Properties

Label 414.2.i.a
Level 414414
Weight 22
Character orbit 414.i
Analytic conductor 3.3063.306
Analytic rank 00
Dimension 1010
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [414,2,Mod(55,414)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(414, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("414.55");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 414=23223 414 = 2 \cdot 3^{2} \cdot 23
Weight: k k == 2 2
Character orbit: [χ][\chi] == 414.i (of order 1111, degree 1010, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.305806643683.30580664368
Analytic rank: 00
Dimension: 1010
Coefficient field: Q(ζ22)\Q(\zeta_{22})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x10x9+x8x7+x6x5+x4x3+x2x+1 x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 138)
Sato-Tate group: SU(2)[C11]\mathrm{SU}(2)[C_{11}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ22\zeta_{22}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+ζ224q2+ζ228q4+(ζ2292ζ228+1)q5+(ζ229+ζ227+ζ22)q7ζ22q8+(ζ229ζ227+1)q10++(5ζ229++2ζ22)q98+O(q100) q + \zeta_{22}^{4} q^{2} + \zeta_{22}^{8} q^{4} + (\zeta_{22}^{9} - 2 \zeta_{22}^{8} + \cdots - 1) q^{5} + ( - \zeta_{22}^{9} + \zeta_{22}^{7} + \cdots - \zeta_{22}) q^{7} - \zeta_{22} q^{8} + ( - \zeta_{22}^{9} - \zeta_{22}^{7} + \cdots - 1) q^{10} + \cdots + (5 \zeta_{22}^{9} + \cdots + 2 \zeta_{22}) q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 10qq2q42q5+2q7q813q10+5q11+13q139q14q16+9q206q22+32q23+q25+13q269q2827q298q31q32++14q98+O(q100) 10 q - q^{2} - q^{4} - 2 q^{5} + 2 q^{7} - q^{8} - 13 q^{10} + 5 q^{11} + 13 q^{13} - 9 q^{14} - q^{16} + 9 q^{20} - 6 q^{22} + 32 q^{23} + q^{25} + 13 q^{26} - 9 q^{28} - 27 q^{29} - 8 q^{31} - q^{32}+ \cdots + 14 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/414Z)×\left(\mathbb{Z}/414\mathbb{Z}\right)^\times.

nn 4747 235235
χ(n)\chi(n) 11 ζ224\zeta_{22}^{4}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
55.1
0.654861 0.755750i
0.959493 + 0.281733i
0.142315 + 0.989821i
0.142315 0.989821i
0.654861 + 0.755750i
−0.841254 + 0.540641i
−0.415415 + 0.909632i
−0.415415 0.909632i
−0.841254 0.540641i
0.959493 0.281733i
−0.959493 + 0.281733i 0 0.841254 0.540641i 0.0651865 + 0.453382i 0 −0.134858 + 0.295298i −0.654861 + 0.755750i 0 −0.190279 0.416652i
73.1 0.415415 + 0.909632i 0 −0.654861 + 0.755750i −2.47672 1.59169i 0 −0.151894 1.05645i −0.959493 0.281733i 0 0.418986 2.91411i
127.1 0.841254 0.540641i 0 0.415415 0.909632i −1.78074 + 0.522874i 0 −2.54487 2.93694i −0.142315 0.989821i 0 −1.21537 + 1.40261i
163.1 0.841254 + 0.540641i 0 0.415415 + 0.909632i −1.78074 0.522874i 0 −2.54487 + 2.93694i −0.142315 + 0.989821i 0 −1.21537 1.40261i
271.1 −0.959493 0.281733i 0 0.841254 + 0.540641i 0.0651865 0.453382i 0 −0.134858 0.295298i −0.654861 0.755750i 0 −0.190279 + 0.416652i
289.1 −0.654861 0.755750i 0 −0.142315 + 0.989821i 1.37787 3.01713i 0 3.66820 + 1.07708i 0.841254 0.540641i 0 −3.18251 + 0.934468i
307.1 −0.142315 + 0.989821i 0 −0.959493 0.281733i 1.81440 + 2.09393i 0 0.163423 + 0.105026i 0.415415 0.909632i 0 −2.33083 + 1.49793i
325.1 −0.142315 0.989821i 0 −0.959493 + 0.281733i 1.81440 2.09393i 0 0.163423 0.105026i 0.415415 + 0.909632i 0 −2.33083 1.49793i
361.1 −0.654861 + 0.755750i 0 −0.142315 0.989821i 1.37787 + 3.01713i 0 3.66820 1.07708i 0.841254 + 0.540641i 0 −3.18251 0.934468i
