Properties

Label 4056.2.a.z.1.2
Level $4056$
Weight $2$
Character 4056.1
Self dual yes
Analytic conductor $32.387$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4056,2,Mod(1,4056)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4056, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4056.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4056 = 2^{3} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4056.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.3873230598\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.837.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 6x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 312)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.52892\) of defining polynomial
Character \(\chi\) \(=\) 4056.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +0.133492 q^{5} -3.92434 q^{7} +1.00000 q^{9} -5.05784 q^{11} -0.133492 q^{15} -4.92434 q^{17} +6.79085 q^{19} +3.92434 q^{21} -5.05784 q^{23} -4.98218 q^{25} -1.00000 q^{27} -3.86651 q^{29} +1.13349 q^{31} +5.05784 q^{33} -0.523868 q^{35} +6.92434 q^{37} +5.19133 q^{41} -11.9243 q^{43} +0.133492 q^{45} -9.05784 q^{47} +8.40048 q^{49} +4.92434 q^{51} -1.59952 q^{53} -0.675180 q^{55} -6.79085 q^{57} +11.8487 q^{59} +5.79085 q^{61} -3.92434 q^{63} +4.07566 q^{67} +5.05784 q^{69} -1.05784 q^{71} -3.26698 q^{73} +4.98218 q^{75} +19.8487 q^{77} -7.24916 q^{79} +1.00000 q^{81} -11.3248 q^{83} -0.657360 q^{85} +3.86651 q^{87} +7.73302 q^{89} -1.13349 q^{93} +0.906524 q^{95} +7.13349 q^{97} -5.05784 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} + 3 q^{7} + 3 q^{9} + 6 q^{19} - 3 q^{21} + 15 q^{25} - 3 q^{27} - 12 q^{29} + 3 q^{31} + 12 q^{35} + 6 q^{37} - 21 q^{43} - 12 q^{47} + 24 q^{49} - 6 q^{53} - 18 q^{55} - 6 q^{57} + 6 q^{59}+ \cdots + 21 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 0.133492 0.0596994 0.0298497 0.999554i \(-0.490497\pi\)
0.0298497 + 0.999554i \(0.490497\pi\)
\(6\) 0 0
\(7\) −3.92434 −1.48326 −0.741631 0.670808i \(-0.765948\pi\)
−0.741631 + 0.670808i \(0.765948\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −5.05784 −1.52499 −0.762497 0.646991i \(-0.776027\pi\)
−0.762497 + 0.646991i \(0.776027\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −0.133492 −0.0344675
\(16\) 0 0
\(17\) −4.92434 −1.19433 −0.597164 0.802119i \(-0.703706\pi\)
−0.597164 + 0.802119i \(0.703706\pi\)
\(18\) 0 0
\(19\) 6.79085 1.55793 0.778964 0.627068i \(-0.215745\pi\)
0.778964 + 0.627068i \(0.215745\pi\)
\(20\) 0 0
\(21\) 3.92434 0.856362
\(22\) 0 0
\(23\) −5.05784 −1.05463 −0.527316 0.849669i \(-0.676802\pi\)
−0.527316 + 0.849669i \(0.676802\pi\)
\(24\) 0 0
\(25\) −4.98218 −0.996436
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −3.86651 −0.717993 −0.358996 0.933339i \(-0.616881\pi\)
−0.358996 + 0.933339i \(0.616881\pi\)
\(30\) 0 0
\(31\) 1.13349 0.203581 0.101791 0.994806i \(-0.467543\pi\)
0.101791 + 0.994806i \(0.467543\pi\)
\(32\) 0 0
\(33\) 5.05784 0.880456
\(34\) 0 0
\(35\) −0.523868 −0.0885499
\(36\) 0 0
\(37\) 6.92434 1.13836 0.569178 0.822215i \(-0.307262\pi\)
0.569178 + 0.822215i \(0.307262\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.19133 0.810749 0.405375 0.914151i \(-0.367141\pi\)
0.405375 + 0.914151i \(0.367141\pi\)
\(42\) 0 0
\(43\) −11.9243 −1.81845 −0.909223 0.416310i \(-0.863323\pi\)
−0.909223 + 0.416310i \(0.863323\pi\)
\(44\) 0 0
\(45\) 0.133492 0.0198998
\(46\) 0 0
\(47\) −9.05784 −1.32122 −0.660611 0.750729i \(-0.729703\pi\)
−0.660611 + 0.750729i \(0.729703\pi\)
\(48\) 0 0
\(49\) 8.40048 1.20007
\(50\) 0 0
\(51\) 4.92434 0.689546
\(52\) 0 0
\(53\) −1.59952 −0.219712 −0.109856 0.993948i \(-0.535039\pi\)
−0.109856 + 0.993948i \(0.535039\pi\)
\(54\) 0 0
\(55\) −0.675180 −0.0910413
\(56\) 0 0
\(57\) −6.79085 −0.899470
\(58\) 0 0
\(59\) 11.8487 1.54257 0.771284 0.636491i \(-0.219615\pi\)
0.771284 + 0.636491i \(0.219615\pi\)
\(60\) 0 0
\(61\) 5.79085 0.741443 0.370721 0.928744i \(-0.379111\pi\)
0.370721 + 0.928744i \(0.379111\pi\)
\(62\) 0 0
\(63\) −3.92434 −0.494421
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 4.07566 0.497921 0.248960 0.968514i \(-0.419911\pi\)
0.248960 + 0.968514i \(0.419911\pi\)
\(68\) 0 0
\(69\) 5.05784 0.608892
\(70\) 0 0
