 0 0
\(766\) −22.9783 −0.830238
\(767\) 6.51087 0.235094
\(768\) 0 0
\(769\) −18.1386 −0.654094 −0.327047 0.945008i \(-0.606054\pi\)
−0.327047 + 0.945008i \(0.606054\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −3.88316 −0.139758
\(773\) −14.7446 −0.530325 −0.265163 0.964204i \(-0.585426\pi\)
−0.265163 + 0.964204i \(0.585426\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 2.62772 0.0943296
\(777\) 0 0
\(778\) −10.3723 −0.371864
\(779\) −10.1168 −0.362474
\(780\) 0 0
\(781\) −8.23369 −0.294625
\(782\) 32.2337 1.15267
\(783\) 0 0
\(784\) −1.37228 −0.0490100
\(785\) 0 0
\(786\) 0 0
\(787\) 28.0000 0.998092 0.499046 0.866575i \(-0.333684\pi\)
0.499046 + 0.866575i \(0.333684\pi\)
\(788\) −17.4891 −0.623024
\(789\) 0 0
\(790\) 0 0
\(791\) −34.9783 −1.24368
\(792\) 0 0
\(793\) −43.2554 −1.53605
\(794\) −11.2554 −0.399441
\(795\) 0 0
\(796\) −9.48913 −0.336333
\(797\) −3.25544 −0.115314 −0.0576568 0.998336i \(-0.518363\pi\)
−0.0576568 + 0.998336i \(0.518363\pi\)
\(798\) 0 0
\(799\) 12.0000 0.424529
\(800\) 0 0
\(801\) 0 0
\(802\) 16.1168 0.569106
\(803\) 19.3723 0.683633
\(804\) 0 0
\(805\) 0 0
\(806\) 32.0000 1.12715
\(807\) 0 0
\(808\) −8.74456 −0.307633
\(809\) −12.3505 −0.434222 −0.217111 0.976147i \(-0.569663\pi\)
−0.217111 + 0.976147i \(0.569663\pi\)
\(810\) 0 0
\(811\) 9.37228 0.329105 0.164553 0.986368i \(-0.447382\pi\)
0.164553 + 0.986368i \(0.447382\pi\)
\(812\) −10.3723 −0.363996
\(813\) 0 0
\(814\) 5.48913 0.192394
\(815\) 0 0
\(816\) 0 0
\(817\) 38.3505 1.34172
\(818\) −10.8614 −0.379760
\(819\) 0 0
\(820\) 0 0
\(821\) 50.8397 1.77432 0.887158 0.461466i \(-0.152676\pi\)
0.887158 + 0.461466i \(0.152676\pi\)
\(822\) 0 0
\(823\) −38.0951 −1.32791 −0.663956 0.747772i \(-0.731124\pi\)
−0.663956 + 0.747772i \(0.731124\pi\)
\(824\) 16.0000 0.557386
\(825\) 0 0
\(826\) −3.25544 −0.113271
\(827\) −8.13859 −0.283007 −0.141503 0.989938i \(-0.545194\pi\)
−0.141503 + 0.989938i \(0.545194\pi\)
\(828\) 0 0
\(829\) −32.8832 −1.14208 −0.571040 0.820923i \(-0.693460\pi\)
−0.571040 + 0.820923i \(0.693460\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −4.74456 −0.164488
\(833\) −10.1168 −0.350528
\(834\) 0 0
\(835\) 0 0
\(836\) 4.62772 0.160053
\(837\) 0 0
\(838\) −31.7228 −1.09585
\(839\) 44.2337 1.52712 0.763558 0.645739i \(-0.223451\pi\)
0.763558 + 0.645739i \(0.223451\pi\)
\(840\) 0 0
\(841\) −9.88316 −0.340798
\(842\) −38.4674 −1.32567
\(843\) 0 0
\(844\) −7.25544 −0.249742
\(845\) 0 0
\(846\) 0 0
\(847\) −21.6277 −0.743137
\(848\) −11.4891 −0.394538
\(849\) 0 0
\(850\) 0 0
\(851\) 17.4891 0.599519
\(852\) 0 0
\(853\) 1.76631 0.0604774 0.0302387 0.999543i \(-0.490373\pi\)
0.0302387 + 0.999543i \(0.490373\pi\)
\(854\) 21.6277 0.740085
\(855\) 0 0
\(856\) 14.4891 0.495228
\(857\) −23.4891 −0.802373 −0.401187 0.915996i \(-0.631402\pi\)
−0.401187 + 0.915996i \(0.631402\pi\)
\(858\) 0 0
\(859\) 0.116844 0.00398666 0.00199333 0.999998i \(-0.499366\pi\)
0.00199333 + 0.999998i \(0.499366\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −26.2337 −0.893523
