Properties

Label 414.2.i.a.325.1
Level $414$
Weight $2$
Character 414.325
Analytic conductor $3.306$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [414,2,Mod(55,414)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(414, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("414.55");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 414 = 2 \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 414.i (of order \(11\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.30580664368\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\Q(\zeta_{22})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 138)
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 325.1
Root \(-0.415415 - 0.909632i\) of defining polynomial
Character \(\chi\) \(=\) 414.325
Dual form 414.2.i.a.307.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.142315 - 0.989821i) q^{2} +(-0.959493 + 0.281733i) q^{4} +(1.81440 - 2.09393i) q^{5} +(0.163423 - 0.105026i) q^{7} +(0.415415 + 0.909632i) q^{8} +(-2.33083 - 1.49793i) q^{10} +(0.413293 - 2.87451i) q^{11} +(0.910738 + 0.585296i) q^{13} +(-0.127214 - 0.146813i) q^{14} +(0.841254 - 0.540641i) q^{16} +(-4.45384 - 1.30777i) q^{17} +(4.24593 - 1.24672i) q^{19} +(-1.15098 + 2.52028i) q^{20} -2.90407 q^{22} +(4.73556 - 0.757939i) q^{23} +(-0.380916 - 2.64933i) q^{25} +(0.449727 - 0.984764i) q^{26} +(-0.127214 + 0.146813i) q^{28} +(-8.83766 - 2.59497i) q^{29} +(-2.85525 - 6.25212i) q^{31} +(-0.654861 - 0.755750i) q^{32} +(-0.660607 + 4.59462i) q^{34} +(0.0765987 - 0.532755i) q^{35} +(3.17329 + 3.66217i) q^{37} +(-1.83829 - 4.02529i) q^{38} +(2.65843 + 0.780586i) q^{40} +(-3.76214 + 4.34174i) q^{41} +(3.14342 - 6.88313i) q^{43} +(0.413293 + 2.87451i) q^{44} +(-1.42416 - 4.57949i) q^{46} +5.61457 q^{47} +(-2.89223 + 6.33310i) q^{49} +(-2.56815 + 0.754078i) q^{50} +(-1.03874 - 0.305003i) q^{52} +(3.48496 - 2.23965i) q^{53} +(-5.26914 - 6.08092i) q^{55} +(0.163423 + 0.105026i) q^{56} +(-1.31083 + 9.11701i) q^{58} +(9.01685 + 5.79478i) q^{59} +(-1.19623 - 2.61939i) q^{61} +(-5.78214 + 3.71596i) q^{62} +(-0.654861 + 0.755750i) q^{64} +(2.87801 - 0.845060i) q^{65} +(2.08311 + 14.4884i) q^{67} +4.64187 q^{68} -0.538234 q^{70} +(1.81195 + 12.6024i) q^{71} +(-2.86708 + 0.841852i) q^{73} +(3.17329 - 3.66217i) q^{74} +(-3.72270 + 2.39243i) q^{76} +(-0.234356 - 0.513169i) q^{77} +(2.15275 + 1.38349i) q^{79} +(0.394306 - 2.74246i) q^{80} +(4.83295 + 3.10595i) q^{82} +(-0.531462 - 0.613340i) q^{83} +(-10.8194 + 6.95322i) q^{85} +(-7.26043 - 2.13185i) q^{86} +(2.78644 - 0.818172i) q^{88} +(-2.81645 + 6.16716i) q^{89} +0.210307 q^{91} +(-4.33020 + 2.06140i) q^{92} +(-0.799036 - 5.55742i) q^{94} +(5.09327 - 11.1527i) q^{95} +(8.09928 - 9.34707i) q^{97} +(6.68024 + 1.96150i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - q^{2} - q^{4} - 2 q^{5} + 2 q^{7} - q^{8} - 13 q^{10} + 5 q^{11} + 13 q^{13} - 9 q^{14} - q^{16} + 9 q^{20} - 6 q^{22} + 32 q^{23} + q^{25} + 13 q^{26} - 9 q^{28} - 27 q^{29} - 8 q^{31} - q^{32}+ \cdots + 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/414\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(235\)
\(\chi(n)\) \(1\) \(e\left(\frac{8}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.142315 0.989821i −0.100632 0.699909i
\(3\) 0 0
\(4\) −0.959493 + 0.281733i −0.479746 + 0.140866i
\(5\) 1.81440 2.09393i 0.811424 0.936433i −0.187526 0.982260i \(-0.560047\pi\)
0.998949 + 0.0458269i \(0.0145923\pi\)
\(6\) 0 0
\(7\) 0.163423 0.105026i 0.0617682 0.0396960i −0.509392 0.860534i \(-0.670130\pi\)
0.571160 + 0.820838i \(0.306493\pi\)
\(8\) 0.415415 + 0.909632i 0.146871 + 0.321603i
\(9\) 0 0
\(10\) −2.33083 1.49793i −0.737073 0.473688i
\(11\) 0.413293 2.87451i 0.124612 0.866698i −0.827612 0.561300i \(-0.810301\pi\)
0.952225 0.305398i \(-0.0987896\pi\)
\(12\) 0 0
\(13\) 0.910738 + 0.585296i 0.252593 + 0.162332i 0.660810 0.750553i \(-0.270213\pi\)
−0.408217 + 0.912885i \(0.633849\pi\)
\(14\) −0.127214 0.146813i −0.0339995 0.0392375i
\(15\) 0 0
\(16\) 0.841254 0.540641i 0.210313 0.135160i
\(17\) −4.45384 1.30777i −1.08022 0.317180i −0.307251 0.951629i \(-0.599409\pi\)
−0.772965 + 0.634449i \(0.781227\pi\)
\(18\) 0 0
\(19\) 4.24593 1.24672i 0.974083 0.286017i 0.244303 0.969699i \(-0.421441\pi\)
0.729780 + 0.683682i \(0.239623\pi\)
\(20\) −1.15098 + 2.52028i −0.257366 + 0.563553i
\(21\) 0 0
\(22\) −2.90407 −0.619150
\(23\) 4.73556 0.757939i 0.987433 0.158041i
\(24\) 0 0
\(25\) −0.380916 2.64933i −0.0761832 0.529866i
\(26\) 0.449727 0.984764i 0.0881987 0.193128i
\(27\) 0 0
\(28\) −0.127214 + 0.146813i −0.0240413 + 0.0277451i
