Properties

Label 4056.2.a.bg.1.1
Level $4056$
Weight $2$
Character 4056.1
Self dual yes
Analytic conductor $32.387$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4056,2,Mod(1,4056)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4056, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4056.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4056 = 2^{3} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4056.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.3873230598\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.27700337.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 19x^{4} + 17x^{3} + 103x^{2} - 71x - 127 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.920510\) of defining polynomial
Character \(\chi\) \(=\) 4056.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} -3.90568 q^{5} +0.0794899 q^{7} +1.00000 q^{9} -1.50475 q^{11} +3.90568 q^{15} -6.52695 q^{17} +0.786340 q^{19} -0.0794899 q^{21} -7.03409 q^{23} +10.2543 q^{25} -1.00000 q^{27} +6.15266 q^{29} -1.43887 q^{31} +1.50475 q^{33} -0.310462 q^{35} -9.23571 q^{37} -7.75379 q^{41} +1.06562 q^{43} -3.90568 q^{45} -12.7564 q^{47} -6.99368 q^{49} +6.52695 q^{51} +2.73092 q^{53} +5.87709 q^{55} -0.786340 q^{57} -10.3775 q^{59} +7.92745 q^{61} +0.0794899 q^{63} +7.80912 q^{67} +7.03409 q^{69} +15.1722 q^{71} -4.16507 q^{73} -10.2543 q^{75} -0.119613 q^{77} +3.83731 q^{79} +1.00000 q^{81} -9.04179 q^{83} +25.4922 q^{85} -6.15266 q^{87} +4.75082 q^{89} +1.43887 q^{93} -3.07119 q^{95} -6.94297 q^{97} -1.50475 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{3} + q^{5} + 7 q^{7} + 6 q^{9} + 8 q^{11} - q^{15} - 5 q^{17} + 19 q^{19} - 7 q^{21} - 6 q^{23} + 17 q^{25} - 6 q^{27} + 3 q^{29} + 9 q^{31} - 8 q^{33} + 4 q^{35} + 6 q^{37} - 15 q^{41} + 11 q^{43}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) −3.90568 −1.74667 −0.873337 0.487117i \(-0.838049\pi\)
−0.873337 + 0.487117i \(0.838049\pi\)
\(6\) 0 0
\(7\) 0.0794899 0.0300444 0.0150222 0.999887i \(-0.495218\pi\)
0.0150222 + 0.999887i \(0.495218\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −1.50475 −0.453700 −0.226850 0.973930i \(-0.572843\pi\)
−0.226850 + 0.973930i \(0.572843\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 3.90568 1.00844
\(16\) 0 0
\(17\) −6.52695 −1.58302 −0.791509 0.611158i \(-0.790704\pi\)
−0.791509 + 0.611158i \(0.790704\pi\)
\(18\) 0 0
\(19\) 0.786340 0.180399 0.0901994 0.995924i \(-0.471250\pi\)
0.0901994 + 0.995924i \(0.471250\pi\)
\(20\) 0 0
\(21\) −0.0794899 −0.0173461
\(22\) 0 0
\(23\) −7.03409 −1.46671 −0.733354 0.679846i \(-0.762046\pi\)
−0.733354 + 0.679846i \(0.762046\pi\)
\(24\) 0 0
\(25\) 10.2543 2.05087
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 6.15266 1.14252 0.571260 0.820769i \(-0.306455\pi\)
0.571260 + 0.820769i \(0.306455\pi\)
\(30\) 0 0
\(31\) −1.43887 −0.258429 −0.129214 0.991617i \(-0.541246\pi\)
−0.129214 + 0.991617i \(0.541246\pi\)
\(32\) 0 0
\(33\) 1.50475 0.261944
\(34\) 0 0
\(35\) −0.310462 −0.0524777
\(36\) 0 0
\(37\) −9.23571 −1.51834 −0.759171 0.650891i \(-0.774395\pi\)
−0.759171 + 0.650891i \(0.774395\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −7.75379 −1.21094 −0.605469 0.795869i \(-0.707015\pi\)
−0.605469 + 0.795869i \(0.707015\pi\)
\(42\) 0 0
\(43\) 1.06562 0.162506 0.0812528 0.996694i \(-0.474108\pi\)
0.0812528 + 0.996694i \(0.474108\pi\)
\(44\) 0 0
\(45\) −3.90568 −0.582225
\(46\) 0 0
\(47\) −12.7564 −1.86071 −0.930355 0.366659i \(-0.880502\pi\)
−0.930355 + 0.366659i \(0.880502\pi\)
\(48\) 0 0
\(49\) −6.99368 −0.999097
\(50\) 0 0
\(51\) 6.52695 0.913956
\(52\) 0 0
\(53\) 2.73092 0.375121 0.187560 0.982253i \(-0.439942\pi\)
0.187560 + 0.982253i \(0.439942\pi\)
\(54\) 0 0
\(55\) 5.87709 0.792466
\(56\) 0 0
\(57\) −0.786340 −0.104153
\(58\) 0 0
\(59\) −10.3775 −1.35104 −0.675520 0.737341i \(-0.736081\pi\)
−0.675520 + 0.737341i \(0.736081\pi\)
\(60\) 0 0
\(61\) 7.92745 1.01501 0.507503 0.861650i \(-0.330569\pi\)
0.507503 + 0.861650i \(0.330569\pi\)
\(62\) 0 0
\(63\) 0.0794899 0.0100148
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 7.80912 0.954036 0.477018 0.878893i \(-0.341718\pi\)
0.477018 + 0.878893i \(0.341718\pi\)
\(68\) 0 0
