Properties

Label 4050.2.a.bw.1.2
Level 40504050
Weight 22
Character 4050.1
Self dual yes
Analytic conductor 32.33932.339
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4050,2,Mod(1,4050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4050, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4050.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 4050=23452 4050 = 2 \cdot 3^{4} \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4050.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,0,2,0,0,-1,2,0,0,-3,0,2,-1,0,2,9,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 32.339412818632.3394128186
Analytic rank: 00
Dimension: 22
Coefficient field: Q(33)\Q(\sqrt{33})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x8 x^{2} - x - 8 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 90)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.2
Root 2.37228-2.37228 of defining polynomial
Character χ\chi == 4050.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+1.00000q2+1.00000q4+2.37228q7+1.00000q8+1.37228q114.74456q13+2.37228q14+1.00000q16+7.37228q17+3.37228q19+1.37228q22+4.37228q234.74456q26+2.37228q284.37228q296.74456q31+1.00000q32+7.37228q34+4.00000q37+3.37228q383.00000q41+11.3723q43+1.37228q44+4.37228q46+1.62772q471.37228q494.74456q5211.4891q53+2.37228q564.37228q581.37228q59+9.11684q616.74456q62+1.00000q64+7.00000q67+7.37228q686.00000q71+14.1168q73+4.00000q74+3.37228q76+3.25544q77+2.00000q793.00000q821.62772q83+11.3723q86+1.37228q881.11684q8911.2554q91+4.37228q92+1.62772q94+2.62772q971.37228q98+O(q100)q+1.00000 q^{2} +1.00000 q^{4} +2.37228 q^{7} +1.00000 q^{8} +1.37228 q^{11} -4.74456 q^{13} +2.37228 q^{14} +1.00000 q^{16} +7.37228 q^{17} +3.37228 q^{19} +1.37228 q^{22} +4.37228 q^{23} -4.74456 q^{26} +2.37228 q^{28} -4.37228 q^{29} -6.74456 q^{31} +1.00000 q^{32} +7.37228 q^{34} +4.00000 q^{37} +3.37228 q^{38} -3.00000 q^{41} +11.3723 q^{43} +1.37228 q^{44} +4.37228 q^{46} +1.62772 q^{47} -1.37228 q^{49} -4.74456 q^{52} -11.4891 q^{53} +2.37228 q^{56} -4.37228 q^{58} -1.37228 q^{59} +9.11684 q^{61} -6.74456 q^{62} +1.00000 q^{64} +7.00000 q^{67} +7.37228 q^{68} -6.00000 q^{71} +14.1168 q^{73} +4.00000 q^{74} +3.37228 q^{76} +3.25544 q^{77} +2.00000 q^{79} -3.00000 q^{82} -1.62772 q^{83} +11.3723 q^{86} +1.37228 q^{88} -1.11684 q^{89} -11.2554 q^{91} +4.37228 q^{92} +1.62772 q^{94} +2.62772 q^{97} -1.37228 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q2+2q4q7+2q83q11+2q13q14+2q16+9q17+q193q22+3q23+2q26q283q292q31+2q32+9q34+8q37++3q98+O(q100) 2 q + 2 q^{2} + 2 q^{4} - q^{7} + 2 q^{8} - 3 q^{11} + 2 q^{13} - q^{14} + 2 q^{16} + 9 q^{17} + q^{19} - 3 q^{22} + 3 q^{23} + 2 q^{26} - q^{28} - 3 q^{29} - 2 q^{31} + 2 q^{32} + 9 q^{34} + 8 q^{37}+ \cdots + 3 q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.00000 0.707107
33 0 0
44 1.00000 0.500000
55 0 0
66 0 0
77 2.37228 0.896638 0.448319 0.893874i 0.352023π-0.352023\pi
0.448319 + 0.893874i 0.352023π0.352023\pi
88 1.00000 0.353553
99 0 0
1010 0 0
1111 1.37228 0.413758 0.206879 0.978366i 0.433669π-0.433669\pi
0.206879 + 0.978366i 0.433669π0.433669\pi
1212 0 0
1313 −4.74456 −1.31590 −0.657952 0.753059i 0.728577π-0.728577\pi
−0.657952 + 0.753059i 0.728577π0.728577\pi
1414 2.37228 0.634019
1515 0 0
1616 1.00000 0.250000
1717 7.37228 1.78804 0.894020 0.448026i 0.147873π-0.147873\pi
0.894020 + 0.448026i 0.147873π0.147873\pi
1818 0 0
1919 3.37228 0.773654 0.386827 0.922152i 0.373571π-0.373571\pi
0.386827 + 0.922152i 0.373571π0.373571\pi
2020 0 0
2121 0 0
2222 1.37228 0.292571
2323 4.37228 0.911684 0.455842 0.890061i 0.349338π-0.349338\pi
0.455842 + 0.890061i 0.349338π0.349338\pi
2424 0 0
2525 0 0
2626 −4.74456 −0.930485
2727 0 0
2828 2.37228 0.448319
2929 −4.37228 −0.811912 −0.405956 0.913893i 0.633061π-0.633061\pi
−0.405956 + 0.913893i 0.633061π0.633061\pi
3030 0 0
3131 −6.74456 −1.21136 −0.605680 0.795709i 0.707099π-0.707099\pi
−0.605680 + 0.795709i 0.707099π0.707099\pi
3232 1.00000 0.176777
3333 0 0
3434 7.37228 1.26434
3535 0 0
3636 0 0
3737 4.00000 0.657596 0.328798 0.944400i 0.393356π-0.393356\pi
0.328798 + 0.944400i 0.393356π0.393356\pi
3838 3.37228 0.547056
3939 0 0
4040 0 0
4141 −3.00000 −0.468521 −0.234261 0.972174i 0.575267π-0.575267\pi
−0.234261 + 0.972174i 0.575267π0.575267\pi
4242 0 0
4343 11.3723 1.73426 0.867128 0.498085i 0.165963π-0.165963\pi
0.867128 + 0.498085i 0.165963π0.165963\pi
4444 1.37228 0.206879
4545 0 0
4646 4.37228 0.644658
4747 1.62772 0.237427 0.118714 0.992929i 0.462123π-0.462123\pi
0.118714 + 0.992929i 0.462123π0.462123\pi
4848 0 0
4949 −1.37228 −0.196040
5050 0 0
5151 0 0
5252 −4.74456 −0.657952