\(29\) −8.83766 2.59497i −1.64111 0.481874i −0.674533 0.738245i \(-0.735655\pi\)
−0.966579 + 0.256371i \(0.917473\pi\)
\(30\) 0 0
\(31\) −2.85525 6.25212i −0.512818 1.12291i −0.972088 0.234617i \(-0.924616\pi\)
0.459270 0.888297i \(-0.348111\pi\)
\(32\) −0.654861 0.755750i −0.115764 0.133599i
\(33\) 0 0
\(34\) −0.660607 + 4.59462i −0.113293 + 0.787972i
\(35\) 0.0765987 0.532755i 0.0129475 0.0900521i
\(36\) 0 0
\(37\) 3.17329 + 3.66217i 0.521685 + 0.602057i 0.954052 0.299641i \(-0.0968669\pi\)
−0.432367 + 0.901698i \(0.642321\pi\)
\(38\) −1.83829 4.02529i −0.298209 0.652988i
\(39\) 0 0
\(40\) 2.65843 + 0.780586i 0.420335 + 0.123421i
\(41\) −3.76214 + 4.34174i −0.587547 + 0.678065i −0.969210 0.246236i \(-0.920806\pi\)
0.381663 + 0.924302i \(0.375352\pi\)
\(42\) 0 0
\(43\) 3.14342 6.88313i 0.479367 1.04967i −0.503270 0.864129i \(-0.667870\pi\)
0.982637 0.185538i \(-0.0594029\pi\)
\(44\) 0.413293 + 2.87451i 0.0623062 + 0.433349i
\(45\) 0 0
\(46\) −1.42416 4.57949i −0.209982 0.675209i
\(47\) 5.61457 0.818969 0.409484 0.912317i \(-0.365709\pi\)
0.409484 + 0.912317i \(0.365709\pi\)
\(48\) 0 0
\(49\) −2.89223 + 6.33310i −0.413175 + 0.904728i
\(50\) −2.56815 + 0.754078i −0.363192 + 0.106643i
\(51\) 0 0
\(52\) −1.03874 0.305003i −0.144048 0.0422963i
\(53\) 3.48496 2.23965i 0.478697 0.307640i −0.278949 0.960306i \(-0.589986\pi\)
0.757645 + 0.652666i \(0.226350\pi\)
\(54\) 0 0
\(55\) −5.26914 6.08092i −0.710491 0.819951i
\(56\) 0.163423 + 0.105026i 0.0218384 + 0.0140347i
\(57\) 0 0
\(58\) −1.31083 + 9.11701i −0.172120 + 1.19712i
\(59\) 9.01685 + 5.79478i 1.17389 + 0.754416i 0.974254 0.225453i \(-0.0723862\pi\)
0.199640 + 0.979869i \(0.436023\pi\)
\(60\) 0 0
\(61\) −1.19623 2.61939i −0.153162 0.335378i 0.817461 0.575984i \(-0.195381\pi\)
−0.970623 + 0.240606i \(0.922654\pi\)
\(62\) −5.78214 + 3.71596i −0.734332 + 0.471927i
\(63\) 0 0
\(64\) −0.654861 + 0.755750i −0.0818576 + 0.0944687i
\(65\) 2.87801 0.845060i 0.356973 0.104817i
\(66\) 0 0
\(67\) 2.08311 + 14.4884i 0.254493 + 1.77003i 0.570519 + 0.821284i \(0.306742\pi\)
−0.316027 + 0.948750i \(0.602349\pi\)
\(68\) 4.64187 0.562910
\(69\) 0 0
\(70\) −0.538234 −0.0643313
\(71\) 1.81195 + 12.6024i 0.215038 + 1.49563i 0.755997 + 0.654576i \(0.227153\pi\)
−0.540958 + 0.841050i \(0.681938\pi\)
\(72\) 0 0
\(73\) −2.86708 + 0.841852i −0.335567 + 0.0985313i −0.445175 0.895444i \(-0.646859\pi\)
0.109608 + 0.993975i \(0.465040\pi\)
\(74\) 3.17329 3.66217i 0.368887 0.425718i
\(75\) 0 0
\(76\) −3.72270 + 2.39243i −0.427023 + 0.274431i
\(77\) −0.234356 0.513169i −0.0267074 0.0584811i
\(78\) 0 0
\(79\) 2.15275 + 1.38349i 0.242203 + 0.155654i 0.656111 0.754664i \(-0.272200\pi\)
−0.413908 + 0.910319i \(0.635837\pi\)
\(80\) 0.394306 2.74246i 0.0440848 0.306617i
\(81\) 0 0
\(82\) 4.83295 + 3.10595i 0.533710 + 0.342995i
\(83\) −0.531462 0.613340i −0.0583356 0.0673228i 0.725832 0.687872i \(-0.241455\pi\)
−0.784167 + 0.620549i \(0.786910\pi\)
\(84\) 0 0
\(85\) −10.8194 + 6.95322i −1.17353 + 0.754182i
\(86\) −7.26043 2.13185i −0.782912 0.229884i
\(87\) 0 0
\(88\) 2.78644 0.818172i 0.297035 0.0872174i
\(89\) −2.81645 + 6.16716i −0.298543 + 0.653717i −0.998149 0.0608109i \(-0.980631\pi\)
0.699607 + 0.714528i \(0.253359\pi\)
\(90\) 0 0
\(91\) 0.210307 0.0220462
\(92\) −4.33020 + 2.06140i −0.451455 + 0.214916i
\(93\) 0 0
\(94\) −0.799036 5.55742i −0.0824143 0.573204i
\(95\) 5.09327 11.1527i 0.522559 1.14424i
\(96\) 0 0
\(97\) 8.09928 9.34707i 0.822357 0.949051i −0.177024 0.984206i \(-0.556647\pi\)
0.999382 + 0.0351554i \(0.0111926\pi\)
\(98\) 6.68024 + 1.96150i 0.674806 + 0.198141i
\(99\) 0 0
\(100\) 1.11189 + 2.43470i 0.111189 + 0.243470i
\(101\) 10.2791 + 11.8628i 1.02281 + 1.18039i 0.983453 + 0.181163i \(0.0579862\pi\)
0.0393592 + 0.999225i \(0.487468\pi\)
\(102\) 0 0
\(103\) −1.34415 + 9.34877i −0.132443 + 0.921162i 0.809913 + 0.586550i \(0.199514\pi\)
−0.942356 + 0.334612i \(0.891395\pi\)
\(104\) −0.154070 + 1.07158i −0.0151078 + 0.105077i
\(105\) 0 0
\(106\) −2.71282 3.13076i −0.263492 0.304086i
\(107\) −3.95144 8.65244i −0.382000 0.836463i −0.998783 0.0493295i \(-0.984292\pi\)
0.616783 0.787133i \(-0.288436\pi\)
\(108\) 0 0
\(109\) 19.4026 + 5.69711i 1.85843 + 0.545684i 0.999432 + 0.0337045i \(0.0107305\pi\)
0.858998 + 0.511980i \(0.171088\pi\)
\(110\) −5.26914 + 6.08092i −0.502393 + 0.579793i
\(111\) 0 0
\(112\) 0.0806993 0.176707i 0.00762536 0.0166972i
\(113\) 0.187381 + 1.30327i 0.0176274 + 0.122601i 0.996735 0.0807412i \(-0.0257287\pi\)
−0.979108 + 0.203342i \(0.934820\pi\)
\(114\) 0 0
\(115\) 7.00512 11.2911i 0.653231 1.05290i
\(116\) 9.21076 0.855197
