Properties

Label 450.2.j.g.349.1
Level $450$
Weight $2$
Character 450.349
Analytic conductor $3.593$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [450,2,Mod(49,450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(450, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("450.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 450.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.59326809096\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.303595776.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 5x^{6} + 16x^{4} + 45x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 349.1
Root \(-0.396143 - 1.68614i\) of defining polynomial
Character \(\chi\) \(=\) 450.349
Dual form 450.2.j.g.49.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(-1.65831 + 0.500000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(1.68614 + 0.396143i) q^{6} +(-2.05446 - 1.18614i) q^{7} -1.00000i q^{8} +(2.50000 - 1.65831i) q^{9} +(-0.686141 + 1.18843i) q^{11} +(-1.26217 - 1.18614i) q^{12} +(4.10891 - 2.37228i) q^{13} +(1.18614 + 2.05446i) q^{14} +(-0.500000 + 0.866025i) q^{16} +7.37228i q^{17} +(-2.99422 + 0.186141i) q^{18} -3.37228 q^{19} +(4.00000 + 0.939764i) q^{21} +(1.18843 - 0.686141i) q^{22} +(-3.78651 + 2.18614i) q^{23} +(0.500000 + 1.65831i) q^{24} -4.74456 q^{26} +(-3.31662 + 4.00000i) q^{27} -2.37228i q^{28} +(-2.18614 + 3.78651i) q^{29} +(3.37228 + 5.84096i) q^{31} +(0.866025 - 0.500000i) q^{32} +(0.543620 - 2.31386i) q^{33} +(3.68614 - 6.38458i) q^{34} +(2.68614 + 1.33591i) q^{36} +4.00000i q^{37} +(2.92048 + 1.68614i) q^{38} +(-5.62772 + 5.98844i) q^{39} +(1.50000 + 2.59808i) q^{41} +(-2.99422 - 2.81386i) q^{42} +(9.84868 + 5.68614i) q^{43} -1.37228 q^{44} +4.37228 q^{46} +(-1.40965 - 0.813859i) q^{47} +(0.396143 - 1.68614i) q^{48} +(-0.686141 - 1.18843i) q^{49} +(-3.68614 - 12.2255i) q^{51} +(4.10891 + 2.37228i) q^{52} +11.4891i q^{53} +(4.87228 - 1.80579i) q^{54} +(-1.18614 + 2.05446i) q^{56} +(5.59230 - 1.68614i) q^{57} +(3.78651 - 2.18614i) q^{58} +(-0.686141 - 1.18843i) q^{59} +(-4.55842 + 7.89542i) q^{61} -6.74456i q^{62} +(-7.10313 + 0.441578i) q^{63} -1.00000 q^{64} +(-1.62772 + 1.73205i) q^{66} +(6.06218 - 3.50000i) q^{67} +(-6.38458 + 3.68614i) q^{68} +(5.18614 - 5.51856i) q^{69} -6.00000 q^{71} +(-1.65831 - 2.50000i) q^{72} -14.1168i q^{73} +(2.00000 - 3.46410i) q^{74} +(-1.68614 - 2.92048i) q^{76} +(2.81929 - 1.62772i) q^{77} +(7.86797 - 2.37228i) q^{78} +(1.00000 - 1.73205i) q^{79} +(3.50000 - 8.29156i) q^{81} -3.00000i q^{82} +(-1.40965 - 0.813859i) q^{83} +(1.18614 + 3.93398i) q^{84} +(-5.68614 - 9.84868i) q^{86} +(1.73205 - 7.37228i) q^{87} +(1.18843 + 0.686141i) q^{88} +1.11684 q^{89} -11.2554 q^{91} +(-3.78651 - 2.18614i) q^{92} +(-8.51278 - 8.00000i) q^{93} +(0.813859 + 1.40965i) q^{94} +(-1.18614 + 1.26217i) q^{96} +(-2.27567 - 1.31386i) q^{97} +1.37228i q^{98} +(0.255437 + 4.10891i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{4} + 2 q^{6} + 20 q^{9} + 6 q^{11} - 2 q^{14} - 4 q^{16} - 4 q^{19} + 32 q^{21} + 4 q^{24} + 8 q^{26} - 6 q^{29} + 4 q^{31} + 18 q^{34} + 10 q^{36} - 68 q^{39} + 12 q^{41} + 12 q^{44} + 12 q^{46}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) −1.65831 + 0.500000i −0.957427 + 0.288675i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0 0
\(6\) 1.68614 + 0.396143i 0.688364 + 0.161725i
\(7\) −2.05446 1.18614i −0.776511 0.448319i 0.0586811 0.998277i \(-0.481310\pi\)
−0.835192 + 0.549958i \(0.814644\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 2.50000 1.65831i 0.833333 0.552771i
\(10\) 0 0
\(11\) −0.686141 + 1.18843i −0.206879 + 0.358325i −0.950730 0.310021i \(-0.899664\pi\)
0.743851 + 0.668346i \(0.232997\pi\)
\(12\) −1.26217 1.18614i −0.364357 0.342409i
\(13\) 4.10891 2.37228i 1.13961 0.657952i 0.193274 0.981145i \(-0.438089\pi\)
0.946333 + 0.323192i \(0.104756\pi\)
\(14\) 1.18614 + 2.05446i 0.317009 + 0.549076i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 7.37228i 1.78804i 0.448026 + 0.894020i \(0.352127\pi\)
−0.448026 + 0.894020i \(0.647873\pi\)
\(18\) −2.99422 + 0.186141i −0.705744 + 0.0438738i
\(19\) −3.37228 −0.773654 −0.386827 0.922152i \(-0.626429\pi\)
−0.386827 + 0.922152i \(0.626429\pi\)
\(20\) 0 0
\(21\) 4.00000 + 0.939764i 0.872872 + 0.205073i
\(22\) 1.18843 0.686141i 0.253374 0.146286i
\(23\) −3.78651 + 2.18614i −0.789541 + 0.455842i −0.839801 0.542894i \(-0.817328\pi\)
0.0502598 + 0.998736i \(0.483995\pi\)
\(24\) 0.500000 + 1.65831i 0.102062 + 0.338502i
\(25\) 0 0
\(26\) −4.74456 −0.930485
\(27\) −3.31662 + 4.00000i −0.638285 + 0.769800i
\(28\) 2.37228i 0.448319i
\(29\) −2.18614 + 3.78651i −0.405956 + 0.703137i −0.994432 0.105378i \(-0.966395\pi\)
0.588476 + 0.808515i \(0.299728\pi\)
\(30\) 0 0
\(31\) 3.37228 + 5.84096i 0.605680 + 1.04907i 0.991944 + 0.126680i \(0.0404320\pi\)
−0.386264 + 0.922388i \(0.626235\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 0.543620 2.31386i 0.0946322 0.402791i
\(34\) 3.68614 6.38458i 0.632168 1.09495i
\(35\) 0 0
\(36\) 2.68614 + 1.33591i 0.447690 + 0.222651i
\(37\) 4.00000i 0.657596i 0.944400 + 0.328798i \(0.106644\pi\)
−0.944400 + 0.328798i \(0.893356\pi\)
\(38\) 2.92048 + 1.68614i 0.473765 + 0.273528i
\(39\) −5.62772 + 5.98844i −0.901156 + 0.958918i
\(40\) 0 0
\(41\) 1.50000 + 2.59808i 0.234261 + 0.405751i 0.959058 0.283211i \(-0.0913998\pi\)
−0.724797 + 0.688963i \(0.758066\pi\)
\(42\) −2.99422 2.81386i −0.462018 0.434188i
\(43\) 9.84868 + 5.68614i 1.50191 + 0.867128i 0.999998 + 0.00221007i \(0.000703486\pi\)
0.501913 + 0.864918i \(0.332630\pi\)
\(44\) −1.37228 −0.206879
\(45\) 0 0
\(46\) 4.37228 0.644658
\(47\) −1.40965 0.813859i −0.205618 0.118714i 0.393655 0.919258i \(-0.371210\pi\)
−0.599273 + 0.800545i \(0.704544\pi\)
\(48\) 0.396143 1.68614i 0.0571784 0.243373i
\(49\) −0.686141 1.18843i −0.0980201 0.169776i
\(50\) 0 0
\(51\) −3.68614 12.2255i −0.516163 1.71192i
\(52\) 4.10891 + 2.37228i 0.569804 + 0.328976i
\(53\) 11.4891i 1.57815i 0.614295 + 0.789076i \(0.289440\pi\)
−0.614295 + 0.789076i \(0.710560\pi\)
\(54\) 4.87228 1.80579i 0.663034 0.245737i
\(55\) 0 0
\(56\) −1.18614 + 2.05446i −0.158505 + 0.274538i
\(57\) 5.59230 1.68614i 0.740718 0.223335i
\(58\) 3.78651 2.18614i 0.497193 0.287054i
\(59\) −0.686141 1.18843i −0.0893279 0.154720i 0.817899 0.575361i \(-0.195139\pi\)
−0.907227 + 0.420641i \(0.861805\pi\)
\(60\) 0 0
\(61\) −4.55842 + 7.89542i −0.583646 + 1.01090i 0.411397 + 0.911456i \(0.365041\pi\)
−0.995043 + 0.0994483i \(0.968292\pi\)
\(62\) 6.74456i 0.856560i
\(63\) −7.10313 + 0.441578i −0.894910 + 0.0556336i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −1.62772 + 1.73205i −0.200358 + 0.213201i
\(67\) 6.06218 3.50000i 0.740613 0.427593i −0.0816792 0.996659i \(-0.526028\pi\)
0.822292 + 0.569066i \(0.192695\pi\)
