Properties

Label 406.2.a.d.1.1
Level $406$
Weight $2$
Character 406.1
Self dual yes
Analytic conductor $3.242$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [406,2,Mod(1,406)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(406, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("406.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 406 = 2 \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 406.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.24192632206\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 406.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -3.00000 q^{5} -1.00000 q^{6} -1.00000 q^{7} +1.00000 q^{8} -2.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -3.00000 q^{5} -1.00000 q^{6} -1.00000 q^{7} +1.00000 q^{8} -2.00000 q^{9} -3.00000 q^{10} -1.00000 q^{11} -1.00000 q^{12} -1.00000 q^{13} -1.00000 q^{14} +3.00000 q^{15} +1.00000 q^{16} -4.00000 q^{17} -2.00000 q^{18} -4.00000 q^{19} -3.00000 q^{20} +1.00000 q^{21} -1.00000 q^{22} -2.00000 q^{23} -1.00000 q^{24} +4.00000 q^{25} -1.00000 q^{26} +5.00000 q^{27} -1.00000 q^{28} +1.00000 q^{29} +3.00000 q^{30} -1.00000 q^{31} +1.00000 q^{32} +1.00000 q^{33} -4.00000 q^{34} +3.00000 q^{35} -2.00000 q^{36} +6.00000 q^{37} -4.00000 q^{38} +1.00000 q^{39} -3.00000 q^{40} +1.00000 q^{42} +3.00000 q^{43} -1.00000 q^{44} +6.00000 q^{45} -2.00000 q^{46} -9.00000 q^{47} -1.00000 q^{48} +1.00000 q^{49} +4.00000 q^{50} +4.00000 q^{51} -1.00000 q^{52} +3.00000 q^{53} +5.00000 q^{54} +3.00000 q^{55} -1.00000 q^{56} +4.00000 q^{57} +1.00000 q^{58} +3.00000 q^{60} +6.00000 q^{61} -1.00000 q^{62} +2.00000 q^{63} +1.00000 q^{64} +3.00000 q^{65} +1.00000 q^{66} +2.00000 q^{67} -4.00000 q^{68} +2.00000 q^{69} +3.00000 q^{70} -8.00000 q^{71} -2.00000 q^{72} +6.00000 q^{74} -4.00000 q^{75} -4.00000 q^{76} +1.00000 q^{77} +1.00000 q^{78} -13.0000 q^{79} -3.00000 q^{80} +1.00000 q^{81} +1.00000 q^{84} +12.0000 q^{85} +3.00000 q^{86} -1.00000 q^{87} -1.00000 q^{88} -14.0000 q^{89} +6.00000 q^{90} +1.00000 q^{91} -2.00000 q^{92} +1.00000 q^{93} -9.00000 q^{94} +12.0000 q^{95} -1.00000 q^{96} +16.0000 q^{97} +1.00000 q^{98} +2.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.00000 −0.577350 −0.288675 0.957427i \(-0.593215\pi\)
−0.288675 + 0.957427i \(0.593215\pi\)
\(4\) 1.00000 0.500000
\(5\) −3.00000 −1.34164 −0.670820 0.741620i \(-0.734058\pi\)
−0.670820 + 0.741620i \(0.734058\pi\)
\(6\) −1.00000 −0.408248
\(7\) −1.00000 −0.377964
\(8\) 1.00000 0.353553
\(9\) −2.00000 −0.666667
\(10\) −3.00000 −0.948683
\(11\) −1.00000 −0.301511 −0.150756 0.988571i \(-0.548171\pi\)
−0.150756 + 0.988571i \(0.548171\pi\)
\(12\) −1.00000 −0.288675
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) −1.00000 −0.267261
\(15\) 3.00000 0.774597
\(16\) 1.00000 0.250000
\(17\) −4.00000 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(18\) −2.00000 −0.471405
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) −3.00000 −0.670820
\(21\) 1.00000 0.218218
\(22\) −1.00000 −0.213201
\(23\) −2.00000 −0.417029 −0.208514 0.978019i \(-0.566863\pi\)
−0.208514 + 0.978019i \(0.566863\pi\)
\(24\) −1.00000 −0.204124
\(25\) 4.00000 0.800000
\(26\) −1.00000 −0.196116
\(27\) 5.00000 0.962250
\(28\) −1.00000 −0.188982
\(29\) 1.00000 0.185695
\(30\) 3.00000 0.547723
\(31\) −1.00000 −0.179605 −0.0898027 0.995960i \(-0.528624\pi\)
−0.0898027 + 0.995960i \(0.528624\pi\)
\(32\) 1.00000 0.176777
\(33\) 1.00000 0.174078
\(34\) −4.00000 −0.685994
\(35\) 3.00000 0.507093
\(36\) −2.00000 −0.333333
\(37\) 6.00000 0.986394 0.493197 0.869918i \(-0.335828\pi\)
0.493197 + 0.869918i \(0.335828\pi\)
\(38\) −4.00000 −0.648886
\(39\) 1.00000 0.160128
\(40\) −3.00000 −0.474342
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 1.00000 0.154303
\(43\) 3.00000 0.457496 0.228748 0.973486i \(-0.426537\pi\)
0.228748 + 0.973486i \(0.426537\pi\)
\(44\) −1.00000 −0.150756
\(45\) 6.00000 0.894427
\(46\) −2.00000 −0.294884
\(47\) −9.00000 −1.31278 −0.656392 0.754420i \(-0.727918\pi\)
−0.656392 + 0.754420i \(0.727918\pi\)
\(48\) −1.00000 −0.144338
\(49\) 1.00000 0.142857
\(50\) 4.00000 0.565685
\(51\) 4.00000 0.560112
\(52\) −1.00000 −0.138675
\(53\) 3.00000 0.412082 0.206041 0.978543i \(-0.433942\pi\)
0.206041 + 0.978543i \(0.433942\pi\)
\(54\) 5.00000 0.680414
\(55\) 3.00000 0.404520
\(56\) −1.00000 −0.133631
\(57\) 4.00000 0.529813
\(58\) 1.00000 0.131306
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 3.00000 0.387298
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) −1.00000 −0.127000
\(63\) 2.00000 0.251976
\(64\) 1.00000 0.125000
\(65\) 3.00000 0.372104
\(66\) 1.00000 0.123091
\(67\) 2.00000 0.244339 0.122169 0.992509i \(-0.461015\pi\)
0.122169 + 0.992509i \(0.461015\pi\)
\(68\) −4.00000 −0.485071
\(69\) 2.00000 0.240772
\(70\) 3.00000 0.358569
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) −2.00000 −0.235702
