Properties

Label 4056.2.a.bd
Level $4056$
Weight $2$
Character orbit 4056.a
Self dual yes
Analytic conductor $32.387$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4056,2,Mod(1,4056)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4056, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4056.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4056 = 2^{3} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4056.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.3873230598\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.25488.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 9x^{2} - 6x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 312)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} + ( - \beta_{2} + \beta_1 - 1) q^{5} + ( - \beta_{3} + \beta_{2} - \beta_1 - 1) q^{7} + q^{9} + (\beta_{3} - \beta_{2} - 2) q^{11} + ( - \beta_{2} + \beta_1 - 1) q^{15} + (\beta_{2} + \beta_1 + 3) q^{17}+ \cdots + (\beta_{3} - \beta_{2} - 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 4 q^{5} - 2 q^{7} + 4 q^{9} - 10 q^{11} - 4 q^{15} + 12 q^{17} - 2 q^{19} - 2 q^{21} - 2 q^{23} + 2 q^{25} + 4 q^{27} - 6 q^{29} - 20 q^{31} - 10 q^{33} - 10 q^{35} - 10 q^{37} - 6 q^{41}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 9x^{2} - 6x + 6 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - \nu^{2} - 6\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - \nu - 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta _1 + 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 2\beta_{2} + 7\beta _1 + 5 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.47535
−2.28657
3.20740
0.554520
0 1.00000 0 −4.20740 0 3.55539 0 1.00000 0
1.2 0 1.00000 0 −1.55452 0 −2.96046 0 1.00000 0
1.3 0 1.00000 0 0.475353 0 −4.55539 0 1.00000 0
1.4 0 1.00000 0 1.28657 0 1.96046 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4056.2.a.bd 4
4.b odd 2 1 8112.2.a.cq 4
13.b even 2 1 4056.2.a.be 4
13.d odd 4 2 4056.2.c.p 8
13.f odd 12 2 312.2.bf.b 8
39.k even 12 2 936.2.bi.c 8
52.b odd 2 1 8112.2.a.cs 4
52.l even 12 2 624.2.bv.g 8
156.v odd 12 2 1872.2.by.m 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
312.2.bf.b 8 13.f odd 12 2
624.2.bv.g 8 52.l even 12 2
936.2.bi.c 8 39.k even 12 2
1872.2.by.m 8 156.v odd 12 2
4056.2.a.bd 4 1.a even 1 1 trivial
4056.2.a.be 4 13.b even 2 1
4056.2.c.p 8 13.d odd 4 2
8112.2.a.cq 4 4.b odd 2 1
8112.2.a.cs 4 52.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4056))\):

\( T_{5}^{4} + 4T_{5}^{3} - 3T_{5}^{2} - 8T_{5} + 4 \) Copy content Toggle raw display
\( T_{7}^{4} + 2T_{7}^{3} - 21T_{7}^{2} - 22T_{7} + 94 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T - 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 4 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$7$ \( T^{4} + 2 T^{3} + \cdots + 94 \) Copy content Toggle raw display
$11$ \( T^{4} + 10 T^{3} + \cdots - 104 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} - 12 T^{3} + \cdots - 48 \) Copy content Toggle raw display
$19$ \( T^{4} + 2 T^{3} + \cdots + 376 \) Copy content Toggle raw display
$23$ \( T^{4} + 2 T^{3} + \cdots - 8 \) Copy content Toggle raw display
$29$ \( T^{4} + 6 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$31$ \( T^{4} + 20 T^{3} + \cdots + 376 \) Copy content Toggle raw display
$37$ \( T^{4} + 10 T^{3} + \cdots - 128 \) Copy content Toggle raw display
$41$ \( T^{4} + 6 T^{3} + \cdots - 1776 \) Copy content Toggle raw display
$43$ \( T^{4} + 8 T^{3} + \cdots + 694 \) Copy content Toggle raw display
$47$ \( T^{4} + 14 T^{3} + \cdots - 1448 \) Copy content Toggle raw display
$53$ \( T^{4} - 2 T^{3} + \cdots + 208 \) Copy content Toggle raw display
$59$ \( T^{4} + 8 T^{3} + \cdots - 512 \) Copy content Toggle raw display
$61$ \( T^{4} + 2 T^{3} + \cdots + 6481 \) Copy content Toggle raw display
$67$ \( T^{4} - 10 T^{3} + \cdots + 214 \) Copy content Toggle raw display
$71$ \( T^{4} - 6 T^{3} + \cdots - 1128 \) Copy content Toggle raw display
$73$ \( T^{4} + 8 T^{3} + \cdots - 431 \) Copy content Toggle raw display
$79$ \( T^{4} + 6 T^{3} + \cdots + 216 \) Copy content Toggle raw display
$83$ \( T^{4} + 30 T^{3} + \cdots + 1248 \) Copy content Toggle raw display
$89$ \( T^{4} + 36 T^{3} + \cdots - 768 \) Copy content Toggle raw display
$97$ \( T^{4} - 12 T^{3} + \cdots + 5748 \) Copy content Toggle raw display
show more
show less