5353 −11.4891 −1.57815 −0.789076 0.614295i 0.789440π-0.789440\pi
−0.789076 + 0.614295i 0.789440π0.789440\pi
5454 0 0
5555 0 0
5656 2.37228 0.317009
5757 0 0
5858 −4.37228 −0.574109
5959 −1.37228 −0.178656 −0.0893279 0.996002i 0.528472π-0.528472\pi
−0.0893279 + 0.996002i 0.528472π0.528472\pi
6060 0 0
6161 9.11684 1.16729 0.583646 0.812008i 0.301626π-0.301626\pi
0.583646 + 0.812008i 0.301626π0.301626\pi
6262 −6.74456 −0.856560
6363 0 0
6464 1.00000 0.125000
6565 0 0
6666 0 0
6767 7.00000 0.855186 0.427593 0.903971i 0.359362π-0.359362\pi
0.427593 + 0.903971i 0.359362π0.359362\pi
6868 7.37228 0.894020
6969 0 0
7070 0 0
7171 −6.00000 −0.712069 −0.356034 0.934473i 0.615871π-0.615871\pi
−0.356034 + 0.934473i 0.615871π0.615871\pi
7272 0 0
7373 14.1168 1.65225 0.826126 0.563486i 0.190540π-0.190540\pi
0.826126 + 0.563486i 0.190540π0.190540\pi
7474 4.00000 0.464991
7575 0 0
7676 3.37228 0.386827
7777 3.25544 0.370992
7878 0 0
7979 2.00000 0.225018 0.112509 0.993651i 0.464111π-0.464111\pi
0.112509 + 0.993651i 0.464111π0.464111\pi
8080 0 0
8181 0 0
8282 −3.00000 −0.331295
8383 −1.62772 −0.178665 −0.0893327 0.996002i 0.528473π-0.528473\pi
−0.0893327 + 0.996002i 0.528473π0.528473\pi
8484 0 0
8585 0 0
8686 11.3723 1.22630
8787 0 0
8888 1.37228 0.146286
8989 −1.11684 −0.118385 −0.0591926 0.998247i 0.518853π-0.518853\pi
−0.0591926 + 0.998247i 0.518853π0.518853\pi
9090 0 0
9191 −11.2554 −1.17989
9292 4.37228 0.455842
9393 0 0
9494 1.62772 0.167886
9595 0 0
9696 0 0
9797 2.62772 0.266804 0.133402 0.991062i 0.457410π-0.457410\pi
0.133402 + 0.991062i 0.457410π0.457410\pi
9898 −1.37228 −0.138621
9999 0 0
100100 0 0
101101 −8.74456 −0.870117 −0.435058 0.900402i 0.643272π-0.643272\pi
−0.435058 + 0.900402i 0.643272π0.643272\pi
102102 0 0
103103 16.0000 1.57653 0.788263 0.615338i 0.210980π-0.210980\pi
0.788263 + 0.615338i 0.210980π0.210980\pi
104104 −4.74456 −0.465243
105105 0 0
106106 −11.4891 −1.11592
107107 14.4891 1.40072 0.700358 0.713791i 0.253024π-0.253024\pi
0.700358 + 0.713791i 0.253024π0.253024\pi
108108 0 0
109109 9.62772 0.922168 0.461084 0.887356i 0.347461π-0.347461\pi
0.461084 + 0.887356i 0.347461π0.347461\pi
110110 0 0
111111 0 0
112112 2.37228 0.224160
113113 −14.7446 −1.38705 −0.693526 0.720432i 0.743944π-0.743944\pi
−0.693526 + 0.720432i 0.743944π0.743944\pi
114114 0 0
115115 0 0
116116 −4.37228 −0.405956
117117 0 0
118118 −1.37228 −0.126329
119119 17.4891 1.60323
120120 0 0
121121 −9.11684 −0.828804
122122 9.11684 0.825400
123123 0 0
124124 −6.74456 −0.605680
125125 0 0
126126 0 0
127127 −9.11684 −0.808989 −0.404495 0.914540i 0.632553π-0.632553\pi
−0.404495 + 0.914540i 0.632553π0.632553\pi
128128 1.00000 0.0883883
129129 0 0
130130 0 0
131131 8.74456 0.764016 0.382008 0.924159i 0.375233π-0.375233\pi
0.382008 + 0.924159i 0.375233π0.375233\pi
132132 0 0
133133 8.00000 0.693688
134134 7.00000 0.604708
135135 0 0
136136 7.37228 0.632168
137137 1.88316 0.160889 0.0804444 0.996759i 0.474366π-0.474366\pi
0.0804444 + 0.996759i 0.474366π0.474366\pi
138138 0 0
139139 18.1168 1.53665 0.768325 0.640060i 0.221090π-0.221090\pi
0.768325 + 0.640060i 0.221090π0.221090\pi
140140 0 0
141141 0 0
142142 −6.00000 −0.503509
143143 −6.51087 −0.544467
144144 0 0
145145 0 0
146146 14.1168 1.16832
147147 0 0
148148 4.00000 0.328798
149149 19.1168 1.56611 0.783056 0.621951i 0.213660π-0.213660\pi
0.783056 + 0.621951i 0.213660π0.213660\pi
150150 0 0
151151 −10.0000 −0.813788 −0.406894 0.913475i 0.633388π-0.633388\pi
−0.406894 + 0.913475i 0.633388π0.633388\pi
152152 3.37228 0.273528
153153 0 0
154154 3.25544 0.262331
155155 0 0
156156 0 0
157157 −4.74456 −0.378657 −0.189329 0.981914i 0.560631π-0.560631\pi
−0.189329 + 0.981914i 0.560631π0.560631\pi
158158 2.00000 0.159111
159159 0 0
160160 0 0
161161 10.3723 0.817450
162162 0 0
163163 −1.48913 −0.116637 −0.0583186 0.998298i 0.518574π-0.518574\pi
−0.0583186 + 0.998298i 0.518574π0.518574\pi
164164 −3.00000 −0.234261
165165 0 0
166166 −1.62772 −0.126335
167167 −7.62772 −0.590251 −0.295125 0.955459i 0.595361π-0.595361\pi
−0.295125 + 0.955459i 0.595361π0.595361\pi
168168 0 0
169169 9.51087 0.731606
170170 0 0
171171 0 0
172172 11.3723 0.867128
173173 −9.25544 −0.703678 −0.351839 0.936061i 0.614444π-0.614444\pi
−0.351839 + 0.936061i 0.614444π0.614444\pi
174174 0 0
175175 0 0
176176 1.37228 0.103440
177177 0 0
178178 −1.11684 −0.0837110
179179 −3.25544 −0.243323 −0.121661 0.992572i 0.538822π-0.538822\pi
−0.121661 + 0.992572i 0.538822π0.538822\pi
180180 0 0
181181 −7.86141 −0.584334 −0.292167 0.956367i 0.594376π-0.594376\pi
−0.292167 + 0.956367i 0.594376π0.594376\pi
182182 −11.2554 −0.834309
183183 0 0
184184 4.37228 0.322329