\(863\) 42.6060 1.45032 0.725162 0.688578i \(-0.241765\pi\)
0.725162 + 0.688578i \(0.241765\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −0.627719 −0.0213307
\(867\) 0 0
\(868\) −16.0000 −0.543075
\(869\) 2.74456 0.0931029
\(870\) 0 0
\(871\) −33.2119 −1.12534
\(872\) 9.62772 0.326036
\(873\) 0 0
\(874\) 14.7446 0.498742
\(875\) 0 0
\(876\) 0 0
\(877\) 55.9565 1.88952 0.944758 0.327768i \(-0.106296\pi\)
0.944758 + 0.327768i \(0.106296\pi\)
\(878\) 16.2337 0.547860
\(879\) 0 0
\(880\) 0 0
\(881\) 27.3505 0.921463 0.460731 0.887540i \(-0.347587\pi\)
0.460731 + 0.887540i \(0.347587\pi\)
\(882\) 0 0
\(883\) −12.7228 −0.428157 −0.214078 0.976816i \(-0.568675\pi\)
−0.214078 + 0.976816i \(0.568675\pi\)
\(884\) −34.9783 −1.17645
\(885\) 0 0
\(886\) 26.4891 0.889920
\(887\) 37.7228 1.26661 0.633304 0.773903i \(-0.281698\pi\)
0.633304 + 0.773903i \(0.281698\pi\)
\(888\) 0 0
\(889\) −21.6277 −0.725370
\(890\) 0 0
\(891\) 0 0
\(892\) −12.3723 −0.414255
\(893\) 5.48913 0.183687
\(894\) 0 0
\(895\) 0 0
\(896\) 2.37228 0.0792524
\(897\) 0 0
\(898\) −18.8614 −0.629413
\(899\) 29.4891 0.983517
\(900\) 0 0
\(901\) −84.7011 −2.82180
\(902\) −4.11684 −0.137076
\(903\) 0 0
\(904\) −14.7446 −0.490397
\(905\) 0 0
\(906\) 0 0
\(907\) 7.00000 0.232431 0.116216 0.993224i \(-0.462924\pi\)
0.116216 + 0.993224i \(0.462924\pi\)
\(908\) −1.88316 −0.0624947
\(909\) 0 0
\(910\) 0 0
\(911\) −42.0000 −1.39152 −0.695761 0.718273i \(-0.744933\pi\)
−0.695761 + 0.718273i \(0.744933\pi\)
\(912\) 0 0
\(913\) −2.23369 −0.0739243
\(914\) −30.1168 −0.996177
\(915\) 0 0
\(916\) 18.3723 0.607037
\(917\) 20.7446 0.685046
\(918\) 0 0
\(919\) 42.4674 1.40087 0.700435 0.713716i \(-0.252989\pi\)
0.700435 + 0.713716i \(0.252989\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 19.1168 0.629580
\(923\) 28.4674 0.937015
\(924\) 0 0
\(925\) 0 0
\(926\) −20.0000 −0.657241
\(927\) 0 0
\(928\) −4.37228 −0.143527
\(929\) −39.9565 −1.31093 −0.655465 0.755225i \(-0.727527\pi\)
−0.655465 + 0.755225i \(0.727527\pi\)
\(930\) 0 0
\(931\) −4.62772 −0.151667
\(932\) 10.1168 0.331388
\(933\) 0 0
\(934\) −25.8832 −0.846923
\(935\) 0 0
\(936\) 0 0
\(937\) 17.7228 0.578979 0.289490 0.957181i \(-0.406514\pi\)
0.289490 + 0.957181i \(0.406514\pi\)
\(938\) 16.6060 0.542204
\(939\) 0 0
\(940\) 0 0
\(941\) 37.6277 1.22663 0.613314 0.789839i \(-0.289836\pi\)
0.613314 + 0.789839i \(0.289836\pi\)
\(942\) 0 0
\(943\) −13.1168 −0.427143
\(944\) −1.37228 −0.0446640
\(945\) 0 0
\(946\) 15.6060 0.507394
\(947\) −22.7228 −0.738392 −0.369196 0.929352i \(-0.620367\pi\)
−0.369196 + 0.929352i \(0.620367\pi\)
\(948\) 0 0
\(949\) −66.9783 −2.17421
\(950\) 0 0
\(951\) 0 0
\(952\) 17.4891 0.566826
\(953\) −30.8614 −0.999699 −0.499850 0.866112i \(-0.666611\pi\)
−0.499850 + 0.866112i \(0.666611\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −14.7446 −0.476873
\(957\) 0 0
\(958\) −23.4891 −0.758899
\(959\) 4.46738 0.144259
\(960\) 0 0
\(961\) 14.4891 0.467391
\(962\) −18.9783 −0.611883
\(963\) 0 0
\(964\) 10.4891 0.337832
\(965\) 0 0
\(966\) 0 0