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 6.00000 0.697486
\(75\) −4.00000 −0.461880
\(76\) −4.00000 −0.458831
\(77\) 1.00000 0.113961
\(78\) 1.00000 0.113228
\(79\) −13.0000 −1.46261 −0.731307 0.682048i \(-0.761089\pi\)
−0.731307 + 0.682048i \(0.761089\pi\)
\(80\) −3.00000 −0.335410
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 1.00000 0.109109
\(85\) 12.0000 1.30158
\(86\) 3.00000 0.323498
\(87\) −1.00000 −0.107211
\(88\) −1.00000 −0.106600
\(89\) −14.0000 −1.48400 −0.741999 0.670402i \(-0.766122\pi\)
−0.741999 + 0.670402i \(0.766122\pi\)
\(90\) 6.00000 0.632456
\(91\) 1.00000 0.104828
\(92\) −2.00000 −0.208514
\(93\) 1.00000 0.103695
\(94\) −9.00000 −0.928279
\(95\) 12.0000 1.23117
\(96\) −1.00000 −0.102062
\(97\) 16.0000 1.62455 0.812277 0.583272i \(-0.198228\pi\)
0.812277 + 0.583272i \(0.198228\pi\)
\(98\) 1.00000 0.101015
\(99\) 2.00000 0.201008
\(100\) 4.00000 0.400000
\(101\) −4.00000 −0.398015 −0.199007 0.979998i \(-0.563772\pi\)
−0.199007 + 0.979998i \(0.563772\pi\)
\(102\) 4.00000 0.396059
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) −1.00000 −0.0980581
\(105\) −3.00000 −0.292770
\(106\) 3.00000 0.291386
\(107\) −14.0000 −1.35343 −0.676716 0.736245i \(-0.736597\pi\)
−0.676716 + 0.736245i \(0.736597\pi\)
\(108\) 5.00000 0.481125
\(109\) 15.0000 1.43674 0.718370 0.695662i \(-0.244889\pi\)
0.718370 + 0.695662i \(0.244889\pi\)
\(110\) 3.00000 0.286039
\(111\) −6.00000 −0.569495
\(112\) −1.00000 −0.0944911
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 4.00000 0.374634
\(115\) 6.00000 0.559503
\(116\) 1.00000 0.0928477
\(117\) 2.00000 0.184900
\(118\) 0 0
\(119\) 4.00000 0.366679
\(120\) 3.00000 0.273861
\(121\) −10.0000 −0.909091
\(122\) 6.00000 0.543214
\(123\) 0 0
\(124\) −1.00000 −0.0898027
\(125\) 3.00000 0.268328
\(126\) 2.00000 0.178174
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) 1.00000 0.0883883
\(129\) −3.00000 −0.264135
\(130\) 3.00000 0.263117
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 1.00000 0.0870388
\(133\) 4.00000 0.346844
\(134\) 2.00000 0.172774
\(135\) −15.0000 −1.29099
\(136\) −4.00000 −0.342997
\(137\) −10.0000 −0.854358 −0.427179 0.904167i \(-0.640493\pi\)
−0.427179 + 0.904167i \(0.640493\pi\)
\(138\) 2.00000 0.170251
\(139\) −14.0000 −1.18746 −0.593732 0.804663i \(-0.702346\pi\)
−0.593732 + 0.804663i \(0.702346\pi\)
\(140\) 3.00000 0.253546
\(141\) 9.00000 0.757937
\(142\) −8.00000 −0.671345
\(143\) 1.00000 0.0836242
\(144\) −2.00000 −0.166667
\(145\) −3.00000 −0.249136
\(146\) 0 0
\(147\) −1.00000 −0.0824786
\(148\) 6.00000 0.493197
\(149\) −11.0000 −0.901155 −0.450578 0.892737i \(-0.648782\pi\)
−0.450578 + 0.892737i \(0.648782\pi\)
\(150\) −4.00000 −0.326599
\(151\) 14.0000 1.13930 0.569652 0.821886i \(-0.307078\pi\)
0.569652 + 0.821886i \(0.307078\pi\)
\(152\) −4.00000 −0.324443
\(153\) 8.00000 0.646762
\(154\) 1.00000 0.0805823
\(155\) 3.00000 0.240966
\(156\) 1.00000 0.0800641
\(157\) −12.0000 −0.957704 −0.478852 0.877896i \(-0.658947\pi\)
−0.478852 + 0.877896i \(0.658947\pi\)
\(158\) −13.0000 −1.03422
\(159\) −3.00000 −0.237915
\(160\) −3.00000 −0.237171
\(161\) 2.00000 0.157622
\(162\) 1.00000 0.0785674
\(163\) −21.0000 −1.64485 −0.822423 0.568876i \(-0.807379\pi\)
−0.822423 + 0.568876i \(0.807379\pi\)
\(164\) 0 0
\(165\) −3.00000 −0.233550
\(166\) 0 0
\(167\) 12.0000 0.928588 0.464294 0.885681i \(-0.346308\pi\)
0.464294 + 0.885681i \(0.346308\pi\)
\(168\) 1.00000 0.0771517
\(169\) −12.0000 −0.923077
\(170\) 12.0000 0.920358
\(171\) 8.00000 0.611775
\(172\) 3.00000 0.228748
\(173\) 14.0000 1.06440 0.532200 0.846619i \(-0.321365\pi\)
0.532200 + 0.846619i \(0.321365\pi\)
\(174\) −1.00000 −0.0758098
\(175\) −4.00000 −0.302372
\(176\) −1.00000 −0.0753778
\(177\) 0 0
\(178\) −14.0000 −1.04934
\(179\) −24.0000 −1.79384 −0.896922 0.442189i \(-0.854202\pi\)
−0.896922 + 0.442189i \(0.854202\pi\)
\(180\) 6.00000 0.447214
\(181\) 23.0000 1.70958 0.854788 0.518977i \(-0.173687\pi\)
0.854788 + 0.518977i \(0.173687\pi\)
\(182\) 1.00000 0.0741249
\(183\) −6.00000 −0.443533
\(184\) −2.00000 −0.147442
\(185\) −18.0000 −1.32339
\(186\) 1.00000 0.0733236
\(187\) 4.00000 0.292509
\(188\) −9.00000 −0.656392
\(189\) −5.00000 −0.363696
\(190\) 12.0000 0.870572
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 12.0000 0.863779 0.431889 0.901927i \(-0.357847\pi\)
0.431889 + 0.901927i \(0.357847\pi\)
\(194\) 16.0000 1.14873
\(195\) −3.00000 −0.214834
\(196\) 1.00000 0.0714286
\(197\) −2.00000 −0.142494 −0.0712470 0.997459i \(-0.522698\pi\)
−0.0712470 + 0.997459i \(0.522698\pi\)
\(198\) 2.00000 0.142134
\(199\) −20.0000 −1.41776 −0.708881 0.705328i \(-0.750800\pi\)
−0.708881 + 0.705328i \(0.750800\pi\)
\(200\) 4.00000 0.282843
\(201\) −2.00000 −0.141069
\(202\) −4.00000 −0.281439
\(203\) −1.00000 −0.0701862
\(204\) 4.00000 0.280056
\(205\) 0 0
\(206\) 4.00000 0.278693
\(207\) 4.00000 0.278019