\(68\) −6.38458 + 3.68614i −0.774244 + 0.447010i
\(69\) 5.18614 5.51856i 0.624338 0.664356i
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) −1.65831 2.50000i −0.195434 0.294628i
\(73\) 14.1168i 1.65225i −0.563486 0.826126i \(-0.690540\pi\)
0.563486 0.826126i \(-0.309460\pi\)
\(74\) 2.00000 3.46410i 0.232495 0.402694i
\(75\) 0 0
\(76\) −1.68614 2.92048i −0.193414 0.335002i
\(77\) 2.81929 1.62772i 0.321288 0.185496i
\(78\) 7.86797 2.37228i 0.890872 0.268608i
\(79\) 1.00000 1.73205i 0.112509 0.194871i −0.804272 0.594261i \(-0.797445\pi\)
0.916781 + 0.399390i \(0.130778\pi\)
\(80\) 0 0
\(81\) 3.50000 8.29156i 0.388889 0.921285i
\(82\) 3.00000i 0.331295i
\(83\) −1.40965 0.813859i −0.154729 0.0893327i 0.420637 0.907229i \(-0.361807\pi\)
−0.575365 + 0.817897i \(0.695140\pi\)
\(84\) 1.18614 + 3.93398i 0.129419 + 0.429233i
\(85\) 0 0
\(86\) −5.68614 9.84868i −0.613152 1.06201i
\(87\) 1.73205 7.37228i 0.185695 0.790392i
\(88\) 1.18843 + 0.686141i 0.126687 + 0.0731428i
\(89\) 1.11684 0.118385 0.0591926 0.998247i \(-0.481147\pi\)
0.0591926 + 0.998247i \(0.481147\pi\)
\(90\) 0 0
\(91\) −11.2554 −1.17989
\(92\) −3.78651 2.18614i −0.394771 0.227921i
\(93\) −8.51278 8.00000i −0.882734 0.829561i
\(94\) 0.813859 + 1.40965i 0.0839432 + 0.145394i
\(95\) 0 0
\(96\) −1.18614 + 1.26217i −0.121060 + 0.128820i
\(97\) −2.27567 1.31386i −0.231059 0.133402i 0.380001 0.924986i \(-0.375924\pi\)
−0.611061 + 0.791584i \(0.709257\pi\)
\(98\) 1.37228i 0.138621i
\(99\) 0.255437 + 4.10891i 0.0256724 + 0.412961i
\(100\) 0 0
\(101\) 4.37228 7.57301i 0.435058 0.753543i −0.562242 0.826973i \(-0.690061\pi\)
0.997300 + 0.0734297i \(0.0233944\pi\)
\(102\) −2.92048 + 12.4307i −0.289171 + 1.23082i
\(103\) −13.8564 + 8.00000i −1.36531 + 0.788263i −0.990325 0.138767i \(-0.955686\pi\)
−0.374987 + 0.927030i \(0.622353\pi\)
\(104\) −2.37228 4.10891i −0.232621 0.402912i
\(105\) 0 0
\(106\) 5.74456 9.94987i 0.557961 0.966417i
\(107\) 14.4891i 1.40072i 0.713791 + 0.700358i \(0.246976\pi\)
−0.713791 + 0.700358i \(0.753024\pi\)
\(108\) −5.12241 0.872281i −0.492905 0.0839353i
\(109\) −9.62772 −0.922168 −0.461084 0.887356i \(-0.652539\pi\)
−0.461084 + 0.887356i \(0.652539\pi\)
\(110\) 0 0
\(111\) −2.00000 6.63325i −0.189832 0.629600i
\(112\) 2.05446 1.18614i 0.194128 0.112080i
\(113\) 12.7692 7.37228i 1.20122 0.693526i 0.240395 0.970675i \(-0.422723\pi\)
0.960827 + 0.277149i \(0.0893896\pi\)
\(114\) −5.68614 1.33591i −0.532556 0.125119i
\(115\) 0 0
\(116\) −4.37228 −0.405956
\(117\) 6.33830 12.7446i 0.585976 1.17824i
\(118\) 1.37228i 0.126329i
\(119\) 8.74456 15.1460i 0.801613 1.38843i
\(120\) 0 0
\(121\) 4.55842 + 7.89542i 0.414402 + 0.717765i
\(122\) 7.89542 4.55842i 0.714818 0.412700i
\(123\) −3.78651 3.55842i −0.341418 0.320852i
\(124\) −3.37228 + 5.84096i −0.302840 + 0.524534i
\(125\) 0 0
\(126\) 6.37228 + 3.16915i 0.567688 + 0.282330i
\(127\) 9.11684i 0.808989i −0.914540 0.404495i \(-0.867447\pi\)
0.914540 0.404495i \(-0.132553\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) −19.1753 4.50506i −1.68829 0.396648i
\(130\) 0 0
\(131\) −4.37228 7.57301i −0.382008 0.661657i 0.609341 0.792908i \(-0.291434\pi\)
−0.991349 + 0.131251i \(0.958101\pi\)
\(132\) 2.27567 0.686141i 0.198072 0.0597209i
\(133\) 6.92820 + 4.00000i 0.600751 + 0.346844i
\(134\) −7.00000 −0.604708
\(135\) 0 0
\(136\) 7.37228 0.632168
\(137\) −1.63086 0.941578i −0.139334 0.0804444i 0.428713 0.903441i \(-0.358967\pi\)
−0.568046 + 0.822996i \(0.692301\pi\)
\(138\) −7.25061 + 2.18614i −0.617213 + 0.186097i
\(139\) 9.05842 + 15.6896i 0.768325 + 1.33078i 0.938470 + 0.345359i \(0.112243\pi\)
−0.170145 + 0.985419i \(0.554424\pi\)
\(140\) 0 0
\(141\) 2.74456 + 0.644810i 0.231134 + 0.0543028i
\(142\) 5.19615 + 3.00000i 0.436051 + 0.251754i
\(143\) 6.51087i 0.544467i
\(144\) 0.186141 + 2.99422i 0.0155117 + 0.249518i
\(145\) 0 0
\(146\) −7.05842 + 12.2255i −0.584159 + 1.01179i
\(147\) 1.73205 + 1.62772i 0.142857 + 0.134252i
\(148\) −3.46410 + 2.00000i −0.284747 + 0.164399i
\(149\) 9.55842 + 16.5557i 0.783056 + 1.35629i 0.930153 + 0.367171i \(0.119674\pi\)
−0.147097 + 0.989122i \(0.546993\pi\)
\(150\) 0 0
\(151\) 5.00000 8.66025i 0.406894 0.704761i −0.587646 0.809118i \(-0.699945\pi\)
0.994540 + 0.104357i \(0.0332784\pi\)
\(152\) 3.37228i 0.273528i
\(153\) 12.2255 + 18.4307i 0.988377 + 1.49003i
\(154\) −3.25544 −0.262331
\(155\) 0 0
\(156\) −8.00000 1.87953i −0.640513 0.150483i
\(157\) −4.10891 + 2.37228i −0.327927 + 0.189329i −0.654920 0.755698i \(-0.727298\pi\)
0.326993 + 0.945027i \(0.393964\pi\)
\(158\) −1.73205 + 1.00000i −0.137795 + 0.0795557i
\(159\) −5.74456 19.0526i −0.455573 1.51097i
\(160\) 0 0
\(161\) 10.3723 0.817450
\(162\) −7.17687 + 5.43070i −0.563868 + 0.426676i
\(163\) 1.48913i 0.116637i 0.998298 + 0.0583186i \(0.0185739\pi\)
−0.998298 + 0.0583186i \(0.981426\pi\)
\(164\) −1.50000 + 2.59808i −0.117130 + 0.202876i
\(165\) 0 0
\(166\) 0.813859 + 1.40965i 0.0631677 + 0.109410i
\(167\) −6.60580 + 3.81386i −0.511172 + 0.295125i −0.733315 0.679889i \(-0.762028\pi\)
0.222143 + 0.975014i \(0.428695\pi\)
\(168\) 0.939764 4.00000i 0.0725044 0.308607i
\(169\) 4.75544 8.23666i 0.365803 0.633589i
\(170\) 0 0
\(171\) −8.43070 + 5.59230i −0.644712 + 0.427654i
\(172\) 11.3723i 0.867128i
\(173\) −8.01544 4.62772i −0.609403 0.351839i 0.163329 0.986572i \(-0.447777\pi\)
−0.772732 + 0.634733i \(0.781110\pi\)
\(174\) −5.18614 + 5.51856i −0.393160 + 0.418361i
\(175\) 0 0
\(176\) −0.686141 1.18843i −0.0517198 0.0895813i
\(177\) 1.73205 + 1.62772i 0.130189 + 0.122347i
\(178\) −0.967215 0.558422i −0.0724958 0.0418555i
\(179\) 3.25544 0.243323 0.121661 0.992572i \(-0.461178\pi\)
0.121661 + 0.992572i \(0.461178\pi\)
\(180\) 0 0
\(181\) −7.86141 −0.584334 −0.292167 0.956367i \(-0.594376\pi\)
−0.292167 + 0.956367i \(0.594376\pi\)
\(182\) 9.74749 + 5.62772i 0.722532 + 0.417154i
\(183\) 3.61158 15.3723i 0.266976 1.13635i
\(184\) 2.18614 + 3.78651i 0.161164 + 0.279145i
\(185\) 0 0
\(186\) 3.37228 + 11.1846i 0.247268 + 0.820094i
\(187\) −8.76144 5.05842i −0.640700 0.369908i
\(188\) 1.62772i 0.118714i
\(189\) 11.5584 4.28384i 0.840751 0.311604i
\(190\) 0 0
\(191\) 2.74456 4.75372i 0.198590 0.343967i −0.749482 0.662025i \(-0.769697\pi\)
0.948071 + 0.318058i \(0.103031\pi\)
\(192\) 1.65831 0.500000i 0.119678 0.0360844i
\(193\) 3.36291 1.94158i 0.242068 0.139758i −0.374059 0.927405i \(-0.622034\pi\)
0.616127 + 0.787647i \(0.288701\pi\)
\(194\) 1.31386 + 2.27567i 0.0943296 + 0.163384i
\(195\) 0 0
\(196\) 0.686141 1.18843i 0.0490100 0.0848879i
\(197\) 17.4891i 1.24605i −0.782202 0.623024i \(-0.785904\pi\)
0.782202 0.623024i \(-0.214096\pi\)
\(198\) 1.83324 3.68614i 0.130283 0.261963i
\(199\) 9.48913 0.672666 0.336333 0.941743i \(-0.390813\pi\)
0.336333 + 0.941743i \(0.390813\pi\)