\(69\) 7.03409 0.846805
\(70\) 0 0
\(71\) 15.1722 1.80061 0.900306 0.435257i \(-0.143343\pi\)
0.900306 + 0.435257i \(0.143343\pi\)
\(72\) 0 0
\(73\) −4.16507 −0.487485 −0.243742 0.969840i \(-0.578375\pi\)
−0.243742 + 0.969840i \(0.578375\pi\)
\(74\) 0 0
\(75\) −10.2543 −1.18407
\(76\) 0 0
\(77\) −0.119613 −0.0136311
\(78\) 0 0
\(79\) 3.83731 0.431732 0.215866 0.976423i \(-0.430743\pi\)
0.215866 + 0.976423i \(0.430743\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −9.04179 −0.992465 −0.496232 0.868190i \(-0.665284\pi\)
−0.496232 + 0.868190i \(0.665284\pi\)
\(84\) 0 0
\(85\) 25.4922 2.76502
\(86\) 0 0
\(87\) −6.15266 −0.659635
\(88\) 0 0
\(89\) 4.75082 0.503586 0.251793 0.967781i \(-0.418980\pi\)
0.251793 + 0.967781i \(0.418980\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1.43887 0.149204
\(94\) 0 0
\(95\) −3.07119 −0.315098
\(96\) 0 0
\(97\) −6.94297 −0.704952 −0.352476 0.935821i \(-0.614660\pi\)
−0.352476 + 0.935821i \(0.614660\pi\)
\(98\) 0 0
\(99\) −1.50475 −0.151233
\(100\) 0 0
\(101\) 16.9785 1.68943 0.844713 0.535219i \(-0.179771\pi\)
0.844713 + 0.535219i \(0.179771\pi\)
\(102\) 0 0
\(103\) −0.534038 −0.0526203 −0.0263102 0.999654i \(-0.508376\pi\)
−0.0263102 + 0.999654i \(0.508376\pi\)
\(104\) 0 0
\(105\) 0.310462 0.0302980
\(106\) 0 0
\(107\) 10.9729 1.06079 0.530396 0.847750i \(-0.322043\pi\)
0.530396 + 0.847750i \(0.322043\pi\)
\(108\) 0 0
\(109\) −8.24364 −0.789597 −0.394799 0.918768i \(-0.629186\pi\)
−0.394799 + 0.918768i \(0.629186\pi\)
\(110\) 0 0
\(111\) 9.23571 0.876615
\(112\) 0 0
\(113\) 1.35771 0.127723 0.0638613 0.997959i \(-0.479658\pi\)
0.0638613 + 0.997959i \(0.479658\pi\)
\(114\) 0 0
\(115\) 27.4729 2.56186
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.518827 −0.0475607
\(120\) 0 0
\(121\) −8.73572 −0.794156
\(122\) 0 0
\(123\) 7.75379 0.699136
\(124\) 0 0
\(125\) −20.5218 −1.83553
\(126\) 0 0
\(127\) −11.0111 −0.977081 −0.488541 0.872541i \(-0.662471\pi\)
−0.488541 + 0.872541i \(0.662471\pi\)
\(128\) 0 0
\(129\) −1.06562 −0.0938226
\(130\) 0 0
\(131\) −19.8552 −1.73476 −0.867378 0.497650i \(-0.834196\pi\)
−0.867378 + 0.497650i \(0.834196\pi\)
\(132\) 0 0
\(133\) 0.0625061 0.00541996
\(134\) 0 0
\(135\) 3.90568 0.336148
\(136\) 0 0
\(137\) −4.80881 −0.410844 −0.205422 0.978673i \(-0.565857\pi\)
−0.205422 + 0.978673i \(0.565857\pi\)
\(138\) 0 0
\(139\) 20.7637 1.76115 0.880575 0.473906i \(-0.157156\pi\)
0.880575 + 0.473906i \(0.157156\pi\)
\(140\) 0 0
\(141\) 12.7564 1.07428
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −24.0303 −1.99561
\(146\) 0 0
\(147\) 6.99368 0.576829
\(148\) 0 0
\(149\) −4.10785 −0.336528 −0.168264 0.985742i \(-0.553816\pi\)
−0.168264 + 0.985742i \(0.553816\pi\)
\(150\) 0 0
\(151\) 12.6178 1.02683 0.513413 0.858142i \(-0.328381\pi\)
0.513413 + 0.858142i \(0.328381\pi\)
\(152\) 0 0
\(153\) −6.52695 −0.527673
\(154\) 0 0
\(155\) 5.61977 0.451390
\(156\) 0 0
\(157\) −10.1958 −0.813711 −0.406855 0.913493i \(-0.633375\pi\)
−0.406855 + 0.913493i \(0.633375\pi\)
\(158\) 0 0
\(159\) −2.73092 −0.216576
\(160\) 0 0
\(161\) −0.559139 −0.0440663
\(162\) 0 0
\(163\) 15.8095 1.23829 0.619147 0.785275i \(-0.287478\pi\)
0.619147 + 0.785275i \(0.287478\pi\)
\(164\) 0 0
\(165\) −5.87709 −0.457531
\(166\) 0 0
\(167\) 24.8487 1.92285 0.961425 0.275066i \(-0.0886997\pi\)
0.961425 + 0.275066i \(0.0886997\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 0.786340 0.0601329
\(172\) 0 0
\(173\) 12.6367 0.960752 0.480376 0.877063i \(-0.340500\pi\)
0.480376 + 0.877063i \(0.340500\pi\)
\(174\) 0 0
\(175\) 0.815117 0.0616170
\(176\) 0 0
\(177\) 10.3775 0.780024
\(178\) 0 0
\(179\) 2.34535 0.175299 0.0876497 0.996151i \(-0.472064\pi\)
0.0876497 + 0.996151i \(0.472064\pi\)
\(180\) 0 0
\(181\) 10.8755 0.808370 0.404185 0.914677i \(-0.367555\pi\)
0.404185 + 0.914677i \(0.367555\pi\)
\(182\) 0 0
\(183\) −7.92745 −0.586014
\(184\) 0 0
\(185\) 36.0717 2.65205
\(186\) 0 0
\(187\) 9.82145 0.718216
\(188\) 0 0
\(189\) −0.0794899 −0.00578204
\(190\) 0 0
\(191\) 25.0561 1.81300 0.906499 0.422207i \(-0.138745\pi\)
0.906499 + 0.422207i \(0.138745\pi\)
\(192\) 0 0
\(193\) −2.03469 −0.146460 −0.0732300 0.997315i \(-0.523331\pi\)