\(208\) −1.00000 −0.0693375
\(209\) 4.00000 0.276686
\(210\) −3.00000 −0.207020
\(211\) −9.00000 −0.619586 −0.309793 0.950804i \(-0.600260\pi\)
−0.309793 + 0.950804i \(0.600260\pi\)
\(212\) 3.00000 0.206041
\(213\) 8.00000 0.548151
\(214\) −14.0000 −0.957020
\(215\) −9.00000 −0.613795
\(216\) 5.00000 0.340207
\(217\) 1.00000 0.0678844
\(218\) 15.0000 1.01593
\(219\) 0 0
\(220\) 3.00000 0.202260
\(221\) 4.00000 0.269069
\(222\) −6.00000 −0.402694
\(223\) −4.00000 −0.267860 −0.133930 0.990991i \(-0.542760\pi\)
−0.133930 + 0.990991i \(0.542760\pi\)
\(224\) −1.00000 −0.0668153
\(225\) −8.00000 −0.533333
\(226\) 0 0
\(227\) 14.0000 0.929213 0.464606 0.885517i \(-0.346196\pi\)
0.464606 + 0.885517i \(0.346196\pi\)
\(228\) 4.00000 0.264906
\(229\) 14.0000 0.925146 0.462573 0.886581i \(-0.346926\pi\)
0.462573 + 0.886581i \(0.346926\pi\)
\(230\) 6.00000 0.395628
\(231\) −1.00000 −0.0657952
\(232\) 1.00000 0.0656532
\(233\) 11.0000 0.720634 0.360317 0.932830i \(-0.382669\pi\)
0.360317 + 0.932830i \(0.382669\pi\)
\(234\) 2.00000 0.130744
\(235\) 27.0000 1.76129
\(236\) 0 0
\(237\) 13.0000 0.844441
\(238\) 4.00000 0.259281
\(239\) −12.0000 −0.776215 −0.388108 0.921614i \(-0.626871\pi\)
−0.388108 + 0.921614i \(0.626871\pi\)
\(240\) 3.00000 0.193649
\(241\) −29.0000 −1.86805 −0.934027 0.357202i \(-0.883731\pi\)
−0.934027 + 0.357202i \(0.883731\pi\)
\(242\) −10.0000 −0.642824
\(243\) −16.0000 −1.02640
\(244\) 6.00000 0.384111
\(245\) −3.00000 −0.191663
\(246\) 0 0
\(247\) 4.00000 0.254514
\(248\) −1.00000 −0.0635001
\(249\) 0 0
\(250\) 3.00000 0.189737
\(251\) −17.0000 −1.07303 −0.536515 0.843891i \(-0.680260\pi\)
−0.536515 + 0.843891i \(0.680260\pi\)
\(252\) 2.00000 0.125988
\(253\) 2.00000 0.125739
\(254\) −16.0000 −1.00393
\(255\) −12.0000 −0.751469
\(256\) 1.00000 0.0625000
\(257\) −9.00000 −0.561405 −0.280702 0.959795i \(-0.590567\pi\)
−0.280702 + 0.959795i \(0.590567\pi\)
\(258\) −3.00000 −0.186772
\(259\) −6.00000 −0.372822
\(260\) 3.00000 0.186052
\(261\) −2.00000 −0.123797
\(262\) 0 0
\(263\) 5.00000 0.308313 0.154157 0.988046i \(-0.450734\pi\)
0.154157 + 0.988046i \(0.450734\pi\)
\(264\) 1.00000 0.0615457
\(265\) −9.00000 −0.552866
\(266\) 4.00000 0.245256
\(267\) 14.0000 0.856786
\(268\) 2.00000 0.122169
\(269\) −28.0000 −1.70719 −0.853595 0.520937i \(-0.825583\pi\)
−0.853595 + 0.520937i \(0.825583\pi\)
\(270\) −15.0000 −0.912871
\(271\) 25.0000 1.51864 0.759321 0.650716i \(-0.225531\pi\)
0.759321 + 0.650716i \(0.225531\pi\)
\(272\) −4.00000 −0.242536
\(273\) −1.00000 −0.0605228
\(274\) −10.0000 −0.604122
\(275\) −4.00000 −0.241209
\(276\) 2.00000 0.120386
\(277\) 10.0000 0.600842 0.300421 0.953807i \(-0.402873\pi\)
0.300421 + 0.953807i \(0.402873\pi\)
\(278\) −14.0000 −0.839664
\(279\) 2.00000 0.119737
\(280\) 3.00000 0.179284
\(281\) −21.0000 −1.25275 −0.626377 0.779520i \(-0.715463\pi\)
−0.626377 + 0.779520i \(0.715463\pi\)
\(282\) 9.00000 0.535942
\(283\) −2.00000 −0.118888 −0.0594438 0.998232i \(-0.518933\pi\)
−0.0594438 + 0.998232i \(0.518933\pi\)
\(284\) −8.00000 −0.474713
\(285\) −12.0000 −0.710819
\(286\) 1.00000 0.0591312
\(287\) 0 0
\(288\) −2.00000 −0.117851
\(289\) −1.00000 −0.0588235
\(290\) −3.00000 −0.176166
\(291\) −16.0000 −0.937937
\(292\) 0 0
\(293\) 18.0000 1.05157 0.525786 0.850617i \(-0.323771\pi\)
0.525786 + 0.850617i \(0.323771\pi\)
\(294\) −1.00000 −0.0583212
\(295\) 0 0
\(296\) 6.00000 0.348743
\(297\) −5.00000 −0.290129
\(298\) −11.0000 −0.637213
\(299\) 2.00000 0.115663
\(300\) −4.00000 −0.230940
\(301\) −3.00000 −0.172917
\(302\) 14.0000 0.805609
\(303\) 4.00000 0.229794
\(304\) −4.00000 −0.229416
\(305\) −18.0000 −1.03068
\(306\) 8.00000 0.457330
\(307\) 9.00000 0.513657 0.256829 0.966457i \(-0.417322\pi\)
0.256829 + 0.966457i \(0.417322\pi\)
\(308\) 1.00000 0.0569803
\(309\) −4.00000 −0.227552
\(310\) 3.00000 0.170389
\(311\) 20.0000 1.13410 0.567048 0.823685i \(-0.308085\pi\)
0.567048 + 0.823685i \(0.308085\pi\)
\(312\) 1.00000 0.0566139
\(313\) −5.00000 −0.282617 −0.141308 0.989966i \(-0.545131\pi\)
−0.141308 + 0.989966i \(0.545131\pi\)
\(314\) −12.0000 −0.677199
\(315\) −6.00000 −0.338062
\(316\) −13.0000 −0.731307
\(317\) 22.0000 1.23564 0.617822 0.786318i \(-0.288015\pi\)
0.617822 + 0.786318i \(0.288015\pi\)
\(318\) −3.00000 −0.168232
\(319\) −1.00000 −0.0559893
\(320\) −3.00000 −0.167705
\(321\) 14.0000 0.781404
\(322\) 2.00000 0.111456
\(323\) 16.0000 0.890264
\(324\) 1.00000 0.0555556
\(325\) −4.00000 −0.221880
\(326\) −21.0000 −1.16308
\(327\) −15.0000 −0.829502
\(328\) 0 0
\(329\) 9.00000 0.496186
\(330\) −3.00000 −0.165145
\(331\) 27.0000 1.48405 0.742027 0.670370i \(-0.233865\pi\)
0.742027 + 0.670370i \(0.233865\pi\)
\(332\) 0 0
\(333\) −12.0000 −0.657596
\(334\) 12.0000 0.656611
\(335\) −6.00000 −0.327815
\(336\) 1.00000 0.0545545
\(337\) 26.0000 1.41631 0.708155 0.706057i \(-0.249528\pi\)
0.708155 + 0.706057i \(0.249528\pi\)