\(200\) 0 0
\(201\) −8.30298 + 8.83518i −0.585647 + 0.623186i
\(202\) −7.57301 + 4.37228i −0.532835 + 0.307633i
\(203\) 8.98266 5.18614i 0.630459 0.363996i
\(204\) 8.74456 9.30506i 0.612242 0.651485i
\(205\) 0 0
\(206\) 16.0000 1.11477
\(207\) −5.84096 + 11.7446i −0.405975 + 0.816304i
\(208\) 4.74456i 0.328976i
\(209\) 2.31386 4.00772i 0.160053 0.277220i
\(210\) 0 0
\(211\) 3.62772 + 6.28339i 0.249742 + 0.432567i 0.963454 0.267873i \(-0.0863207\pi\)
−0.713712 + 0.700439i \(0.752987\pi\)
\(212\) −9.94987 + 5.74456i −0.683360 + 0.394538i
\(213\) 9.94987 3.00000i 0.681754 0.205557i
\(214\) 7.24456 12.5480i 0.495228 0.857760i
\(215\) 0 0
\(216\) 4.00000 + 3.31662i 0.272166 + 0.225668i
\(217\) 16.0000i 1.08615i
\(218\) 8.33785 + 4.81386i 0.564710 + 0.326036i
\(219\) 7.05842 + 23.4101i 0.476964 + 1.58191i
\(220\) 0 0
\(221\) 17.4891 + 30.2921i 1.17645 + 2.03766i
\(222\) −1.58457 + 6.74456i −0.106350 + 0.452665i
\(223\) −10.7147 6.18614i −0.717510 0.414255i 0.0963255 0.995350i \(-0.469291\pi\)
−0.813836 + 0.581095i \(0.802624\pi\)
\(224\) −2.37228 −0.158505
\(225\) 0 0
\(226\) −14.7446 −0.980794
\(227\) 1.63086 + 0.941578i 0.108244 + 0.0624947i 0.553145 0.833085i \(-0.313428\pi\)
−0.444901 + 0.895580i \(0.646761\pi\)
\(228\) 4.25639 + 4.00000i 0.281886 + 0.264906i
\(229\) 9.18614 + 15.9109i 0.607037 + 1.05142i 0.991726 + 0.128373i \(0.0409755\pi\)
−0.384689 + 0.923046i \(0.625691\pi\)
\(230\) 0 0
\(231\) −3.86141 + 4.10891i −0.254062 + 0.270347i
\(232\) 3.78651 + 2.18614i 0.248596 + 0.143527i
\(233\) 10.1168i 0.662776i −0.943494 0.331388i \(-0.892483\pi\)
0.943494 0.331388i \(-0.107517\pi\)
\(234\) −11.8614 + 7.86797i −0.775404 + 0.514345i
\(235\) 0 0
\(236\) 0.686141 1.18843i 0.0446640 0.0773602i
\(237\) −0.792287 + 3.37228i −0.0514646 + 0.219053i
\(238\) −15.1460 + 8.74456i −0.981771 + 0.566826i
\(239\) −7.37228 12.7692i −0.476873 0.825969i 0.522776 0.852470i \(-0.324897\pi\)
−0.999649 + 0.0265017i \(0.991563\pi\)
\(240\) 0 0
\(241\) −5.24456 + 9.08385i −0.337832 + 0.585142i −0.984025 0.178032i \(-0.943027\pi\)
0.646193 + 0.763174i \(0.276360\pi\)
\(242\) 9.11684i 0.586053i
\(243\) −1.65831 + 15.5000i −0.106381 + 0.994325i
\(244\) −9.11684 −0.583646
\(245\) 0 0
\(246\) 1.50000 + 4.97494i 0.0956365 + 0.317190i
\(247\) −13.8564 + 8.00000i −0.881662 + 0.509028i
\(248\) 5.84096 3.37228i 0.370901 0.214140i
\(249\) 2.74456 + 0.644810i 0.173930 + 0.0408632i
\(250\) 0 0
\(251\) 15.6060 0.985040 0.492520 0.870301i \(-0.336076\pi\)
0.492520 + 0.870301i \(0.336076\pi\)
\(252\) −3.93398 5.93070i −0.247818 0.373599i
\(253\) 6.00000i 0.377217i
\(254\) −4.55842 + 7.89542i −0.286021 + 0.495403i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 1.18843 0.686141i 0.0741323 0.0428003i −0.462476 0.886632i \(-0.653039\pi\)
0.536608 + 0.843832i \(0.319705\pi\)
\(258\) 14.3537 + 13.4891i 0.893625 + 0.839796i
\(259\) 4.74456 8.21782i 0.294813 0.510631i
\(260\) 0 0
\(261\) 0.813859 + 13.0916i 0.0503766 + 0.810348i
\(262\) 8.74456i 0.540241i
\(263\) −4.75372 2.74456i −0.293127 0.169237i 0.346224 0.938152i \(-0.387464\pi\)
−0.639351 + 0.768915i \(0.720797\pi\)
\(264\) −2.31386 0.543620i −0.142408 0.0334575i
\(265\) 0 0
\(266\) −4.00000 6.92820i −0.245256 0.424795i
\(267\) −1.85208 + 0.558422i −0.113345 + 0.0341749i
\(268\) 6.06218 + 3.50000i 0.370306 + 0.213797i
\(269\) −4.37228 −0.266583 −0.133291 0.991077i \(-0.542555\pi\)
−0.133291 + 0.991077i \(0.542555\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) −6.38458 3.68614i −0.387122 0.223505i
\(273\) 18.6650 5.62772i 1.12966 0.340605i
\(274\) 0.941578 + 1.63086i 0.0568828 + 0.0985239i
\(275\) 0 0
\(276\) 7.37228 + 1.73205i 0.443759 + 0.104257i
\(277\) 4.55134 + 2.62772i 0.273464 + 0.157884i 0.630461 0.776221i \(-0.282866\pi\)
−0.356997 + 0.934106i \(0.616199\pi\)
\(278\) 18.1168i 1.08658i
\(279\) 18.1168 + 9.01011i 1.08463 + 0.539421i
\(280\) 0 0
\(281\) −2.18614 + 3.78651i −0.130414 + 0.225884i −0.923836 0.382788i \(-0.874964\pi\)
0.793422 + 0.608672i \(0.208297\pi\)
\(282\) −2.05446 1.93070i −0.122341 0.114972i
\(283\) −27.5928 + 15.9307i −1.64022 + 0.946982i −0.659467 + 0.751733i \(0.729218\pi\)
−0.980754 + 0.195249i \(0.937449\pi\)
\(284\) −3.00000 5.19615i −0.178017 0.308335i
\(285\) 0 0
\(286\) 3.25544 5.63858i 0.192498 0.333416i
\(287\) 7.11684i 0.420094i
\(288\) 1.33591 2.68614i 0.0787191 0.158282i
\(289\) −37.3505 −2.19709
\(290\) 0 0
\(291\) 4.43070 + 1.04095i 0.259732 + 0.0610218i
\(292\) 12.2255 7.05842i 0.715446 0.413063i
\(293\) −7.13058 + 4.11684i −0.416573 + 0.240509i −0.693610 0.720351i \(-0.743981\pi\)
0.277037 + 0.960859i \(0.410648\pi\)
\(294\) −0.686141 2.27567i −0.0400165 0.132720i
\(295\) 0 0
\(296\) 4.00000 0.232495
\(297\) −2.47805 6.68614i −0.143791 0.387969i
\(298\) 19.1168i 1.10741i
\(299\) −10.3723 + 17.9653i −0.599845 + 1.03896i
\(300\) 0 0
\(301\) −13.4891 23.3639i −0.777500 1.34667i
\(302\) −8.66025 + 5.00000i −0.498342 + 0.287718i
\(303\) −3.46410 + 14.7446i −0.199007 + 0.847053i
\(304\) 1.68614 2.92048i 0.0967068 0.167501i
\(305\) 0 0
\(306\) −1.37228 22.0742i −0.0784481 1.26190i
\(307\) 33.2337i 1.89675i 0.317156 + 0.948373i \(0.397272\pi\)
−0.317156 + 0.948373i \(0.602728\pi\)
\(308\) 2.81929 + 1.62772i 0.160644 + 0.0927479i
\(309\) 18.9783 20.1947i 1.07963 1.14884i
\(310\) 0 0
\(311\) 4.62772 + 8.01544i 0.262414 + 0.454514i 0.966883 0.255221i \(-0.0821481\pi\)
−0.704469 + 0.709735i \(0.748815\pi\)
\(312\) 5.98844 + 5.62772i 0.339029 + 0.318607i
\(313\) −8.11663 4.68614i −0.458779 0.264876i 0.252752 0.967531i \(-0.418664\pi\)
−0.711531 + 0.702655i \(0.751998\pi\)
\(314\) 4.74456 0.267751
\(315\) 0 0
\(316\) 2.00000 0.112509
\(317\) −7.57301 4.37228i −0.425343 0.245572i 0.272018 0.962292i \(-0.412309\pi\)
−0.697361 + 0.716720i \(0.745642\pi\)
\(318\) −4.55134 + 19.3723i −0.255227 + 1.08634i
\(319\) −3.00000 5.19615i −0.167968 0.290929i
\(320\) 0 0
\(321\) −7.24456 24.0275i −0.404352 1.34108i
\(322\) −8.98266 5.18614i −0.500584 0.289012i
\(323\) 24.8614i 1.38333i
\(324\) 8.93070 1.11469i 0.496150 0.0619273i
\(325\) 0 0
\(326\) 0.744563 1.28962i 0.0412375 0.0714255i
\(327\) 15.9658 4.81386i 0.882909 0.266207i
\(328\) 2.59808 1.50000i 0.143455 0.0828236i
\(329\) 1.93070 + 3.34408i 0.106443 + 0.184365i
\(330\) 0 0
\(331\) 9.11684 15.7908i 0.501107 0.867943i −0.498892 0.866664i \(-0.666260\pi\)
0.999999 0.00127880i \(-0.000407055\pi\)
\(332\) 1.62772i 0.0893327i
\(333\) 6.63325 + 10.0000i 0.363500 + 0.547997i
\(334\) 7.62772 0.417370
\(335\) 0 0
\(336\) −2.81386 + 2.99422i −0.153509 + 0.163348i
\(337\) −2.92048 + 1.68614i −0.159089 + 0.0918499i −0.577431 0.816440i \(-0.695945\pi\)
0.418342 + 0.908290i \(0.362611\pi\)
\(338\) −8.23666 + 4.75544i −0.448015 + 0.258662i
\(339\) −17.4891 + 18.6101i −0.949879 + 1.01076i