185185 0 0
186186 0 0
187187 10.1168 0.739817
188188 1.62772 0.118714
189189 0 0
190190 0 0
191191 −5.48913 −0.397179 −0.198590 0.980083i 0.563636π-0.563636\pi
−0.198590 + 0.980083i 0.563636π0.563636\pi
192192 0 0
193193 −3.88316 −0.279516 −0.139758 0.990186i 0.544632π-0.544632\pi
−0.139758 + 0.990186i 0.544632π0.544632\pi
194194 2.62772 0.188659
195195 0 0
196196 −1.37228 −0.0980201
197197 −17.4891 −1.24605 −0.623024 0.782202i 0.714096π-0.714096\pi
−0.623024 + 0.782202i 0.714096π0.714096\pi
198198 0 0
199199 −9.48913 −0.672666 −0.336333 0.941743i 0.609187π-0.609187\pi
−0.336333 + 0.941743i 0.609187π0.609187\pi
200200 0 0
201201 0 0
202202 −8.74456 −0.615265
203203 −10.3723 −0.727991
204204 0 0
205205 0 0
206206 16.0000 1.11477
207207 0 0
208208 −4.74456 −0.328976
209209 4.62772 0.320106
210210 0 0
211211 −7.25544 −0.499485 −0.249742 0.968312i 0.580346π-0.580346\pi
−0.249742 + 0.968312i 0.580346π0.580346\pi
212212 −11.4891 −0.789076
213213 0 0
214214 14.4891 0.990456
215215 0 0
216216 0 0
217217 −16.0000 −1.08615
218218 9.62772 0.652071
219219 0 0
220220 0 0
221221 −34.9783 −2.35289
222222 0 0
223223 −12.3723 −0.828509 −0.414255 0.910161i 0.635958π-0.635958\pi
−0.414255 + 0.910161i 0.635958π0.635958\pi
224224 2.37228 0.158505
225225 0 0
226226 −14.7446 −0.980794
227227 −1.88316 −0.124989 −0.0624947 0.998045i 0.519906π-0.519906\pi
−0.0624947 + 0.998045i 0.519906π0.519906\pi
228228 0 0
229229 18.3723 1.21407 0.607037 0.794673i 0.292358π-0.292358\pi
0.607037 + 0.794673i 0.292358π0.292358\pi
230230 0 0
231231 0 0
232232 −4.37228 −0.287054
233233 10.1168 0.662776 0.331388 0.943494i 0.392483π-0.392483\pi
0.331388 + 0.943494i 0.392483π0.392483\pi
234234 0 0
235235 0 0
236236 −1.37228 −0.0893279
237237 0 0
238238 17.4891 1.13365
239239 −14.7446 −0.953746 −0.476873 0.878972i 0.658230π-0.658230\pi
−0.476873 + 0.878972i 0.658230π0.658230\pi
240240 0 0
241241 10.4891 0.675664 0.337832 0.941206i 0.390306π-0.390306\pi
0.337832 + 0.941206i 0.390306π0.390306\pi
242242 −9.11684 −0.586053
243243 0 0
244244 9.11684 0.583646
245245 0 0
246246 0 0
247247 −16.0000 −1.01806
248248 −6.74456 −0.428280
249249 0 0
250250 0 0
251251 15.6060 0.985040 0.492520 0.870301i 0.336076π-0.336076\pi
0.492520 + 0.870301i 0.336076π0.336076\pi
252252 0 0
253253 6.00000 0.377217
254254 −9.11684 −0.572042
255255 0 0
256256 1.00000 0.0625000
257257 1.37228 0.0856006 0.0428003 0.999084i 0.486372π-0.486372\pi
0.0428003 + 0.999084i 0.486372π0.486372\pi
258258 0 0
259259 9.48913 0.589626
260260 0 0
261261 0 0
262262 8.74456 0.540241
263263 −5.48913 −0.338474 −0.169237 0.985575i 0.554130π-0.554130\pi
−0.169237 + 0.985575i 0.554130π0.554130\pi
264264 0 0
265265 0 0
266266 8.00000 0.490511
267267 0 0
268268 7.00000 0.427593
269269 4.37228 0.266583 0.133291 0.991077i 0.457445π-0.457445\pi
0.133291 + 0.991077i 0.457445π0.457445\pi
270270 0 0
271271 8.00000 0.485965 0.242983 0.970031i 0.421874π-0.421874\pi
0.242983 + 0.970031i 0.421874π0.421874\pi
272272 7.37228 0.447010
273273 0 0
274274 1.88316 0.113766
275275 0 0
276276 0 0
277277 −5.25544 −0.315769 −0.157884 0.987458i 0.550467π-0.550467\pi
−0.157884 + 0.987458i 0.550467π0.550467\pi
278278 18.1168 1.08658
279279 0 0
280280 0 0
281281 4.37228 0.260828 0.130414 0.991460i 0.458369π-0.458369\pi
0.130414 + 0.991460i 0.458369π0.458369\pi
282282 0 0
283283 31.8614 1.89396 0.946982 0.321287i 0.104115π-0.104115\pi
0.946982 + 0.321287i 0.104115π0.104115\pi
284284 −6.00000 −0.356034
285285 0 0
286286 −6.51087 −0.384996
287287 −7.11684 −0.420094
288288 0 0
289289 37.3505 2.19709
290290 0 0
291291 0 0
292292 14.1168 0.826126
293293 8.23369 0.481017 0.240509 0.970647i 0.422686π-0.422686\pi
0.240509 + 0.970647i 0.422686π0.422686\pi
294294 0 0
295295 0 0
296296 4.00000 0.232495
297297 0 0
298298 19.1168 1.10741
299299 −20.7446 −1.19969
300300 0 0
301301 26.9783 1.55500
302302 −10.0000 −0.575435
303303 0 0
304304 3.37228 0.193414
305305 0 0
306306 0 0
307307 33.2337 1.89675 0.948373 0.317156i 0.102728π-0.102728\pi
0.948373 + 0.317156i 0.102728π0.102728\pi
308308 3.25544 0.185496
309309 0 0
310310 0 0
311311 −9.25544 −0.524828 −0.262414 0.964955i 0.584519π-0.584519\pi
−0.262414 + 0.964955i 0.584519π0.584519\pi
312312 0 0
313313 −9.37228 −0.529753 −0.264876 0.964282i 0.585331π-0.585331\pi
−0.264876 + 0.964282i 0.585331π0.585331\pi
314314 −4.74456 −0.267751
315315 0 0
316316 2.00000 0.112509
317317 8.74456 0.491144 0.245572 0.969378i 0.421024π-0.421024\pi
0.245572 + 0.969378i 0.421024π0.421024\pi
318318 0 0
319319 −6.00000 −0.335936
320320 0 0
321321 0 0
322322 10.3723 0.578025
323323 24.8614 1.38333
324324 0 0
325325 0 0