\(71\) −1.05784 −0.125542 −0.0627710 0.998028i \(-0.519994\pi\)
−0.0627710 + 0.998028i \(0.519994\pi\)
\(72\) 0 0
\(73\) −3.26698 −0.382372 −0.191186 0.981554i \(-0.561233\pi\)
−0.191186 + 0.981554i \(0.561233\pi\)
\(74\) 0 0
\(75\) 4.98218 0.575293
\(76\) 0 0
\(77\) 19.8487 2.26197
\(78\) 0 0
\(79\) −7.24916 −0.815595 −0.407797 0.913072i \(-0.633703\pi\)
−0.407797 + 0.913072i \(0.633703\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −11.3248 −1.24306 −0.621530 0.783390i \(-0.713489\pi\)
−0.621530 + 0.783390i \(0.713489\pi\)
\(84\) 0 0
\(85\) −0.657360 −0.0713007
\(86\) 0 0
\(87\) 3.86651 0.414533
\(88\) 0 0
\(89\) 7.73302 0.819698 0.409849 0.912153i \(-0.365581\pi\)
0.409849 + 0.912153i \(0.365581\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −1.13349 −0.117538
\(94\) 0 0
\(95\) 0.906524 0.0930074
\(96\) 0 0
\(97\) 7.13349 0.724296 0.362148 0.932121i \(-0.382043\pi\)
0.362148 + 0.932121i \(0.382043\pi\)
\(98\) 0 0
\(99\) −5.05784 −0.508332
\(100\) 0 0
\(101\) 5.71520 0.568683 0.284342 0.958723i \(-0.408225\pi\)
0.284342 + 0.958723i \(0.408225\pi\)
\(102\) 0 0
\(103\) 6.19133 0.610050 0.305025 0.952344i \(-0.401335\pi\)
0.305025 + 0.952344i \(0.401335\pi\)
\(104\) 0 0
\(105\) 0.523868 0.0511243
\(106\) 0 0
\(107\) −9.05784 −0.875654 −0.437827 0.899059i \(-0.644252\pi\)
−0.437827 + 0.899059i \(0.644252\pi\)
\(108\) 0 0
\(109\) 12.7152 1.21789 0.608947 0.793211i \(-0.291592\pi\)
0.608947 + 0.793211i \(0.291592\pi\)
\(110\) 0 0
\(111\) −6.92434 −0.657230
\(112\) 0 0
\(113\) 18.9243 1.78025 0.890126 0.455714i \(-0.150616\pi\)
0.890126 + 0.455714i \(0.150616\pi\)
\(114\) 0 0
\(115\) −0.675180 −0.0629609
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 19.3248 1.77150
\(120\) 0 0
\(121\) 14.5817 1.32561
\(122\) 0 0
\(123\) −5.19133 −0.468086
\(124\) 0 0
\(125\) −1.33254 −0.119186
\(126\) 0 0
\(127\) −7.24916 −0.643259 −0.321630 0.946866i \(-0.604231\pi\)
−0.321630 + 0.946866i \(0.604231\pi\)
\(128\) 0 0
\(129\) 11.9243 1.04988
\(130\) 0 0
\(131\) 9.96436 0.870590 0.435295 0.900288i \(-0.356644\pi\)
0.435295 + 0.900288i \(0.356644\pi\)
\(132\) 0 0
\(133\) −26.6496 −2.31082
\(134\) 0 0
\(135\) −0.133492 −0.0114892
\(136\) 0 0
\(137\) −9.45831 −0.808078 −0.404039 0.914742i \(-0.632394\pi\)
−0.404039 + 0.914742i \(0.632394\pi\)
\(138\) 0 0
\(139\) −3.40048 −0.288425 −0.144212 0.989547i \(-0.546065\pi\)
−0.144212 + 0.989547i \(0.546065\pi\)
\(140\) 0 0
\(141\) 9.05784 0.762807
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −0.516148 −0.0428637
\(146\) 0 0
\(147\) −8.40048 −0.692860
\(148\) 0 0
\(149\) −3.71520 −0.304361 −0.152180 0.988353i \(-0.548629\pi\)
−0.152180 + 0.988353i \(0.548629\pi\)
\(150\) 0 0
\(151\) 3.32482 0.270570 0.135285 0.990807i \(-0.456805\pi\)
0.135285 + 0.990807i \(0.456805\pi\)
\(152\) 0 0
\(153\) −4.92434 −0.398110
\(154\) 0 0
\(155\) 0.151312 0.0121537
\(156\) 0 0
\(157\) 2.32482 0.185541 0.0927704 0.995688i \(-0.470428\pi\)
0.0927704 + 0.995688i \(0.470428\pi\)
\(158\) 0 0
\(159\) 1.59952 0.126851
\(160\) 0 0
\(161\) 19.8487 1.56430
\(162\) 0 0
\(163\) 6.86651 0.537826 0.268913 0.963164i \(-0.413336\pi\)
0.268913 + 0.963164i \(0.413336\pi\)
\(164\) 0 0
\(165\) 0.675180 0.0525627
\(166\) 0 0
\(167\) 21.8130 1.68794 0.843972 0.536387i \(-0.180211\pi\)
0.843972 + 0.536387i \(0.180211\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 6.79085 0.519309
\(172\) 0 0
\(173\) −3.58170 −0.272312 −0.136156 0.990687i \(-0.543475\pi\)
−0.136156 + 0.990687i \(0.543475\pi\)
\(174\) 0 0
\(175\) 19.5518 1.47798
\(176\) 0 0
\(177\) −11.8487 −0.890602
\(178\) 0 0
\(179\) −1.20915 −0.0903760 −0.0451880 0.998979i \(-0.514389\pi\)
−0.0451880 + 0.998979i \(0.514389\pi\)
\(180\) 0 0
\(181\) 18.9243 1.40664 0.703318 0.710876i \(-0.251701\pi\)
0.703318 + 0.710876i \(0.251701\pi\)
\(182\) 0 0
\(183\) −5.79085 −0.428072
\(184\) 0 0
\(185\) 0.924344 0.0679591
\(186\) 0 0
\(187\) 24.9065 1.82135
\(188\) 0 0
\(189\) 3.92434 0.285454
\(190\) 0 0
\(191\) 7.84869 0.567911 0.283956 0.958837i \(-0.408353\pi\)
0.283956 + 0.958837i \(0.408353\pi\)
\(192\) 0 0
\(193\) −7.11567 −0.512197 −0.256099 0.966651i \(-0.582437\pi\)
−0.256099 + 0.966651i \(0.582437\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −23.4304 −1.66935 −0.834673 0.550746i \(-0.814343\pi\)