−0.0732300 + 0.997315i \(0.523331\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.93816 0.209336 0.104668 0.994507i \(-0.466622\pi\)
0.104668 + 0.994507i \(0.466622\pi\)
\(198\) 0 0
\(199\) 21.3170 1.51112 0.755561 0.655078i \(-0.227364\pi\)
0.755561 + 0.655078i \(0.227364\pi\)
\(200\) 0 0
\(201\) −7.80912 −0.550813
\(202\) 0 0
\(203\) 0.489074 0.0343263
\(204\) 0 0
\(205\) 30.2838 2.11511
\(206\) 0 0
\(207\) −7.03409 −0.488903
\(208\) 0 0
\(209\) −1.18325 −0.0818469
\(210\) 0 0
\(211\) 9.26059 0.637525 0.318763 0.947835i \(-0.396733\pi\)
0.318763 + 0.947835i \(0.396733\pi\)
\(212\) 0 0
\(213\) −15.1722 −1.03958
\(214\) 0 0
\(215\) −4.16197 −0.283844
\(216\) 0 0
\(217\) −0.114376 −0.00776432
\(218\) 0 0
\(219\) 4.16507 0.281449
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −19.1700 −1.28372 −0.641861 0.766821i \(-0.721837\pi\)
−0.641861 + 0.766821i \(0.721837\pi\)
\(224\) 0 0
\(225\) 10.2543 0.683623
\(226\) 0 0
\(227\) 20.6095 1.36790 0.683951 0.729528i \(-0.260260\pi\)
0.683951 + 0.729528i \(0.260260\pi\)
\(228\) 0 0
\(229\) −11.2937 −0.746309 −0.373154 0.927769i \(-0.621724\pi\)
−0.373154 + 0.927769i \(0.621724\pi\)
\(230\) 0 0
\(231\) 0.119613 0.00786993
\(232\) 0 0
\(233\) −13.2668 −0.869137 −0.434569 0.900639i \(-0.643099\pi\)
−0.434569 + 0.900639i \(0.643099\pi\)
\(234\) 0 0
\(235\) 49.8224 3.25005
\(236\) 0 0
\(237\) −3.83731 −0.249260
\(238\) 0 0
\(239\) −0.412559 −0.0266862 −0.0133431 0.999911i \(-0.504247\pi\)
−0.0133431 + 0.999911i \(0.504247\pi\)
\(240\) 0 0
\(241\) 20.8992 1.34624 0.673118 0.739535i \(-0.264955\pi\)
0.673118 + 0.739535i \(0.264955\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 27.3151 1.74510
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 9.04179 0.573000
\(250\) 0 0
\(251\) 5.10303 0.322100 0.161050 0.986946i \(-0.448512\pi\)
0.161050 + 0.986946i \(0.448512\pi\)
\(252\) 0 0
\(253\) 10.5846 0.665446
\(254\) 0 0
\(255\) −25.4922 −1.59638
\(256\) 0 0
\(257\) −26.7241 −1.66700 −0.833501 0.552518i \(-0.813667\pi\)
−0.833501 + 0.552518i \(0.813667\pi\)
\(258\) 0 0
\(259\) −0.734146 −0.0456176
\(260\) 0 0
\(261\) 6.15266 0.380840
\(262\) 0 0
\(263\) −9.89772 −0.610319 −0.305160 0.952301i \(-0.598710\pi\)
−0.305160 + 0.952301i \(0.598710\pi\)
\(264\) 0 0
\(265\) −10.6661 −0.655214
\(266\) 0 0
\(267\) −4.75082 −0.290745
\(268\) 0 0
\(269\) −18.9609 −1.15607 −0.578035 0.816012i \(-0.696180\pi\)
−0.578035 + 0.816012i \(0.696180\pi\)
\(270\) 0 0
\(271\) −23.7343 −1.44176 −0.720878 0.693062i \(-0.756261\pi\)
−0.720878 + 0.693062i \(0.756261\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −15.4303 −0.930480
\(276\) 0 0
\(277\) 16.1577 0.970822 0.485411 0.874286i \(-0.338670\pi\)
0.485411 + 0.874286i \(0.338670\pi\)
\(278\) 0 0
\(279\) −1.43887 −0.0861429
\(280\) 0 0
\(281\) −4.20881 −0.251077 −0.125538 0.992089i \(-0.540066\pi\)
−0.125538 + 0.992089i \(0.540066\pi\)
\(282\) 0 0
\(283\) 3.57052 0.212245 0.106123 0.994353i \(-0.466156\pi\)
0.106123 + 0.994353i \(0.466156\pi\)
\(284\) 0 0
\(285\) 3.07119 0.181922
\(286\) 0 0
\(287\) −0.616348 −0.0363819
\(288\) 0 0
\(289\) 25.6011 1.50595
\(290\) 0 0
\(291\) 6.94297 0.407004
\(292\) 0 0
\(293\) 15.0734 0.880599 0.440300 0.897851i \(-0.354872\pi\)
0.440300 + 0.897851i \(0.354872\pi\)
\(294\) 0 0
\(295\) 40.5314 2.35983
\(296\) 0 0
\(297\) 1.50475 0.0873146
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0.0847060 0.00488238
\(302\) 0 0
\(303\) −16.9785 −0.975391
\(304\) 0 0
\(305\) −30.9621 −1.77288
\(306\) 0 0
\(307\) 22.3150 1.27359 0.636793 0.771035i \(-0.280261\pi\)
0.636793 + 0.771035i \(0.280261\pi\)
\(308\) 0 0
\(309\) 0.534038 0.0303804
\(310\) 0 0
\(311\) 2.15132 0.121990 0.0609951 0.998138i \(-0.480573\pi\)
0.0609951 + 0.998138i \(0.480573\pi\)
\(312\) 0 0
\(313\) −26.0404 −1.47189 −0.735945 0.677042i \(-0.763262\pi\)
−0.735945 + 0.677042i \(0.763262\pi\)
\(314\) 0 0
\(315\) −0.310462 −0.0174926
\(316\) 0 0
\(317\) −13.3249 −0.748403 −0.374201 0.927347i \(-0.622083\pi\)
−0.374201 + 0.927347i \(0.622083\pi\)
\(318\) 0 0
\(319\) −9.25824 −0.518362
\(320\) 0 0
\(321\) −10.9729 −0.612448
\(322\) 0 0
\(323\) −5.13240 −0.285574
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 8.24364 0.455874
