Properties

Label 3174.2.a.w
Level $3174$
Weight $2$
Character orbit 3174.a
Self dual yes
Analytic conductor $25.345$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3174,2,Mod(1,3174)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3174, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3174.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3174 = 2 \cdot 3 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3174.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.3445176016\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\Q(\zeta_{22})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 138)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} - q^{3} + q^{4} + ( - \beta_{4} - \beta_{3} + \beta_{2}) q^{5} + q^{6} + ( - \beta_{4} - \beta_{2} + 2 \beta_1 - 1) q^{7} - q^{8} + q^{9} + (\beta_{4} + \beta_{3} - \beta_{2}) q^{10} + ( - 2 \beta_{4} + 2 \beta_{3} + \cdots - 2) q^{11}+ \cdots + ( - 2 \beta_{4} + 2 \beta_{3} + \cdots - 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 5 q^{2} - 5 q^{3} + 5 q^{4} - q^{5} + 5 q^{6} - q^{7} - 5 q^{8} + 5 q^{9} + q^{10} - 3 q^{11} - 5 q^{12} - 10 q^{13} + q^{14} + q^{15} + 5 q^{16} - 11 q^{17} - 5 q^{18} + 11 q^{19} - q^{20}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{22} + \zeta_{22}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 3\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 4\nu^{2} + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 3\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + 4\beta_{2} + 6 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.830830
0.284630
1.91899
−1.68251
1.30972
−1.00000 −1.00000 1.00000 −2.94408 1.00000 −1.06731 −1.00000 1.00000 2.94408
1.2 −1.00000 −1.00000 1.00000 −2.77066 1.00000 −0.194262 −1.00000 1.00000 2.77066
1.3 −1.00000 −1.00000 1.00000 −0.458044 1.00000 0.324635 −1.00000 1.00000 0.458044
1.4 −1.00000 −1.00000 1.00000 1.85592 1.00000 −3.88612 −1.00000 1.00000 −1.85592
1.5 −1.00000 −1.00000 1.00000 3.31686 1.00000 3.82306 −1.00000 1.00000 −3.31686
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3174.2.a.w 5
3.b odd 2 1 9522.2.a.by 5
23.b odd 2 1 3174.2.a.x 5
23.d odd 22 2 138.2.e.d 10
69.c even 2 1 9522.2.a.bx 5
69.g even 22 2 414.2.i.a 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
138.2.e.d 10 23.d odd 22 2
414.2.i.a 10 69.g even 22 2
3174.2.a.w 5 1.a even 1 1 trivial
3174.2.a.x 5 23.b odd 2 1
9522.2.a.bx 5 69.c even 2 1
9522.2.a.by 5 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3174))\):

\( T_{5}^{5} + T_{5}^{4} - 15T_{5}^{3} - 14T_{5}^{2} + 47T_{5} + 23 \) Copy content Toggle raw display
\( T_{7}^{5} + T_{7}^{4} - 15T_{7}^{3} - 14T_{7}^{2} + 3T_{7} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{5} \) Copy content Toggle raw display
$3$ \( (T + 1)^{5} \) Copy content Toggle raw display
$5$ \( T^{5} + T^{4} + \cdots + 23 \) Copy content Toggle raw display
$7$ \( T^{5} + T^{4} - 15 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{5} + 3 T^{4} + \cdots + 23 \) Copy content Toggle raw display
$13$ \( T^{5} + 10 T^{4} + \cdots - 23 \) Copy content Toggle raw display
$17$ \( T^{5} + 11 T^{4} + \cdots + 2783 \) Copy content Toggle raw display
$19$ \( T^{5} - 11 T^{4} + \cdots + 253 \) Copy content Toggle raw display
$23$ \( T^{5} \) Copy content Toggle raw display
$29$ \( T^{5} + 25 T^{4} + \cdots + 89 \) Copy content Toggle raw display
$31$ \( T^{5} + 4 T^{4} + \cdots - 2881 \) Copy content Toggle raw display
$37$ \( T^{5} - 22 T^{4} + \cdots + 253 \) Copy content Toggle raw display
$41$ \( T^{5} - 6 T^{4} + \cdots - 1231 \) Copy content Toggle raw display
$43$ \( T^{5} + 6 T^{4} + \cdots - 331 \) Copy content Toggle raw display
$47$ \( T^{5} - 4 T^{4} + \cdots + 857 \) Copy content Toggle raw display
$53$ \( T^{5} - T^{4} + \cdots + 2903 \) Copy content Toggle raw display
$59$ \( T^{5} - 6 T^{4} + \cdots - 989 \) Copy content Toggle raw display
$61$ \( T^{5} - 35 T^{4} + \cdots - 3013 \) Copy content Toggle raw display
$67$ \( T^{5} - 5 T^{4} + \cdots - 9131 \) Copy content Toggle raw display
$71$ \( T^{5} + 11 T^{4} + \cdots - 253 \) Copy content Toggle raw display
$73$ \( T^{5} - 16 T^{4} + \cdots + 4597 \) Copy content Toggle raw display
$79$ \( T^{5} - 8 T^{4} + \cdots - 8513 \) Copy content Toggle raw display
$83$ \( T^{5} + 26 T^{4} + \cdots + 4093 \) Copy content Toggle raw display
$89$ \( T^{5} - 154 T^{3} + \cdots + 22759 \) Copy content Toggle raw display
$97$ \( T^{5} - 19 T^{4} + \cdots + 2377 \) Copy content Toggle raw display
show more
show less