\(117\) 0 0
\(118\) 4.45257 9.74976i 0.409892 0.897538i
\(119\) −0.865212 + 0.254049i −0.0793138 + 0.0232886i
\(120\) 0 0
\(121\) 2.46241 + 0.723028i 0.223855 + 0.0657298i
\(122\) −2.42248 + 1.55683i −0.219321 + 0.140949i
\(123\) 0 0
\(124\) 4.50102 + 5.19445i 0.404203 + 0.466475i
\(125\) 5.41551 + 3.48034i 0.484378 + 0.311291i
\(126\) 0 0
\(127\) 0.685740 4.76943i 0.0608496 0.423218i −0.936513 0.350634i \(-0.885966\pi\)
0.997362 0.0725845i \(-0.0231247\pi\)
\(128\) 0.841254 + 0.540641i 0.0743570 + 0.0477863i
\(129\) 0 0
\(130\) −1.24604 2.72845i −0.109285 0.239301i
\(131\) −13.4413 + 8.63823i −1.17438 + 0.754725i −0.974344 0.225064i \(-0.927741\pi\)
−0.200032 + 0.979789i \(0.564104\pi\)
\(132\) 0 0
\(133\) 0.562947 0.649675i 0.0488137 0.0563340i
\(134\) 14.0444 4.12382i 1.21325 0.356243i
\(135\) 0 0
\(136\) −0.660607 4.59462i −0.0566466 0.393986i
\(137\) −18.7720 −1.60380 −0.801898 0.597460i \(-0.796176\pi\)
−0.801898 + 0.597460i \(0.796176\pi\)
\(138\) 0 0
\(139\) 17.7540 1.50588 0.752938 0.658092i \(-0.228636\pi\)
0.752938 + 0.658092i \(0.228636\pi\)
\(140\) 0.0765987 + 0.532755i 0.00647377 + 0.0450261i
\(141\) 0 0
\(142\) 12.2162 3.58701i 1.02516 0.301015i
\(143\) 2.05884 2.37603i 0.172169 0.198694i
\(144\) 0 0
\(145\) −21.4687 + 13.7971i −1.78288 + 1.14579i
\(146\) 1.24131 + 2.71809i 0.102732 + 0.224951i
\(147\) 0 0
\(148\) −4.07650 2.61981i −0.335086 0.215347i
\(149\) −1.35418 + 9.41852i −0.110939 + 0.771595i 0.856072 + 0.516857i \(0.172898\pi\)
−0.967010 + 0.254738i \(0.918011\pi\)
\(150\) 0 0
\(151\) −7.30101 4.69207i −0.594148 0.381835i 0.208735 0.977972i \(-0.433065\pi\)
−0.802883 + 0.596137i \(0.796702\pi\)
\(152\) 2.89788 + 3.34433i 0.235049 + 0.271261i
\(153\) 0 0
\(154\) −0.474593 + 0.305003i −0.0382438 + 0.0245778i
\(155\) −18.2720 5.36516i −1.46765 0.430940i
\(156\) 0 0
\(157\) −19.0136 + 5.58290i −1.51745 + 0.445564i −0.931183 0.364552i \(-0.881222\pi\)
−0.586270 + 0.810116i \(0.699404\pi\)
\(158\) 1.06304 2.32772i 0.0845706 0.185184i
\(159\) 0 0
\(160\) −2.77066 −0.219040
\(161\) 0.694298 0.621221i 0.0547184 0.0489591i
\(162\) 0 0
\(163\) −2.06377 14.3538i −0.161647 1.12428i −0.895530 0.445001i \(-0.853203\pi\)
0.733883 0.679276i \(-0.237706\pi\)
\(164\) 2.38653 5.22578i 0.186357 0.408065i
\(165\) 0 0
\(166\) −0.531462 + 0.613340i −0.0412495 + 0.0476044i
\(167\) −9.49053 2.78667i −0.734399 0.215639i −0.106915 0.994268i \(-0.534097\pi\)
−0.627484 + 0.778629i \(0.715915\pi\)
\(168\) 0 0
\(169\) −4.91352 10.7591i −0.377963 0.827624i
\(170\) 8.42221 + 9.71974i 0.645954 + 0.745470i
\(171\) 0 0
\(172\) −1.07689 + 7.48992i −0.0821119 + 0.571101i
\(173\) 1.88474 13.1086i 0.143294 0.996631i −0.783589 0.621280i \(-0.786613\pi\)
0.926883 0.375351i \(-0.122478\pi\)
\(174\) 0 0
\(175\) −0.340499 0.392956i −0.0257393 0.0297047i
\(176\) −1.20640 2.64164i −0.0909355 0.199121i
\(177\) 0 0
\(178\) 6.50521 + 1.91010i 0.487586 + 0.143168i
\(179\) 3.43495 3.96414i 0.256740 0.296294i −0.612717 0.790302i \(-0.709923\pi\)
0.869457 + 0.494009i \(0.164469\pi\)
\(180\) 0 0
\(181\) −6.75269 + 14.7863i −0.501924 + 1.09906i 0.473916 + 0.880570i \(0.342840\pi\)
−0.975839 + 0.218489i \(0.929887\pi\)
\(182\) −0.0299298 0.208166i −0.00221855 0.0154303i
\(183\) 0 0
\(184\) 2.65667 + 3.99276i 0.195852 + 0.294350i
\(185\) 13.4259 0.987093
\(186\) 0 0
\(187\) −5.59993 + 12.2621i −0.409508 + 0.896697i
\(188\) −5.38714 + 1.58181i −0.392897 + 0.115365i
\(189\) 0 0
\(190\) −11.7640 3.45423i −0.853453 0.250596i
\(191\) 6.47147 4.15896i 0.468259 0.300932i −0.285151 0.958483i \(-0.592044\pi\)
0.753410 + 0.657551i \(0.228407\pi\)
\(192\) 0 0
\(193\) 0.934780 + 1.07879i 0.0672869 + 0.0776533i 0.788395 0.615169i \(-0.210912\pi\)
−0.721108 + 0.692823i \(0.756367\pi\)
\(194\) −10.4046 6.68662i −0.747005 0.480071i
\(195\) 0 0
\(196\) 0.990833 6.89140i 0.0707738 0.492243i
\(197\) −5.26265 3.38210i −0.374948 0.240965i 0.339571 0.940580i \(-0.389718\pi\)
−0.714519 + 0.699616i \(0.753354\pi\)
\(198\) 0 0
\(199\) 0.358560 + 0.785136i 0.0254176 + 0.0556568i 0.921915 0.387392i \(-0.126624\pi\)
−0.896497 + 0.443049i \(0.853897\pi\)
\(200\) 2.25168 1.44706i 0.159218 0.102323i
\(201\) 0 0
\(202\) 10.2791 11.8628i 0.723237 0.834661i
\(203\) −1.71682 + 0.504104i −0.120497 + 0.0353811i
\(204\) 0 0
\(205\) 2.26527 + 15.7553i 0.158213 + 1.10040i
\(206\) 9.44491 0.658058
\(207\) 0 0
\(208\) 1.08260 0.0750646
\(209\) −1.82889 12.7202i −0.126507 0.879878i
\(210\) 0 0
\(211\) −18.2924 + 5.37114i −1.25930 + 0.369764i −0.842234 0.539112i \(-0.818760\pi\)
−0.417067 + 0.908876i \(0.636942\pi\)
\(212\) −2.71282 + 3.13076i −0.186317 + 0.215021i