326326 −1.48913 −0.0824750
327327 0 0
328328 −3.00000 −0.165647
329329 3.86141 0.212886
330330 0 0
331331 −18.2337 −1.00221 −0.501107 0.865385i 0.667074π-0.667074\pi
−0.501107 + 0.865385i 0.667074π0.667074\pi
332332 −1.62772 −0.0893327
333333 0 0
334334 −7.62772 −0.417370
335335 0 0
336336 0 0
337337 −3.37228 −0.183700 −0.0918499 0.995773i 0.529278π-0.529278\pi
−0.0918499 + 0.995773i 0.529278π0.529278\pi
338338 9.51087 0.517323
339339 0 0
340340 0 0
341341 −9.25544 −0.501210
342342 0 0
343343 −19.8614 −1.07242
344344 11.3723 0.613152
345345 0 0
346346 −9.25544 −0.497575
347347 22.1168 1.18729 0.593647 0.804725i 0.297687π-0.297687\pi
0.593647 + 0.804725i 0.297687π0.297687\pi
348348 0 0
349349 0.883156 0.0472743 0.0236371 0.999721i 0.492475π-0.492475\pi
0.0236371 + 0.999721i 0.492475π0.492475\pi
350350 0 0
351351 0 0
352352 1.37228 0.0731428
353353 −30.3505 −1.61540 −0.807698 0.589597i 0.799287π-0.799287\pi
−0.807698 + 0.589597i 0.799287π0.799287\pi
354354 0 0
355355 0 0
356356 −1.11684 −0.0591926
357357 0 0
358358 −3.25544 −0.172055
359359 5.48913 0.289705 0.144852 0.989453i 0.453729π-0.453729\pi
0.144852 + 0.989453i 0.453729π0.453729\pi
360360 0 0
361361 −7.62772 −0.401459
362362 −7.86141 −0.413186
363363 0 0
364364 −11.2554 −0.589945
365365 0 0
366366 0 0
367367 16.0000 0.835193 0.417597 0.908633i 0.362873π-0.362873\pi
0.417597 + 0.908633i 0.362873π0.362873\pi
368368 4.37228 0.227921
369369 0 0
370370 0 0
371371 −27.2554 −1.41503
372372 0 0
373373 −7.48913 −0.387772 −0.193886 0.981024i 0.562109π-0.562109\pi
−0.193886 + 0.981024i 0.562109π0.562109\pi
374374 10.1168 0.523130
375375 0 0
376376 1.62772 0.0839432
377377 20.7446 1.06840
378378 0 0
379379 −10.8614 −0.557913 −0.278956 0.960304i 0.589989π-0.589989\pi
−0.278956 + 0.960304i 0.589989π0.589989\pi
380380 0 0
381381 0 0
382382 −5.48913 −0.280848
383383 −22.9783 −1.17413 −0.587067 0.809538i 0.699717π-0.699717\pi
−0.587067 + 0.809538i 0.699717π0.699717\pi
384384 0 0
385385 0 0
386386 −3.88316 −0.197647
387387 0 0
388388 2.62772 0.133402
389389 −10.3723 −0.525896 −0.262948 0.964810i 0.584695π-0.584695\pi
−0.262948 + 0.964810i 0.584695π0.584695\pi
390390 0 0
391391 32.2337 1.63013
392392 −1.37228 −0.0693107
393393 0 0
394394 −17.4891 −0.881089
395395 0 0
396396 0 0
397397 −11.2554 −0.564894 −0.282447 0.959283i 0.591146π-0.591146\pi
−0.282447 + 0.959283i 0.591146π0.591146\pi
398398 −9.48913 −0.475647
399399 0 0
400400 0 0
401401 16.1168 0.804837 0.402418 0.915456i 0.368170π-0.368170\pi
0.402418 + 0.915456i 0.368170π0.368170\pi
402402 0 0
403403 32.0000 1.59403
404404 −8.74456 −0.435058
405405 0 0
406406 −10.3723 −0.514768
407407 5.48913 0.272086
408408 0 0
409409 −10.8614 −0.537062 −0.268531 0.963271i 0.586538π-0.586538\pi
−0.268531 + 0.963271i 0.586538π0.586538\pi
410410 0 0
411411 0 0
412412 16.0000 0.788263
413413 −3.25544 −0.160190
414414 0 0
415415 0 0
416416 −4.74456 −0.232621
417417 0 0
418418 4.62772 0.226349
419419 −31.7228 −1.54976 −0.774880 0.632108i 0.782190π-0.782190\pi
−0.774880 + 0.632108i 0.782190π0.782190\pi
420420 0 0
421421 −38.4674 −1.87479 −0.937393 0.348274i 0.886768π-0.886768\pi
−0.937393 + 0.348274i 0.886768π0.886768\pi
422422 −7.25544 −0.353189
423423 0 0
424424 −11.4891 −0.557961
425425 0 0
426426 0 0
427427 21.6277 1.04664
428428 14.4891 0.700358
429429 0 0
430430 0 0
431431 −26.2337 −1.26363 −0.631816 0.775118i 0.717690π-0.717690\pi
−0.631816 + 0.775118i 0.717690π0.717690\pi
432432 0 0
433433 −0.627719 −0.0301662 −0.0150831 0.999886i 0.504801π-0.504801\pi
−0.0150831 + 0.999886i 0.504801π0.504801\pi
434434 −16.0000 −0.768025
435435 0 0
436436 9.62772 0.461084
437437 14.7446 0.705328
438438 0 0
439439 16.2337 0.774792 0.387396 0.921913i 0.373375π-0.373375\pi
0.387396 + 0.921913i 0.373375π0.373375\pi
440440 0 0
441441 0 0
442442 −34.9783 −1.66375
443443 26.4891 1.25854 0.629268 0.777188i 0.283355π-0.283355\pi
0.629268 + 0.777188i 0.283355π0.283355\pi
444444 0 0
445445 0 0
446446 −12.3723 −0.585845
447447 0 0
448448 2.37228 0.112080
449449 −18.8614 −0.890125 −0.445062 0.895500i 0.646819π-0.646819\pi
−0.445062 + 0.895500i 0.646819π0.646819\pi
450450 0 0
451451 −4.11684 −0.193855
452452 −14.7446 −0.693526
453453 0 0
454454 −1.88316 −0.0883809
455455 0 0
456456 0 0
457457 −30.1168 −1.40881 −0.704403 0.709800i 0.748785π-0.748785\pi
−0.704403 + 0.709800i 0.748785π0.748785\pi
458458 18.3723 0.858480
459459 0 0
460460 0 0
461461 19.1168 0.890360 0.445180 0.895441i 0.353140π-0.353140\pi
0.445180 + 0.895441i 0.353140π0.353140\pi
462462 0 0
463463 −20.0000 −0.929479 −0.464739 0.885448i 0.653852π-0.653852\pi
−0.464739 + 0.885448i 0.653852π0.653852\pi