\(340\) 0 0
\(341\) −9.25544 −0.501210
\(342\) 10.0974 0.627719i 0.546002 0.0339431i
\(343\) 19.8614i 1.07242i
\(344\) 5.68614 9.84868i 0.306576 0.531005i
\(345\) 0 0
\(346\) 4.62772 + 8.01544i 0.248788 + 0.430913i
\(347\) 19.1537 11.0584i 1.02823 0.593647i 0.111751 0.993736i \(-0.464354\pi\)
0.916476 + 0.400089i \(0.131021\pi\)
\(348\) 7.25061 2.18614i 0.388673 0.117189i
\(349\) 0.441578 0.764836i 0.0236371 0.0409407i −0.853965 0.520331i \(-0.825809\pi\)
0.877602 + 0.479390i \(0.159142\pi\)
\(350\) 0 0
\(351\) −4.13859 + 24.3036i −0.220902 + 1.29723i
\(352\) 1.37228i 0.0731428i
\(353\) −26.2843 15.1753i −1.39897 0.807698i −0.404689 0.914455i \(-0.632620\pi\)
−0.994285 + 0.106757i \(0.965953\pi\)
\(354\) −0.686141 2.27567i −0.0364680 0.120951i
\(355\) 0 0
\(356\) 0.558422 + 0.967215i 0.0295963 + 0.0512623i
\(357\) −6.92820 + 29.4891i −0.366679 + 1.56073i
\(358\) −2.81929 1.62772i −0.149004 0.0860276i
\(359\) −5.48913 −0.289705 −0.144852 0.989453i \(-0.546271\pi\)
−0.144852 + 0.989453i \(0.546271\pi\)
\(360\) 0 0
\(361\) −7.62772 −0.401459
\(362\) 6.80818 + 3.93070i 0.357830 + 0.206593i
\(363\) −11.5070 10.8139i −0.603961 0.567580i
\(364\) −5.62772 9.74749i −0.294973 0.510908i
\(365\) 0 0
\(366\) −10.8139 + 11.5070i −0.565249 + 0.601480i
\(367\) −13.8564 8.00000i −0.723299 0.417597i 0.0926670 0.995697i \(-0.470461\pi\)
−0.815966 + 0.578101i \(0.803794\pi\)
\(368\) 4.37228i 0.227921i
\(369\) 8.05842 + 4.00772i 0.419505 + 0.208634i
\(370\) 0 0
\(371\) 13.6277 23.6039i 0.707516 1.22545i
\(372\) 2.67181 11.3723i 0.138527 0.589625i
\(373\) 6.48577 3.74456i 0.335821 0.193886i −0.322602 0.946535i \(-0.604557\pi\)
0.658422 + 0.752649i \(0.271224\pi\)
\(374\) 5.05842 + 8.76144i 0.261565 + 0.453043i
\(375\) 0 0
\(376\) −0.813859 + 1.40965i −0.0419716 + 0.0726969i
\(377\) 20.7446i 1.06840i
\(378\) −12.1518 2.06930i −0.625022 0.106433i
\(379\) 10.8614 0.557913 0.278956 0.960304i \(-0.410011\pi\)
0.278956 + 0.960304i \(0.410011\pi\)
\(380\) 0 0
\(381\) 4.55842 + 15.1186i 0.233535 + 0.774548i
\(382\) −4.75372 + 2.74456i −0.243222 + 0.140424i
\(383\) 19.8997 11.4891i 1.01683 0.587067i 0.103646 0.994614i \(-0.466949\pi\)
0.913184 + 0.407547i \(0.133616\pi\)
\(384\) −1.68614 0.396143i −0.0860455 0.0202156i
\(385\) 0 0
\(386\) −3.88316 −0.197647
\(387\) 34.0511 2.11684i 1.73092 0.107605i
\(388\) 2.62772i 0.133402i
\(389\) −5.18614 + 8.98266i −0.262948 + 0.455439i −0.967024 0.254686i \(-0.918028\pi\)
0.704076 + 0.710124i \(0.251361\pi\)
\(390\) 0 0
\(391\) −16.1168 27.9152i −0.815064 1.41173i
\(392\) −1.18843 + 0.686141i −0.0600248 + 0.0346553i
\(393\) 11.0371 + 10.3723i 0.556749 + 0.523212i
\(394\) −8.74456 + 15.1460i −0.440545 + 0.763046i
\(395\) 0 0
\(396\) −3.43070 + 2.27567i −0.172399 + 0.114357i
\(397\) 11.2554i 0.564894i −0.959283 0.282447i \(-0.908854\pi\)
0.959283 0.282447i \(-0.0911462\pi\)
\(398\) −8.21782 4.74456i −0.411922 0.237823i
\(399\) −13.4891 3.16915i −0.675301 0.158656i
\(400\) 0 0
\(401\) −8.05842 13.9576i −0.402418 0.697009i 0.591599 0.806232i \(-0.298497\pi\)
−0.994017 + 0.109223i \(0.965164\pi\)
\(402\) 11.6082 3.50000i 0.578964 0.174564i
\(403\) 27.7128 + 16.0000i 1.38047 + 0.797017i
\(404\) 8.74456 0.435058
\(405\) 0 0
\(406\) −10.3723 −0.514768
\(407\) −4.75372 2.74456i −0.235633 0.136043i
\(408\) −12.2255 + 3.68614i −0.605255 + 0.182491i
\(409\) −5.43070 9.40625i −0.268531 0.465109i 0.699952 0.714190i \(-0.253205\pi\)
−0.968483 + 0.249081i \(0.919872\pi\)
\(410\) 0 0
\(411\) 3.17527 + 0.746000i 0.156624 + 0.0367975i
\(412\) −13.8564 8.00000i −0.682656 0.394132i
\(413\) 3.25544i 0.160190i
\(414\) 10.9307 7.25061i 0.537215 0.356348i
\(415\) 0 0
\(416\) 2.37228 4.10891i 0.116311 0.201456i
\(417\) −22.8665 21.4891i −1.11978 1.05233i
\(418\) −4.00772 + 2.31386i −0.196024 + 0.113175i
\(419\) −15.8614 27.4728i −0.774880 1.34213i −0.934862 0.355012i \(-0.884477\pi\)
0.159981 0.987120i \(-0.448857\pi\)
\(420\) 0 0
\(421\) 19.2337 33.3137i 0.937393 1.62361i 0.167082 0.985943i \(-0.446566\pi\)
0.770311 0.637669i \(-0.220101\pi\)
\(422\) 7.25544i 0.353189i
\(423\) −4.87375 + 0.302985i −0.236970 + 0.0147316i
\(424\) 11.4891 0.557961
\(425\) 0 0
\(426\) −10.1168 2.37686i −0.490163 0.115159i
\(427\) 18.7302 10.8139i 0.906416 0.523319i
\(428\) −12.5480 + 7.24456i −0.606528 + 0.350179i
\(429\) −3.25544 10.7971i −0.157174 0.521287i
\(430\) 0 0
\(431\) −26.2337 −1.26363 −0.631816 0.775118i \(-0.717690\pi\)
−0.631816 + 0.775118i \(0.717690\pi\)
\(432\) −1.80579 4.87228i −0.0868811 0.234418i
\(433\) 0.627719i 0.0301662i 0.999886 + 0.0150831i \(0.00480129\pi\)
−0.999886 + 0.0150831i \(0.995199\pi\)
\(434\) −8.00000 + 13.8564i −0.384012 + 0.665129i
\(435\) 0 0
\(436\) −4.81386 8.33785i −0.230542 0.399311i
\(437\) 12.7692 7.37228i 0.610832 0.352664i
\(438\) 5.59230 23.8030i 0.267210 1.13735i
\(439\) 8.11684 14.0588i 0.387396 0.670989i −0.604703 0.796451i \(-0.706708\pi\)
0.992098 + 0.125462i \(0.0400414\pi\)
\(440\) 0 0
\(441\) −3.68614 1.83324i −0.175531 0.0872972i
\(442\) 34.9783i 1.66375i
\(443\) 22.9403 + 13.2446i 1.08992 + 0.629268i 0.933556 0.358431i \(-0.116688\pi\)
0.156368 + 0.987699i \(0.450021\pi\)
\(444\) 4.74456 5.04868i 0.225167 0.239600i
\(445\) 0 0
\(446\) 6.18614 + 10.7147i 0.292922 + 0.507356i
\(447\) −24.1287 22.6753i −1.14125 1.07250i
\(448\) 2.05446 + 1.18614i 0.0970639 + 0.0560399i
\(449\) 18.8614 0.890125 0.445062 0.895500i \(-0.353181\pi\)
0.445062 + 0.895500i \(0.353181\pi\)
\(450\) 0 0
\(451\) −4.11684 −0.193855
\(452\) 12.7692 + 7.37228i 0.600611 + 0.346763i
\(453\) −3.96143 + 16.8614i −0.186124 + 0.792218i
\(454\) −0.941578 1.63086i −0.0441904 0.0765401i
\(455\) 0 0
\(456\) −1.68614 5.59230i −0.0789608 0.261883i
\(457\) 26.0820 + 15.0584i 1.22006 + 0.704403i 0.964931 0.262503i \(-0.0845480\pi\)
0.255131 + 0.966906i \(0.417881\pi\)
\(458\) 18.3723i 0.858480i
\(459\) −29.4891 24.4511i −1.37643 1.14128i
\(460\) 0 0
\(461\) −9.55842 + 16.5557i −0.445180 + 0.771075i −0.998065 0.0621833i \(-0.980194\pi\)
0.552885 + 0.833258i \(0.313527\pi\)
\(462\) 5.39853 1.62772i 0.251162 0.0757283i
\(463\) 17.3205 10.0000i 0.804952 0.464739i −0.0402476 0.999190i \(-0.512815\pi\)
0.845200 + 0.534450i \(0.179481\pi\)
\(464\) −2.18614 3.78651i −0.101489 0.175784i
\(465\) 0 0
\(466\) −5.05842 + 8.76144i −0.234327 + 0.405866i
\(467\) 25.8832i 1.19773i −0.800850 0.598865i \(-0.795619\pi\)
0.800850 0.598865i \(-0.204381\pi\)
\(468\) 14.2063 0.883156i 0.656685 0.0408239i
\(469\) −16.6060 −0.766792
\(470\) 0 0
\(471\) 5.62772 5.98844i 0.259312 0.275933i
\(472\) −1.18843 + 0.686141i −0.0547019 + 0.0315822i
\(473\) −13.5152 + 7.80298i −0.621428 + 0.358782i
\(474\) 2.37228 2.52434i 0.108962 0.115947i
\(475\) 0 0
\(476\) 17.4891 0.801613
\(477\) 19.0526 + 28.7228i 0.872357 + 1.31513i