\(213\) 0 0
\(214\) −8.00202 + 5.14259i −0.547007 + 0.351540i
\(215\) −8.70936 19.0708i −0.593973 1.30062i
\(216\) 0 0
\(217\) −1.12325 0.721868i −0.0762511 0.0490036i
\(218\) 2.87785 20.0159i 0.194912 1.35565i
\(219\) 0 0
\(220\) 6.76890 + 4.35011i 0.456359 + 0.293284i
\(221\) −3.29085 3.79785i −0.221367 0.255471i
\(222\) 0 0
\(223\) 5.39879 3.46959i 0.361529 0.232341i −0.347248 0.937774i \(-0.612884\pi\)
0.708777 + 0.705433i \(0.249247\pi\)
\(224\) −0.186393 0.0547299i −0.0124539 0.00365679i
\(225\) 0 0
\(226\) 1.26333 0.370948i 0.0840357 0.0246751i
\(227\) 0.497189 1.08869i 0.0329996 0.0722590i −0.892414 0.451217i \(-0.850990\pi\)
0.925414 + 0.378958i \(0.123717\pi\)
\(228\) 0 0
\(229\) −28.0856 −1.85595 −0.927974 0.372646i \(-0.878451\pi\)
−0.927974 + 0.372646i \(0.878451\pi\)
\(230\) −12.1731 5.32693i −0.802672 0.351247i
\(231\) 0 0
\(232\) −1.31083 9.11701i −0.0860600 0.598561i
\(233\) 6.81811 14.9296i 0.446669 0.978070i −0.543656 0.839308i \(-0.682961\pi\)
0.990326 0.138762i \(-0.0443122\pi\)
\(234\) 0 0
\(235\) 10.1871 11.7565i 0.664531 0.766909i
\(236\) −10.2842 3.01971i −0.669444 0.196566i
\(237\) 0 0
\(238\) 0.374596 + 0.820250i 0.0242814 + 0.0531689i
\(239\) 6.76847 + 7.81123i 0.437816 + 0.505266i 0.931182 0.364556i \(-0.118779\pi\)
−0.493366 + 0.869822i \(0.664234\pi\)
\(240\) 0 0
\(241\) 3.12210 21.7147i 0.201112 1.39877i −0.599879 0.800091i \(-0.704785\pi\)
0.800991 0.598676i \(-0.204306\pi\)
\(242\) 0.365231 2.54024i 0.0234780 0.163293i
\(243\) 0 0
\(244\) 1.88574 + 2.17626i 0.120722 + 0.139321i
\(245\) 8.01339 + 17.5469i 0.511957 + 1.12103i
\(246\) 0 0
\(247\) 4.59663 + 1.34969i 0.292476 + 0.0858788i
\(248\) 4.50102 5.19445i 0.285815 0.329848i
\(249\) 0 0
\(250\) 2.67421 5.85569i 0.169132 0.370347i
\(251\) 0.0385613 + 0.268200i 0.00243397 + 0.0169286i 0.991002 0.133845i \(-0.0427325\pi\)
−0.988568 + 0.150774i \(0.951823\pi\)
\(252\) 0 0
\(253\) −0.221534 13.9257i −0.0139277 0.875500i
\(254\) −4.81847 −0.302338
\(255\) 0 0
\(256\) 0.415415 0.909632i 0.0259634 0.0568520i
\(257\) 14.0118 4.11424i 0.874033 0.256639i 0.186203 0.982511i \(-0.440382\pi\)
0.687830 + 0.725872i \(0.258564\pi\)
\(258\) 0 0
\(259\) 0.903212 + 0.265207i 0.0561228 + 0.0164792i
\(260\) −2.52335 + 1.62166i −0.156491 + 0.100571i
\(261\) 0 0
\(262\) 10.4632 + 12.0752i 0.646419 + 0.746007i
\(263\) 14.3594 + 9.22820i 0.885436 + 0.569035i 0.902438 0.430820i \(-0.141776\pi\)
−0.0170015 + 0.999855i \(0.505412\pi\)
\(264\) 0 0
\(265\) 1.63345 11.3609i 0.100342 0.697893i
\(266\) −0.723178 0.464758i −0.0443409 0.0284962i
\(267\) 0 0
\(268\) −6.08057 13.3146i −0.371430 0.813318i
\(269\) −27.1087 + 17.4217i −1.65284 + 1.06222i −0.725349 + 0.688381i \(0.758322\pi\)
−0.927494 + 0.373837i \(0.878042\pi\)
\(270\) 0 0
\(271\) −2.00662 + 2.31576i −0.121893 + 0.140672i −0.813416 0.581682i \(-0.802395\pi\)
0.691523 + 0.722355i \(0.256940\pi\)
\(272\) −4.45384 + 1.30777i −0.270054 + 0.0792950i
\(273\) 0 0
\(274\) 2.67153 + 18.5809i 0.161393 + 1.12251i
\(275\) −7.77296 −0.468727
\(276\) 0 0
\(277\) −5.05736 −0.303867 −0.151934 0.988391i \(-0.548550\pi\)
−0.151934 + 0.988391i \(0.548550\pi\)
\(278\) −2.52666 17.5733i −0.151539 1.05398i
\(279\) 0 0
\(280\) 0.516432 0.151638i 0.0308627 0.00906210i
\(281\) −5.50042 + 6.34782i −0.328127 + 0.378679i −0.895711 0.444636i \(-0.853333\pi\)
0.567584 + 0.823316i \(0.307878\pi\)
\(282\) 0 0
\(283\) 12.8122 8.23389i 0.761605 0.489454i −0.101278 0.994858i \(-0.532293\pi\)
0.862883 + 0.505404i \(0.168657\pi\)
\(284\) −5.28905 11.5814i −0.313847 0.687229i
\(285\) 0 0
\(286\) −2.64485 1.69974i −0.156393 0.100508i
\(287\) −0.158827 + 1.10466i −0.00937524 + 0.0652062i
\(288\) 0 0
\(289\) 3.82516 + 2.45828i 0.225010 + 0.144605i
\(290\) 16.7120 + 19.2867i 0.981361 + 1.13255i
\(291\) 0 0
\(292\) 2.51377 1.61550i 0.147107 0.0945401i
\(293\) 27.7542 + 8.14937i 1.62142 + 0.476091i 0.961399 0.275158i \(-0.0887303\pi\)
0.660018 + 0.751249i \(0.270548\pi\)
\(294\) 0 0
\(295\) 28.4940 8.36660i 1.65899 0.487122i
\(296\) −2.01299 + 4.40784i −0.117003 + 0.256201i
\(297\) 0 0
\(298\) 9.51537 0.551211
\(299\) 4.75647 + 2.08142i 0.275074 + 0.120372i
\(300\) 0 0
\(301\) −0.209198 1.45501i −0.0120580 0.0838651i
\(302\) −3.60527 + 7.89445i −0.207460 + 0.454274i
\(303\) 0 0
\(304\) 2.89788 3.34433i 0.166205 0.191810i
\(305\) −7.65525 2.24778i −0.438338 0.128708i
\(306\) 0 0
\(307\) −8.96612 19.6331i −0.511724 1.12052i −0.972479 0.232991i \(-0.925149\pi\)
0.460755 0.887527i \(-0.347579\pi\)
\(308\) 0.369440 + 0.426356i 0.0210508 + 0.0242939i
\(309\) 0 0
\(310\) −2.71016 + 18.8496i −0.153927 + 1.07059i