\(338\) −12.0000 −0.652714
\(339\) 0 0
\(340\) 12.0000 0.650791
\(341\) 1.00000 0.0541530
\(342\) 8.00000 0.432590
\(343\) −1.00000 −0.0539949
\(344\) 3.00000 0.161749
\(345\) −6.00000 −0.323029
\(346\) 14.0000 0.752645
\(347\) 10.0000 0.536828 0.268414 0.963304i \(-0.413500\pi\)
0.268414 + 0.963304i \(0.413500\pi\)
\(348\) −1.00000 −0.0536056
\(349\) −3.00000 −0.160586 −0.0802932 0.996771i \(-0.525586\pi\)
−0.0802932 + 0.996771i \(0.525586\pi\)
\(350\) −4.00000 −0.213809
\(351\) −5.00000 −0.266880
\(352\) −1.00000 −0.0533002
\(353\) −34.0000 −1.80964 −0.904819 0.425797i \(-0.859994\pi\)
−0.904819 + 0.425797i \(0.859994\pi\)
\(354\) 0 0
\(355\) 24.0000 1.27379
\(356\) −14.0000 −0.741999
\(357\) −4.00000 −0.211702
\(358\) −24.0000 −1.26844
\(359\) −21.0000 −1.10834 −0.554169 0.832404i \(-0.686964\pi\)
−0.554169 + 0.832404i \(0.686964\pi\)
\(360\) 6.00000 0.316228
\(361\) −3.00000 −0.157895
\(362\) 23.0000 1.20885
\(363\) 10.0000 0.524864
\(364\) 1.00000 0.0524142
\(365\) 0 0
\(366\) −6.00000 −0.313625
\(367\) 16.0000 0.835193 0.417597 0.908633i \(-0.362873\pi\)
0.417597 + 0.908633i \(0.362873\pi\)
\(368\) −2.00000 −0.104257
\(369\) 0 0
\(370\) −18.0000 −0.935775
\(371\) −3.00000 −0.155752
\(372\) 1.00000 0.0518476
\(373\) 17.0000 0.880227 0.440113 0.897942i \(-0.354938\pi\)
0.440113 + 0.897942i \(0.354938\pi\)
\(374\) 4.00000 0.206835
\(375\) −3.00000 −0.154919
\(376\) −9.00000 −0.464140
\(377\) −1.00000 −0.0515026
\(378\) −5.00000 −0.257172
\(379\) 36.0000 1.84920 0.924598 0.380945i \(-0.124401\pi\)
0.924598 + 0.380945i \(0.124401\pi\)
\(380\) 12.0000 0.615587
\(381\) 16.0000 0.819705
\(382\) 8.00000 0.409316
\(383\) 30.0000 1.53293 0.766464 0.642287i \(-0.222014\pi\)
0.766464 + 0.642287i \(0.222014\pi\)
\(384\) −1.00000 −0.0510310
\(385\) −3.00000 −0.152894
\(386\) 12.0000 0.610784
\(387\) −6.00000 −0.304997
\(388\) 16.0000 0.812277
\(389\) −4.00000 −0.202808 −0.101404 0.994845i \(-0.532333\pi\)
−0.101404 + 0.994845i \(0.532333\pi\)
\(390\) −3.00000 −0.151911
\(391\) 8.00000 0.404577
\(392\) 1.00000 0.0505076
\(393\) 0 0
\(394\) −2.00000 −0.100759
\(395\) 39.0000 1.96230
\(396\) 2.00000 0.100504
\(397\) 11.0000 0.552074 0.276037 0.961147i \(-0.410979\pi\)
0.276037 + 0.961147i \(0.410979\pi\)
\(398\) −20.0000 −1.00251
\(399\) −4.00000 −0.200250
\(400\) 4.00000 0.200000
\(401\) 39.0000 1.94757 0.973784 0.227477i \(-0.0730475\pi\)
0.973784 + 0.227477i \(0.0730475\pi\)
\(402\) −2.00000 −0.0997509
\(403\) 1.00000 0.0498135
\(404\) −4.00000 −0.199007
\(405\) −3.00000 −0.149071
\(406\) −1.00000 −0.0496292
\(407\) −6.00000 −0.297409
\(408\) 4.00000 0.198030
\(409\) 28.0000 1.38451 0.692255 0.721653i \(-0.256617\pi\)
0.692255 + 0.721653i \(0.256617\pi\)
\(410\) 0 0
\(411\) 10.0000 0.493264
\(412\) 4.00000 0.197066
\(413\) 0 0
\(414\) 4.00000 0.196589
\(415\) 0 0
\(416\) −1.00000 −0.0490290
\(417\) 14.0000 0.685583
\(418\) 4.00000 0.195646
\(419\) −16.0000 −0.781651 −0.390826 0.920465i \(-0.627810\pi\)
−0.390826 + 0.920465i \(0.627810\pi\)
\(420\) −3.00000 −0.146385
\(421\) 26.0000 1.26716 0.633581 0.773676i \(-0.281584\pi\)
0.633581 + 0.773676i \(0.281584\pi\)
\(422\) −9.00000 −0.438113
\(423\) 18.0000 0.875190
\(424\) 3.00000 0.145693
\(425\) −16.0000 −0.776114
\(426\) 8.00000 0.387601
\(427\) −6.00000 −0.290360
\(428\) −14.0000 −0.676716
\(429\) −1.00000 −0.0482805
\(430\) −9.00000 −0.434019
\(431\) −24.0000 −1.15604 −0.578020 0.816023i \(-0.696174\pi\)
−0.578020 + 0.816023i \(0.696174\pi\)
\(432\) 5.00000 0.240563
\(433\) 34.0000 1.63394 0.816968 0.576683i \(-0.195653\pi\)
0.816968 + 0.576683i \(0.195653\pi\)
\(434\) 1.00000 0.0480015
\(435\) 3.00000 0.143839
\(436\) 15.0000 0.718370
\(437\) 8.00000 0.382692
\(438\) 0 0
\(439\) 2.00000 0.0954548 0.0477274 0.998860i \(-0.484802\pi\)
0.0477274 + 0.998860i \(0.484802\pi\)
\(440\) 3.00000 0.143019
\(441\) −2.00000 −0.0952381
\(442\) 4.00000 0.190261
\(443\) 20.0000 0.950229 0.475114 0.879924i \(-0.342407\pi\)
0.475114 + 0.879924i \(0.342407\pi\)
\(444\) −6.00000 −0.284747
\(445\) 42.0000 1.99099
\(446\) −4.00000 −0.189405
\(447\) 11.0000 0.520282
\(448\) −1.00000 −0.0472456
\(449\) −16.0000 −0.755087 −0.377543 0.925992i \(-0.623231\pi\)
−0.377543 + 0.925992i \(0.623231\pi\)
\(450\) −8.00000 −0.377124
\(451\) 0 0
\(452\) 0 0
\(453\) −14.0000 −0.657777
\(454\) 14.0000 0.657053
\(455\) −3.00000 −0.140642
\(456\) 4.00000 0.187317
\(457\) −26.0000 −1.21623 −0.608114 0.793849i \(-0.708074\pi\)
−0.608114 + 0.793849i \(0.708074\pi\)
\(458\) 14.0000 0.654177
\(459\) −20.0000 −0.933520
\(460\) 6.00000 0.279751
\(461\) −28.0000 −1.30409 −0.652045 0.758180i \(-0.726089\pi\)
−0.652045 + 0.758180i \(0.726089\pi\)
\(462\) −1.00000 −0.0465242
\(463\) −20.0000 −0.929479 −0.464739 0.885448i \(-0.653852\pi\)
−0.464739 + 0.885448i \(0.653852\pi\)
\(464\) 1.00000 0.0464238
\(465\) −3.00000 −0.139122
\(466\) 11.0000 0.509565