−0.834673 + 0.550746i \(0.814343\pi\)
\(198\) 0 0
\(199\) −13.6574 −0.968145 −0.484072 0.875028i \(-0.660843\pi\)
−0.484072 + 0.875028i \(0.660843\pi\)
\(200\) 0 0
\(201\) −4.07566 −0.287475
\(202\) 0 0
\(203\) 15.1735 1.06497
\(204\) 0 0
\(205\) 0.693000 0.0484012
\(206\) 0 0
\(207\) −5.05784 −0.351544
\(208\) 0 0
\(209\) −34.3470 −2.37583
\(210\) 0 0
\(211\) −19.2492 −1.32517 −0.662584 0.748988i \(-0.730540\pi\)
−0.662584 + 0.748988i \(0.730540\pi\)
\(212\) 0 0
\(213\) 1.05784 0.0724817
\(214\) 0 0
\(215\) −1.59180 −0.108560
\(216\) 0 0
\(217\) −4.44821 −0.301964
\(218\) 0 0
\(219\) 3.26698 0.220762
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 16.0000 1.07144 0.535720 0.844396i \(-0.320040\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(224\) 0 0
\(225\) −4.98218 −0.332145
\(226\) 0 0
\(227\) 23.0222 1.52804 0.764018 0.645194i \(-0.223224\pi\)
0.764018 + 0.645194i \(0.223224\pi\)
\(228\) 0 0
\(229\) −8.11567 −0.536299 −0.268149 0.963377i \(-0.586412\pi\)
−0.268149 + 0.963377i \(0.586412\pi\)
\(230\) 0 0
\(231\) −19.8487 −1.30595
\(232\) 0 0
\(233\) 6.53397 0.428054 0.214027 0.976828i \(-0.431342\pi\)
0.214027 + 0.976828i \(0.431342\pi\)
\(234\) 0 0
\(235\) −1.20915 −0.0788761
\(236\) 0 0
\(237\) 7.24916 0.470884
\(238\) 0 0
\(239\) −11.3248 −0.732542 −0.366271 0.930508i \(-0.619366\pi\)
−0.366271 + 0.930508i \(0.619366\pi\)
\(240\) 0 0
\(241\) 11.5995 0.747191 0.373596 0.927592i \(-0.378125\pi\)
0.373596 + 0.927592i \(0.378125\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 1.12140 0.0716433
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 11.3248 0.717681
\(250\) 0 0
\(251\) −10.1157 −0.638496 −0.319248 0.947671i \(-0.603430\pi\)
−0.319248 + 0.947671i \(0.603430\pi\)
\(252\) 0 0
\(253\) 25.5817 1.60831
\(254\) 0 0
\(255\) 0.657360 0.0411655
\(256\) 0 0
\(257\) 1.19133 0.0743130 0.0371565 0.999309i \(-0.488170\pi\)
0.0371565 + 0.999309i \(0.488170\pi\)
\(258\) 0 0
\(259\) −27.1735 −1.68848
\(260\) 0 0
\(261\) −3.86651 −0.239331
\(262\) 0 0
\(263\) 20.9065 1.28915 0.644576 0.764540i \(-0.277034\pi\)
0.644576 + 0.764540i \(0.277034\pi\)
\(264\) 0 0
\(265\) −0.213524 −0.0131166
\(266\) 0 0
\(267\) −7.73302 −0.473253
\(268\) 0 0
\(269\) −5.84869 −0.356601 −0.178300 0.983976i \(-0.557060\pi\)
−0.178300 + 0.983976i \(0.557060\pi\)
\(270\) 0 0
\(271\) −23.0979 −1.40309 −0.701547 0.712623i \(-0.747507\pi\)
−0.701547 + 0.712623i \(0.747507\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 25.1990 1.51956
\(276\) 0 0
\(277\) 4.80867 0.288925 0.144463 0.989510i \(-0.453855\pi\)
0.144463 + 0.989510i \(0.453855\pi\)
\(278\) 0 0
\(279\) 1.13349 0.0678604
\(280\) 0 0
\(281\) −5.60962 −0.334642 −0.167321 0.985902i \(-0.553512\pi\)
−0.167321 + 0.985902i \(0.553512\pi\)
\(282\) 0 0
\(283\) 25.8887 1.53892 0.769462 0.638693i \(-0.220525\pi\)
0.769462 + 0.638693i \(0.220525\pi\)
\(284\) 0 0
\(285\) −0.906524 −0.0536978
\(286\) 0 0
\(287\) −20.3726 −1.20255
\(288\) 0 0
\(289\) 7.24916 0.426421
\(290\) 0 0
\(291\) −7.13349 −0.418173
\(292\) 0 0
\(293\) −25.4482 −1.48670 −0.743350 0.668902i \(-0.766764\pi\)
−0.743350 + 0.668902i \(0.766764\pi\)
\(294\) 0 0
\(295\) 1.58170 0.0920904
\(296\) 0 0
\(297\) 5.05784 0.293485
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 46.7952 2.69723
\(302\) 0 0
\(303\) −5.71520 −0.328329
\(304\) 0 0
\(305\) 0.773032 0.0442637
\(306\) 0 0
\(307\) −0.458312 −0.0261572 −0.0130786 0.999914i \(-0.504163\pi\)
−0.0130786 + 0.999914i \(0.504163\pi\)
\(308\) 0 0
\(309\) −6.19133 −0.352212
\(310\) 0 0
\(311\) 22.7909 1.29235 0.646175 0.763189i \(-0.276367\pi\)
0.646175 + 0.763189i \(0.276367\pi\)
\(312\) 0 0
\(313\) 28.5639 1.61453 0.807263 0.590192i \(-0.200948\pi\)
0.807263 + 0.590192i \(0.200948\pi\)
\(314\) 0 0
\(315\) −0.523868 −0.0295166
\(316\) 0 0
\(317\) −23.9465 −1.34497 −0.672486 0.740110i \(-0.734773\pi\)
−0.672486 + 0.740110i \(0.734773\pi\)
\(318\) 0 0
\(319\) 19.5562 1.09493
\(320\) 0 0
\(321\) 9.05784 0.505559
\(322\) 0 0
\(323\) −33.4405 −1.86068
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −12.7152 −0.703152
\(328\) 0 0
\(329\) 35.5461 1.95972
\(330\) 0 0
\(331\) 25.1335 1.38146 0.690731 0.723112i \(-0.257289\pi\)
0.690731 + 0.723112i \(0.257289\pi\)