\(311\) 0.125077 0.869929i 0.00709246 0.0493291i −0.985968 0.166935i \(-0.946613\pi\)
0.993060 + 0.117606i \(0.0375220\pi\)
\(312\) 0 0
\(313\) 3.57263 + 4.12304i 0.201937 + 0.233048i 0.847681 0.530506i \(-0.177998\pi\)
−0.645744 + 0.763554i \(0.723453\pi\)
\(314\) 8.23200 + 18.0256i 0.464559 + 1.01724i
\(315\) 0 0
\(316\) −2.45532 0.720946i −0.138122 0.0405564i
\(317\) −3.33115 + 3.84435i −0.187096 + 0.215920i −0.841547 0.540184i \(-0.818355\pi\)
0.654451 + 0.756105i \(0.272900\pi\)
\(318\) 0 0
\(319\) −11.1118 + 24.3315i −0.622142 + 1.36230i
\(320\) 0.394306 + 2.74246i 0.0220424 + 0.153308i
\(321\) 0 0
\(322\) −0.713707 0.598822i −0.0397733 0.0333711i
\(323\) −20.5411 −1.14294
\(324\) 0 0
\(325\) 1.20373 2.63579i 0.0667708 0.146208i
\(326\) −13.9140 + 4.08552i −0.770625 + 0.226276i
\(327\) 0 0
\(328\) −5.51223 1.61854i −0.304362 0.0893688i
\(329\) 0.917552 0.589675i 0.0505863 0.0325098i
\(330\) 0 0
\(331\) 23.3216 + 26.9146i 1.28187 + 1.47936i 0.795954 + 0.605356i \(0.206969\pi\)
0.485919 + 0.874004i \(0.338485\pi\)
\(332\) 0.682732 + 0.438765i 0.0374698 + 0.0240804i
\(333\) 0 0
\(334\) −1.40766 + 9.79051i −0.0770239 + 0.535713i
\(335\) 34.1172 + 21.9258i 1.86402 + 1.19793i
\(336\) 0 0
\(337\) 4.77911 + 10.4648i 0.260335 + 0.570053i 0.993990 0.109468i \(-0.0349147\pi\)
−0.733656 + 0.679521i \(0.762187\pi\)
\(338\) −9.95033 + 6.39469i −0.541227 + 0.347825i
\(339\) 0 0
\(340\) 8.42221 9.71974i 0.456758 0.527127i
\(341\) −19.1519 + 5.62349i −1.03713 + 0.304529i
\(342\) 0 0
\(343\) 0.386005 + 2.68473i 0.0208423 + 0.144962i
\(344\) 7.56694 0.407982
\(345\) 0 0
\(346\) −13.2434 −0.711972
\(347\) −2.24907 15.6426i −0.120736 0.839740i −0.956725 0.290993i \(-0.906014\pi\)
0.835989 0.548747i \(-0.184895\pi\)
\(348\) 0 0
\(349\) −11.7351 + 3.44574i −0.628167 + 0.184446i −0.580294 0.814407i \(-0.697062\pi\)
−0.0478727 + 0.998853i \(0.515244\pi\)
\(350\) −0.340499 + 0.392956i −0.0182004 + 0.0210044i
\(351\) 0 0
\(352\) −2.44306 + 1.57006i −0.130216 + 0.0836845i
\(353\) −1.51906 3.32628i −0.0808514 0.177040i 0.864889 0.501963i \(-0.167389\pi\)
−0.945740 + 0.324923i \(0.894661\pi\)
\(354\) 0 0
\(355\) 29.6760 + 19.0716i 1.57504 + 1.01222i
\(356\) 0.964871 6.71083i 0.0511381 0.355673i
\(357\) 0 0
\(358\) −4.41264 2.83583i −0.233215 0.149878i
\(359\) −8.61646 9.94392i −0.454759 0.524820i 0.481351 0.876528i \(-0.340146\pi\)
−0.936110 + 0.351708i \(0.885601\pi\)
\(360\) 0 0
\(361\) 0.489802 0.314776i 0.0257790 0.0165672i
\(362\) 15.5968 + 4.57965i 0.819752 + 0.240701i
\(363\) 0 0
\(364\) −0.201788 + 0.0592504i −0.0105766 + 0.00310556i
\(365\) −3.43926 + 7.53092i −0.180019 + 0.394186i
\(366\) 0 0
\(367\) −12.3385 −0.644064 −0.322032 0.946729i \(-0.604366\pi\)
−0.322032 + 0.946729i \(0.604366\pi\)
\(368\) 3.57403 3.19786i 0.186309 0.166700i
\(369\) 0 0
\(370\) −1.91071 13.2893i −0.0993330 0.690876i
\(371\) 0.334303 0.732022i 0.0173562 0.0380047i
\(372\) 0 0
\(373\) 12.1475 14.0189i 0.628973 0.725873i −0.348412 0.937341i \(-0.613279\pi\)
0.977385 + 0.211468i \(0.0678244\pi\)
\(374\) 12.9343 + 3.79785i 0.668816 + 0.196382i
\(375\) 0 0
\(376\) 2.33238 + 5.10719i 0.120283 + 0.263383i
\(377\) −6.52997 7.53598i −0.336310 0.388123i
\(378\) 0 0
\(379\) −0.406982 + 2.83062i −0.0209053 + 0.145399i −0.997601 0.0692308i \(-0.977946\pi\)
0.976695 + 0.214630i \(0.0688546\pi\)
\(380\) −1.74488 + 12.1359i −0.0895103 + 0.622558i
\(381\) 0 0
\(382\) −5.03762 5.81372i −0.257747 0.297456i
\(383\) 0.0334270 + 0.0731949i 0.00170804 + 0.00374009i 0.910484 0.413544i \(-0.135709\pi\)
−0.908776 + 0.417284i \(0.862982\pi\)
\(384\) 0 0
\(385\) −1.49975 0.440368i −0.0764346 0.0224432i
\(386\) 0.934780 1.07879i 0.0475791 0.0549092i
\(387\) 0 0
\(388\) −5.13783 + 11.2503i −0.260834 + 0.571146i
\(389\) −1.95719 13.6126i −0.0992337 0.690185i −0.977333 0.211707i \(-0.932098\pi\)
0.878099 0.478478i \(-0.158811\pi\)
\(390\) 0 0
\(391\) −22.0827 2.81726i −1.11677 0.142475i
\(392\) −6.96226 −0.351647
\(393\) 0 0
\(394\) −2.59872 + 5.69041i −0.130922 + 0.286678i
\(395\) 6.80286 1.99750i 0.342289 0.100505i
\(396\) 0 0
\(397\) 6.36046 + 1.86760i 0.319222 + 0.0937321i 0.437418 0.899258i \(-0.355893\pi\)
−0.118196 + 0.992990i \(0.537711\pi\)
\(398\) 0.726117 0.466647i 0.0363969 0.0233909i
\(399\) 0 0
\(400\) −1.75278 2.02282i −0.0876391 0.101141i
\(401\) 29.6875 + 19.0790i 1.48252 + 0.952759i 0.996907 + 0.0785860i \(0.0250405\pi\)
0.485615 + 0.874173i \(0.338596\pi\)
\(402\) 0 0
\(403\) 1.05896 7.36521i 0.0527504 0.366887i
\(404\) −13.2049 8.48626i −0.656967 0.422207i
\(405\) 0 0
\(406\) 0.743301 + 1.62760i 0.0368894 + 0.0807766i