\(328\) 0 0
\(329\) −1.01400 −0.0559038
\(330\) 0 0
\(331\) −9.11986 −0.501273 −0.250637 0.968081i \(-0.580640\pi\)
−0.250637 + 0.968081i \(0.580640\pi\)
\(332\) 0 0
\(333\) −9.23571 −0.506114
\(334\) 0 0
\(335\) −30.5000 −1.66639
\(336\) 0 0
\(337\) 11.8690 0.646546 0.323273 0.946306i \(-0.395217\pi\)
0.323273 + 0.946306i \(0.395217\pi\)
\(338\) 0 0
\(339\) −1.35771 −0.0737406
\(340\) 0 0
\(341\) 2.16514 0.117249
\(342\) 0 0
\(343\) −1.11236 −0.0600616
\(344\) 0 0
\(345\) −27.4729 −1.47909
\(346\) 0 0
\(347\) −1.20818 −0.0648584 −0.0324292 0.999474i \(-0.510324\pi\)
−0.0324292 + 0.999474i \(0.510324\pi\)
\(348\) 0 0
\(349\) 5.45450 0.291973 0.145986 0.989287i \(-0.453364\pi\)
0.145986 + 0.989287i \(0.453364\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 35.5083 1.88991 0.944957 0.327195i \(-0.106103\pi\)
0.944957 + 0.327195i \(0.106103\pi\)
\(354\) 0 0
\(355\) −59.2579 −3.14508
\(356\) 0 0
\(357\) 0.518827 0.0274592
\(358\) 0 0
\(359\) 18.4695 0.974782 0.487391 0.873184i \(-0.337949\pi\)
0.487391 + 0.873184i \(0.337949\pi\)
\(360\) 0 0
\(361\) −18.3817 −0.967456
\(362\) 0 0
\(363\) 8.73572 0.458506
\(364\) 0 0
\(365\) 16.2674 0.851477
\(366\) 0 0
\(367\) 18.7044 0.976362 0.488181 0.872742i \(-0.337661\pi\)
0.488181 + 0.872742i \(0.337661\pi\)
\(368\) 0 0
\(369\) −7.75379 −0.403646
\(370\) 0 0
\(371\) 0.217081 0.0112703
\(372\) 0 0
\(373\) 12.3213 0.637973 0.318987 0.947759i \(-0.396657\pi\)
0.318987 + 0.947759i \(0.396657\pi\)
\(374\) 0 0
\(375\) 20.5218 1.05974
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 14.9123 0.765991 0.382996 0.923750i \(-0.374892\pi\)
0.382996 + 0.923750i \(0.374892\pi\)
\(380\) 0 0
\(381\) 11.0111 0.564118
\(382\) 0 0
\(383\) −5.27199 −0.269386 −0.134693 0.990887i \(-0.543005\pi\)
−0.134693 + 0.990887i \(0.543005\pi\)
\(384\) 0 0
\(385\) 0.467169 0.0238091
\(386\) 0 0
\(387\) 1.06562 0.0541685
\(388\) 0 0
\(389\) −2.66665 −0.135205 −0.0676023 0.997712i \(-0.521535\pi\)
−0.0676023 + 0.997712i \(0.521535\pi\)
\(390\) 0 0
\(391\) 45.9111 2.32183
\(392\) 0 0
\(393\) 19.8552 1.00156
\(394\) 0 0
\(395\) −14.9873 −0.754094
\(396\) 0 0
\(397\) −12.7244 −0.638618 −0.319309 0.947651i \(-0.603451\pi\)
−0.319309 + 0.947651i \(0.603451\pi\)
\(398\) 0 0
\(399\) −0.0625061 −0.00312922
\(400\) 0 0
\(401\) −23.5633 −1.17670 −0.588348 0.808608i \(-0.700222\pi\)
−0.588348 + 0.808608i \(0.700222\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −3.90568 −0.194075
\(406\) 0 0
\(407\) 13.8975 0.688872
\(408\) 0 0
\(409\) −29.2475 −1.44620 −0.723098 0.690745i \(-0.757283\pi\)
−0.723098 + 0.690745i \(0.757283\pi\)
\(410\) 0 0
\(411\) 4.80881 0.237201
\(412\) 0 0
\(413\) −0.824910 −0.0405911
\(414\) 0 0
\(415\) 35.3143 1.73351
\(416\) 0 0
\(417\) −20.7637 −1.01680
\(418\) 0 0
\(419\) −23.3488 −1.14066 −0.570331 0.821415i \(-0.693185\pi\)
−0.570331 + 0.821415i \(0.693185\pi\)
\(420\) 0 0
\(421\) −6.92772 −0.337636 −0.168818 0.985647i \(-0.553995\pi\)
−0.168818 + 0.985647i \(0.553995\pi\)
\(422\) 0 0
\(423\) −12.7564 −0.620237
\(424\) 0 0
\(425\) −66.9296 −3.24656
\(426\) 0 0
\(427\) 0.630152 0.0304952
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 20.3178 0.978675 0.489337 0.872095i \(-0.337239\pi\)
0.489337 + 0.872095i \(0.337239\pi\)
\(432\) 0 0
\(433\) −35.6153 −1.71156 −0.855780 0.517340i \(-0.826922\pi\)
−0.855780 + 0.517340i \(0.826922\pi\)
\(434\) 0 0
\(435\) 24.0303 1.15217
\(436\) 0 0
\(437\) −5.53118 −0.264592
\(438\) 0 0
\(439\) 28.4092 1.35590 0.677948 0.735110i \(-0.262869\pi\)
0.677948 + 0.735110i \(0.262869\pi\)
\(440\) 0 0
\(441\) −6.99368 −0.333032
\(442\) 0 0
\(443\) 24.8982 1.18295 0.591474 0.806324i \(-0.298546\pi\)
0.591474 + 0.806324i \(0.298546\pi\)
\(444\) 0 0
\(445\) −18.5552 −0.879600
\(446\) 0 0
\(447\) 4.10785 0.194295
\(448\) 0 0
\(449\) −7.33361 −0.346094 −0.173047 0.984914i \(-0.555361\pi\)
−0.173047 + 0.984914i \(0.555361\pi\)
\(450\) 0 0
\(451\) 11.6675 0.549403
\(452\) 0 0
\(453\) −12.6178 −0.592838
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −15.8511 −0.741481 −0.370741 0.928736i \(-0.620896\pi\)
−0.370741 + 0.928736i \(0.620896\pi\)
\(458\) 0 0
\(459\) 6.52695 0.304652