\(332\) 0 0
\(333\) 6.92434 0.379452
\(334\) 0 0
\(335\) 0.544067 0.0297256
\(336\) 0 0
\(337\) 28.9644 1.57779 0.788895 0.614529i \(-0.210654\pi\)
0.788895 + 0.614529i \(0.210654\pi\)
\(338\) 0 0
\(339\) −18.9243 −1.02783
\(340\) 0 0
\(341\) −5.73302 −0.310460
\(342\) 0 0
\(343\) −5.49595 −0.296753
\(344\) 0 0
\(345\) 0.675180 0.0363505
\(346\) 0 0
\(347\) 4.67518 0.250977 0.125488 0.992095i \(-0.459950\pi\)
0.125488 + 0.992095i \(0.459950\pi\)
\(348\) 0 0
\(349\) 27.5161 1.47291 0.736453 0.676489i \(-0.236499\pi\)
0.736453 + 0.676489i \(0.236499\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12.5060 0.665630 0.332815 0.942992i \(-0.392002\pi\)
0.332815 + 0.942992i \(0.392002\pi\)
\(354\) 0 0
\(355\) −0.141213 −0.00749478
\(356\) 0 0
\(357\) −19.3248 −1.02278
\(358\) 0 0
\(359\) 10.7909 0.569519 0.284760 0.958599i \(-0.408086\pi\)
0.284760 + 0.958599i \(0.408086\pi\)
\(360\) 0 0
\(361\) 27.1157 1.42714
\(362\) 0 0
\(363\) −14.5817 −0.765341
\(364\) 0 0
\(365\) −0.436116 −0.0228274
\(366\) 0 0
\(367\) 7.92434 0.413647 0.206824 0.978378i \(-0.433687\pi\)
0.206824 + 0.978378i \(0.433687\pi\)
\(368\) 0 0
\(369\) 5.19133 0.270250
\(370\) 0 0
\(371\) 6.27708 0.325890
\(372\) 0 0
\(373\) −33.3726 −1.72797 −0.863983 0.503521i \(-0.832037\pi\)
−0.863983 + 0.503521i \(0.832037\pi\)
\(374\) 0 0
\(375\) 1.33254 0.0688121
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 14.0501 0.721706 0.360853 0.932623i \(-0.382486\pi\)
0.360853 + 0.932623i \(0.382486\pi\)
\(380\) 0 0
\(381\) 7.24916 0.371386
\(382\) 0 0
\(383\) −12.2313 −0.624992 −0.312496 0.949919i \(-0.601165\pi\)
−0.312496 + 0.949919i \(0.601165\pi\)
\(384\) 0 0
\(385\) 2.64964 0.135038
\(386\) 0 0
\(387\) −11.9243 −0.606148
\(388\) 0 0
\(389\) −28.4805 −1.44402 −0.722010 0.691883i \(-0.756781\pi\)
−0.722010 + 0.691883i \(0.756781\pi\)
\(390\) 0 0
\(391\) 24.9065 1.25958
\(392\) 0 0
\(393\) −9.96436 −0.502635
\(394\) 0 0
\(395\) −0.967705 −0.0486905
\(396\) 0 0
\(397\) 27.2135 1.36581 0.682904 0.730508i \(-0.260717\pi\)
0.682904 + 0.730508i \(0.260717\pi\)
\(398\) 0 0
\(399\) 26.6496 1.33415
\(400\) 0 0
\(401\) 18.2391 0.910815 0.455408 0.890283i \(-0.349494\pi\)
0.455408 + 0.890283i \(0.349494\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0.133492 0.00663327
\(406\) 0 0
\(407\) −35.0222 −1.73599
\(408\) 0 0
\(409\) −28.0323 −1.38611 −0.693054 0.720886i \(-0.743735\pi\)
−0.693054 + 0.720886i \(0.743735\pi\)
\(410\) 0 0
\(411\) 9.45831 0.466544
\(412\) 0 0
\(413\) −46.4983 −2.28803
\(414\) 0 0
\(415\) −1.51177 −0.0742100
\(416\) 0 0
\(417\) 3.40048 0.166522
\(418\) 0 0
\(419\) −15.6974 −0.766867 −0.383433 0.923568i \(-0.625258\pi\)
−0.383433 + 0.923568i \(0.625258\pi\)
\(420\) 0 0
\(421\) 11.5239 0.561639 0.280819 0.959761i \(-0.409394\pi\)
0.280819 + 0.959761i \(0.409394\pi\)
\(422\) 0 0
\(423\) −9.05784 −0.440407
\(424\) 0 0
\(425\) 24.5340 1.19007
\(426\) 0 0
\(427\) −22.7253 −1.09975
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −23.3248 −1.12352 −0.561759 0.827301i \(-0.689875\pi\)
−0.561759 + 0.827301i \(0.689875\pi\)
\(432\) 0 0
\(433\) −5.23134 −0.251402 −0.125701 0.992068i \(-0.540118\pi\)
−0.125701 + 0.992068i \(0.540118\pi\)
\(434\) 0 0
\(435\) 0.516148 0.0247474
\(436\) 0 0
\(437\) −34.3470 −1.64304
\(438\) 0 0
\(439\) 23.7730 1.13462 0.567312 0.823503i \(-0.307983\pi\)
0.567312 + 0.823503i \(0.307983\pi\)
\(440\) 0 0
\(441\) 8.40048 0.400023
\(442\) 0 0
\(443\) −10.1157 −0.480610 −0.240305 0.970697i \(-0.577247\pi\)
−0.240305 + 0.970697i \(0.577247\pi\)
\(444\) 0 0
\(445\) 1.03230 0.0489355
\(446\) 0 0
\(447\) 3.71520 0.175723
\(448\) 0 0
\(449\) 6.53397 0.308357 0.154179 0.988043i \(-0.450727\pi\)
0.154179 + 0.988043i \(0.450727\pi\)
\(450\) 0 0
\(451\) −26.2569 −1.23639
\(452\) 0 0
\(453\) −3.32482 −0.156214
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −33.0800 −1.54742 −0.773709 0.633541i \(-0.781601\pi\)
−0.773709 + 0.633541i \(0.781601\pi\)
\(458\) 0 0
\(459\) 4.92434 0.229849
\(460\) 0 0
\(461\) −0.551788 −0.0256993 −0.0128497 0.999917i \(-0.504090\pi\)
−0.0128497 + 0.999917i \(0.504090\pi\)
\(462\) 0 0
\(463\) 2.34264 0.108872 0.0544359 0.998517i \(-0.482664\pi\)
0.0544359 + 0.998517i \(0.482664\pi\)
\(464\) 0 0
\(465\) −0.151312 −0.00701693