\(407\) 11.8384 7.60811i 0.586810 0.377120i
\(408\) 0 0
\(409\) 19.1568 22.1082i 0.947244 1.09318i −0.0482952 0.998833i \(-0.515379\pi\)
0.995540 0.0943452i \(-0.0300757\pi\)
\(410\) 15.2725 4.48442i 0.754257 0.221470i
\(411\) 0 0
\(412\) −1.34415 9.34877i −0.0662215 0.460581i
\(413\) 2.08217 0.102457
\(414\) 0 0
\(415\) −2.24857 −0.110378
\(416\) −0.154070 1.07158i −0.00755388 0.0525384i
\(417\) 0 0
\(418\) −12.3305 + 3.62056i −0.603104 + 0.177087i
\(419\) 0.476760 0.550210i 0.0232912 0.0268795i −0.743984 0.668197i \(-0.767066\pi\)
0.767276 + 0.641317i \(0.221612\pi\)
\(420\) 0 0
\(421\) −28.4791 + 18.3024i −1.38798 + 0.892004i −0.999565 0.0294793i \(-0.990615\pi\)
−0.388419 + 0.921483i \(0.626979\pi\)
\(422\) 7.91975 + 17.3418i 0.385527 + 0.844187i
\(423\) 0 0
\(424\) 3.48496 + 2.23965i 0.169245 + 0.108767i
\(425\) −1.76816 + 12.2979i −0.0857685 + 0.596533i
\(426\) 0 0
\(427\) −0.470596 0.302434i −0.0227737 0.0146358i
\(428\) 6.22905 + 7.18871i 0.301092 + 0.347479i
\(429\) 0 0
\(430\) −17.6373 + 11.3348i −0.850544 + 0.546611i
\(431\) 1.42384 + 0.418077i 0.0685839 + 0.0201381i 0.315845 0.948811i \(-0.397712\pi\)
−0.247261 + 0.968949i \(0.579530\pi\)
\(432\) 0 0
\(433\) 6.69224 1.96502i 0.321608 0.0944327i −0.116944 0.993139i \(-0.537310\pi\)
0.438552 + 0.898706i \(0.355492\pi\)
\(434\) −0.554666 + 1.21455i −0.0266248 + 0.0583002i
\(435\) 0 0
\(436\) −20.2217 −0.968443
\(437\) 19.1619 9.12206i 0.916639 0.436367i
\(438\) 0 0
\(439\) −1.32651 9.22605i −0.0633106 0.440335i −0.996680 0.0814180i \(-0.974055\pi\)
0.933369 0.358917i \(-0.116854\pi\)
\(440\) 3.34251 7.31909i 0.159348 0.348924i
\(441\) 0 0
\(442\) −3.29085 + 3.79785i −0.156530 + 0.180645i
\(443\) 30.3672 + 8.91661i 1.44279 + 0.423641i 0.907150 0.420807i \(-0.138253\pi\)
0.535638 + 0.844448i \(0.320071\pi\)
\(444\) 0 0
\(445\) 7.80342 + 17.0871i 0.369918 + 0.810007i
\(446\) −4.20260 4.85006i −0.198999 0.229657i
\(447\) 0 0
\(448\) −0.0276463 + 0.192284i −0.00130617 + 0.00908459i
\(449\) −1.36062 + 9.46329i −0.0642115 + 0.446600i 0.932199 + 0.361946i \(0.117888\pi\)
−0.996410 + 0.0846542i \(0.973021\pi\)
\(450\) 0 0
\(451\) 10.9255 + 12.6087i 0.514463 + 0.593721i
\(452\) −0.546964 1.19768i −0.0257270 0.0563343i
\(453\) 0 0
\(454\) −1.14837 0.337191i −0.0538955 0.0158252i
\(455\) 0.381581 0.440368i 0.0178888 0.0206448i
\(456\) 0 0
\(457\) −5.34240 + 11.6982i −0.249907 + 0.547220i −0.992460 0.122567i \(-0.960887\pi\)
0.742553 + 0.669787i \(0.233615\pi\)
\(458\) 3.99700 + 27.7997i 0.186767 + 1.29900i
\(459\) 0 0
\(460\) −3.54029 + 12.8073i −0.165067 + 0.597145i
\(461\) −18.4038 −0.857151 −0.428575 0.903506i \(-0.640984\pi\)
−0.428575 + 0.903506i \(0.640984\pi\)
\(462\) 0 0
\(463\) 11.4891 25.1576i 0.533944 1.16917i −0.429941 0.902857i \(-0.641466\pi\)
0.963885 0.266318i \(-0.0858070\pi\)
\(464\) −8.83766 + 2.59497i −0.410278 + 0.120468i
\(465\) 0 0
\(466\) −15.7479 4.62401i −0.729509 0.214203i
\(467\) −20.4802 + 13.1618i −0.947711 + 0.609057i −0.920571 0.390575i \(-0.872276\pi\)
−0.0271399 + 0.999632i \(0.508640\pi\)
\(468\) 0 0
\(469\) 1.86208 + 2.14896i 0.0859829 + 0.0992296i
\(470\) −13.0866 8.41025i −0.603640 0.387936i
\(471\) 0 0
\(472\) −1.52538 + 10.6093i −0.0702114 + 0.488331i
\(473\) −18.4865 11.8806i −0.850010 0.546268i
\(474\) 0 0
\(475\) −4.92031 10.7740i −0.225759 0.494344i
\(476\) 0.758591 0.487517i 0.0347699 0.0223453i
\(477\) 0 0
\(478\) 6.76847 7.81123i 0.309582 0.357277i
\(479\) −6.99671 + 2.05442i −0.319688 + 0.0938689i −0.437640 0.899150i \(-0.644185\pi\)
0.117952 + 0.993019i \(0.462367\pi\)
\(480\) 0 0
\(481\) 0.746581 + 5.19259i 0.0340412 + 0.236762i
\(482\) −21.9380 −0.999248
\(483\) 0 0
\(484\) −2.56636 −0.116653
\(485\) −4.87676 33.9186i −0.221442 1.54016i
\(486\) 0 0
\(487\) −21.5014 + 6.31339i −0.974323 + 0.286087i −0.729879 0.683576i \(-0.760424\pi\)
−0.244444 + 0.969663i \(0.578605\pi\)
\(488\) 1.88574 2.17626i 0.0853636 0.0985149i
\(489\) 0 0
\(490\) 16.2279 10.4290i 0.733100 0.471134i
\(491\) −8.18375 17.9199i −0.369328 0.808715i −0.999480 0.0322432i \(-0.989735\pi\)
0.630152 0.776471i \(-0.282992\pi\)
\(492\) 0 0
\(493\) 35.9679 + 23.1152i 1.61991 + 1.04106i
\(494\) 0.681786 4.74192i 0.0306750 0.213349i
\(495\) 0 0
\(496\) −5.78214 3.71596i −0.259626 0.166851i
\(497\) 1.61969 + 1.86922i 0.0726529 + 0.0838460i
\(498\) 0 0
\(499\) −14.5484 + 9.34971i −0.651277 + 0.418550i −0.824133 0.566397i \(-0.808337\pi\)
0.172855 + 0.984947i \(0.444701\pi\)
\(500\) −6.17667 1.81363i −0.276229 0.0811082i
\(501\) 0 0
\(502\) 0.259982 0.0763376i 0.0116036 0.00340711i