\(460\) 0 0
\(461\) 10.5739 0.492474 0.246237 0.969210i \(-0.420806\pi\)
0.246237 + 0.969210i \(0.420806\pi\)
\(462\) 0 0
\(463\) −5.34050 −0.248194 −0.124097 0.992270i \(-0.539603\pi\)
−0.124097 + 0.992270i \(0.539603\pi\)
\(464\) 0 0
\(465\) −5.61977 −0.260610
\(466\) 0 0
\(467\) 25.7751 1.19273 0.596364 0.802714i \(-0.296611\pi\)
0.596364 + 0.802714i \(0.296611\pi\)
\(468\) 0 0
\(469\) 0.620746 0.0286634
\(470\) 0 0
\(471\) 10.1958 0.469796
\(472\) 0 0
\(473\) −1.60350 −0.0737288
\(474\) 0 0
\(475\) 8.06340 0.369974
\(476\) 0 0
\(477\) 2.73092 0.125040
\(478\) 0 0
\(479\) −17.2136 −0.786511 −0.393255 0.919429i \(-0.628651\pi\)
−0.393255 + 0.919429i \(0.628651\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0.559139 0.0254417
\(484\) 0 0
\(485\) 27.1170 1.23132
\(486\) 0 0
\(487\) 17.0725 0.773628 0.386814 0.922158i \(-0.373575\pi\)
0.386814 + 0.922158i \(0.373575\pi\)
\(488\) 0 0
\(489\) −15.8095 −0.714930
\(490\) 0 0
\(491\) −24.7127 −1.11527 −0.557634 0.830087i \(-0.688291\pi\)
−0.557634 + 0.830087i \(0.688291\pi\)
\(492\) 0 0
\(493\) −40.1581 −1.80863
\(494\) 0 0
\(495\) 5.87709 0.264155
\(496\) 0 0
\(497\) 1.20604 0.0540982
\(498\) 0 0
\(499\) −0.887509 −0.0397303 −0.0198652 0.999803i \(-0.506324\pi\)
−0.0198652 + 0.999803i \(0.506324\pi\)
\(500\) 0 0
\(501\) −24.8487 −1.11016
\(502\) 0 0
\(503\) 7.24671 0.323115 0.161557 0.986863i \(-0.448348\pi\)
0.161557 + 0.986863i \(0.448348\pi\)
\(504\) 0 0
\(505\) −66.3127 −2.95088
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 35.6937 1.58210 0.791048 0.611754i \(-0.209536\pi\)
0.791048 + 0.611754i \(0.209536\pi\)
\(510\) 0 0
\(511\) −0.331081 −0.0146462
\(512\) 0 0
\(513\) −0.786340 −0.0347178
\(514\) 0 0
\(515\) 2.08578 0.0919106
\(516\) 0 0
\(517\) 19.1952 0.844205
\(518\) 0 0
\(519\) −12.6367 −0.554690
\(520\) 0 0
\(521\) −3.56585 −0.156223 −0.0781113 0.996945i \(-0.524889\pi\)
−0.0781113 + 0.996945i \(0.524889\pi\)
\(522\) 0 0
\(523\) −8.08344 −0.353464 −0.176732 0.984259i \(-0.556553\pi\)
−0.176732 + 0.984259i \(0.556553\pi\)
\(524\) 0 0
\(525\) −0.815117 −0.0355746
\(526\) 0 0
\(527\) 9.39143 0.409097
\(528\) 0 0
\(529\) 26.4784 1.15123
\(530\) 0 0
\(531\) −10.3775 −0.450347
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −42.8567 −1.85286
\(536\) 0 0
\(537\) −2.34535 −0.101209
\(538\) 0 0
\(539\) 10.5238 0.453291
\(540\) 0 0
\(541\) 14.2925 0.614483 0.307241 0.951632i \(-0.400594\pi\)
0.307241 + 0.951632i \(0.400594\pi\)
\(542\) 0 0
\(543\) −10.8755 −0.466712
\(544\) 0 0
\(545\) 32.1970 1.37917
\(546\) 0 0
\(547\) −25.0004 −1.06894 −0.534471 0.845187i \(-0.679489\pi\)
−0.534471 + 0.845187i \(0.679489\pi\)
\(548\) 0 0
\(549\) 7.92745 0.338335
\(550\) 0 0
\(551\) 4.83808 0.206109
\(552\) 0 0
\(553\) 0.305028 0.0129711
\(554\) 0 0
\(555\) −36.0717 −1.53116
\(556\) 0 0
\(557\) 2.39071 0.101298 0.0506488 0.998717i \(-0.483871\pi\)
0.0506488 + 0.998717i \(0.483871\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −9.82145 −0.414662
\(562\) 0 0
\(563\) 37.8778 1.59636 0.798178 0.602421i \(-0.205797\pi\)
0.798178 + 0.602421i \(0.205797\pi\)
\(564\) 0 0
\(565\) −5.30278 −0.223090
\(566\) 0 0
\(567\) 0.0794899 0.00333826
\(568\) 0 0
\(569\) −6.58037 −0.275863 −0.137932 0.990442i \(-0.544045\pi\)
−0.137932 + 0.990442i \(0.544045\pi\)
\(570\) 0 0
\(571\) −21.5937 −0.903670 −0.451835 0.892102i \(-0.649230\pi\)
−0.451835 + 0.892102i \(0.649230\pi\)
\(572\) 0 0
\(573\) −25.0561 −1.04674
\(574\) 0 0
\(575\) −72.1300 −3.00803
\(576\) 0 0
\(577\) −20.0143 −0.833208 −0.416604 0.909088i \(-0.636780\pi\)
−0.416604 + 0.909088i \(0.636780\pi\)
\(578\) 0 0
\(579\) 2.03469 0.0845588
\(580\) 0 0
\(581\) −0.718730 −0.0298180
\(582\) 0 0
\(583\) −4.10936 −0.170192
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −15.9326 −0.657610 −0.328805 0.944398i \(-0.606646\pi\)
−0.328805 + 0.944398i \(0.606646\pi\)
\(588\) 0 0
\(589\) −1.13144 −0.0466202
\(590\) 0 0
\(591\) −2.93816 −0.120860
\(592\) 0 0
\(593\) 12.7746 0.524592 0.262296 0.964987i \(-0.415520\pi\)
0.262296 + 0.964987i \(0.415520\pi\)
\(594\) 0 0
\(595\) 2.02637 0.0830731
\(596\) 0 0
\(597\) −21.3170 −0.872446
\(598\) 0 0
\(599\) −20.4940 −0.837362 −0.418681 0.908133i \(-0.637507\pi\)