\(478\) 14.7446i 0.674401i
\(479\) −11.7446 + 20.3422i −0.536623 + 0.929458i 0.462460 + 0.886640i \(0.346967\pi\)
−0.999083 + 0.0428178i \(0.986366\pi\)
\(480\) 0 0
\(481\) 9.48913 + 16.4356i 0.432667 + 0.749401i
\(482\) 9.08385 5.24456i 0.413758 0.238883i
\(483\) −17.2005 + 5.18614i −0.782649 + 0.235978i
\(484\) −4.55842 + 7.89542i −0.207201 + 0.358883i
\(485\) 0 0
\(486\) 9.18614 12.5942i 0.416692 0.571286i
\(487\) 1.25544i 0.0568893i 0.999595 + 0.0284446i \(0.00905543\pi\)
−0.999595 + 0.0284446i \(0.990945\pi\)
\(488\) 7.89542 + 4.55842i 0.357409 + 0.206350i
\(489\) −0.744563 2.46943i −0.0336703 0.111672i
\(490\) 0 0
\(491\) −1.80298 3.12286i −0.0813676 0.140933i 0.822470 0.568808i \(-0.192595\pi\)
−0.903838 + 0.427876i \(0.859262\pi\)
\(492\) 1.18843 5.05842i 0.0535786 0.228051i
\(493\) −27.9152 16.1168i −1.25724 0.725866i
\(494\) 16.0000 0.719874
\(495\) 0 0
\(496\) −6.74456 −0.302840
\(497\) 12.3267 + 7.11684i 0.552930 + 0.319234i
\(498\) −2.05446 1.93070i −0.0920624 0.0865169i
\(499\) −1.05842 1.83324i −0.0473815 0.0820671i 0.841362 0.540472i \(-0.181754\pi\)
−0.888743 + 0.458405i \(0.848421\pi\)
\(500\) 0 0
\(501\) 9.04755 9.62747i 0.404215 0.430124i
\(502\) −13.5152 7.80298i −0.603211 0.348264i
\(503\) 21.8614i 0.974752i 0.873192 + 0.487376i \(0.162046\pi\)
−0.873192 + 0.487376i \(0.837954\pi\)
\(504\) 0.441578 + 7.10313i 0.0196694 + 0.316399i
\(505\) 0 0
\(506\) −3.00000 + 5.19615i −0.133366 + 0.230997i
\(507\) −3.76767 + 16.0367i −0.167328 + 0.712214i
\(508\) 7.89542 4.55842i 0.350303 0.202247i
\(509\) 4.67527 + 8.09780i 0.207228 + 0.358929i 0.950840 0.309682i \(-0.100223\pi\)
−0.743613 + 0.668611i \(0.766889\pi\)
\(510\) 0 0
\(511\) −16.7446 + 29.0024i −0.740736 + 1.28299i
\(512\) 1.00000i 0.0441942i
\(513\) 11.1846 13.4891i 0.493812 0.595559i
\(514\) −1.37228 −0.0605287
\(515\) 0 0
\(516\) −5.68614 18.8588i −0.250318 0.830212i
\(517\) 1.93443 1.11684i 0.0850762 0.0491187i
\(518\) −8.21782 + 4.74456i −0.361070 + 0.208464i
\(519\) 15.6060 + 3.66648i 0.685026 + 0.160941i
\(520\) 0 0
\(521\) −41.2337 −1.80648 −0.903240 0.429135i \(-0.858818\pi\)
−0.903240 + 0.429135i \(0.858818\pi\)
\(522\) 5.84096 11.7446i 0.255652 0.514046i
\(523\) 11.1168i 0.486106i −0.970013 0.243053i \(-0.921851\pi\)
0.970013 0.243053i \(-0.0781488\pi\)
\(524\) 4.37228 7.57301i 0.191004 0.330829i
\(525\) 0 0
\(526\) 2.74456 + 4.75372i 0.119669 + 0.207272i
\(527\) −43.0612 + 24.8614i −1.87578 + 1.08298i
\(528\) 1.73205 + 1.62772i 0.0753778 + 0.0708374i
\(529\) −1.94158 + 3.36291i −0.0844164 + 0.146214i
\(530\) 0 0
\(531\) −3.68614 1.83324i −0.159965 0.0795559i
\(532\) 8.00000i 0.346844i
\(533\) 12.3267 + 7.11684i 0.533930 + 0.308265i
\(534\) 1.88316 + 0.442430i 0.0814921 + 0.0191458i
\(535\) 0 0
\(536\) −3.50000 6.06218i −0.151177 0.261846i
\(537\) −5.39853 + 1.62772i −0.232964 + 0.0702412i
\(538\) 3.78651 + 2.18614i 0.163248 + 0.0942512i
\(539\) 1.88316 0.0811133
\(540\) 0 0
\(541\) 21.6277 0.929848 0.464924 0.885351i \(-0.346082\pi\)
0.464924 + 0.885351i \(0.346082\pi\)
\(542\) −6.92820 4.00000i −0.297592 0.171815i
\(543\) 13.0367 3.93070i 0.559457 0.168683i
\(544\) 3.68614 + 6.38458i 0.158042 + 0.273737i
\(545\) 0 0
\(546\) −18.9783 4.45877i −0.812194 0.190818i
\(547\) 34.1798 + 19.7337i 1.46142 + 0.843752i 0.999077 0.0429494i \(-0.0136754\pi\)
0.462343 + 0.886701i \(0.347009\pi\)
\(548\) 1.88316i 0.0804444i
\(549\) 1.69702 + 27.2978i 0.0724269 + 1.16504i
\(550\) 0 0
\(551\) 7.37228 12.7692i 0.314070 0.543985i
\(552\) −5.51856 5.18614i −0.234885 0.220737i
\(553\) −4.10891 + 2.37228i −0.174729 + 0.100880i
\(554\) −2.62772 4.55134i −0.111641 0.193368i
\(555\) 0 0
\(556\) −9.05842 + 15.6896i −0.384163 + 0.665389i
\(557\) 9.76631i 0.413812i 0.978361 + 0.206906i \(0.0663394\pi\)
−0.978361 + 0.206906i \(0.933661\pi\)
\(558\) −11.1846 16.8614i −0.473482 0.713800i
\(559\) 53.9565 2.28212
\(560\) 0 0
\(561\) 17.0584 + 4.00772i 0.720207 + 0.169206i
\(562\) 3.78651 2.18614i 0.159724 0.0922168i
\(563\) 14.4824 8.36141i 0.610360 0.352391i −0.162747 0.986668i \(-0.552035\pi\)
0.773106 + 0.634277i \(0.218702\pi\)
\(564\) 0.813859 + 2.69927i 0.0342697 + 0.113660i
\(565\) 0 0
\(566\) 31.8614 1.33923
\(567\) −17.0256 + 12.8832i −0.715006 + 0.541042i
\(568\) 6.00000i 0.251754i
\(569\) 4.80298 8.31901i 0.201352 0.348751i −0.747613 0.664135i \(-0.768800\pi\)
0.948964 + 0.315384i \(0.102133\pi\)
\(570\) 0 0
\(571\) 15.8030 + 27.3716i 0.661334 + 1.14546i 0.980265 + 0.197687i \(0.0633429\pi\)
−0.318931 + 0.947778i \(0.603324\pi\)
\(572\) −5.63858 + 3.25544i −0.235761 + 0.136117i
\(573\) −2.17448 + 9.25544i −0.0908403 + 0.386651i
\(574\) −3.55842 + 6.16337i −0.148526 + 0.257254i
\(575\) 0 0
\(576\) −2.50000 + 1.65831i −0.104167 + 0.0690963i
\(577\) 23.8832i 0.994269i 0.867674 + 0.497134i \(0.165614\pi\)
−0.867674 + 0.497134i \(0.834386\pi\)
\(578\) 32.3465 + 18.6753i 1.34544 + 0.776789i
\(579\) −4.60597 + 4.90120i −0.191418 + 0.203687i
\(580\) 0 0
\(581\) 1.93070 + 3.34408i 0.0800991 + 0.138736i
\(582\) −3.31662 3.11684i −0.137479 0.129197i
\(583\) −13.6540 7.88316i −0.565492 0.326487i
\(584\) −14.1168 −0.584159
\(585\) 0 0
\(586\) 8.23369 0.340131
\(587\) 23.3827 + 13.5000i 0.965107 + 0.557205i 0.897741 0.440524i \(-0.145207\pi\)
0.0673658 + 0.997728i \(0.478541\pi\)
\(588\) −0.543620 + 2.31386i −0.0224185 + 0.0954220i
\(589\) −11.3723 19.6974i −0.468587 0.811616i
\(590\) 0 0
\(591\) 8.74456 + 29.0024i 0.359703 + 1.19300i
\(592\) −3.46410 2.00000i −0.142374 0.0821995i
\(593\) 37.7228i 1.54909i 0.632519 + 0.774545i \(0.282021\pi\)
−0.632519 + 0.774545i \(0.717979\pi\)
\(594\) −1.19702 + 7.02939i −0.0491141 + 0.288419i
\(595\) 0 0
\(596\) −9.55842 + 16.5557i −0.391528 + 0.678147i
\(597\) −15.7359 + 4.74456i −0.644029 + 0.194182i
\(598\) 17.9653 10.3723i 0.734656 0.424154i
\(599\) −19.1168 33.1113i −0.781093 1.35289i −0.931305 0.364239i \(-0.881329\pi\)
0.150212 0.988654i \(-0.452004\pi\)
\(600\) 0 0
\(601\) −13.4307 + 23.2627i −0.547850 + 0.948904i 0.450572 + 0.892740i \(0.351220\pi\)
−0.998422 + 0.0561635i \(0.982113\pi\)
\(602\) 26.9783i 1.09955i
\(603\) 9.35135 18.8030i 0.380816 0.765717i
\(604\) 10.0000 0.406894
\(605\) 0 0
\(606\) 10.3723 11.0371i 0.421345 0.448352i
\(607\) −0.764836 + 0.441578i −0.0310437 + 0.0179231i −0.515442 0.856925i \(-0.672372\pi\)
0.484398 + 0.874848i \(0.339039\pi\)
\(608\) −2.92048 + 1.68614i −0.118441 + 0.0683820i
\(609\) −12.3030 + 13.0916i −0.498542 + 0.530497i
\(610\) 0 0
\(611\) −7.72281 −0.312432
\(612\) −9.84868 + 19.8030i −0.398109 + 0.800488i
\(613\) 0.233688i 0.00943857i −0.999989 0.00471928i \(-0.998498\pi\)
0.999989 0.00471928i \(-0.00150220\pi\)
\(614\) 16.6168 28.7812i 0.670601 1.16152i
\(615\) 0 0
\(616\) −1.62772 2.81929i −0.0655827 0.113592i