\(503\) −6.82524 + 14.9452i −0.304323 + 0.666373i −0.998575 0.0533577i \(-0.983008\pi\)
0.694253 + 0.719731i \(0.255735\pi\)
\(504\) 0 0
\(505\) 43.4902 1.93529
\(506\) −13.7524 + 2.20111i −0.611369 + 0.0978513i
\(507\) 0 0
\(508\) 0.685740 + 4.76943i 0.0304248 + 0.211609i
\(509\) −11.2142 + 24.5556i −0.497059 + 1.08841i 0.480354 + 0.877074i \(0.340508\pi\)
−0.977414 + 0.211334i \(0.932219\pi\)
\(510\) 0 0
\(511\) −0.380132 + 0.438696i −0.0168161 + 0.0194068i
\(512\) −0.959493 0.281733i −0.0424040 0.0124509i
\(513\) 0 0
\(514\) −6.06645 13.2837i −0.267580 0.585918i
\(515\) 17.1368 + 19.7770i 0.755139 + 0.871477i
\(516\) 0 0
\(517\) 2.32046 16.1392i 0.102054 0.709799i
\(518\) 0.133967 0.931761i 0.00588617 0.0409392i
\(519\) 0 0
\(520\) 1.96426 + 2.26688i 0.0861386 + 0.0994092i
\(521\) −9.75660 21.3640i −0.427444 0.935973i −0.993734 0.111767i \(-0.964349\pi\)
0.566290 0.824206i \(-0.308378\pi\)
\(522\) 0 0
\(523\) −28.1477 8.26490i −1.23081 0.361399i −0.399255 0.916840i \(-0.630731\pi\)
−0.831556 + 0.555441i \(0.812550\pi\)
\(524\) 10.4632 12.0752i 0.457087 0.527507i
\(525\) 0 0
\(526\) 7.09072 15.5265i 0.309170 0.676988i
\(527\) 4.54051 + 31.5800i 0.197788 + 1.37565i
\(528\) 0 0
\(529\) 21.8511 7.17853i 0.950046 0.312110i
\(530\) −11.4777 −0.498560
\(531\) 0 0
\(532\) −0.357109 + 0.781959i −0.0154826 + 0.0339022i
\(533\) −5.96752 + 1.75222i −0.258482 + 0.0758972i
\(534\) 0 0
\(535\) −25.2871 7.42495i −1.09326 0.321009i
\(536\) −12.3137 + 7.91354i −0.531872 + 0.341813i
\(537\) 0 0
\(538\) 21.1023 + 24.3534i 0.909785 + 1.04995i
\(539\) 17.0092 + 10.9312i 0.732640 + 0.470839i
\(540\) 0 0
\(541\) 0.682956 4.75006i 0.0293626 0.204221i −0.969859 0.243666i \(-0.921650\pi\)
0.999222 + 0.0394449i \(0.0125590\pi\)
\(542\) 2.57776 + 1.65662i 0.110724 + 0.0711581i
\(543\) 0 0
\(544\) 1.92830 + 4.22240i 0.0826753 + 0.181034i
\(545\) 47.1333 30.2908i 2.01897 1.29751i
\(546\) 0 0
\(547\) −18.0000 + 20.7731i −0.769622 + 0.888192i −0.996315 0.0857749i \(-0.972663\pi\)
0.226692 + 0.973966i \(0.427209\pi\)
\(548\) 18.0116 5.28867i 0.769416 0.225921i
\(549\) 0 0
\(550\) 1.10621 + 7.69385i 0.0471689 + 0.328067i
\(551\) −40.7593 −1.73640
\(552\) 0 0
\(553\) 0.497111 0.0211393
\(554\) 0.719737 + 5.00588i 0.0305787 + 0.212679i
\(555\) 0 0
\(556\) −17.0348 + 5.00188i −0.722438 + 0.212127i
\(557\) −7.86165 + 9.07283i −0.333109 + 0.384428i −0.897452 0.441112i \(-0.854584\pi\)
0.564343 + 0.825540i \(0.309130\pi\)
\(558\) 0 0
\(559\) 6.89150 4.42890i 0.291479 0.187322i
\(560\) −0.223590 0.489595i −0.00944842 0.0206892i
\(561\) 0 0
\(562\) 7.06600 + 4.54104i 0.298061 + 0.191552i
\(563\) −0.869255 + 6.04580i −0.0366347 + 0.254800i −0.999906 0.0137310i \(-0.995629\pi\)
0.963271 + 0.268531i \(0.0865382\pi\)
\(564\) 0 0
\(565\) 3.06893 + 1.97228i 0.129111 + 0.0829745i
\(566\) −9.97344 11.5100i −0.419215 0.483800i
\(567\) 0 0
\(568\) −10.7108 + 6.88341i −0.449415 + 0.288822i
\(569\) 23.9950 + 7.04556i 1.00592 + 0.295365i 0.742884 0.669420i \(-0.233457\pi\)
0.263038 + 0.964786i \(0.415276\pi\)
\(570\) 0 0
\(571\) 22.4009 6.57751i 0.937450 0.275260i 0.222898 0.974842i \(-0.428448\pi\)
0.714553 + 0.699582i \(0.246630\pi\)
\(572\) −1.30604 + 2.85983i −0.0546082 + 0.119575i
\(573\) 0 0
\(574\) 1.11602 0.0465819
\(575\) −3.81188 12.2573i −0.158966 0.511167i
\(576\) 0 0
\(577\) −5.23379 36.4018i −0.217886 1.51543i −0.745823 0.666145i \(-0.767943\pi\)
0.527937 0.849284i \(-0.322966\pi\)
\(578\) 1.88888 4.13608i 0.0785672 0.172038i
\(579\) 0 0
\(580\) 16.7120 19.2867i 0.693927 0.800835i
\(581\) −0.151270 0.0444169i −0.00627573 0.00184272i
\(582\) 0 0
\(583\) −4.99759 10.9432i −0.206979 0.453221i
\(584\) −1.95680 2.25827i −0.0809731 0.0934480i
\(585\) 0 0
\(586\) 4.11658 28.6315i 0.170055 1.18276i
\(587\) 3.37092 23.4453i 0.139133 0.967690i −0.793938 0.607998i \(-0.791973\pi\)
0.933071 0.359692i \(-0.117118\pi\)
\(588\) 0 0
\(589\) −19.9178 22.9864i −0.820699 0.947137i
\(590\) −12.3366 27.0133i −0.507888 1.11212i
\(591\) 0 0
\(592\) 4.64946 + 1.36520i 0.191091 + 0.0561095i
\(593\) 17.0796 19.7109i 0.701376 0.809431i −0.287562 0.957762i \(-0.592845\pi\)
0.988938 + 0.148331i \(0.0473901\pi\)
\(594\) 0 0
\(595\) −1.03788 + 2.27264i −0.0425489 + 0.0931690i
\(596\) −1.35418 9.41852i −0.0554693 0.385797i
\(597\) 0 0
\(598\) 1.38332 5.00428i 0.0565680 0.204640i
\(599\) −11.2311 −0.458891 −0.229445 0.973322i \(-0.573691\pi\)
−0.229445 + 0.973322i \(0.573691\pi\)
\(600\) 0 0
\(601\) 9.43741 20.6650i 0.384960 0.842945i −0.613616 0.789604i \(-0.710286\pi\)
0.998576 0.0533404i \(-0.0169868\pi\)
\(602\) −1.41042 + 0.414138i −0.0574846 + 0.0168790i