−0.418681 + 0.908133i \(0.637507\pi\)
\(600\) 0 0
\(601\) −3.59245 −0.146539 −0.0732695 0.997312i \(-0.523343\pi\)
−0.0732695 + 0.997312i \(0.523343\pi\)
\(602\) 0 0
\(603\) 7.80912 0.318012
\(604\) 0 0
\(605\) 34.1189 1.38713
\(606\) 0 0
\(607\) −13.0627 −0.530197 −0.265099 0.964221i \(-0.585404\pi\)
−0.265099 + 0.964221i \(0.585404\pi\)
\(608\) 0 0
\(609\) −0.489074 −0.0198183
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −8.56139 −0.345791 −0.172896 0.984940i \(-0.555312\pi\)
−0.172896 + 0.984940i \(0.555312\pi\)
\(614\) 0 0
\(615\) −30.2838 −1.22116
\(616\) 0 0
\(617\) −9.50428 −0.382628 −0.191314 0.981529i \(-0.561275\pi\)
−0.191314 + 0.981529i \(0.561275\pi\)
\(618\) 0 0
\(619\) −0.765606 −0.0307723 −0.0153861 0.999882i \(-0.504898\pi\)
−0.0153861 + 0.999882i \(0.504898\pi\)
\(620\) 0 0
\(621\) 7.03409 0.282268
\(622\) 0 0
\(623\) 0.377642 0.0151299
\(624\) 0 0
\(625\) 28.8799 1.15520
\(626\) 0 0
\(627\) 1.18325 0.0472544
\(628\) 0 0
\(629\) 60.2810 2.40356
\(630\) 0 0
\(631\) −15.2955 −0.608902 −0.304451 0.952528i \(-0.598473\pi\)
−0.304451 + 0.952528i \(0.598473\pi\)
\(632\) 0 0
\(633\) −9.26059 −0.368075
\(634\) 0 0
\(635\) 43.0060 1.70664
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 15.1722 0.600204
\(640\) 0 0
\(641\) −16.7020 −0.659690 −0.329845 0.944035i \(-0.606997\pi\)
−0.329845 + 0.944035i \(0.606997\pi\)
\(642\) 0 0
\(643\) 12.3219 0.485927 0.242963 0.970035i \(-0.421881\pi\)
0.242963 + 0.970035i \(0.421881\pi\)
\(644\) 0 0
\(645\) 4.16197 0.163878
\(646\) 0 0
\(647\) −6.92612 −0.272294 −0.136147 0.990689i \(-0.543472\pi\)
−0.136147 + 0.990689i \(0.543472\pi\)
\(648\) 0 0
\(649\) 15.6156 0.612967
\(650\) 0 0
\(651\) 0.114376 0.00448273
\(652\) 0 0
\(653\) −6.42407 −0.251393 −0.125697 0.992069i \(-0.540117\pi\)
−0.125697 + 0.992069i \(0.540117\pi\)
\(654\) 0 0
\(655\) 77.5480 3.03005
\(656\) 0 0
\(657\) −4.16507 −0.162495
\(658\) 0 0
\(659\) 14.0188 0.546096 0.273048 0.962000i \(-0.411968\pi\)
0.273048 + 0.962000i \(0.411968\pi\)
\(660\) 0 0
\(661\) −17.4663 −0.679359 −0.339680 0.940541i \(-0.610319\pi\)
−0.339680 + 0.940541i \(0.610319\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.244129 −0.00946691
\(666\) 0 0
\(667\) −43.2784 −1.67574
\(668\) 0 0
\(669\) 19.1700 0.741157
\(670\) 0 0
\(671\) −11.9289 −0.460508
\(672\) 0 0
\(673\) 32.6688 1.25929 0.629644 0.776883i \(-0.283201\pi\)
0.629644 + 0.776883i \(0.283201\pi\)
\(674\) 0 0
\(675\) −10.2543 −0.394690
\(676\) 0 0
\(677\) −49.3618 −1.89713 −0.948565 0.316583i \(-0.897465\pi\)
−0.948565 + 0.316583i \(0.897465\pi\)
\(678\) 0 0
\(679\) −0.551896 −0.0211798
\(680\) 0 0
\(681\) −20.6095 −0.789759
\(682\) 0 0
\(683\) −44.9159 −1.71866 −0.859330 0.511422i \(-0.829119\pi\)
−0.859330 + 0.511422i \(0.829119\pi\)
\(684\) 0 0
\(685\) 18.7817 0.717611
\(686\) 0 0
\(687\) 11.2937 0.430882
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −21.5931 −0.821440 −0.410720 0.911762i \(-0.634723\pi\)
−0.410720 + 0.911762i \(0.634723\pi\)
\(692\) 0 0
\(693\) −0.119613 −0.00454371
\(694\) 0 0
\(695\) −81.0962 −3.07616
\(696\) 0 0
\(697\) 50.6086 1.91694
\(698\) 0 0
\(699\) 13.2668 0.501797
\(700\) 0 0
\(701\) −31.8311 −1.20224 −0.601121 0.799158i \(-0.705279\pi\)
−0.601121 + 0.799158i \(0.705279\pi\)
\(702\) 0 0
\(703\) −7.26241 −0.273907
\(704\) 0 0
\(705\) −49.8224 −1.87642
\(706\) 0 0
\(707\) 1.34962 0.0507577
\(708\) 0 0
\(709\) 48.5378 1.82288 0.911439 0.411436i \(-0.134973\pi\)
0.911439 + 0.411436i \(0.134973\pi\)
\(710\) 0 0
\(711\) 3.83731 0.143911
\(712\) 0 0
\(713\) 10.1211 0.379039
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0.412559 0.0154073
\(718\) 0 0
\(719\) 5.13015 0.191322 0.0956611 0.995414i \(-0.469503\pi\)
0.0956611 + 0.995414i \(0.469503\pi\)
\(720\) 0 0
\(721\) −0.0424506 −0.00158094
\(722\) 0 0
\(723\) −20.8992 −0.777249
\(724\) 0 0
\(725\) 63.0915 2.34316
\(726\) 0 0
\(727\) −45.8944 −1.70213 −0.851065 0.525061i \(-0.824043\pi\)
−0.851065 + 0.525061i \(0.824043\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −6.95525 −0.257249
\(732\) 0 0
\(733\) 19.2958 0.712706 0.356353 0.934351i \(-0.384020\pi\)
0.356353 + 0.934351i \(0.384020\pi\)