464464 −4.37228 −0.202978
465465 0 0
466466 10.1168 0.468654
467467 −25.8832 −1.19773 −0.598865 0.800850i 0.704381π-0.704381\pi
−0.598865 + 0.800850i 0.704381π0.704381\pi
468468 0 0
469469 16.6060 0.766792
470470 0 0
471471 0 0
472472 −1.37228 −0.0631644
473473 15.6060 0.717563
474474 0 0
475475 0 0
476476 17.4891 0.801613
477477 0 0
478478 −14.7446 −0.674401
479479 −23.4891 −1.07325 −0.536623 0.843822i 0.680300π-0.680300\pi
−0.536623 + 0.843822i 0.680300π0.680300\pi
480480 0 0
481481 −18.9783 −0.865334
482482 10.4891 0.477767
483483 0 0
484484 −9.11684 −0.414402
485485 0 0
486486 0 0
487487 1.25544 0.0568893 0.0284446 0.999595i 0.490945π-0.490945\pi
0.0284446 + 0.999595i 0.490945π0.490945\pi
488488 9.11684 0.412700
489489 0 0
490490 0 0
491491 3.60597 0.162735 0.0813676 0.996684i 0.474071π-0.474071\pi
0.0813676 + 0.996684i 0.474071π0.474071\pi
492492 0 0
493493 −32.2337 −1.45173
494494 −16.0000 −0.719874
495495 0 0
496496 −6.74456 −0.302840
497497 −14.2337 −0.638468
498498 0 0
499499 −2.11684 −0.0947630 −0.0473815 0.998877i 0.515088π-0.515088\pi
−0.0473815 + 0.998877i 0.515088π0.515088\pi
500500 0 0
501501 0 0
502502 15.6060 0.696528
503503 −21.8614 −0.974752 −0.487376 0.873192i 0.662046π-0.662046\pi
−0.487376 + 0.873192i 0.662046π0.662046\pi
504504 0 0
505505 0 0
506506 6.00000 0.266733
507507 0 0
508508 −9.11684 −0.404495
509509 9.35053 0.414455 0.207228 0.978293i 0.433556π-0.433556\pi
0.207228 + 0.978293i 0.433556π0.433556\pi
510510 0 0
511511 33.4891 1.48147
512512 1.00000 0.0441942
513513 0 0
514514 1.37228 0.0605287
515515 0 0
516516 0 0
517517 2.23369 0.0982375
518518 9.48913 0.416928
519519 0 0
520520 0 0
521521 −41.2337 −1.80648 −0.903240 0.429135i 0.858818π-0.858818\pi
−0.903240 + 0.429135i 0.858818π0.858818\pi
522522 0 0
523523 11.1168 0.486106 0.243053 0.970013i 0.421851π-0.421851\pi
0.243053 + 0.970013i 0.421851π0.421851\pi
524524 8.74456 0.382008
525525 0 0
526526 −5.48913 −0.239337
527527 −49.7228 −2.16596
528528 0 0
529529 −3.88316 −0.168833
530530 0 0
531531 0 0
532532 8.00000 0.346844
533533 14.2337 0.616529
534534 0 0
535535 0 0
536536 7.00000 0.302354
537537 0 0
538538 4.37228 0.188502
539539 −1.88316 −0.0811133
540540 0 0
541541 21.6277 0.929848 0.464924 0.885351i 0.346082π-0.346082\pi
0.464924 + 0.885351i 0.346082π0.346082\pi
542542 8.00000 0.343629
543543 0 0
544544 7.37228 0.316084
545545 0 0
546546 0 0
547547 −39.4674 −1.68750 −0.843752 0.536734i 0.819658π-0.819658\pi
−0.843752 + 0.536734i 0.819658π0.819658\pi
548548 1.88316 0.0804444
549549 0 0
550550 0 0
551551 −14.7446 −0.628139
552552 0 0
553553 4.74456 0.201759
554554 −5.25544 −0.223282
555555 0 0
556556 18.1168 0.768325
557557 9.76631 0.413812 0.206906 0.978361i 0.433661π-0.433661\pi
0.206906 + 0.978361i 0.433661π0.433661\pi
558558 0 0
559559 −53.9565 −2.28212
560560 0 0
561561 0 0
562562 4.37228 0.184434
563563 −16.7228 −0.704783 −0.352391 0.935853i 0.614631π-0.614631\pi
−0.352391 + 0.935853i 0.614631π0.614631\pi
564564 0 0
565565 0 0
566566 31.8614 1.33923
567567 0 0
568568 −6.00000 −0.251754
569569 9.60597 0.402703 0.201352 0.979519i 0.435467π-0.435467\pi
0.201352 + 0.979519i 0.435467π0.435467\pi
570570 0 0
571571 −31.6060 −1.32267 −0.661334 0.750091i 0.730010π-0.730010\pi
−0.661334 + 0.750091i 0.730010π0.730010\pi
572572 −6.51087 −0.272233
573573 0 0
574574 −7.11684 −0.297051
575575 0 0
576576 0 0
577577 23.8832 0.994269 0.497134 0.867674i 0.334386π-0.334386\pi
0.497134 + 0.867674i 0.334386π0.334386\pi
578578 37.3505 1.55358
579579 0 0
580580 0 0
581581 −3.86141 −0.160198
582582 0 0
583583 −15.7663 −0.652974
584584 14.1168 0.584159
585585 0 0
586586 8.23369 0.340131
587587 −27.0000 −1.11441 −0.557205 0.830375i 0.688126π-0.688126\pi
−0.557205 + 0.830375i 0.688126π0.688126\pi
588588 0 0
589589 −22.7446 −0.937173
590590 0 0
591591 0 0
592592 4.00000 0.164399
593593 −37.7228 −1.54909 −0.774545 0.632519i 0.782021π-0.782021\pi
−0.774545 + 0.632519i 0.782021π0.782021\pi
594594 0 0
595595 0 0
596596 19.1168 0.783056
597597 0 0
598598 −20.7446 −0.848308
599599 −38.2337 −1.56219 −0.781093 0.624415i 0.785338π-0.785338\pi
−0.781093 + 0.624415i 0.785338π0.785338\pi
600600 0 0
601601 26.8614 1.09570 0.547850 0.836577i 0.315447π-0.315447\pi
0.547850 + 0.836577i 0.315447π0.315447\pi
602602 26.9783 1.09955
603603 0 0
604604 −10.0000 −0.406894
605605 0 0
606606 0 0
607607 −0.883156 −0.0358462 −0.0179231 0.999839i 0.505705π-0.505705\pi
−0.0179231 + 0.999839i 0.505705π0.505705\pi
608608 3.37228 0.136764
609609 0 0
610610 0 0
611611 −7.72281 −0.312432
612612 0 0
613613 0.233688 0.00943857 0.00471928 0.999989i 0.498498π-0.498498\pi