\(466\) 0 0
\(467\) 15.1735 0.702146 0.351073 0.936348i \(-0.385817\pi\)
0.351073 + 0.936348i \(0.385817\pi\)
\(468\) 0 0
\(469\) −15.9943 −0.738547
\(470\) 0 0
\(471\) −2.32482 −0.107122
\(472\) 0 0
\(473\) 60.3114 2.77312
\(474\) 0 0
\(475\) −33.8332 −1.55238
\(476\) 0 0
\(477\) −1.59952 −0.0732372
\(478\) 0 0
\(479\) −1.58170 −0.0722699 −0.0361350 0.999347i \(-0.511505\pi\)
−0.0361350 + 0.999347i \(0.511505\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −19.8487 −0.903147
\(484\) 0 0
\(485\) 0.952264 0.0432401
\(486\) 0 0
\(487\) 17.2091 0.779821 0.389910 0.920853i \(-0.372506\pi\)
0.389910 + 0.920853i \(0.372506\pi\)
\(488\) 0 0
\(489\) −6.86651 −0.310514
\(490\) 0 0
\(491\) −23.7075 −1.06990 −0.534952 0.844883i \(-0.679670\pi\)
−0.534952 + 0.844883i \(0.679670\pi\)
\(492\) 0 0
\(493\) 19.0400 0.857519
\(494\) 0 0
\(495\) −0.675180 −0.0303471
\(496\) 0 0
\(497\) 4.15131 0.186212
\(498\) 0 0
\(499\) −6.11567 −0.273775 −0.136888 0.990587i \(-0.543710\pi\)
−0.136888 + 0.990587i \(0.543710\pi\)
\(500\) 0 0
\(501\) −21.8130 −0.974535
\(502\) 0 0
\(503\) −35.7075 −1.59212 −0.796059 0.605219i \(-0.793085\pi\)
−0.796059 + 0.605219i \(0.793085\pi\)
\(504\) 0 0
\(505\) 0.762933 0.0339501
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −34.2135 −1.51649 −0.758244 0.651971i \(-0.773942\pi\)
−0.758244 + 0.651971i \(0.773942\pi\)
\(510\) 0 0
\(511\) 12.8208 0.567157
\(512\) 0 0
\(513\) −6.79085 −0.299823
\(514\) 0 0
\(515\) 0.826492 0.0364196
\(516\) 0 0
\(517\) 45.8130 2.01486
\(518\) 0 0
\(519\) 3.58170 0.157219
\(520\) 0 0
\(521\) 38.4704 1.68542 0.842710 0.538368i \(-0.180959\pi\)
0.842710 + 0.538368i \(0.180959\pi\)
\(522\) 0 0
\(523\) 5.44049 0.237896 0.118948 0.992900i \(-0.462048\pi\)
0.118948 + 0.992900i \(0.462048\pi\)
\(524\) 0 0
\(525\) −19.5518 −0.853310
\(526\) 0 0
\(527\) −5.58170 −0.243143
\(528\) 0 0
\(529\) 2.58170 0.112248
\(530\) 0 0
\(531\) 11.8487 0.514189
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −1.20915 −0.0522760
\(536\) 0 0
\(537\) 1.20915 0.0521786
\(538\) 0 0
\(539\) −42.4882 −1.83010
\(540\) 0 0
\(541\) 37.3369 1.60524 0.802620 0.596491i \(-0.203439\pi\)
0.802620 + 0.596491i \(0.203439\pi\)
\(542\) 0 0
\(543\) −18.9243 −0.812121
\(544\) 0 0
\(545\) 1.69738 0.0727076
\(546\) 0 0
\(547\) −19.2391 −0.822603 −0.411301 0.911499i \(-0.634926\pi\)
−0.411301 + 0.911499i \(0.634926\pi\)
\(548\) 0 0
\(549\) 5.79085 0.247148
\(550\) 0 0
\(551\) −26.2569 −1.11858
\(552\) 0 0
\(553\) 28.4482 1.20974
\(554\) 0 0
\(555\) −0.924344 −0.0392362
\(556\) 0 0
\(557\) 41.7952 1.77092 0.885460 0.464715i \(-0.153843\pi\)
0.885460 + 0.464715i \(0.153843\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −24.9065 −1.05155
\(562\) 0 0
\(563\) 31.0121 1.30700 0.653502 0.756925i \(-0.273299\pi\)
0.653502 + 0.756925i \(0.273299\pi\)
\(564\) 0 0
\(565\) 2.52625 0.106280
\(566\) 0 0
\(567\) −3.92434 −0.164807
\(568\) 0 0
\(569\) −35.8130 −1.50136 −0.750681 0.660665i \(-0.770274\pi\)
−0.750681 + 0.660665i \(0.770274\pi\)
\(570\) 0 0
\(571\) −25.2091 −1.05497 −0.527485 0.849564i \(-0.676865\pi\)
−0.527485 + 0.849564i \(0.676865\pi\)
\(572\) 0 0
\(573\) −7.84869 −0.327884
\(574\) 0 0
\(575\) 25.1990 1.05087
\(576\) 0 0
\(577\) 36.8988 1.53612 0.768059 0.640380i \(-0.221223\pi\)
0.768059 + 0.640380i \(0.221223\pi\)
\(578\) 0 0
\(579\) 7.11567 0.295717
\(580\) 0 0
\(581\) 44.4425 1.84379
\(582\) 0 0
\(583\) 8.09013 0.335059
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.26698 0.0935684 0.0467842 0.998905i \(-0.485103\pi\)
0.0467842 + 0.998905i \(0.485103\pi\)
\(588\) 0 0
\(589\) 7.69738 0.317165
\(590\) 0 0
\(591\) 23.4304 0.963798
\(592\) 0 0
\(593\) −3.49395 −0.143479 −0.0717397 0.997423i \(-0.522855\pi\)
−0.0717397 + 0.997423i \(0.522855\pi\)
\(594\) 0 0
\(595\) 2.57971 0.105758
\(596\) 0 0
\(597\) 13.6574 0.558959
\(598\) 0 0
\(599\) 17.1990 0.702734 0.351367 0.936238i \(-0.385717\pi\)
0.351367 + 0.936238i \(0.385717\pi\)
\(600\) 0 0
\(601\) −2.51615 −0.102636 −0.0513179 0.998682i \(-0.516342\pi\)
−0.0513179 + 0.998682i \(0.516342\pi\)
\(602\) 0 0
\(603\) 4.07566 0.165974
\(604\) 0 0
\(605\) 1.94654 0.0791381
\(606\) 0 0
\(607\) −5.04774 −0.204881 −0.102441 0.994739i \(-0.532665\pi\)