\(467\) 13.0000 0.601568 0.300784 0.953692i \(-0.402752\pi\)
0.300784 + 0.953692i \(0.402752\pi\)
\(468\) 2.00000 0.0924500
\(469\) −2.00000 −0.0923514
\(470\) 27.0000 1.24542
\(471\) 12.0000 0.552931
\(472\) 0 0
\(473\) −3.00000 −0.137940
\(474\) 13.0000 0.597110
\(475\) −16.0000 −0.734130
\(476\) 4.00000 0.183340
\(477\) −6.00000 −0.274721
\(478\) −12.0000 −0.548867
\(479\) 21.0000 0.959514 0.479757 0.877401i \(-0.340725\pi\)
0.479757 + 0.877401i \(0.340725\pi\)
\(480\) 3.00000 0.136931
\(481\) −6.00000 −0.273576
\(482\) −29.0000 −1.32091
\(483\) −2.00000 −0.0910032
\(484\) −10.0000 −0.454545
\(485\) −48.0000 −2.17957
\(486\) −16.0000 −0.725775
\(487\) −20.0000 −0.906287 −0.453143 0.891438i \(-0.649697\pi\)
−0.453143 + 0.891438i \(0.649697\pi\)
\(488\) 6.00000 0.271607
\(489\) 21.0000 0.949653
\(490\) −3.00000 −0.135526
\(491\) 9.00000 0.406164 0.203082 0.979162i \(-0.434904\pi\)
0.203082 + 0.979162i \(0.434904\pi\)
\(492\) 0 0
\(493\) −4.00000 −0.180151
\(494\) 4.00000 0.179969
\(495\) −6.00000 −0.269680
\(496\) −1.00000 −0.0449013
\(497\) 8.00000 0.358849
\(498\) 0 0
\(499\) −38.0000 −1.70111 −0.850557 0.525883i \(-0.823735\pi\)
−0.850557 + 0.525883i \(0.823735\pi\)
\(500\) 3.00000 0.134164
\(501\) −12.0000 −0.536120
\(502\) −17.0000 −0.758747
\(503\) −11.0000 −0.490466 −0.245233 0.969464i \(-0.578864\pi\)
−0.245233 + 0.969464i \(0.578864\pi\)
\(504\) 2.00000 0.0890871
\(505\) 12.0000 0.533993
\(506\) 2.00000 0.0889108
\(507\) 12.0000 0.532939
\(508\) −16.0000 −0.709885
\(509\) −7.00000 −0.310270 −0.155135 0.987893i \(-0.549581\pi\)
−0.155135 + 0.987893i \(0.549581\pi\)
\(510\) −12.0000 −0.531369
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) −20.0000 −0.883022
\(514\) −9.00000 −0.396973
\(515\) −12.0000 −0.528783
\(516\) −3.00000 −0.132068
\(517\) 9.00000 0.395820
\(518\) −6.00000 −0.263625
\(519\) −14.0000 −0.614532
\(520\) 3.00000 0.131559
\(521\) 25.0000 1.09527 0.547635 0.836717i \(-0.315528\pi\)
0.547635 + 0.836717i \(0.315528\pi\)
\(522\) −2.00000 −0.0875376
\(523\) −34.0000 −1.48672 −0.743358 0.668894i \(-0.766768\pi\)
−0.743358 + 0.668894i \(0.766768\pi\)
\(524\) 0 0
\(525\) 4.00000 0.174574
\(526\) 5.00000 0.218010
\(527\) 4.00000 0.174243
\(528\) 1.00000 0.0435194
\(529\) −19.0000 −0.826087
\(530\) −9.00000 −0.390935
\(531\) 0 0
\(532\) 4.00000 0.173422
\(533\) 0 0
\(534\) 14.0000 0.605839
\(535\) 42.0000 1.81582
\(536\) 2.00000 0.0863868
\(537\) 24.0000 1.03568
\(538\) −28.0000 −1.20717
\(539\) −1.00000 −0.0430730
\(540\) −15.0000 −0.645497
\(541\) −20.0000 −0.859867 −0.429934 0.902861i \(-0.641463\pi\)
−0.429934 + 0.902861i \(0.641463\pi\)
\(542\) 25.0000 1.07384
\(543\) −23.0000 −0.987024
\(544\) −4.00000 −0.171499
\(545\) −45.0000 −1.92759
\(546\) −1.00000 −0.0427960
\(547\) −14.0000 −0.598597 −0.299298 0.954160i \(-0.596753\pi\)
−0.299298 + 0.954160i \(0.596753\pi\)
\(548\) −10.0000 −0.427179
\(549\) −12.0000 −0.512148
\(550\) −4.00000 −0.170561
\(551\) −4.00000 −0.170406
\(552\) 2.00000 0.0851257
\(553\) 13.0000 0.552816
\(554\) 10.0000 0.424859
\(555\) 18.0000 0.764057
\(556\) −14.0000 −0.593732
\(557\) 18.0000 0.762684 0.381342 0.924434i \(-0.375462\pi\)
0.381342 + 0.924434i \(0.375462\pi\)
\(558\) 2.00000 0.0846668
\(559\) −3.00000 −0.126886
\(560\) 3.00000 0.126773
\(561\) −4.00000 −0.168880
\(562\) −21.0000 −0.885832
\(563\) 9.00000 0.379305 0.189652 0.981851i \(-0.439264\pi\)
0.189652 + 0.981851i \(0.439264\pi\)
\(564\) 9.00000 0.378968
\(565\) 0 0
\(566\) −2.00000 −0.0840663
\(567\) −1.00000 −0.0419961
\(568\) −8.00000 −0.335673
\(569\) 10.0000 0.419222 0.209611 0.977785i \(-0.432780\pi\)
0.209611 + 0.977785i \(0.432780\pi\)
\(570\) −12.0000 −0.502625
\(571\) 18.0000 0.753277 0.376638 0.926360i \(-0.377080\pi\)
0.376638 + 0.926360i \(0.377080\pi\)
\(572\) 1.00000 0.0418121
\(573\) −8.00000 −0.334205
\(574\) 0 0
\(575\) −8.00000 −0.333623
\(576\) −2.00000 −0.0833333
\(577\) −2.00000 −0.0832611 −0.0416305 0.999133i \(-0.513255\pi\)
−0.0416305 + 0.999133i \(0.513255\pi\)
\(578\) −1.00000 −0.0415945
\(579\) −12.0000 −0.498703
\(580\) −3.00000 −0.124568
\(581\) 0 0
\(582\) −16.0000 −0.663221
\(583\) −3.00000 −0.124247
\(584\) 0 0
\(585\) −6.00000 −0.248069
\(586\) 18.0000 0.743573
\(587\) 30.0000 1.23823 0.619116 0.785299i \(-0.287491\pi\)
0.619116 + 0.785299i \(0.287491\pi\)
\(588\) −1.00000 −0.0412393
\(589\) 4.00000 0.164817
\(590\) 0 0
\(591\) 2.00000 0.0822690
\(592\) 6.00000 0.246598
\(593\) −3.00000 −0.123195 −0.0615976 0.998101i \(-0.519620\pi\)
−0.0615976 + 0.998101i \(0.519620\pi\)
\(594\) −5.00000 −0.205152
\(595\) −12.0000 −0.491952
\(596\) −11.0000 −0.450578
\(597\) 20.0000 0.818546
\(598\) 2.00000 0.0817861
\(599\) 15.0000 0.612883 0.306442 0.951889i \(-0.400862\pi\)
0.306442 + 0.951889i \(0.400862\pi\)
\(600\) −4.00000 −0.163299
\(601\) −28.0000 −1.14214 −0.571072 0.820900i \(-0.693472\pi\)
−0.571072 + 0.820900i \(0.693472\pi\)
\(602\) −3.00000 −0.122271