0.00471928 + 0.999989i 0.498498π0.498498\pi
614614 33.2337 1.34120
615615 0 0
616616 3.25544 0.131165
617617 22.1168 0.890391 0.445195 0.895433i 0.353134π-0.353134\pi
0.445195 + 0.895433i 0.353134π0.353134\pi
618618 0 0
619619 −38.1168 −1.53205 −0.766023 0.642814i 0.777767π-0.777767\pi
−0.766023 + 0.642814i 0.777767π0.777767\pi
620620 0 0
621621 0 0
622622 −9.25544 −0.371109
623623 −2.64947 −0.106149
624624 0 0
625625 0 0
626626 −9.37228 −0.374592
627627 0 0
628628 −4.74456 −0.189329
629629 29.4891 1.17581
630630 0 0
631631 33.7228 1.34248 0.671242 0.741238i 0.265761π-0.265761\pi
0.671242 + 0.741238i 0.265761π0.265761\pi
632632 2.00000 0.0795557
633633 0 0
634634 8.74456 0.347291
635635 0 0
636636 0 0
637637 6.51087 0.257970
638638 −6.00000 −0.237542
639639 0 0
640640 0 0
641641 −39.0000 −1.54041 −0.770204 0.637798i 0.779845π-0.779845\pi
−0.770204 + 0.637798i 0.779845π0.779845\pi
642642 0 0
643643 −11.0000 −0.433798 −0.216899 0.976194i 0.569594π-0.569594\pi
−0.216899 + 0.976194i 0.569594π0.569594\pi
644644 10.3723 0.408725
645645 0 0
646646 24.8614 0.978159
647647 −24.0951 −0.947276 −0.473638 0.880720i 0.657059π-0.657059\pi
−0.473638 + 0.880720i 0.657059π0.657059\pi
648648 0 0
649649 −1.88316 −0.0739203
650650 0 0
651651 0 0
652652 −1.48913 −0.0583186
653653 37.7228 1.47621 0.738104 0.674687i 0.235721π-0.235721\pi
0.738104 + 0.674687i 0.235721π0.235721\pi
654654 0 0
655655 0 0
656656 −3.00000 −0.117130
657657 0 0
658658 3.86141 0.150533
659659 −5.48913 −0.213826 −0.106913 0.994268i 0.534097π-0.534097\pi
−0.106913 + 0.994268i 0.534097π0.534097\pi
660660 0 0
661661 22.2337 0.864790 0.432395 0.901684i 0.357669π-0.357669\pi
0.432395 + 0.901684i 0.357669π0.357669\pi
662662 −18.2337 −0.708672
663663 0 0
664664 −1.62772 −0.0631677
665665 0 0
666666 0 0
667667 −19.1168 −0.740207
668668 −7.62772 −0.295125
669669 0 0
670670 0 0
671671 12.5109 0.482977
672672 0 0
673673 10.0000 0.385472 0.192736 0.981251i 0.438264π-0.438264\pi
0.192736 + 0.981251i 0.438264π0.438264\pi
674674 −3.37228 −0.129895
675675 0 0
676676 9.51087 0.365803
677677 43.7228 1.68040 0.840202 0.542273i 0.182436π-0.182436\pi
0.840202 + 0.542273i 0.182436π0.182436\pi
678678 0 0
679679 6.23369 0.239227
680680 0 0
681681 0 0
682682 −9.25544 −0.354409
683683 −33.0951 −1.26635 −0.633174 0.774009i 0.718248π-0.718248\pi
−0.633174 + 0.774009i 0.718248π0.718248\pi
684684 0 0
685685 0 0
686686 −19.8614 −0.758312
687687 0 0
688688 11.3723 0.433564
689689 54.5109 2.07670
690690 0 0
691691 −1.76631 −0.0671937 −0.0335968 0.999435i 0.510696π-0.510696\pi
−0.0335968 + 0.999435i 0.510696π0.510696\pi
692692 −9.25544 −0.351839
693693 0 0
694694 22.1168 0.839544
695695 0 0
696696 0 0
697697 −22.1168 −0.837735
698698 0.883156 0.0334279
699699 0 0
700700 0 0
701701 14.1386 0.534007 0.267004 0.963696i 0.413966π-0.413966\pi
0.267004 + 0.963696i 0.413966π0.413966\pi
702702 0 0
703703 13.4891 0.508752
704704 1.37228 0.0517198
705705 0 0
706706 −30.3505 −1.14226
707707 −20.7446 −0.780180
708708 0 0
709709 −25.8614 −0.971246 −0.485623 0.874168i 0.661407π-0.661407\pi
−0.485623 + 0.874168i 0.661407π0.661407\pi
710710 0 0
711711 0 0
712712 −1.11684 −0.0418555
713713 −29.4891 −1.10438
714714 0 0
715715 0 0
716716 −3.25544 −0.121661
717717 0 0
718718 5.48913 0.204852
719719 −38.2337 −1.42588 −0.712938 0.701227i 0.752636π-0.752636\pi
−0.712938 + 0.701227i 0.752636π0.752636\pi
720720 0 0
721721 37.9565 1.41357
722722 −7.62772 −0.283874
723723 0 0
724724 −7.86141 −0.292167
725725 0 0
726726 0 0
727727 −0.883156 −0.0327544 −0.0163772 0.999866i 0.505213π-0.505213\pi
−0.0163772 + 0.999866i 0.505213π0.505213\pi
728728 −11.2554 −0.417154
729729 0 0
730730 0 0
731731 83.8397 3.10092
732732 0 0
733733 −34.2337 −1.26445 −0.632225 0.774785i 0.717858π-0.717858\pi
−0.632225 + 0.774785i 0.717858π0.717858\pi
734734 16.0000 0.590571
735735 0 0
736736 4.37228 0.161164
737737 9.60597 0.353840
738738 0 0
739739 −23.8832 −0.878556 −0.439278 0.898351i 0.644766π-0.644766\pi
−0.439278 + 0.898351i 0.644766π0.644766\pi
740740 0 0
741741 0 0
742742 −27.2554 −1.00058
743743 −25.1168 −0.921448 −0.460724 0.887544i 0.652410π-0.652410\pi
−0.460724 + 0.887544i 0.652410π0.652410\pi
744744 0 0
745745 0 0
746746 −7.48913 −0.274196
747747 0 0
748748 10.1168 0.369908
749749 34.3723 1.25594
750750 0 0
751751 −18.2337 −0.665357 −0.332678 0.943040i 0.607952π-0.607952\pi
−0.332678 + 0.943040i 0.607952π0.607952\pi
752752 1.62772 0.0593568
753753 0 0
754754 20.7446 0.755472
755755 0 0
756756 0 0
757757 10.0000 0.363456 0.181728 0.983349i 0.441831π-0.441831\pi
0.181728 + 0.983349i 0.441831π0.441831\pi
758758 −10.8614 −0.394504
759759 0 0
760760 0 0