\(617\) 19.1537 11.0584i 0.771101 0.445195i −0.0621663 0.998066i \(-0.519801\pi\)
0.833267 + 0.552870i \(0.186468\pi\)
\(618\) −26.5330 + 8.00000i −1.06731 + 0.321807i
\(619\) −19.0584 + 33.0102i −0.766023 + 1.32679i 0.173682 + 0.984802i \(0.444434\pi\)
−0.939704 + 0.341988i \(0.888900\pi\)
\(620\) 0 0
\(621\) 3.81386 22.3966i 0.153045 0.898746i
\(622\) 9.25544i 0.371109i
\(623\) −2.29451 1.32473i −0.0919275 0.0530743i
\(624\) −2.37228 7.86797i −0.0949673 0.314971i
\(625\) 0 0
\(626\) 4.68614 + 8.11663i 0.187296 + 0.324406i
\(627\) −1.83324 + 7.80298i −0.0732126 + 0.311621i
\(628\) −4.10891 2.37228i −0.163963 0.0946643i
\(629\) −29.4891 −1.17581
\(630\) 0 0
\(631\) 33.7228 1.34248 0.671242 0.741238i \(-0.265761\pi\)
0.671242 + 0.741238i \(0.265761\pi\)
\(632\) −1.73205 1.00000i −0.0688973 0.0397779i
\(633\) −9.15759 8.60597i −0.363981 0.342057i
\(634\) 4.37228 + 7.57301i 0.173645 + 0.300763i
\(635\) 0 0
\(636\) 13.6277 14.5012i 0.540374 0.575011i
\(637\) −5.63858 3.25544i −0.223409 0.128985i
\(638\) 6.00000i 0.237542i
\(639\) −15.0000 + 9.94987i −0.593391 + 0.393611i
\(640\) 0 0
\(641\) 19.5000 33.7750i 0.770204 1.33403i −0.167247 0.985915i \(-0.553488\pi\)
0.937451 0.348117i \(-0.113179\pi\)
\(642\) −5.73977 + 24.4307i −0.226531 + 0.964203i
\(643\) 9.52628 5.50000i 0.375680 0.216899i −0.300257 0.953858i \(-0.597072\pi\)
0.675937 + 0.736959i \(0.263739\pi\)
\(644\) 5.18614 + 8.98266i 0.204363 + 0.353966i
\(645\) 0 0
\(646\) −12.4307 + 21.5306i −0.489079 + 0.847111i
\(647\) 24.0951i 0.947276i −0.880720 0.473638i \(-0.842941\pi\)
0.880720 0.473638i \(-0.157059\pi\)
\(648\) −8.29156 3.50000i −0.325723 0.137493i
\(649\) 1.88316 0.0739203
\(650\) 0 0
\(651\) 8.00000 + 26.5330i 0.313545 + 1.03991i
\(652\) −1.28962 + 0.744563i −0.0505054 + 0.0291593i
\(653\) −32.6689 + 18.8614i −1.27843 + 0.738104i −0.976560 0.215244i \(-0.930945\pi\)
−0.301873 + 0.953348i \(0.597612\pi\)
\(654\) −16.2337 3.81396i −0.634787 0.149138i
\(655\) 0 0
\(656\) −3.00000 −0.117130
\(657\) −23.4101 35.2921i −0.913316 1.37688i
\(658\) 3.86141i 0.150533i
\(659\) −2.74456 + 4.75372i −0.106913 + 0.185179i −0.914518 0.404545i \(-0.867430\pi\)
0.807605 + 0.589724i \(0.200763\pi\)
\(660\) 0 0
\(661\) −11.1168 19.2549i −0.432395 0.748930i 0.564684 0.825307i \(-0.308998\pi\)
−0.997079 + 0.0763770i \(0.975665\pi\)
\(662\) −15.7908 + 9.11684i −0.613728 + 0.354336i
\(663\) −44.1485 41.4891i −1.71458 1.61130i
\(664\) −0.813859 + 1.40965i −0.0315839 + 0.0547049i
\(665\) 0 0
\(666\) −0.744563 11.9769i −0.0288512 0.464095i
\(667\) 19.1168i 0.740207i
\(668\) −6.60580 3.81386i −0.255586 0.147563i
\(669\) 20.8614 + 4.90120i 0.806549 + 0.189491i
\(670\) 0 0
\(671\) −6.25544 10.8347i −0.241488 0.418270i
\(672\) 3.93398 1.18614i 0.151757 0.0457564i
\(673\) 8.66025 + 5.00000i 0.333828 + 0.192736i 0.657539 0.753420i \(-0.271597\pi\)
−0.323711 + 0.946156i \(0.604931\pi\)
\(674\) 3.37228 0.129895
\(675\) 0 0
\(676\) 9.51087 0.365803
\(677\) −37.8651 21.8614i −1.45527 0.840202i −0.456500 0.889724i \(-0.650897\pi\)
−0.998773 + 0.0495215i \(0.984230\pi\)
\(678\) 24.4511 7.37228i 0.939038 0.283131i
\(679\) 3.11684 + 5.39853i 0.119613 + 0.207177i
\(680\) 0 0
\(681\) −3.17527 0.746000i −0.121676 0.0285868i
\(682\) 8.01544 + 4.62772i 0.306927 + 0.177205i
\(683\) 33.0951i 1.26635i 0.774009 + 0.633174i \(0.218248\pi\)
−0.774009 + 0.633174i \(0.781752\pi\)
\(684\) −9.05842 4.50506i −0.346357 0.172255i
\(685\) 0 0
\(686\) 9.93070 17.2005i 0.379156 0.656717i
\(687\) −23.1889 21.7921i −0.884713 0.831421i
\(688\) −9.84868 + 5.68614i −0.375478 + 0.216782i
\(689\) 27.2554 + 47.2078i 1.03835 + 1.79847i
\(690\) 0 0
\(691\) 0.883156 1.52967i 0.0335968 0.0581914i −0.848738 0.528813i \(-0.822637\pi\)
0.882335 + 0.470622i \(0.155970\pi\)
\(692\) 9.25544i 0.351839i
\(693\) 4.34896 8.74456i 0.165203 0.332178i
\(694\) −22.1168 −0.839544
\(695\) 0 0
\(696\) −7.37228 1.73205i −0.279446 0.0656532i
\(697\) −19.1537 + 11.0584i −0.725500 + 0.418868i
\(698\) −0.764836 + 0.441578i −0.0289495 + 0.0167140i
\(699\) 5.05842 + 16.7769i 0.191327 + 0.634560i
\(700\) 0 0
\(701\) 14.1386 0.534007 0.267004 0.963696i \(-0.413966\pi\)
0.267004 + 0.963696i \(0.413966\pi\)
\(702\) 15.7359 18.9783i 0.593915 0.716288i
\(703\) 13.4891i 0.508752i
\(704\) 0.686141 1.18843i 0.0258599 0.0447907i
\(705\) 0 0
\(706\) 15.1753 + 26.2843i 0.571129 + 0.989224i
\(707\) −17.9653 + 10.3723i −0.675655 + 0.390090i
\(708\) −0.543620 + 2.31386i −0.0204305 + 0.0869602i
\(709\) −12.9307 + 22.3966i −0.485623 + 0.841123i −0.999863 0.0165226i \(-0.994740\pi\)
0.514241 + 0.857646i \(0.328074\pi\)
\(710\) 0 0
\(711\) −0.372281 5.98844i −0.0139616 0.224584i
\(712\) 1.11684i 0.0418555i
\(713\) −25.5383 14.7446i −0.956418 0.552188i
\(714\) 20.7446 22.0742i 0.776346 0.826107i
\(715\) 0 0
\(716\) 1.62772 + 2.81929i 0.0608307 + 0.105362i
\(717\) 18.6101 + 17.4891i 0.695008 + 0.653143i
\(718\) 4.75372 + 2.74456i 0.177407 + 0.102426i
\(719\) 38.2337 1.42588 0.712938 0.701227i \(-0.247364\pi\)
0.712938 + 0.701227i \(0.247364\pi\)
\(720\) 0 0
\(721\) 37.9565 1.41357
\(722\) 6.60580 + 3.81386i 0.245842 + 0.141937i
\(723\) 4.15520 17.6861i 0.154534 0.657755i
\(724\) −3.93070 6.80818i −0.146083 0.253024i
\(725\) 0 0
\(726\) 4.55842 + 15.1186i 0.169179 + 0.561103i
\(727\) 0.764836 + 0.441578i 0.0283662 + 0.0163772i 0.514116 0.857721i \(-0.328120\pi\)
−0.485750 + 0.874098i \(0.661453\pi\)
\(728\) 11.2554i 0.417154i
\(729\) −5.00000 26.5330i −0.185185 0.982704i
\(730\) 0 0
\(731\) −41.9198 + 72.6073i −1.55046 + 2.68548i
\(732\) 15.1186 4.55842i 0.558799 0.168484i
\(733\) 29.6472 17.1168i 1.09505 0.632225i 0.160131 0.987096i \(-0.448808\pi\)
0.934915 + 0.354871i \(0.115475\pi\)
\(734\) 8.00000 + 13.8564i 0.295285 + 0.511449i
\(735\) 0 0
\(736\) −2.18614 + 3.78651i −0.0805822 + 0.139572i
\(737\) 9.60597i 0.353840i
\(738\) −4.97494 7.50000i −0.183130 0.276079i
\(739\) 23.8832 0.878556 0.439278 0.898351i \(-0.355234\pi\)
0.439278 + 0.898351i \(0.355234\pi\)
\(740\) 0 0
\(741\) 18.9783 20.1947i 0.697183 0.741871i
\(742\) −23.6039 + 13.6277i −0.866526 + 0.500289i
\(743\) 21.7518 12.5584i 0.797997 0.460724i −0.0447732 0.998997i \(-0.514257\pi\)
0.842770 + 0.538273i \(0.180923\pi\)
\(744\) −8.00000 + 8.51278i −0.293294 + 0.312094i
\(745\) 0 0
\(746\) −7.48913 −0.274196
\(747\) −4.87375 + 0.302985i −0.178321 + 0.0110856i
\(748\) 10.1168i 0.369908i
\(749\) 17.1861 29.7673i 0.627968 1.08767i
\(750\) 0 0
\(751\) 9.11684 + 15.7908i 0.332678 + 0.576216i 0.983036 0.183412i \(-0.0587143\pi\)
−0.650358 + 0.759628i \(0.725381\pi\)
\(752\) 1.40965 0.813859i 0.0514045 0.0296784i
\(753\) −25.8796 + 7.80298i −0.943104 + 0.284357i
\(754\) 10.3723 17.9653i 0.377736 0.654258i
\(755\) 0 0
\(756\) 9.48913 + 7.86797i 0.345116 + 0.286155i
\(757\) 10.0000i 0.363456i 0.983349 + 0.181728i \(0.0581691\pi\)