−0.102441 + 0.994739i \(0.532665\pi\)
\(608\) 0 0
\(609\) −15.1735 −0.614862
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −3.25688 −0.131544 −0.0657722 0.997835i \(-0.520951\pi\)
−0.0657722 + 0.997835i \(0.520951\pi\)
\(614\) 0 0
\(615\) −0.693000 −0.0279445
\(616\) 0 0
\(617\) −24.2391 −0.975828 −0.487914 0.872892i \(-0.662242\pi\)
−0.487914 + 0.872892i \(0.662242\pi\)
\(618\) 0 0
\(619\) 8.90215 0.357808 0.178904 0.983867i \(-0.442745\pi\)
0.178904 + 0.983867i \(0.442745\pi\)
\(620\) 0 0
\(621\) 5.05784 0.202964
\(622\) 0 0
\(623\) −30.3470 −1.21583
\(624\) 0 0
\(625\) 24.7330 0.989321
\(626\) 0 0
\(627\) 34.3470 1.37169
\(628\) 0 0
\(629\) −34.0979 −1.35957
\(630\) 0 0
\(631\) −20.2969 −0.808007 −0.404003 0.914757i \(-0.632382\pi\)
−0.404003 + 0.914757i \(0.632382\pi\)
\(632\) 0 0
\(633\) 19.2492 0.765086
\(634\) 0 0
\(635\) −0.967705 −0.0384022
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −1.05784 −0.0418473
\(640\) 0 0
\(641\) −15.7253 −0.621112 −0.310556 0.950555i \(-0.600515\pi\)
−0.310556 + 0.950555i \(0.600515\pi\)
\(642\) 0 0
\(643\) −1.66746 −0.0657582 −0.0328791 0.999459i \(-0.510468\pi\)
−0.0328791 + 0.999459i \(0.510468\pi\)
\(644\) 0 0
\(645\) 1.59180 0.0626772
\(646\) 0 0
\(647\) 37.4304 1.47154 0.735770 0.677231i \(-0.236820\pi\)
0.735770 + 0.677231i \(0.236820\pi\)
\(648\) 0 0
\(649\) −59.9287 −2.35241
\(650\) 0 0
\(651\) 4.44821 0.174339
\(652\) 0 0
\(653\) −46.6140 −1.82415 −0.912073 0.410027i \(-0.865519\pi\)
−0.912073 + 0.410027i \(0.865519\pi\)
\(654\) 0 0
\(655\) 1.33016 0.0519737
\(656\) 0 0
\(657\) −3.26698 −0.127457
\(658\) 0 0
\(659\) 3.46603 0.135017 0.0675087 0.997719i \(-0.478495\pi\)
0.0675087 + 0.997719i \(0.478495\pi\)
\(660\) 0 0
\(661\) −18.9543 −0.737235 −0.368618 0.929581i \(-0.620169\pi\)
−0.368618 + 0.929581i \(0.620169\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −3.55751 −0.137954
\(666\) 0 0
\(667\) 19.5562 0.757218
\(668\) 0 0
\(669\) −16.0000 −0.618596
\(670\) 0 0
\(671\) −29.2892 −1.13070
\(672\) 0 0
\(673\) 13.9321 0.537042 0.268521 0.963274i \(-0.413465\pi\)
0.268521 + 0.963274i \(0.413465\pi\)
\(674\) 0 0
\(675\) 4.98218 0.191764
\(676\) 0 0
\(677\) −2.68528 −0.103204 −0.0516018 0.998668i \(-0.516433\pi\)
−0.0516018 + 0.998668i \(0.516433\pi\)
\(678\) 0 0
\(679\) −27.9943 −1.07432
\(680\) 0 0
\(681\) −23.0222 −0.882212
\(682\) 0 0
\(683\) 2.26698 0.0867437 0.0433719 0.999059i \(-0.486190\pi\)
0.0433719 + 0.999059i \(0.486190\pi\)
\(684\) 0 0
\(685\) −1.26261 −0.0482418
\(686\) 0 0
\(687\) 8.11567 0.309632
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −2.49395 −0.0948744 −0.0474372 0.998874i \(-0.515105\pi\)
−0.0474372 + 0.998874i \(0.515105\pi\)
\(692\) 0 0
\(693\) 19.8487 0.753989
\(694\) 0 0
\(695\) −0.453936 −0.0172188
\(696\) 0 0
\(697\) −25.5639 −0.968301
\(698\) 0 0
\(699\) −6.53397 −0.247137
\(700\) 0 0
\(701\) −37.8487 −1.42953 −0.714763 0.699367i \(-0.753465\pi\)
−0.714763 + 0.699367i \(0.753465\pi\)
\(702\) 0 0
\(703\) 47.0222 1.77348
\(704\) 0 0
\(705\) 1.20915 0.0455391
\(706\) 0 0
\(707\) −22.4284 −0.843507
\(708\) 0 0
\(709\) −16.4049 −0.616097 −0.308049 0.951371i \(-0.599676\pi\)
−0.308049 + 0.951371i \(0.599676\pi\)
\(710\) 0 0
\(711\) −7.24916 −0.271865
\(712\) 0 0
\(713\) −5.73302 −0.214703
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 11.3248 0.422933
\(718\) 0 0
\(719\) −16.0800 −0.599684 −0.299842 0.953989i \(-0.596934\pi\)
−0.299842 + 0.953989i \(0.596934\pi\)
\(720\) 0 0
\(721\) −24.2969 −0.904864
\(722\) 0 0
\(723\) −11.5995 −0.431391
\(724\) 0 0
\(725\) 19.2636 0.715434
\(726\) 0 0
\(727\) −44.6695 −1.65670 −0.828349 0.560212i \(-0.810720\pi\)
−0.828349 + 0.560212i \(0.810720\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 58.7196 2.17182
\(732\) 0 0
\(733\) −27.9422 −1.03207 −0.516034 0.856568i \(-0.672592\pi\)
−0.516034 + 0.856568i \(0.672592\pi\)
\(734\) 0 0
\(735\) −1.12140 −0.0413633
\(736\) 0 0
\(737\) −20.6140 −0.759326
\(738\) 0 0
\(739\) 11.4660 0.421785 0.210892 0.977509i \(-0.432363\pi\)
0.210892 + 0.977509i \(0.432363\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −19.3147 −0.708588 −0.354294 0.935134i \(-0.615279\pi\)
−0.354294 + 0.935134i \(0.615279\pi\)
\(744\) 0 0
\(745\) −0.495949 −0.0181702
\(746\) 0 0