397.1 0.415415 0.909632i 0 −0.654861 0.755750i −2.47672 + 1.59169i 0 −0.151894 + 1.05645i −0.959493 + 0.281733i 0 0.418986 + 2.91411i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 55.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.c even 11 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 414.2.i.a 10
3.b odd 2 1 138.2.e.d 10
23.c even 11 1 inner 414.2.i.a 10
23.c even 11 1 9522.2.a.bx 5
23.d odd 22 1 9522.2.a.by 5
69.g even 22 1 3174.2.a.w 5
69.h odd 22 1 138.2.e.d 10
69.h odd 22 1 3174.2.a.x 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
138.2.e.d 10 3.b odd 2 1
138.2.e.d 10 69.h odd 22 1
414.2.i.a 10 1.a even 1 1 trivial
414.2.i.a 10 23.c even 11 1 inner
3174.2.a.w 5 69.g even 22 1
3174.2.a.x 5 69.h odd 22 1
9522.2.a.bx 5 23.c even 11 1
9522.2.a.by 5 23.d odd 22 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T510+2T59+4T58+41T57+137T56+76T55+460T54++529 T_{5}^{10} + 2 T_{5}^{9} + 4 T_{5}^{8} + 41 T_{5}^{7} + 137 T_{5}^{6} + 76 T_{5}^{5} + 460 T_{5}^{4} + \cdots + 529 acting on S2new(414,[χ])S_{2}^{\mathrm{new}}(414, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T10+T9++1 T^{10} + T^{9} + \cdots + 1 Copy content Toggle raw display
33 T10 T^{10} Copy content Toggle raw display
55 T10+2T9++529 T^{10} + 2 T^{9} + \cdots + 529 Copy content Toggle raw display
77 T102T9++1 T^{10} - 2 T^{9} + \cdots + 1 Copy content Toggle raw display
1111 T105T9++529 T^{10} - 5 T^{9} + \cdots + 529 Copy content Toggle raw display
1313 T1013T9++529 T^{10} - 13 T^{9} + \cdots + 529 Copy content Toggle raw display
1717 T10+55T8++7745089 T^{10} + 55 T^{8} + \cdots + 7745089 Copy content Toggle raw display
1919 T1033T7++64009 T^{10} - 33 T^{7} + \cdots + 64009 Copy content Toggle raw display
2323 T1032T9++6436343 T^{10} - 32 T^{9} + \cdots + 6436343 Copy content Toggle raw display
2929 T10+27T9++7921 T^{10} + 27 T^{9} + \cdots + 7921 Copy content Toggle raw display
3131 T10+8T9++8300161 T^{10} + 8 T^{9} + \cdots + 8300161 Copy content Toggle raw display
3737 T10+11T9++64009 T^{10} + 11 T^{9} + \cdots + 64009 Copy content Toggle raw display
4141 T1010T9++1515361 T^{10} - 10 T^{9} + \cdots + 1515361 Copy content Toggle raw display
4343 T1034T9++109561 T^{10} - 34 T^{9} + \cdots + 109561 Copy content Toggle raw display
4747 (T5+4T4+857)2 (T^{5} + 4 T^{4} + \cdots - 857)^{2} Copy content Toggle raw display
5353 T10+9T9++8427409 T^{10} + 9 T^{9} + \cdots + 8427409 Copy content Toggle raw display
5959 T1021T9++978121 T^{10} - 21 T^{9} + \cdots + 978121 Copy content Toggle raw display
6161 T10+4T9++9078169 T^{10} + 4 T^{9} + \cdots + 9078169 Copy content Toggle raw display
6767 T10+32T9++83375161 T^{10} + 32 T^{9} + \cdots + 83375161 Copy content Toggle raw display
7171 T10+22T9++64009 T^{10} + 22 T^{9} + \cdots + 64009 Copy content Toggle raw display
7373 T1043T9++21132409 T^{10} - 43 T^{9} + \cdots + 21132409 Copy content Toggle raw display
7979 T10+16T9++72471169 T^{10} + 16 T^{9} + \cdots + 72471169 Copy content Toggle raw display
8383 T103T9++16752649 T^{10} - 3 T^{9} + \cdots + 16752649 Copy content Toggle raw display
8989 T10++517972081 T^{10} + \cdots + 517972081 Copy content Toggle raw display
9797 T1039T9++5650129 T^{10} - 39 T^{9} + \cdots + 5650129 Copy content Toggle raw display
show more
show less