\(967\) −18.8832 −0.607241 −0.303621 0.952793i \(-0.598196\pi\)
−0.303621 + 0.952793i \(0.598196\pi\)
\(968\) −9.11684 −0.293026
\(969\) 0 0
\(970\) 0 0
\(971\) 22.9783 0.737407 0.368704 0.929547i \(-0.379802\pi\)
0.368704 + 0.929547i \(0.379802\pi\)
\(972\) 0 0
\(973\) 42.9783 1.37782
\(974\) 1.25544 0.0402268
\(975\) 0 0
\(976\) 9.11684 0.291823
\(977\) 40.1168 1.28345 0.641726 0.766934i \(-0.278219\pi\)
0.641726 + 0.766934i \(0.278219\pi\)
\(978\) 0 0
\(979\) −1.53262 −0.0489829
\(980\) 0 0
\(981\) 0 0
\(982\) 3.60597 0.115071
\(983\) −15.8614 −0.505900 −0.252950 0.967479i \(-0.581401\pi\)
−0.252950 + 0.967479i \(0.581401\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −32.2337 −1.02653
\(987\) 0 0
\(988\) −16.0000 −0.509028
\(989\) 49.7228 1.58109
\(990\) 0 0
\(991\) −18.2337 −0.579212 −0.289606 0.957146i \(-0.593524\pi\)
−0.289606 + 0.957146i \(0.593524\pi\)
\(992\) −6.74456 −0.214140
\(993\) 0 0
\(994\) −14.2337 −0.451465
\(995\) 0 0
\(996\) 0 0
\(997\) −14.0000 −0.443384 −0.221692 0.975117i \(-0.571158\pi\)
−0.221692 + 0.975117i \(0.571158\pi\)
\(998\) −2.11684 −0.0670075
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4050.2.a.bw.1.2 2
3.2 odd 2 4050.2.a.bo.1.2 2
5.2 odd 4 4050.2.c.v.649.4 4
5.3 odd 4 4050.2.c.v.649.1 4
5.4 even 2 810.2.a.i.1.1 2
9.2 odd 6 1350.2.e.l.901.1 4
9.4 even 3 450.2.e.j.151.1 4
9.5 odd 6 1350.2.e.l.451.1 4
9.7 even 3 450.2.e.j.301.2 4
15.2 even 4 4050.2.c.ba.649.2 4
15.8 even 4 4050.2.c.ba.649.3 4
15.14 odd 2 810.2.a.k.1.1 2
20.19 odd 2 6480.2.a.be.1.2 2
45.2 even 12 1350.2.j.f.199.2 8
45.4 even 6 90.2.e.c.61.2 yes 4
45.7 odd 12 450.2.j.g.49.4 8
45.13 odd 12 450.2.j.g.349.4 8
45.14 odd 6 270.2.e.c.181.2 4
45.22 odd 12 450.2.j.g.349.1 8
45.23 even 12 1350.2.j.f.1099.2 8
45.29 odd 6 270.2.e.c.91.2 4
45.32 even 12 1350.2.j.f.1099.3 8
45.34 even 6 90.2.e.c.31.1 4
45.38 even 12 1350.2.j.f.199.3 8
45.43 odd 12 450.2.j.g.49.1 8
60.59 even 2 6480.2.a.bn.1.2 2
180.59 even 6 2160.2.q.f.721.1 4
180.79 odd 6 720.2.q.f.481.2 4
180.119 even 6 2160.2.q.f.1441.1 4
180.139 odd 6 720.2.q.f.241.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.e.c.31.1 4 45.34 even 6
90.2.e.c.61.2 yes 4 45.4 even 6
270.2.e.c.91.2 4 45.29 odd 6
270.2.e.c.181.2 4 45.14 odd 6
450.2.e.j.151.1 4 9.4 even 3
450.2.e.j.301.2 4 9.7 even 3
450.2.j.g.49.1 8 45.43 odd 12
450.2.j.g.49.4 8 45.7 odd 12
450.2.j.g.349.1 8 45.22 odd 12
450.2.j.g.349.4 8 45.13 odd 12
720.2.q.f.241.1 4 180.139 odd 6
720.2.q.f.481.2 4 180.79 odd 6
810.2.a.i.1.1 2 5.4 even 2
810.2.a.k.1.1 2 15.14 odd 2
1350.2.e.l.451.1 4 9.5 odd 6
1350.2.e.l.901.1 4 9.2 odd 6
1350.2.j.f.199.2 8 45.2 even 12
1350.2.j.f.199.3 8 45.38 even 12
1350.2.j.f.1099.2 8 45.23 even 12
1350.2.j.f.1099.3 8 45.32 even 12
2160.2.q.f.721.1 4 180.59 even 6
2160.2.q.f.1441.1 4 180.119 even 6
4050.2.a.bo.1.2 2 3.2 odd 2
4050.2.a.bw.1.2 2 1.1 even 1 trivial
4050.2.c.v.649.1 4 5.3 odd 4
4050.2.c.v.649.4 4 5.2 odd 4
4050.2.c.ba.649.2 4 15.2 even 4
4050.2.c.ba.649.3 4 15.8 even 4
6480.2.a.be.1.2 2 20.19 odd 2
6480.2.a.bn.1.2 2 60.59 even 2