−0.983349 + 0.181728i \(0.941831\pi\)
\(758\) −9.40625 5.43070i −0.341651 0.197252i
\(759\) 3.00000 + 9.94987i 0.108893 + 0.361158i
\(760\) 0 0
\(761\) −6.04755 10.4747i −0.219223 0.379706i 0.735347 0.677690i \(-0.237019\pi\)
−0.954571 + 0.297984i \(0.903686\pi\)
\(762\) 3.61158 15.3723i 0.130834 0.556879i
\(763\) 19.7797 + 11.4198i 0.716074 + 0.413426i
\(764\) 5.48913 0.198590
\(765\) 0 0
\(766\) −22.9783 −0.830238
\(767\) −5.63858 3.25544i −0.203597 0.117547i
\(768\) 1.26217 + 1.18614i 0.0455446 + 0.0428012i
\(769\) −9.06930 15.7085i −0.327047 0.566462i 0.654877 0.755735i \(-0.272720\pi\)
−0.981925 + 0.189273i \(0.939387\pi\)
\(770\) 0 0
\(771\) −1.62772 + 1.73205i −0.0586209 + 0.0623783i
\(772\) 3.36291 + 1.94158i 0.121034 + 0.0698789i
\(773\) 14.7446i 0.530325i 0.964204 + 0.265163i \(0.0854256\pi\)
−0.964204 + 0.265163i \(0.914574\pi\)
\(774\) −30.5475 15.1923i −1.09801 0.546076i
\(775\) 0 0
\(776\) −1.31386 + 2.27567i −0.0471648 + 0.0816918i
\(777\) −3.75906 + 16.0000i −0.134855 + 0.573997i
\(778\) 8.98266 5.18614i 0.322044 0.185932i
\(779\) −5.05842 8.76144i −0.181237 0.313911i
\(780\) 0 0
\(781\) 4.11684 7.13058i 0.147312 0.255152i
\(782\) 32.2337i 1.15267i
\(783\) −7.89542 21.3030i −0.282159 0.761307i
\(784\) 1.37228 0.0490100
\(785\) 0 0
\(786\) −4.37228 14.5012i −0.155954 0.517241i
\(787\) 24.2487 14.0000i 0.864373 0.499046i −0.00110111 0.999999i \(-0.500350\pi\)
0.865474 + 0.500953i \(0.167017\pi\)
\(788\) 15.1460 8.74456i 0.539555 0.311512i
\(789\) 9.25544 + 2.17448i 0.329502 + 0.0774136i
\(790\) 0 0
\(791\) −34.9783 −1.24368
\(792\) 4.10891 0.255437i 0.146004 0.00907657i
\(793\) 43.2554i 1.53605i
\(794\) −5.62772 + 9.74749i −0.199720 + 0.345926i
\(795\) 0 0
\(796\) 4.74456 + 8.21782i 0.168167 + 0.291273i
\(797\) −2.81929 + 1.62772i −0.0998644 + 0.0576568i −0.549100 0.835756i \(-0.685030\pi\)
0.449236 + 0.893413i \(0.351696\pi\)
\(798\) 10.0974 + 9.48913i 0.357442 + 0.335911i
\(799\) 6.00000 10.3923i 0.212265 0.367653i
\(800\) 0 0
\(801\) 2.79211 1.85208i 0.0986544 0.0654399i
\(802\) 16.1168i 0.569106i
\(803\) 16.7769 + 9.68614i 0.592044 + 0.341816i
\(804\) −11.8030 2.77300i −0.416259 0.0977963i
\(805\) 0 0
\(806\) −16.0000 27.7128i −0.563576 0.976142i
\(807\) 7.25061 2.18614i 0.255234 0.0769558i
\(808\) −7.57301 4.37228i −0.266418 0.153816i
\(809\) 12.3505 0.434222 0.217111 0.976147i \(-0.430337\pi\)
0.217111 + 0.976147i \(0.430337\pi\)
\(810\) 0 0
\(811\) 9.37228 0.329105 0.164553 0.986368i \(-0.447382\pi\)
0.164553 + 0.986368i \(0.447382\pi\)
\(812\) 8.98266 + 5.18614i 0.315230 + 0.181998i
\(813\) −13.2665 + 4.00000i −0.465276 + 0.140286i
\(814\) 2.74456 + 4.75372i 0.0961969 + 0.166618i
\(815\) 0 0
\(816\) 12.4307 + 2.92048i 0.435162 + 0.102237i
\(817\) −33.2125 19.1753i −1.16196 0.670858i
\(818\) 10.8614i 0.379760i
\(819\) −28.1386 + 18.6650i −0.983242 + 0.652209i
\(820\) 0 0
\(821\) −25.4198 + 44.0284i −0.887158 + 1.53660i −0.0439382 + 0.999034i \(0.513990\pi\)
−0.843220 + 0.537569i \(0.819343\pi\)
\(822\) −2.37686 2.23369i −0.0829025 0.0779088i
\(823\) 32.9913 19.0475i 1.15001 0.663956i 0.201117 0.979567i \(-0.435543\pi\)
0.948888 + 0.315612i \(0.102210\pi\)
\(824\) 8.00000 + 13.8564i 0.278693 + 0.482711i
\(825\) 0 0
\(826\) 1.62772 2.81929i 0.0566356 0.0980957i
\(827\) 8.13859i 0.283007i −0.989938 0.141503i \(-0.954806\pi\)
0.989938 0.141503i \(-0.0451936\pi\)
\(828\) −13.0916 + 0.813859i −0.454964 + 0.0282836i
\(829\) 32.8832 1.14208 0.571040 0.820923i \(-0.306540\pi\)
0.571040 + 0.820923i \(0.306540\pi\)
\(830\) 0 0
\(831\) −8.86141 2.08191i −0.307399 0.0722206i
\(832\) −4.10891 + 2.37228i −0.142451 + 0.0822441i
\(833\) 8.76144 5.05842i 0.303566 0.175264i
\(834\) 9.05842 + 30.0434i 0.313668 + 1.04032i
\(835\) 0 0
\(836\) 4.62772 0.160053
\(837\) −34.5484 5.88316i −1.19417 0.203352i
\(838\) 31.7228i 1.09585i
\(839\) 22.1168 38.3075i 0.763558 1.32252i −0.177447 0.984130i \(-0.556784\pi\)
0.941005 0.338391i \(-0.109883\pi\)
\(840\) 0 0
\(841\) 4.94158 + 8.55906i 0.170399 + 0.295140i
\(842\) −33.3137 + 19.2337i −1.14807 + 0.662837i
\(843\) 1.73205 7.37228i 0.0596550 0.253915i
\(844\) −3.62772 + 6.28339i −0.124871 + 0.216283i
\(845\) 0 0
\(846\) 4.37228 + 2.17448i 0.150322 + 0.0747602i
\(847\) 21.6277i 0.743137i
\(848\) −9.94987 5.74456i −0.341680 0.197269i
\(849\) 37.7921 40.2145i 1.29702 1.38016i
\(850\) 0 0
\(851\) −8.74456 15.1460i −0.299760 0.519199i
\(852\) 7.57301 + 7.11684i 0.259447 + 0.243819i
\(853\) 1.52967 + 0.883156i 0.0523749 + 0.0302387i 0.525959 0.850510i \(-0.323707\pi\)
−0.473584 + 0.880749i \(0.657040\pi\)
\(854\) −21.6277 −0.740085
\(855\) 0 0
\(856\) 14.4891 0.495228
\(857\) 20.3422 + 11.7446i 0.694876 + 0.401187i 0.805436 0.592683i \(-0.201931\pi\)
−0.110560 + 0.993869i \(0.535265\pi\)
\(858\) −2.57924 + 10.9783i −0.0880538 + 0.374791i
\(859\) 0.0584220 + 0.101190i 0.00199333 + 0.00345255i 0.867020 0.498273i \(-0.166032\pi\)
−0.865027 + 0.501725i \(0.832699\pi\)
\(860\) 0 0
\(861\) 3.55842 + 11.8020i 0.121271 + 0.402209i
\(862\) 22.7190 + 13.1168i 0.773814 + 0.446761i
\(863\) 42.6060i 1.45032i −0.688578 0.725162i \(-0.741765\pi\)
0.688578 0.725162i \(-0.258235\pi\)
\(864\) −0.872281 + 5.12241i −0.0296756 + 0.174268i
\(865\) 0 0
\(866\) 0.313859 0.543620i 0.0106654 0.0184730i
\(867\) 61.9389 18.6753i 2.10355 0.634245i
\(868\) 13.8564 8.00000i 0.470317 0.271538i
\(869\) 1.37228 + 2.37686i 0.0465515 + 0.0806295i
\(870\) 0 0
\(871\) 16.6060 28.7624i 0.562672 0.974576i
\(872\) 9.62772i 0.326036i
\(873\) −7.86797 + 0.489125i −0.266290 + 0.0165544i
\(874\) −14.7446 −0.498742
\(875\) 0 0
\(876\) −16.7446 + 17.8178i −0.565746 + 0.602009i
\(877\) 48.4598 27.9783i 1.63637 0.944758i 0.654301 0.756234i \(-0.272963\pi\)
0.982069 0.188524i \(-0.0603704\pi\)
\(878\) −14.0588 + 8.11684i −0.474461 + 0.273930i
\(879\) 9.76631 10.3923i 0.329410 0.350524i
\(880\) 0 0
\(881\) 27.3505 0.921463 0.460731 0.887540i \(-0.347587\pi\)
0.460731 + 0.887540i \(0.347587\pi\)
\(882\) 2.27567 + 3.43070i 0.0766258 + 0.115518i
\(883\) 12.7228i 0.428157i 0.976816 + 0.214078i \(0.0686748\pi\)
−0.976816 + 0.214078i \(0.931325\pi\)
\(884\) −17.4891 + 30.2921i −0.588223 + 1.01883i
\(885\) 0 0
\(886\) −13.2446 22.9403i −0.444960 0.770693i
\(887\) 32.6689 18.8614i 1.09691 0.633304i 0.161506 0.986872i \(-0.448365\pi\)
0.935409 + 0.353568i \(0.115032\pi\)
\(888\) −6.63325 + 2.00000i −0.222597 + 0.0671156i
\(889\) −10.8139 + 18.7302i −0.362685 + 0.628189i
\(890\) 0 0
\(891\) 7.45245 + 9.84868i 0.249667 + 0.329943i
\(892\) 12.3723i 0.414255i
\(893\) 4.75372 + 2.74456i 0.159077 + 0.0918433i
\(894\) 9.55842 + 31.7017i 0.319681 + 1.06026i
\(895\) 0 0
\(896\) −1.18614 2.05446i −0.0396262 0.0686346i
\(897\) 8.21782 34.9783i 0.274385 1.16789i
\(898\) −16.3345 9.43070i −0.545088 0.314707i