761761 12.0951 0.438447 0.219223 0.975675i 0.429648π-0.429648\pi
0.219223 + 0.975675i 0.429648π0.429648\pi
762762 0 0
763763 22.8397 0.826851
764764 −5.48913 −0.198590
765765 0 0
766766 −22.9783 −0.830238
767767 6.51087 0.235094
768768 0 0
769769 −18.1386 −0.654094 −0.327047 0.945008i 0.606054π-0.606054\pi
−0.327047 + 0.945008i 0.606054π0.606054\pi
770770 0 0
771771 0 0
772772 −3.88316 −0.139758
773773 −14.7446 −0.530325 −0.265163 0.964204i 0.585426π-0.585426\pi
−0.265163 + 0.964204i 0.585426π0.585426\pi
774774 0 0
775775 0 0
776776 2.62772 0.0943296
777777 0 0
778778 −10.3723 −0.371864
779779 −10.1168 −0.362474
780780 0 0
781781 −8.23369 −0.294625
782782 32.2337 1.15267
783783 0 0
784784 −1.37228 −0.0490100
785785 0 0
786786 0 0
787787 28.0000 0.998092 0.499046 0.866575i 0.333684π-0.333684\pi
0.499046 + 0.866575i 0.333684π0.333684\pi
788788 −17.4891 −0.623024
789789 0 0
790790 0 0
791791 −34.9783 −1.24368
792792 0 0
793793 −43.2554 −1.53605
794794 −11.2554 −0.399441
795795 0 0
796796 −9.48913 −0.336333
797797 −3.25544 −0.115314 −0.0576568 0.998336i 0.518363π-0.518363\pi
−0.0576568 + 0.998336i 0.518363π0.518363\pi
798798 0 0
799799 12.0000 0.424529
800800 0 0
801801 0 0
802802 16.1168 0.569106
803803 19.3723 0.683633
804804 0 0
805805 0 0
806806 32.0000 1.12715
807807 0 0
808808 −8.74456 −0.307633
809809 −12.3505 −0.434222 −0.217111 0.976147i 0.569663π-0.569663\pi
−0.217111 + 0.976147i 0.569663π0.569663\pi
810810 0 0
811811 9.37228 0.329105 0.164553 0.986368i 0.447382π-0.447382\pi
0.164553 + 0.986368i 0.447382π0.447382\pi
812812 −10.3723 −0.363996
813813 0 0
814814 5.48913 0.192394
815815 0 0
816816 0 0
817817 38.3505 1.34172
818818 −10.8614 −0.379760
819819 0 0
820820 0 0
821821 50.8397 1.77432 0.887158 0.461466i 0.152676π-0.152676\pi
0.887158 + 0.461466i 0.152676π0.152676\pi
822822 0 0
823823 −38.0951 −1.32791 −0.663956 0.747772i 0.731124π-0.731124\pi
−0.663956 + 0.747772i 0.731124π0.731124\pi
824824 16.0000 0.557386
825825 0 0
826826 −3.25544 −0.113271
827827 −8.13859 −0.283007 −0.141503 0.989938i 0.545194π-0.545194\pi
−0.141503 + 0.989938i 0.545194π0.545194\pi
828828 0 0
829829 −32.8832 −1.14208 −0.571040 0.820923i 0.693460π-0.693460\pi
−0.571040 + 0.820923i 0.693460π0.693460\pi
830830 0 0
831831 0 0
832832 −4.74456 −0.164488
833833 −10.1168 −0.350528
834834 0 0
835835 0 0
836836 4.62772 0.160053
837837 0 0
838838 −31.7228 −1.09585
839839 44.2337 1.52712 0.763558 0.645739i 0.223451π-0.223451\pi
0.763558 + 0.645739i 0.223451π0.223451\pi
840840 0 0
841841 −9.88316 −0.340798
842842 −38.4674 −1.32567
843843 0 0
844844 −7.25544 −0.249742
845845 0 0
846846 0 0
847847 −21.6277 −0.743137
848848 −11.4891 −0.394538
849849 0 0
850850 0 0
851851 17.4891 0.599519
852852 0 0
853853 1.76631 0.0604774 0.0302387 0.999543i 0.490373π-0.490373\pi
0.0302387 + 0.999543i 0.490373π0.490373\pi
854854 21.6277 0.740085
855855 0 0
856856 14.4891 0.495228
857857 −23.4891 −0.802373 −0.401187 0.915996i 0.631402π-0.631402\pi
−0.401187 + 0.915996i 0.631402π0.631402\pi
858858 0 0
859859 0.116844 0.00398666 0.00199333 0.999998i 0.499366π-0.499366\pi
0.00199333 + 0.999998i 0.499366π0.499366\pi
860860 0 0
861861 0 0
862862 −26.2337 −0.893523
863863 42.6060 1.45032 0.725162 0.688578i 0.241765π-0.241765\pi
0.725162 + 0.688578i 0.241765π0.241765\pi
864864 0 0
865865 0 0
866866 −0.627719 −0.0213307
867867 0 0
868868 −16.0000 −0.543075
869869 2.74456 0.0931029
870870 0 0
871871 −33.2119 −1.12534
872872 9.62772 0.326036
873873 0 0
874874 14.7446 0.498742
875875 0 0
876876 0 0
877877 55.9565 1.88952 0.944758 0.327768i 0.106296π-0.106296\pi
0.944758 + 0.327768i 0.106296π0.106296\pi
878878 16.2337 0.547860
879879 0 0
880880 0 0
881881 27.3505 0.921463 0.460731 0.887540i 0.347587π-0.347587\pi
0.460731 + 0.887540i 0.347587π0.347587\pi
882882 0 0
883883 −12.7228 −0.428157 −0.214078 0.976816i 0.568675π-0.568675\pi
−0.214078 + 0.976816i 0.568675π0.568675\pi
884884 −34.9783 −1.17645
885885 0 0
886886 26.4891 0.889920
887887 37.7228 1.26661 0.633304 0.773903i 0.281698π-0.281698\pi
0.633304 + 0.773903i 0.281698π0.281698\pi
888888 0 0
889889 −21.6277 −0.725370
890890 0 0
891891 0 0
892892 −12.3723 −0.414255
893893 5.48913 0.183687
894894 0 0
895895 0 0
896896 2.37228 0.0792524
897897 0 0
898898 −18.8614 −0.629413
899899 29.4891 0.983517
900900 0 0
901901 −84.7011 −2.82180
902902 −4.11684 −0.137076
903903 0 0
904904 −14.7446 −0.490397
905905 0 0
906906 0 0
907907 7.00000 0.232431 0.116216 0.993224i 0.462924π-0.462924\pi
0.116216 + 0.993224i 0.462924π0.462924\pi
908908 −1.88316 −0.0624947
909909 0 0
910910 0 0
911911 −42.0000 −1.39152 −0.695761 0.718273i 0.744933π-0.744933\pi