\(734\) 0 0
\(735\) −27.3151 −1.00753
\(736\) 0 0
\(737\) −11.7508 −0.432846
\(738\) 0 0
\(739\) −24.7702 −0.911187 −0.455594 0.890188i \(-0.650573\pi\)
−0.455594 + 0.890188i \(0.650573\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 29.1083 1.06788 0.533939 0.845523i \(-0.320711\pi\)
0.533939 + 0.845523i \(0.320711\pi\)
\(744\) 0 0
\(745\) 16.0440 0.587805
\(746\) 0 0
\(747\) −9.04179 −0.330822
\(748\) 0 0
\(749\) 0.872235 0.0318708
\(750\) 0 0
\(751\) 27.5195 1.00420 0.502101 0.864809i \(-0.332561\pi\)
0.502101 + 0.864809i \(0.332561\pi\)
\(752\) 0 0
\(753\) −5.10303 −0.185965
\(754\) 0 0
\(755\) −49.2813 −1.79353
\(756\) 0 0
\(757\) 5.71110 0.207574 0.103787 0.994600i \(-0.466904\pi\)
0.103787 + 0.994600i \(0.466904\pi\)
\(758\) 0 0
\(759\) −10.5846 −0.384195
\(760\) 0 0
\(761\) 40.1705 1.45618 0.728089 0.685482i \(-0.240409\pi\)
0.728089 + 0.685482i \(0.240409\pi\)
\(762\) 0 0
\(763\) −0.655286 −0.0237229
\(764\) 0 0
\(765\) 25.4922 0.921672
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 15.8754 0.572483 0.286241 0.958158i \(-0.407594\pi\)
0.286241 + 0.958158i \(0.407594\pi\)
\(770\) 0 0
\(771\) 26.7241 0.962444
\(772\) 0 0
\(773\) 1.19739 0.0430670 0.0215335 0.999768i \(-0.493145\pi\)
0.0215335 + 0.999768i \(0.493145\pi\)
\(774\) 0 0
\(775\) −14.7547 −0.530003
\(776\) 0 0
\(777\) 0.734146 0.0263373
\(778\) 0 0
\(779\) −6.09711 −0.218452
\(780\) 0 0
\(781\) −22.8305 −0.816938
\(782\) 0 0
\(783\) −6.15266 −0.219878
\(784\) 0 0
\(785\) 39.8214 1.42129
\(786\) 0 0
\(787\) 32.2576 1.14986 0.574929 0.818203i \(-0.305030\pi\)
0.574929 + 0.818203i \(0.305030\pi\)
\(788\) 0 0
\(789\) 9.89772 0.352368
\(790\) 0 0
\(791\) 0.107924 0.00383734
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 10.6661 0.378288
\(796\) 0 0
\(797\) −28.2439 −1.00045 −0.500226 0.865895i \(-0.666750\pi\)
−0.500226 + 0.865895i \(0.666750\pi\)
\(798\) 0 0
\(799\) 83.2603 2.94554
\(800\) 0 0
\(801\) 4.75082 0.167862
\(802\) 0 0
\(803\) 6.26740 0.221172
\(804\) 0 0
\(805\) 2.18382 0.0769695
\(806\) 0 0
\(807\) 18.9609 0.667457
\(808\) 0 0
\(809\) −37.2877 −1.31096 −0.655482 0.755210i \(-0.727535\pi\)
−0.655482 + 0.755210i \(0.727535\pi\)
\(810\) 0 0
\(811\) −6.09538 −0.214038 −0.107019 0.994257i \(-0.534131\pi\)
−0.107019 + 0.994257i \(0.534131\pi\)
\(812\) 0 0
\(813\) 23.7343 0.832398
\(814\) 0 0
\(815\) −61.7468 −2.16290
\(816\) 0 0
\(817\) 0.837940 0.0293158
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −16.6514 −0.581138 −0.290569 0.956854i \(-0.593845\pi\)
−0.290569 + 0.956854i \(0.593845\pi\)
\(822\) 0 0
\(823\) 32.1734 1.12150 0.560748 0.827987i \(-0.310514\pi\)
0.560748 + 0.827987i \(0.310514\pi\)
\(824\) 0 0
\(825\) 15.4303 0.537213
\(826\) 0 0
\(827\) 53.7727 1.86986 0.934930 0.354831i \(-0.115462\pi\)
0.934930 + 0.354831i \(0.115462\pi\)
\(828\) 0 0
\(829\) 47.5426 1.65122 0.825611 0.564240i \(-0.190831\pi\)
0.825611 + 0.564240i \(0.190831\pi\)
\(830\) 0 0
\(831\) −16.1577 −0.560504
\(832\) 0 0
\(833\) 45.6474 1.58159
\(834\) 0 0
\(835\) −97.0511 −3.35859
\(836\) 0 0
\(837\) 1.43887 0.0497346
\(838\) 0 0
\(839\) −29.9379 −1.03357 −0.516785 0.856115i \(-0.672871\pi\)
−0.516785 + 0.856115i \(0.672871\pi\)
\(840\) 0 0
\(841\) 8.85524 0.305353
\(842\) 0 0
\(843\) 4.20881 0.144959
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −0.694401 −0.0238599
\(848\) 0 0
\(849\) −3.57052 −0.122540
\(850\) 0 0
\(851\) 64.9648 2.22697
\(852\) 0 0
\(853\) 38.2677 1.31026 0.655130 0.755516i \(-0.272614\pi\)
0.655130 + 0.755516i \(0.272614\pi\)
\(854\) 0 0
\(855\) −3.07119 −0.105033
\(856\) 0 0
\(857\) −10.6995 −0.365486 −0.182743 0.983161i \(-0.558498\pi\)
−0.182743 + 0.983161i \(0.558498\pi\)
\(858\) 0 0
\(859\) −22.6031 −0.771207 −0.385604 0.922665i \(-0.626007\pi\)
−0.385604 + 0.922665i \(0.626007\pi\)
\(860\) 0 0
\(861\) 0.616348 0.0210051
\(862\) 0 0
\(863\) −20.7503 −0.706349 −0.353174 0.935557i \(-0.614898\pi\)
−0.353174 + 0.935557i \(0.614898\pi\)
\(864\) 0 0
\(865\) −49.3550 −1.67812
\(866\) 0 0
\(867\) −25.6011 −0.869458
\(868\) 0 0
\(869\) −5.77421 −0.195877
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −6.94297 −0.234984
\(874\) 0 0
\(875\) −1.63128 −0.0551472