\(899\) −29.4891 −0.983517
\(900\) 0 0
\(901\) −84.7011 −2.82180
\(902\) 3.56529 + 2.05842i 0.118711 + 0.0685380i
\(903\) 34.0511 + 32.0000i 1.13315 + 1.06489i
\(904\) −7.37228 12.7692i −0.245198 0.424696i
\(905\) 0 0
\(906\) 11.8614 12.6217i 0.394069 0.419328i
\(907\) −6.06218 3.50000i −0.201291 0.116216i 0.395966 0.918265i \(-0.370410\pi\)
−0.597258 + 0.802049i \(0.703743\pi\)
\(908\) 1.88316i 0.0624947i
\(909\) −1.62772 26.1831i −0.0539880 0.868440i
\(910\) 0 0
\(911\) 21.0000 36.3731i 0.695761 1.20509i −0.274162 0.961683i \(-0.588401\pi\)
0.969923 0.243410i \(-0.0782661\pi\)
\(912\) −1.33591 + 5.68614i −0.0442363 + 0.188287i
\(913\) 1.93443 1.11684i 0.0640203 0.0369621i
\(914\) −15.0584 26.0820i −0.498088 0.862714i
\(915\) 0 0
\(916\) −9.18614 + 15.9109i −0.303519 + 0.525710i
\(917\) 20.7446i 0.685046i
\(918\) 13.3128 + 35.9198i 0.439387 + 1.18553i
\(919\) −42.4674 −1.40087 −0.700435 0.713716i \(-0.747011\pi\)
−0.700435 + 0.713716i \(0.747011\pi\)
\(920\) 0 0
\(921\) −16.6168 55.1118i −0.547544 1.81600i
\(922\) 16.5557 9.55842i 0.545232 0.314790i
\(923\) −24.6535 + 14.2337i −0.811479 + 0.468508i
\(924\) −5.48913 1.28962i −0.180579 0.0424254i
\(925\) 0 0
\(926\) −20.0000 −0.657241
\(927\) −21.3745 + 42.9783i −0.702031 + 1.41159i
\(928\) 4.37228i 0.143527i
\(929\) −19.9783 + 34.6033i −0.655465 + 1.13530i 0.326312 + 0.945262i \(0.394194\pi\)
−0.981777 + 0.190037i \(0.939139\pi\)
\(930\) 0 0
\(931\) 2.31386 + 4.00772i 0.0758337 + 0.131348i
\(932\) 8.76144 5.05842i 0.286991 0.165694i
\(933\) −11.6819 10.9783i −0.382449 0.359412i
\(934\) −12.9416 + 22.4155i −0.423461 + 0.733457i
\(935\) 0 0
\(936\) −12.7446 6.33830i −0.416569 0.207174i
\(937\) 17.7228i 0.578979i 0.957181 + 0.289490i \(0.0934855\pi\)
−0.957181 + 0.289490i \(0.906514\pi\)
\(938\) 14.3812 + 8.30298i 0.469563 + 0.271102i
\(939\) 15.8030 + 3.71277i 0.515711 + 0.121162i
\(940\) 0 0
\(941\) −18.8139 32.5866i −0.613314 1.06229i −0.990678 0.136226i \(-0.956503\pi\)
0.377363 0.926065i \(-0.376831\pi\)
\(942\) −7.86797 + 2.37228i −0.256352 + 0.0772931i
\(943\) −11.3595 6.55842i −0.369917 0.213572i
\(944\) 1.37228 0.0446640
\(945\) 0 0
\(946\) 15.6060 0.507394
\(947\) 19.6785 + 11.3614i 0.639466 + 0.369196i 0.784409 0.620244i \(-0.212966\pi\)
−0.144943 + 0.989440i \(0.546300\pi\)
\(948\) −3.31662 + 1.00000i −0.107719 + 0.0324785i
\(949\) −33.4891 58.0049i −1.08710 1.88292i
\(950\) 0 0
\(951\) 14.7446 + 3.46410i 0.478125 + 0.112331i
\(952\) −15.1460 8.74456i −0.490886 0.283413i
\(953\) 30.8614i 0.999699i 0.866112 + 0.499850i \(0.166611\pi\)
−0.866112 + 0.499850i \(0.833389\pi\)
\(954\) −2.13859 34.4010i −0.0692395 1.11377i
\(955\) 0 0
\(956\) 7.37228 12.7692i 0.238437 0.412984i
\(957\) 7.57301 + 7.11684i 0.244801 + 0.230055i
\(958\) 20.3422 11.7446i 0.657226 0.379450i
\(959\) 2.23369 + 3.86886i 0.0721295 + 0.124932i
\(960\) 0 0
\(961\) −7.24456 + 12.5480i −0.233696 + 0.404773i
\(962\) 18.9783i 0.611883i
\(963\) 24.0275 + 36.2228i 0.774275 + 1.16726i
\(964\) −10.4891 −0.337832
\(965\) 0 0
\(966\) 17.4891 + 4.10891i 0.562703 + 0.132202i
\(967\) −16.3533 + 9.44158i −0.525886 + 0.303621i −0.739340 0.673333i \(-0.764862\pi\)
0.213453 + 0.976953i \(0.431529\pi\)
\(968\) 7.89542 4.55842i 0.253768 0.146513i
\(969\) 12.4307 + 41.2280i 0.399332 + 1.32443i
\(970\) 0 0
\(971\) 22.9783 0.737407 0.368704 0.929547i \(-0.379802\pi\)
0.368704 + 0.929547i \(0.379802\pi\)
\(972\) −14.2525 + 6.31386i −0.457151 + 0.202517i
\(973\) 42.9783i 1.37782i
\(974\) 0.627719 1.08724i 0.0201134 0.0348374i
\(975\) 0 0
\(976\) −4.55842 7.89542i −0.145912 0.252726i
\(977\) 34.7422 20.0584i 1.11150 0.641726i 0.172284 0.985047i \(-0.444885\pi\)
0.939218 + 0.343322i \(0.111552\pi\)
\(978\) −0.589907 + 2.51087i −0.0188632 + 0.0802889i
\(979\) −0.766312 + 1.32729i −0.0244914 + 0.0424204i
\(980\) 0 0
\(981\) −24.0693 + 15.9658i −0.768474 + 0.509748i
\(982\) 3.60597i 0.115071i
\(983\) −13.7364 7.93070i −0.438123 0.252950i 0.264678 0.964337i \(-0.414734\pi\)
−0.702801 + 0.711387i \(0.748068\pi\)
\(984\) −3.55842 + 3.78651i −0.113438 + 0.120709i
\(985\) 0 0
\(986\) 16.1168 + 27.9152i 0.513265 + 0.889001i
\(987\) −4.87375 4.58017i −0.155133 0.145788i
\(988\) −13.8564 8.00000i −0.440831 0.254514i
\(989\) −49.7228 −1.58109
\(990\) 0 0
\(991\) −18.2337 −0.579212 −0.289606 0.957146i \(-0.593524\pi\)
−0.289606 + 0.957146i \(0.593524\pi\)
\(992\) 5.84096 + 3.37228i 0.185451 + 0.107070i
\(993\) −7.22316 + 30.7446i −0.229220 + 0.975649i
\(994\) −7.11684 12.3267i −0.225733 0.390980i
\(995\) 0 0
\(996\) 0.813859 + 2.69927i 0.0257881 + 0.0855295i
\(997\) 12.1244 + 7.00000i 0.383982 + 0.221692i 0.679549 0.733630i \(-0.262175\pi\)
−0.295567 + 0.955322i \(0.595509\pi\)
\(998\) 2.11684i 0.0670075i
\(999\) −16.0000 13.2665i −0.506218 0.419733i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 450.2.j.g.349.1 8
3.2 odd 2 1350.2.j.f.1099.3 8
5.2 odd 4 90.2.e.c.61.2 yes 4
5.3 odd 4 450.2.e.j.151.1 4
5.4 even 2 inner 450.2.j.g.349.4 8
9.2 odd 6 4050.2.c.ba.649.2 4
9.4 even 3 inner 450.2.j.g.49.4 8
9.5 odd 6 1350.2.j.f.199.2 8
9.7 even 3 4050.2.c.v.649.4 4
15.2 even 4 270.2.e.c.181.2 4
15.8 even 4 1350.2.e.l.451.1 4
15.14 odd 2 1350.2.j.f.1099.2 8
20.7 even 4 720.2.q.f.241.1 4
45.2 even 12 810.2.a.k.1.1 2
45.4 even 6 inner 450.2.j.g.49.1 8
45.7 odd 12 810.2.a.i.1.1 2
45.13 odd 12 450.2.e.j.301.2 4
45.14 odd 6 1350.2.j.f.199.3 8
45.22 odd 12 90.2.e.c.31.1 4
45.23 even 12 1350.2.e.l.901.1 4
45.29 odd 6 4050.2.c.ba.649.3 4
45.32 even 12 270.2.e.c.91.2 4
45.34 even 6 4050.2.c.v.649.1 4
45.38 even 12 4050.2.a.bo.1.2 2
45.43 odd 12 4050.2.a.bw.1.2 2
60.47 odd 4 2160.2.q.f.721.1 4
180.7 even 12 6480.2.a.be.1.2 2
180.47 odd 12 6480.2.a.bn.1.2 2
180.67 even 12 720.2.q.f.481.2 4
180.167 odd 12 2160.2.q.f.1441.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.e.c.31.1 4 45.22 odd 12
90.2.e.c.61.2 yes 4 5.2 odd 4
270.2.e.c.91.2 4 45.32 even 12
270.2.e.c.181.2 4 15.2 even 4
450.2.e.j.151.1 4 5.3 odd 4
450.2.e.j.301.2 4 45.13 odd 12
450.2.j.g.49.1 8 45.4 even 6 inner
450.2.j.g.49.4 8 9.4 even 3 inner
450.2.j.g.349.1 8 1.1 even 1 trivial
450.2.j.g.349.4 8 5.4 even 2 inner
720.2.q.f.241.1 4 20.7 even 4
720.2.q.f.481.2 4 180.67 even 12
810.2.a.i.1.1 2 45.7 odd 12
810.2.a.k.1.1 2 45.2 even 12
1350.2.e.l.451.1 4 15.8 even 4
1350.2.e.l.901.1 4 45.23 even 12
1350.2.j.f.199.2 8 9.5 odd 6
1350.2.j.f.199.3 8 45.14 odd 6
1350.2.j.f.1099.2 8 15.14 odd 2
1350.2.j.f.1099.3 8 3.2 odd 2
2160.2.q.f.721.1 4 60.47 odd 4
2160.2.q.f.1441.1 4 180.167 odd 12
4050.2.a.bo.1.2 2 45.38 even 12
4050.2.a.bw.1.2 2 45.43 odd 12
4050.2.c.v.649.1 4 45.34 even 6
4050.2.c.v.649.4 4 9.7 even 3
4050.2.c.ba.649.2 4 9.2 odd 6
4050.2.c.ba.649.3 4 45.29 odd 6
6480.2.a.be.1.2 2 180.7 even 12
6480.2.a.bn.1.2 2 180.47 odd 12