\(603\) −4.00000 −0.162893
\(604\) 14.0000 0.569652
\(605\) 30.0000 1.21967
\(606\) 4.00000 0.162489
\(607\) −7.00000 −0.284121 −0.142061 0.989858i \(-0.545373\pi\)
−0.142061 + 0.989858i \(0.545373\pi\)
\(608\) −4.00000 −0.162221
\(609\) 1.00000 0.0405220
\(610\) −18.0000 −0.728799
\(611\) 9.00000 0.364101
\(612\) 8.00000 0.323381
\(613\) −29.0000 −1.17130 −0.585649 0.810564i \(-0.699160\pi\)
−0.585649 + 0.810564i \(0.699160\pi\)
\(614\) 9.00000 0.363210
\(615\) 0 0
\(616\) 1.00000 0.0402911
\(617\) −36.0000 −1.44931 −0.724653 0.689114i \(-0.758000\pi\)
−0.724653 + 0.689114i \(0.758000\pi\)
\(618\) −4.00000 −0.160904
\(619\) −3.00000 −0.120580 −0.0602901 0.998181i \(-0.519203\pi\)
−0.0602901 + 0.998181i \(0.519203\pi\)
\(620\) 3.00000 0.120483
\(621\) −10.0000 −0.401286
\(622\) 20.0000 0.801927
\(623\) 14.0000 0.560898
\(624\) 1.00000 0.0400320
\(625\) −29.0000 −1.16000
\(626\) −5.00000 −0.199840
\(627\) −4.00000 −0.159745
\(628\) −12.0000 −0.478852
\(629\) −24.0000 −0.956943
\(630\) −6.00000 −0.239046
\(631\) −12.0000 −0.477712 −0.238856 0.971055i \(-0.576772\pi\)
−0.238856 + 0.971055i \(0.576772\pi\)
\(632\) −13.0000 −0.517112
\(633\) 9.00000 0.357718
\(634\) 22.0000 0.873732
\(635\) 48.0000 1.90482
\(636\) −3.00000 −0.118958
\(637\) −1.00000 −0.0396214
\(638\) −1.00000 −0.0395904
\(639\) 16.0000 0.632950
\(640\) −3.00000 −0.118585
\(641\) 12.0000 0.473972 0.236986 0.971513i \(-0.423841\pi\)
0.236986 + 0.971513i \(0.423841\pi\)
\(642\) 14.0000 0.552536
\(643\) 12.0000 0.473234 0.236617 0.971603i \(-0.423961\pi\)
0.236617 + 0.971603i \(0.423961\pi\)
\(644\) 2.00000 0.0788110
\(645\) 9.00000 0.354375
\(646\) 16.0000 0.629512
\(647\) −20.0000 −0.786281 −0.393141 0.919478i \(-0.628611\pi\)
−0.393141 + 0.919478i \(0.628611\pi\)
\(648\) 1.00000 0.0392837
\(649\) 0 0
\(650\) −4.00000 −0.156893
\(651\) −1.00000 −0.0391931
\(652\) −21.0000 −0.822423
\(653\) 20.0000 0.782660 0.391330 0.920250i \(-0.372015\pi\)
0.391330 + 0.920250i \(0.372015\pi\)
\(654\) −15.0000 −0.586546
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 9.00000 0.350857
\(659\) −43.0000 −1.67504 −0.837521 0.546405i \(-0.815996\pi\)
−0.837521 + 0.546405i \(0.815996\pi\)
\(660\) −3.00000 −0.116775
\(661\) −2.00000 −0.0777910 −0.0388955 0.999243i \(-0.512384\pi\)
−0.0388955 + 0.999243i \(0.512384\pi\)
\(662\) 27.0000 1.04938
\(663\) −4.00000 −0.155347
\(664\) 0 0
\(665\) −12.0000 −0.465340
\(666\) −12.0000 −0.464991
\(667\) −2.00000 −0.0774403
\(668\) 12.0000 0.464294
\(669\) 4.00000 0.154649
\(670\) −6.00000 −0.231800
\(671\) −6.00000 −0.231627
\(672\) 1.00000 0.0385758
\(673\) −19.0000 −0.732396 −0.366198 0.930537i \(-0.619341\pi\)
−0.366198 + 0.930537i \(0.619341\pi\)
\(674\) 26.0000 1.00148
\(675\) 20.0000 0.769800
\(676\) −12.0000 −0.461538
\(677\) 40.0000 1.53732 0.768662 0.639655i \(-0.220923\pi\)
0.768662 + 0.639655i \(0.220923\pi\)
\(678\) 0 0
\(679\) −16.0000 −0.614024
\(680\) 12.0000 0.460179
\(681\) −14.0000 −0.536481
\(682\) 1.00000 0.0382920
\(683\) −24.0000 −0.918334 −0.459167 0.888350i \(-0.651852\pi\)
−0.459167 + 0.888350i \(0.651852\pi\)
\(684\) 8.00000 0.305888
\(685\) 30.0000 1.14624
\(686\) −1.00000 −0.0381802
\(687\) −14.0000 −0.534133
\(688\) 3.00000 0.114374
\(689\) −3.00000 −0.114291
\(690\) −6.00000 −0.228416
\(691\) −48.0000 −1.82601 −0.913003 0.407953i \(-0.866243\pi\)
−0.913003 + 0.407953i \(0.866243\pi\)
\(692\) 14.0000 0.532200
\(693\) −2.00000 −0.0759737
\(694\) 10.0000 0.379595
\(695\) 42.0000 1.59315
\(696\) −1.00000 −0.0379049
\(697\) 0 0
\(698\) −3.00000 −0.113552
\(699\) −11.0000 −0.416058
\(700\) −4.00000 −0.151186
\(701\) −35.0000 −1.32193 −0.660966 0.750416i \(-0.729853\pi\)
−0.660966 + 0.750416i \(0.729853\pi\)
\(702\) −5.00000 −0.188713
\(703\) −24.0000 −0.905177
\(704\) −1.00000 −0.0376889
\(705\) −27.0000 −1.01688
\(706\) −34.0000 −1.27961
\(707\) 4.00000 0.150435
\(708\) 0 0
\(709\) 9.00000 0.338002 0.169001 0.985616i \(-0.445946\pi\)
0.169001 + 0.985616i \(0.445946\pi\)
\(710\) 24.0000 0.900704
\(711\) 26.0000 0.975076
\(712\) −14.0000 −0.524672
\(713\) 2.00000 0.0749006
\(714\) −4.00000 −0.149696
\(715\) −3.00000 −0.112194
\(716\) −24.0000 −0.896922
\(717\) 12.0000 0.448148
\(718\) −21.0000 −0.783713
\(719\) −2.00000 −0.0745874 −0.0372937 0.999304i \(-0.511874\pi\)
−0.0372937 + 0.999304i \(0.511874\pi\)
\(720\) 6.00000 0.223607
\(721\) −4.00000 −0.148968
\(722\) −3.00000 −0.111648
\(723\) 29.0000 1.07852
\(724\) 23.0000 0.854788
\(725\) 4.00000 0.148556
\(726\) 10.0000 0.371135
\(727\) 12.0000 0.445055 0.222528 0.974926i \(-0.428569\pi\)
0.222528 + 0.974926i \(0.428569\pi\)
\(728\) 1.00000 0.0370625
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −12.0000 −0.443836
\(732\) −6.00000 −0.221766
\(733\) −38.0000 −1.40356 −0.701781 0.712393i \(-0.747612\pi\)
−0.701781 + 0.712393i \(0.747612\pi\)
\(734\) 16.0000 0.590571
\(735\) 3.00000 0.110657