\(747\) −11.3248 −0.414353
\(748\) 0 0
\(749\) 35.5461 1.29882
\(750\) 0 0
\(751\) −9.97446 −0.363973 −0.181987 0.983301i \(-0.558253\pi\)
−0.181987 + 0.983301i \(0.558253\pi\)
\(752\) 0 0
\(753\) 10.1157 0.368636
\(754\) 0 0
\(755\) 0.443837 0.0161529
\(756\) 0 0
\(757\) −22.2313 −0.808012 −0.404006 0.914756i \(-0.632383\pi\)
−0.404006 + 0.914756i \(0.632383\pi\)
\(758\) 0 0
\(759\) −25.5817 −0.928557
\(760\) 0 0
\(761\) −8.26698 −0.299678 −0.149839 0.988710i \(-0.547876\pi\)
−0.149839 + 0.988710i \(0.547876\pi\)
\(762\) 0 0
\(763\) −49.8988 −1.80646
\(764\) 0 0
\(765\) −0.657360 −0.0237669
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −14.5138 −0.523380 −0.261690 0.965152i \(-0.584280\pi\)
−0.261690 + 0.965152i \(0.584280\pi\)
\(770\) 0 0
\(771\) −1.19133 −0.0429046
\(772\) 0 0
\(773\) −24.1157 −0.867380 −0.433690 0.901062i \(-0.642789\pi\)
−0.433690 + 0.901062i \(0.642789\pi\)
\(774\) 0 0
\(775\) −5.64726 −0.202856
\(776\) 0 0
\(777\) 27.1735 0.974844
\(778\) 0 0
\(779\) 35.2535 1.26309
\(780\) 0 0
\(781\) 5.35036 0.191451
\(782\) 0 0
\(783\) 3.86651 0.138178
\(784\) 0 0
\(785\) 0.310345 0.0110767
\(786\) 0 0
\(787\) 35.0979 1.25110 0.625552 0.780183i \(-0.284874\pi\)
0.625552 + 0.780183i \(0.284874\pi\)
\(788\) 0 0
\(789\) −20.9065 −0.744292
\(790\) 0 0
\(791\) −74.2656 −2.64058
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0.213524 0.00757290
\(796\) 0 0
\(797\) −45.0323 −1.59513 −0.797563 0.603236i \(-0.793878\pi\)
−0.797563 + 0.603236i \(0.793878\pi\)
\(798\) 0 0
\(799\) 44.6039 1.57797
\(800\) 0 0
\(801\) 7.73302 0.273233
\(802\) 0 0
\(803\) 16.5239 0.583115
\(804\) 0 0
\(805\) 2.64964 0.0933875
\(806\) 0 0
\(807\) 5.84869 0.205884
\(808\) 0 0
\(809\) 47.8208 1.68129 0.840644 0.541588i \(-0.182177\pi\)
0.840644 + 0.541588i \(0.182177\pi\)
\(810\) 0 0
\(811\) −6.56388 −0.230489 −0.115245 0.993337i \(-0.536765\pi\)
−0.115245 + 0.993337i \(0.536765\pi\)
\(812\) 0 0
\(813\) 23.0979 0.810077
\(814\) 0 0
\(815\) 0.916623 0.0321079
\(816\) 0 0
\(817\) −80.9765 −2.83301
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 3.81305 0.133076 0.0665381 0.997784i \(-0.478805\pi\)
0.0665381 + 0.997784i \(0.478805\pi\)
\(822\) 0 0
\(823\) −10.3470 −0.360674 −0.180337 0.983605i \(-0.557719\pi\)
−0.180337 + 0.983605i \(0.557719\pi\)
\(824\) 0 0
\(825\) −25.1990 −0.877318
\(826\) 0 0
\(827\) 34.6496 1.20489 0.602443 0.798162i \(-0.294194\pi\)
0.602443 + 0.798162i \(0.294194\pi\)
\(828\) 0 0
\(829\) −15.1056 −0.524638 −0.262319 0.964981i \(-0.584487\pi\)
−0.262319 + 0.964981i \(0.584487\pi\)
\(830\) 0 0
\(831\) −4.80867 −0.166811
\(832\) 0 0
\(833\) −41.3668 −1.43328
\(834\) 0 0
\(835\) 2.91187 0.100769
\(836\) 0 0
\(837\) −1.13349 −0.0391792
\(838\) 0 0
\(839\) 44.8964 1.55000 0.774998 0.631963i \(-0.217751\pi\)
0.774998 + 0.631963i \(0.217751\pi\)
\(840\) 0 0
\(841\) −14.0501 −0.484487
\(842\) 0 0
\(843\) 5.60962 0.193206
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −57.2236 −1.96623
\(848\) 0 0
\(849\) −25.8887 −0.888498
\(850\) 0 0
\(851\) −35.0222 −1.20055
\(852\) 0 0
\(853\) −18.9543 −0.648982 −0.324491 0.945889i \(-0.605193\pi\)
−0.324491 + 0.945889i \(0.605193\pi\)
\(854\) 0 0
\(855\) 0.906524 0.0310025
\(856\) 0 0
\(857\) −24.2391 −0.827991 −0.413995 0.910279i \(-0.635867\pi\)
−0.413995 + 0.910279i \(0.635867\pi\)
\(858\) 0 0
\(859\) 14.1913 0.484202 0.242101 0.970251i \(-0.422163\pi\)
0.242101 + 0.970251i \(0.422163\pi\)
\(860\) 0 0
\(861\) 20.3726 0.694295
\(862\) 0 0
\(863\) −31.7075 −1.07934 −0.539668 0.841878i \(-0.681450\pi\)
−0.539668 + 0.841878i \(0.681450\pi\)
\(864\) 0 0
\(865\) −0.478129 −0.0162569
\(866\) 0 0
\(867\) −7.24916 −0.246195
\(868\) 0 0
\(869\) 36.6651 1.24378
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 7.13349 0.241432
\(874\) 0 0
\(875\) 5.22935 0.176784
\(876\) 0 0
\(877\) 40.7374 1.37560 0.687802 0.725898i \(-0.258576\pi\)
0.687802 + 0.725898i \(0.258576\pi\)
\(878\) 0 0
\(879\) 25.4482 0.858347
\(880\) 0 0
\(881\) −20.3904 −0.686969 −0.343485 0.939158i \(-0.611607\pi\)
−0.343485 + 0.939158i \(0.611607\pi\)
\(882\) 0 0
\(883\) −3.93444 −0.132405 −0.0662023 0.997806i \(-0.521088\pi\)
−0.0662023 + 0.997806i \(0.521088\pi\)
\(884\) 0 0
\(885\) −1.58170 −0.0531684
\(886\) 0 0