−0.695761 + 0.718273i 0.744933π0.744933\pi
912912 0 0
913913 −2.23369 −0.0739243
914914 −30.1168 −0.996177
915915 0 0
916916 18.3723 0.607037
917917 20.7446 0.685046
918918 0 0
919919 42.4674 1.40087 0.700435 0.713716i 0.252989π-0.252989\pi
0.700435 + 0.713716i 0.252989π0.252989\pi
920920 0 0
921921 0 0
922922 19.1168 0.629580
923923 28.4674 0.937015
924924 0 0
925925 0 0
926926 −20.0000 −0.657241
927927 0 0
928928 −4.37228 −0.143527
929929 −39.9565 −1.31093 −0.655465 0.755225i 0.727527π-0.727527\pi
−0.655465 + 0.755225i 0.727527π0.727527\pi
930930 0 0
931931 −4.62772 −0.151667
932932 10.1168 0.331388
933933 0 0
934934 −25.8832 −0.846923
935935 0 0
936936 0 0
937937 17.7228 0.578979 0.289490 0.957181i 0.406514π-0.406514\pi
0.289490 + 0.957181i 0.406514π0.406514\pi
938938 16.6060 0.542204
939939 0 0
940940 0 0
941941 37.6277 1.22663 0.613314 0.789839i 0.289836π-0.289836\pi
0.613314 + 0.789839i 0.289836π0.289836\pi
942942 0 0
943943 −13.1168 −0.427143
944944 −1.37228 −0.0446640
945945 0 0
946946 15.6060 0.507394
947947 −22.7228 −0.738392 −0.369196 0.929352i 0.620367π-0.620367\pi
−0.369196 + 0.929352i 0.620367π0.620367\pi
948948 0 0
949949 −66.9783 −2.17421
950950 0 0
951951 0 0
952952 17.4891 0.566826
953953 −30.8614 −0.999699 −0.499850 0.866112i 0.666611π-0.666611\pi
−0.499850 + 0.866112i 0.666611π0.666611\pi
954954 0 0
955955 0 0
956956 −14.7446 −0.476873
957957 0 0
958958 −23.4891 −0.758899
959959 4.46738 0.144259
960960 0 0
961961 14.4891 0.467391
962962 −18.9783 −0.611883
963963 0 0
964964 10.4891 0.337832
965965 0 0
966966 0 0
967967 −18.8832 −0.607241 −0.303621 0.952793i 0.598196π-0.598196\pi
−0.303621 + 0.952793i 0.598196π0.598196\pi
968968 −9.11684 −0.293026
969969 0 0
970970 0 0
971971 22.9783 0.737407 0.368704 0.929547i 0.379802π-0.379802\pi
0.368704 + 0.929547i 0.379802π0.379802\pi
972972 0 0
973973 42.9783 1.37782
974974 1.25544 0.0402268
975975 0 0
976976 9.11684 0.291823
977977 40.1168 1.28345 0.641726 0.766934i 0.278219π-0.278219\pi
0.641726 + 0.766934i 0.278219π0.278219\pi
978978 0 0
979979 −1.53262 −0.0489829
980980 0 0
981981 0 0
982982 3.60597 0.115071
983983 −15.8614 −0.505900 −0.252950 0.967479i 0.581401π-0.581401\pi
−0.252950 + 0.967479i 0.581401π0.581401\pi
984984 0 0
985985 0 0
986986 −32.2337 −1.02653
987987 0 0
988988 −16.0000 −0.509028
989989 49.7228 1.58109
990990 0 0
991991 −18.2337 −0.579212 −0.289606 0.957146i 0.593524π-0.593524\pi
−0.289606 + 0.957146i 0.593524π0.593524\pi
992992 −6.74456 −0.214140
993993 0 0
994994 −14.2337 −0.451465
995995 0 0
996996 0 0
997997 −14.0000 −0.443384 −0.221692 0.975117i 0.571158π-0.571158\pi
−0.221692 + 0.975117i 0.571158π0.571158\pi
998998 −2.11684 −0.0670075
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4050.2.a.bw.1.2 2
3.2 odd 2 4050.2.a.bo.1.2 2
5.2 odd 4 4050.2.c.v.649.4 4
5.3 odd 4 4050.2.c.v.649.1 4
5.4 even 2 810.2.a.i.1.1 2
9.2 odd 6 1350.2.e.l.901.1 4
9.4 even 3 450.2.e.j.151.1 4
9.5 odd 6 1350.2.e.l.451.1 4
9.7 even 3 450.2.e.j.301.2 4
15.2 even 4 4050.2.c.ba.649.2 4
15.8 even 4 4050.2.c.ba.649.3 4
15.14 odd 2 810.2.a.k.1.1 2
20.19 odd 2 6480.2.a.be.1.2 2
45.2 even 12 1350.2.j.f.199.2 8
45.4 even 6 90.2.e.c.61.2 yes 4
45.7 odd 12 450.2.j.g.49.4 8
45.13 odd 12 450.2.j.g.349.4 8
45.14 odd 6 270.2.e.c.181.2 4
45.22 odd 12 450.2.j.g.349.1 8
45.23 even 12 1350.2.j.f.1099.2 8
45.29 odd 6 270.2.e.c.91.2 4
45.32 even 12 1350.2.j.f.1099.3 8
45.34 even 6 90.2.e.c.31.1 4
45.38 even 12 1350.2.j.f.199.3 8
45.43 odd 12 450.2.j.g.49.1 8
60.59 even 2 6480.2.a.bn.1.2 2
180.59 even 6 2160.2.q.f.721.1 4
180.79 odd 6 720.2.q.f.481.2 4
180.119 even 6 2160.2.q.f.1441.1 4
180.139 odd 6 720.2.q.f.241.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.e.c.31.1 4 45.34 even 6
90.2.e.c.61.2 yes 4 45.4 even 6
270.2.e.c.91.2 4 45.29 odd 6
270.2.e.c.181.2 4 45.14 odd 6
450.2.e.j.151.1 4 9.4 even 3
450.2.e.j.301.2 4 9.7 even 3
450.2.j.g.49.1 8 45.43 odd 12
450.2.j.g.49.4 8 45.7 odd 12
450.2.j.g.349.1 8 45.22 odd 12
450.2.j.g.349.4 8 45.13 odd 12
720.2.q.f.241.1 4 180.139 odd 6
720.2.q.f.481.2 4 180.79 odd 6
810.2.a.i.1.1 2 5.4 even 2
810.2.a.k.1.1 2 15.14 odd 2
1350.2.e.l.451.1 4 9.5 odd 6
1350.2.e.l.901.1 4 9.2 odd 6
1350.2.j.f.199.2 8 45.2 even 12
1350.2.j.f.199.3 8 45.38 even 12
1350.2.j.f.1099.2 8 45.23 even 12
1350.2.j.f.1099.3 8 45.32 even 12
2160.2.q.f.721.1 4 180.59 even 6
2160.2.q.f.1441.1 4 180.119 even 6
4050.2.a.bo.1.2 2 3.2 odd 2
4050.2.a.bw.1.2 2 1.1 even 1 trivial
4050.2.c.v.649.1 4 5.3 odd 4
4050.2.c.v.649.4 4 5.2 odd 4
4050.2.c.ba.649.2 4 15.2 even 4
4050.2.c.ba.649.3 4 15.8 even 4
6480.2.a.be.1.2 2 20.19 odd 2
6480.2.a.bn.1.2 2 60.59 even 2