\(736\) −2.00000 −0.0737210
\(737\) −2.00000 −0.0736709
\(738\) 0 0
\(739\) −47.0000 −1.72892 −0.864461 0.502699i \(-0.832340\pi\)
−0.864461 + 0.502699i \(0.832340\pi\)
\(740\) −18.0000 −0.661693
\(741\) −4.00000 −0.146944
\(742\) −3.00000 −0.110133
\(743\) −20.0000 −0.733729 −0.366864 0.930274i \(-0.619569\pi\)
−0.366864 + 0.930274i \(0.619569\pi\)
\(744\) 1.00000 0.0366618
\(745\) 33.0000 1.20903
\(746\) 17.0000 0.622414
\(747\) 0 0
\(748\) 4.00000 0.146254
\(749\) 14.0000 0.511549
\(750\) −3.00000 −0.109545
\(751\) 40.0000 1.45962 0.729810 0.683650i \(-0.239608\pi\)
0.729810 + 0.683650i \(0.239608\pi\)
\(752\) −9.00000 −0.328196
\(753\) 17.0000 0.619514
\(754\) −1.00000 −0.0364179
\(755\) −42.0000 −1.52854
\(756\) −5.00000 −0.181848
\(757\) −28.0000 −1.01768 −0.508839 0.860862i \(-0.669925\pi\)
−0.508839 + 0.860862i \(0.669925\pi\)
\(758\) 36.0000 1.30758
\(759\) −2.00000 −0.0725954
\(760\) 12.0000 0.435286
\(761\) −18.0000 −0.652499 −0.326250 0.945284i \(-0.605785\pi\)
−0.326250 + 0.945284i \(0.605785\pi\)
\(762\) 16.0000 0.579619
\(763\) −15.0000 −0.543036
\(764\) 8.00000 0.289430
\(765\) −24.0000 −0.867722
\(766\) 30.0000 1.08394
\(767\) 0 0
\(768\) −1.00000 −0.0360844
\(769\) 4.00000 0.144244 0.0721218 0.997396i \(-0.477023\pi\)
0.0721218 + 0.997396i \(0.477023\pi\)
\(770\) −3.00000 −0.108112
\(771\) 9.00000 0.324127
\(772\) 12.0000 0.431889
\(773\) −20.0000 −0.719350 −0.359675 0.933078i \(-0.617112\pi\)
−0.359675 + 0.933078i \(0.617112\pi\)
\(774\) −6.00000 −0.215666
\(775\) −4.00000 −0.143684
\(776\) 16.0000 0.574367
\(777\) 6.00000 0.215249
\(778\) −4.00000 −0.143407
\(779\) 0 0
\(780\) −3.00000 −0.107417
\(781\) 8.00000 0.286263
\(782\) 8.00000 0.286079
\(783\) 5.00000 0.178685
\(784\) 1.00000 0.0357143
\(785\) 36.0000 1.28490
\(786\) 0 0
\(787\) −12.0000 −0.427754 −0.213877 0.976861i \(-0.568609\pi\)
−0.213877 + 0.976861i \(0.568609\pi\)
\(788\) −2.00000 −0.0712470
\(789\) −5.00000 −0.178005
\(790\) 39.0000 1.38756
\(791\) 0 0
\(792\) 2.00000 0.0710669
\(793\) −6.00000 −0.213066
\(794\) 11.0000 0.390375
\(795\) 9.00000 0.319197
\(796\) −20.0000 −0.708881
\(797\) 12.0000 0.425062 0.212531 0.977154i \(-0.431829\pi\)
0.212531 + 0.977154i \(0.431829\pi\)
\(798\) −4.00000 −0.141598
\(799\) 36.0000 1.27359
\(800\) 4.00000 0.141421
\(801\) 28.0000 0.989331
\(802\) 39.0000 1.37714
\(803\) 0 0
\(804\) −2.00000 −0.0705346
\(805\) −6.00000 −0.211472
\(806\) 1.00000 0.0352235
\(807\) 28.0000 0.985647
\(808\) −4.00000 −0.140720
\(809\) −18.0000 −0.632846 −0.316423 0.948618i \(-0.602482\pi\)
−0.316423 + 0.948618i \(0.602482\pi\)
\(810\) −3.00000 −0.105409
\(811\) −30.0000 −1.05344 −0.526721 0.850038i \(-0.676579\pi\)
−0.526721 + 0.850038i \(0.676579\pi\)
\(812\) −1.00000 −0.0350931
\(813\) −25.0000 −0.876788
\(814\) −6.00000 −0.210300
\(815\) 63.0000 2.20679
\(816\) 4.00000 0.140028
\(817\) −12.0000 −0.419827
\(818\) 28.0000 0.978997
\(819\) −2.00000 −0.0698857
\(820\) 0 0
\(821\) 53.0000 1.84971 0.924856 0.380317i \(-0.124185\pi\)
0.924856 + 0.380317i \(0.124185\pi\)
\(822\) 10.0000 0.348790
\(823\) −8.00000 −0.278862 −0.139431 0.990232i \(-0.544527\pi\)
−0.139431 + 0.990232i \(0.544527\pi\)
\(824\) 4.00000 0.139347
\(825\) 4.00000 0.139262
\(826\) 0 0
\(827\) 47.0000 1.63435 0.817175 0.576390i \(-0.195539\pi\)
0.817175 + 0.576390i \(0.195539\pi\)
\(828\) 4.00000 0.139010
\(829\) −20.0000 −0.694629 −0.347314 0.937749i \(-0.612906\pi\)
−0.347314 + 0.937749i \(0.612906\pi\)
\(830\) 0 0
\(831\) −10.0000 −0.346896
\(832\) −1.00000 −0.0346688
\(833\) −4.00000 −0.138592
\(834\) 14.0000 0.484780
\(835\) −36.0000 −1.24583
\(836\) 4.00000 0.138343
\(837\) −5.00000 −0.172825
\(838\) −16.0000 −0.552711
\(839\) −21.0000 −0.725001 −0.362500 0.931984i \(-0.618077\pi\)
−0.362500 + 0.931984i \(0.618077\pi\)
\(840\) −3.00000 −0.103510
\(841\) 1.00000 0.0344828
\(842\) 26.0000 0.896019
\(843\) 21.0000 0.723278
\(844\) −9.00000 −0.309793
\(845\) 36.0000 1.23844
\(846\) 18.0000 0.618853
\(847\) 10.0000 0.343604
\(848\) 3.00000 0.103020
\(849\) 2.00000 0.0686398
\(850\) −16.0000 −0.548795
\(851\) −12.0000 −0.411355
\(852\) 8.00000 0.274075
\(853\) −26.0000 −0.890223 −0.445112 0.895475i \(-0.646836\pi\)
−0.445112 + 0.895475i \(0.646836\pi\)
\(854\) −6.00000 −0.205316
\(855\) −24.0000 −0.820783
\(856\) −14.0000 −0.478510
\(857\) −41.0000 −1.40053 −0.700267 0.713881i \(-0.746936\pi\)
−0.700267 + 0.713881i \(0.746936\pi\)
\(858\) −1.00000 −0.0341394
\(859\) 31.0000 1.05771 0.528853 0.848713i \(-0.322622\pi\)
0.528853 + 0.848713i \(0.322622\pi\)
\(860\) −9.00000 −0.306897
\(861\) 0 0
\(862\) −24.0000 −0.817443
\(863\) 58.0000 1.97434 0.987171 0.159664i \(-0.0510410\pi\)
0.987171 + 0.159664i \(0.0510410\pi\)
\(864\) 5.00000 0.170103
\(865\) −42.0000 −1.42804
\(866\) 34.0000 1.15537
\(867\) 1.00000 0.0339618
\(868\) 1.00000 0.0339422
\(869\) 13.0000 0.440995
\(870\) 3.00000 0.101710