\(876\) 0 0
\(877\) −20.8423 −0.703793 −0.351897 0.936039i \(-0.614463\pi\)
−0.351897 + 0.936039i \(0.614463\pi\)
\(878\) 0 0
\(879\) −15.0734 −0.508414
\(880\) 0 0
\(881\) −9.03338 −0.304342 −0.152171 0.988354i \(-0.548627\pi\)
−0.152171 + 0.988354i \(0.548627\pi\)
\(882\) 0 0
\(883\) 21.4380 0.721447 0.360724 0.932673i \(-0.382530\pi\)
0.360724 + 0.932673i \(0.382530\pi\)
\(884\) 0 0
\(885\) −40.5314 −1.36245
\(886\) 0 0
\(887\) 5.41708 0.181888 0.0909438 0.995856i \(-0.471012\pi\)
0.0909438 + 0.995856i \(0.471012\pi\)
\(888\) 0 0
\(889\) −0.875275 −0.0293558
\(890\) 0 0
\(891\) −1.50475 −0.0504111
\(892\) 0 0
\(893\) −10.0309 −0.335670
\(894\) 0 0
\(895\) −9.16018 −0.306191
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −8.85288 −0.295260
\(900\) 0 0
\(901\) −17.8246 −0.593823
\(902\) 0 0
\(903\) −0.0847060 −0.00281884
\(904\) 0 0
\(905\) −42.4762 −1.41196
\(906\) 0 0
\(907\) 13.5292 0.449229 0.224615 0.974448i \(-0.427888\pi\)
0.224615 + 0.974448i \(0.427888\pi\)
\(908\) 0 0
\(909\) 16.9785 0.563142
\(910\) 0 0
\(911\) −25.7848 −0.854290 −0.427145 0.904183i \(-0.640481\pi\)
−0.427145 + 0.904183i \(0.640481\pi\)
\(912\) 0 0
\(913\) 13.6057 0.450281
\(914\) 0 0
\(915\) 30.9621 1.02358
\(916\) 0 0
\(917\) −1.57829 −0.0521196
\(918\) 0 0
\(919\) −28.3412 −0.934889 −0.467445 0.884022i \(-0.654825\pi\)
−0.467445 + 0.884022i \(0.654825\pi\)
\(920\) 0 0
\(921\) −22.3150 −0.735305
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −94.7062 −3.11392
\(926\) 0 0
\(927\) −0.534038 −0.0175401
\(928\) 0 0
\(929\) 27.2671 0.894606 0.447303 0.894382i \(-0.352385\pi\)
0.447303 + 0.894382i \(0.352385\pi\)
\(930\) 0 0
\(931\) −5.49941 −0.180236
\(932\) 0 0
\(933\) −2.15132 −0.0704310
\(934\) 0 0
\(935\) −38.3595 −1.25449
\(936\) 0 0
\(937\) 57.0811 1.86476 0.932379 0.361483i \(-0.117729\pi\)
0.932379 + 0.361483i \(0.117729\pi\)
\(938\) 0 0
\(939\) 26.0404 0.849796
\(940\) 0 0
\(941\) 33.2566 1.08413 0.542067 0.840335i \(-0.317642\pi\)
0.542067 + 0.840335i \(0.317642\pi\)
\(942\) 0 0
\(943\) 54.5408 1.77609
\(944\) 0 0
\(945\) 0.310462 0.0100993
\(946\) 0 0
\(947\) −38.9304 −1.26507 −0.632534 0.774533i \(-0.717985\pi\)
−0.632534 + 0.774533i \(0.717985\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 13.3249 0.432090
\(952\) 0 0
\(953\) −27.3688 −0.886562 −0.443281 0.896383i \(-0.646186\pi\)
−0.443281 + 0.896383i \(0.646186\pi\)
\(954\) 0 0
\(955\) −97.8613 −3.16672
\(956\) 0 0
\(957\) 9.25824 0.299276
\(958\) 0 0
\(959\) −0.382251 −0.0123435
\(960\) 0 0
\(961\) −28.9297 −0.933215
\(962\) 0 0
\(963\) 10.9729 0.353597
\(964\) 0 0
\(965\) 7.94684 0.255818
\(966\) 0 0
\(967\) 48.2047 1.55016 0.775079 0.631865i \(-0.217710\pi\)
0.775079 + 0.631865i \(0.217710\pi\)
\(968\) 0 0
\(969\) 5.13240 0.164877
\(970\) 0 0
\(971\) −40.7160 −1.30664 −0.653319 0.757083i \(-0.726624\pi\)
−0.653319 + 0.757083i \(0.726624\pi\)
\(972\) 0 0
\(973\) 1.65050 0.0529126
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 17.2632 0.552297 0.276149 0.961115i \(-0.410942\pi\)
0.276149 + 0.961115i \(0.410942\pi\)
\(978\) 0 0
\(979\) −7.14881 −0.228477
\(980\) 0 0
\(981\) −8.24364 −0.263199
\(982\) 0 0
\(983\) 50.0600 1.59667 0.798333 0.602216i \(-0.205715\pi\)
0.798333 + 0.602216i \(0.205715\pi\)
\(984\) 0 0
\(985\) −11.4755 −0.365641
\(986\) 0 0
\(987\) 1.01400 0.0322761
\(988\) 0 0
\(989\) −7.49567 −0.238348
\(990\) 0 0
\(991\) 0.122255 0.00388355 0.00194177 0.999998i \(-0.499382\pi\)
0.00194177 + 0.999998i \(0.499382\pi\)
\(992\) 0 0
\(993\) 9.11986 0.289410
\(994\) 0 0
\(995\) −83.2574 −2.63944
\(996\) 0 0
\(997\) −4.95155 −0.156817 −0.0784086 0.996921i \(-0.524984\pi\)
−0.0784086 + 0.996921i \(0.524984\pi\)
\(998\) 0 0
\(999\) 9.23571 0.292205
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4056.2.a.bg.1.1 yes 6
4.3 odd 2 8112.2.a.cw.1.1 6
13.5 odd 4 4056.2.c.q.337.12 12
13.8 odd 4 4056.2.c.q.337.1 12
13.12 even 2 4056.2.a.bf.1.6 6
52.51 odd 2 8112.2.a.cv.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4056.2.a.bf.1.6 6 13.12 even 2
4056.2.a.bg.1.1 yes 6 1.1 even 1 trivial
4056.2.c.q.337.1 12 13.8 odd 4
4056.2.c.q.337.12 12 13.5 odd 4
8112.2.a.cv.1.6 6 52.51 odd 2
8112.2.a.cw.1.1 6 4.3 odd 2