\(887\) −15.3147 −0.514218 −0.257109 0.966382i \(-0.582770\pi\)
−0.257109 + 0.966382i \(0.582770\pi\)
\(888\) 0 0
\(889\) 28.4482 0.954122
\(890\) 0 0
\(891\) −5.05784 −0.169444
\(892\) 0 0
\(893\) −61.5104 −2.05837
\(894\) 0 0
\(895\) −0.161411 −0.00539539
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −4.38266 −0.146170
\(900\) 0 0
\(901\) 7.87661 0.262408
\(902\) 0 0
\(903\) −46.7952 −1.55725
\(904\) 0 0
\(905\) 2.52625 0.0839753
\(906\) 0 0
\(907\) −50.5784 −1.67943 −0.839713 0.543030i \(-0.817277\pi\)
−0.839713 + 0.543030i \(0.817277\pi\)
\(908\) 0 0
\(909\) 5.71520 0.189561
\(910\) 0 0
\(911\) 10.3470 0.342812 0.171406 0.985200i \(-0.445169\pi\)
0.171406 + 0.985200i \(0.445169\pi\)
\(912\) 0 0
\(913\) 57.2791 1.89566
\(914\) 0 0
\(915\) −0.773032 −0.0255556
\(916\) 0 0
\(917\) −39.1036 −1.29131
\(918\) 0 0
\(919\) 2.95226 0.0973862 0.0486931 0.998814i \(-0.484494\pi\)
0.0486931 + 0.998814i \(0.484494\pi\)
\(920\) 0 0
\(921\) 0.458312 0.0151019
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −34.4983 −1.13430
\(926\) 0 0
\(927\) 6.19133 0.203350
\(928\) 0 0
\(929\) 8.35474 0.274110 0.137055 0.990563i \(-0.456236\pi\)
0.137055 + 0.990563i \(0.456236\pi\)
\(930\) 0 0
\(931\) 57.0464 1.86962
\(932\) 0 0
\(933\) −22.7909 −0.746139
\(934\) 0 0
\(935\) 3.32482 0.108733
\(936\) 0 0
\(937\) 20.3648 0.665290 0.332645 0.943052i \(-0.392059\pi\)
0.332645 + 0.943052i \(0.392059\pi\)
\(938\) 0 0
\(939\) −28.5639 −0.932147
\(940\) 0 0
\(941\) −10.5138 −0.342739 −0.171370 0.985207i \(-0.554819\pi\)
−0.171370 + 0.985207i \(0.554819\pi\)
\(942\) 0 0
\(943\) −26.2569 −0.855042
\(944\) 0 0
\(945\) 0.523868 0.0170414
\(946\) 0 0
\(947\) −33.5817 −1.09126 −0.545629 0.838027i \(-0.683709\pi\)
−0.545629 + 0.838027i \(0.683709\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 23.9465 0.776520
\(952\) 0 0
\(953\) 58.9765 1.91043 0.955217 0.295905i \(-0.0956212\pi\)
0.955217 + 0.295905i \(0.0956212\pi\)
\(954\) 0 0
\(955\) 1.04774 0.0339040
\(956\) 0 0
\(957\) −19.5562 −0.632161
\(958\) 0 0
\(959\) 37.1177 1.19859
\(960\) 0 0
\(961\) −29.7152 −0.958555
\(962\) 0 0
\(963\) −9.05784 −0.291885
\(964\) 0 0
\(965\) −0.949885 −0.0305779
\(966\) 0 0
\(967\) 58.9509 1.89573 0.947867 0.318667i \(-0.103235\pi\)
0.947867 + 0.318667i \(0.103235\pi\)
\(968\) 0 0
\(969\) 33.4405 1.07426
\(970\) 0 0
\(971\) 52.1601 1.67390 0.836948 0.547282i \(-0.184338\pi\)
0.836948 + 0.547282i \(0.184338\pi\)
\(972\) 0 0
\(973\) 13.3446 0.427809
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −23.5538 −0.753552 −0.376776 0.926304i \(-0.622967\pi\)
−0.376776 + 0.926304i \(0.622967\pi\)
\(978\) 0 0
\(979\) −39.1123 −1.25004
\(980\) 0 0
\(981\) 12.7152 0.405965
\(982\) 0 0
\(983\) −0.453936 −0.0144783 −0.00723916 0.999974i \(-0.502304\pi\)
−0.00723916 + 0.999974i \(0.502304\pi\)
\(984\) 0 0
\(985\) −3.12777 −0.0996590
\(986\) 0 0
\(987\) −35.5461 −1.13144
\(988\) 0 0
\(989\) 60.3114 1.91779
\(990\) 0 0
\(991\) −1.72292 −0.0547303 −0.0273651 0.999626i \(-0.508712\pi\)
−0.0273651 + 0.999626i \(0.508712\pi\)
\(992\) 0 0
\(993\) −25.1335 −0.797587
\(994\) 0 0
\(995\) −1.82315 −0.0577977
\(996\) 0 0
\(997\) −12.3248 −0.390331 −0.195165 0.980770i \(-0.562524\pi\)
−0.195165 + 0.980770i \(0.562524\pi\)
\(998\) 0 0
\(999\) −6.92434 −0.219077
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4056.2.a.z.1.2 3
4.3 odd 2 8112.2.a.ck.1.2 3
13.3 even 3 312.2.q.e.217.2 6
13.5 odd 4 4056.2.c.m.337.3 6
13.8 odd 4 4056.2.c.m.337.4 6
13.9 even 3 312.2.q.e.289.2 yes 6
13.12 even 2 4056.2.a.y.1.2 3
39.29 odd 6 936.2.t.h.217.2 6
39.35 odd 6 936.2.t.h.289.2 6
52.3 odd 6 624.2.q.j.529.2 6
52.35 odd 6 624.2.q.j.289.2 6
52.51 odd 2 8112.2.a.cl.1.2 3
156.35 even 6 1872.2.t.u.289.2 6
156.107 even 6 1872.2.t.u.1153.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.q.e.217.2 6 13.3 even 3
312.2.q.e.289.2 yes 6 13.9 even 3
624.2.q.j.289.2 6 52.35 odd 6
624.2.q.j.529.2 6 52.3 odd 6
936.2.t.h.217.2 6 39.29 odd 6
936.2.t.h.289.2 6 39.35 odd 6
1872.2.t.u.289.2 6 156.35 even 6
1872.2.t.u.1153.2 6 156.107 even 6
4056.2.a.y.1.2 3 13.12 even 2
4056.2.a.z.1.2 3 1.1 even 1 trivial
4056.2.c.m.337.3 6 13.5 odd 4
4056.2.c.m.337.4 6 13.8 odd 4
8112.2.a.ck.1.2 3 4.3 odd 2
8112.2.a.cl.1.2 3 52.51 odd 2