\(871\) −2.00000 −0.0677674
\(872\) 15.0000 0.507964
\(873\) −32.0000 −1.08304
\(874\) 8.00000 0.270604
\(875\) −3.00000 −0.101419
\(876\) 0 0
\(877\) 31.0000 1.04680 0.523398 0.852088i \(-0.324664\pi\)
0.523398 + 0.852088i \(0.324664\pi\)
\(878\) 2.00000 0.0674967
\(879\) −18.0000 −0.607125
\(880\) 3.00000 0.101130
\(881\) −26.0000 −0.875962 −0.437981 0.898984i \(-0.644306\pi\)
−0.437981 + 0.898984i \(0.644306\pi\)
\(882\) −2.00000 −0.0673435
\(883\) −6.00000 −0.201916 −0.100958 0.994891i \(-0.532191\pi\)
−0.100958 + 0.994891i \(0.532191\pi\)
\(884\) 4.00000 0.134535
\(885\) 0 0
\(886\) 20.0000 0.671913
\(887\) 3.00000 0.100730 0.0503651 0.998731i \(-0.483962\pi\)
0.0503651 + 0.998731i \(0.483962\pi\)
\(888\) −6.00000 −0.201347
\(889\) 16.0000 0.536623
\(890\) 42.0000 1.40784
\(891\) −1.00000 −0.0335013
\(892\) −4.00000 −0.133930
\(893\) 36.0000 1.20469
\(894\) 11.0000 0.367895
\(895\) 72.0000 2.40669
\(896\) −1.00000 −0.0334077
\(897\) −2.00000 −0.0667781
\(898\) −16.0000 −0.533927
\(899\) −1.00000 −0.0333519
\(900\) −8.00000 −0.266667
\(901\) −12.0000 −0.399778
\(902\) 0 0
\(903\) 3.00000 0.0998337
\(904\) 0 0
\(905\) −69.0000 −2.29364
\(906\) −14.0000 −0.465119
\(907\) 28.0000 0.929725 0.464862 0.885383i \(-0.346104\pi\)
0.464862 + 0.885383i \(0.346104\pi\)
\(908\) 14.0000 0.464606
\(909\) 8.00000 0.265343
\(910\) −3.00000 −0.0994490
\(911\) −9.00000 −0.298183 −0.149092 0.988823i \(-0.547635\pi\)
−0.149092 + 0.988823i \(0.547635\pi\)
\(912\) 4.00000 0.132453
\(913\) 0 0
\(914\) −26.0000 −0.860004
\(915\) 18.0000 0.595062
\(916\) 14.0000 0.462573
\(917\) 0 0
\(918\) −20.0000 −0.660098
\(919\) 10.0000 0.329870 0.164935 0.986304i \(-0.447259\pi\)
0.164935 + 0.986304i \(0.447259\pi\)
\(920\) 6.00000 0.197814
\(921\) −9.00000 −0.296560
\(922\) −28.0000 −0.922131
\(923\) 8.00000 0.263323
\(924\) −1.00000 −0.0328976
\(925\) 24.0000 0.789115
\(926\) −20.0000 −0.657241
\(927\) −8.00000 −0.262754
\(928\) 1.00000 0.0328266
\(929\) 54.0000 1.77168 0.885841 0.463988i \(-0.153582\pi\)
0.885841 + 0.463988i \(0.153582\pi\)
\(930\) −3.00000 −0.0983739
\(931\) −4.00000 −0.131095
\(932\) 11.0000 0.360317
\(933\) −20.0000 −0.654771
\(934\) 13.0000 0.425373
\(935\) −12.0000 −0.392442
\(936\) 2.00000 0.0653720
\(937\) 2.00000 0.0653372 0.0326686 0.999466i \(-0.489599\pi\)
0.0326686 + 0.999466i \(0.489599\pi\)
\(938\) −2.00000 −0.0653023
\(939\) 5.00000 0.163169
\(940\) 27.0000 0.880643
\(941\) −27.0000 −0.880175 −0.440087 0.897955i \(-0.645053\pi\)
−0.440087 + 0.897955i \(0.645053\pi\)
\(942\) 12.0000 0.390981
\(943\) 0 0
\(944\) 0 0
\(945\) 15.0000 0.487950
\(946\) −3.00000 −0.0975384
\(947\) 19.0000 0.617417 0.308709 0.951157i \(-0.400103\pi\)
0.308709 + 0.951157i \(0.400103\pi\)
\(948\) 13.0000 0.422220
\(949\) 0 0
\(950\) −16.0000 −0.519109
\(951\) −22.0000 −0.713399
\(952\) 4.00000 0.129641
\(953\) 47.0000 1.52248 0.761240 0.648471i \(-0.224591\pi\)
0.761240 + 0.648471i \(0.224591\pi\)
\(954\) −6.00000 −0.194257
\(955\) −24.0000 −0.776622
\(956\) −12.0000 −0.388108
\(957\) 1.00000 0.0323254
\(958\) 21.0000 0.678479
\(959\) 10.0000 0.322917
\(960\) 3.00000 0.0968246
\(961\) −30.0000 −0.967742
\(962\) −6.00000 −0.193448
\(963\) 28.0000 0.902287
\(964\) −29.0000 −0.934027
\(965\) −36.0000 −1.15888
\(966\) −2.00000 −0.0643489
\(967\) −31.0000 −0.996893 −0.498446 0.866921i \(-0.666096\pi\)
−0.498446 + 0.866921i \(0.666096\pi\)
\(968\) −10.0000 −0.321412
\(969\) −16.0000 −0.513994
\(970\) −48.0000 −1.54119
\(971\) 12.0000 0.385098 0.192549 0.981287i \(-0.438325\pi\)
0.192549 + 0.981287i \(0.438325\pi\)
\(972\) −16.0000 −0.513200
\(973\) 14.0000 0.448819
\(974\) −20.0000 −0.640841
\(975\) 4.00000 0.128103
\(976\) 6.00000 0.192055
\(977\) 53.0000 1.69562 0.847810 0.530300i \(-0.177921\pi\)
0.847810 + 0.530300i \(0.177921\pi\)
\(978\) 21.0000 0.671506
\(979\) 14.0000 0.447442
\(980\) −3.00000 −0.0958315
\(981\) −30.0000 −0.957826
\(982\) 9.00000 0.287202
\(983\) 39.0000 1.24391 0.621953 0.783054i \(-0.286339\pi\)
0.621953 + 0.783054i \(0.286339\pi\)
\(984\) 0 0
\(985\) 6.00000 0.191176
\(986\) −4.00000 −0.127386
\(987\) −9.00000 −0.286473
\(988\) 4.00000 0.127257
\(989\) −6.00000 −0.190789
\(990\) −6.00000 −0.190693
\(991\) −2.00000 −0.0635321 −0.0317660 0.999495i \(-0.510113\pi\)
−0.0317660 + 0.999495i \(0.510113\pi\)
\(992\) −1.00000 −0.0317500
\(993\) −27.0000 −0.856819
\(994\) 8.00000 0.253745
\(995\) 60.0000 1.90213
\(996\) 0 0
\(997\) −14.0000 −0.443384 −0.221692 0.975117i \(-0.571158\pi\)
−0.221692 + 0.975117i \(0.571158\pi\)
\(998\) −38.0000 −1.20287
\(999\) 30.0000 0.949158
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 406.2.a.d.1.1 1
3.2 odd 2 3654.2.a.l.1.1 1
4.3 odd 2 3248.2.a.k.1.1 1
7.6 odd 2 2842.2.a.f.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
406.2.a.d.1.1 1 1.1 even 1 trivial
2842.2.a.f.1.1 1 7.6 odd 2
3248.2.a.k.1.1 1 4.3 odd 2
3654.2.a.l.1.1 1 3.2 odd 2