\(603\) 0 0
\(604\) 8.32718 + 2.44508i 0.338828 + 0.0994889i
\(605\) 5.98175 3.84424i 0.243193 0.156291i
\(606\) 0 0
\(607\) −10.5182 12.1387i −0.426922 0.492694i 0.501011 0.865441i \(-0.332962\pi\)
−0.927933 + 0.372747i \(0.878416\pi\)
\(608\) −3.72270 2.39243i −0.150975 0.0970260i
\(609\) 0 0
\(610\) −1.13545 + 7.89722i −0.0459730 + 0.319749i
\(611\) 5.11340 + 3.28618i 0.206866 + 0.132945i
\(612\) 0 0
\(613\) 2.61584 + 5.72789i 0.105653 + 0.231347i 0.955074 0.296369i \(-0.0957757\pi\)
−0.849421 + 0.527716i \(0.823048\pi\)
\(614\) −18.1572 + 11.6689i −0.732766 + 0.470920i
\(615\) 0 0
\(616\) 0.369440 0.426356i 0.0148852 0.0171784i
\(617\) −9.23760 + 2.71240i −0.371892 + 0.109197i −0.462337 0.886704i \(-0.652989\pi\)
0.0904455 + 0.995901i \(0.471171\pi\)
\(618\) 0 0
\(619\) −3.51921 24.4767i −0.141449 0.983800i −0.929666 0.368403i \(-0.879905\pi\)
0.788217 0.615397i \(-0.211004\pi\)
\(620\) 19.0434 0.764803
\(621\) 0 0
\(622\) −0.878874 −0.0352396
\(623\) 0.187438 + 1.30366i 0.00750953 + 0.0522299i
\(624\) 0 0
\(625\) 29.9542 8.79536i 1.19817 0.351814i
\(626\) 3.57263 4.12304i 0.142791 0.164790i
\(627\) 0 0
\(628\) 16.6706 10.7135i 0.665228 0.427516i
\(629\) −9.34406 20.4606i −0.372572 0.815819i
\(630\) 0 0
\(631\) 30.1416 + 19.3708i 1.19992 + 0.771141i 0.978942 0.204138i \(-0.0654391\pi\)
0.220977 + 0.975279i \(0.429076\pi\)
\(632\) −0.364180 + 2.53293i −0.0144863 + 0.100754i
\(633\) 0 0
\(634\) 4.27930 + 2.75014i 0.169953 + 0.109222i
\(635\) −8.74263 10.0895i −0.346941 0.400391i
\(636\) 0 0
\(637\) −6.34080 + 4.07498i −0.251232 + 0.161457i
\(638\) 25.6652 + 7.53598i 1.01609 + 0.298352i
\(639\) 0 0
\(640\) 2.65843 0.780586i 0.105084 0.0308554i
\(641\) 5.26851 11.5364i 0.208094 0.455662i −0.776591 0.630005i \(-0.783053\pi\)
0.984685 + 0.174343i \(0.0557802\pi\)
\(642\) 0 0
\(643\) −27.3350 −1.07799 −0.538993 0.842310i \(-0.681195\pi\)
−0.538993 + 0.842310i \(0.681195\pi\)
\(644\) −0.491156 + 0.791664i −0.0193543 + 0.0311959i
\(645\) 0 0
\(646\) 2.92331 + 20.3320i 0.115016 + 0.799954i
\(647\) 1.94623 4.26166i 0.0765143 0.167543i −0.867509 0.497421i \(-0.834280\pi\)
0.944024 + 0.329878i \(0.107008\pi\)
\(648\) 0 0
\(649\) 20.3838 23.5241i 0.800133 0.923403i
\(650\) −2.78027 0.816362i −0.109051 0.0320204i
\(651\) 0 0
\(652\) 6.02410 + 13.1909i 0.235922 + 0.516597i
\(653\) −18.8217 21.7214i −0.736550 0.850024i 0.256643 0.966506i \(-0.417384\pi\)
−0.993193 + 0.116482i \(0.962838\pi\)
\(654\) 0 0
\(655\) −6.30013 + 43.8184i −0.246167 + 1.71213i
\(656\) −0.817590 + 5.68647i −0.0319215 + 0.222019i
\(657\) 0 0
\(658\) −0.714254 0.824293i −0.0278445 0.0321343i
\(659\) −1.50370 3.29264i −0.0585758 0.128263i 0.878081 0.478513i \(-0.158824\pi\)
−0.936656 + 0.350250i \(0.886097\pi\)
\(660\) 0 0
\(661\) 16.3839 + 4.81074i 0.637259 + 0.187116i 0.584374 0.811485i \(-0.301340\pi\)
0.0528849 + 0.998601i \(0.483158\pi\)
\(662\) 23.3216 26.9146i 0.906421 1.04607i
\(663\) 0 0
\(664\) 0.337136 0.738226i 0.0130834 0.0286487i
\(665\) −0.338963 2.35754i −0.0131444 0.0914215i
\(666\) 0 0
\(667\) −43.8181 5.59023i −1.69664 0.216455i
\(668\) 9.89119 0.382702
\(669\) 0 0
\(670\) 16.8472 36.8903i 0.650865 1.42519i
\(671\) −8.02385 + 2.35602i −0.309757 + 0.0909530i
\(672\) 0 0
\(673\) −42.8696 12.5877i −1.65250 0.485219i −0.683025 0.730395i \(-0.739336\pi\)
−0.969478 + 0.245177i \(0.921154\pi\)
\(674\) 9.67814 6.21976i 0.372788 0.239576i
\(675\) 0 0
\(676\) 7.74568 + 8.93899i 0.297911 + 0.343807i
\(677\) −17.0221 10.9395i −0.654214 0.420438i 0.170990 0.985273i \(-0.445303\pi\)
−0.825204 + 0.564835i \(0.808940\pi\)
\(678\) 0 0
\(679\) 0.341928 2.37816i 0.0131220 0.0912655i
\(680\) −10.8194 6.95322i −0.414906 0.266644i
\(681\) 0 0
\(682\) 8.29185 + 18.1566i 0.317511 + 0.695253i
\(683\) 34.6818 22.2886i 1.32706 0.852850i 0.331184 0.943566i \(-0.392552\pi\)
0.995877 + 0.0907163i \(0.0289156\pi\)
\(684\) 0 0
\(685\) −34.0598 + 39.3071i −1.30136 + 1.50185i
\(686\) 2.60247 0.764153i 0.0993626 0.0291755i
\(687\) 0 0
\(688\) −1.07689 7.48992i −0.0410560 0.285551i
\(689\) 4.48475 0.170855
\(690\) 0 0
\(691\) −39.4196 −1.49959 −0.749795 0.661670i \(-0.769848\pi\)
−0.749795 + 0.661670i \(0.769848\pi\)
\(692\) 1.88474 + 13.1086i 0.0716470 + 0.498316i
\(693\) 0 0
\(694\) −15.1633 + 4.45236i −0.575592 + 0.169009i
\(695\) 32.2128 37.1756i 1.22190 1.41015i
\(696\) 0 0
\(697\) 22.4339 14.4174i 0.849746 0.546099i
\(698\) 5.08075 + 11.1253i 0.192309 + 0.421099i
\(699\) 0 0
\(700\) 0.437415 + 0.281109i 0.0165327 + 0.0106249i
\(701\) −6.43057 + 44.7256i −0.242879 + 1.68926i 0.394645 + 0.918834i \(0.370868\pi\)
−0.637525 + 0.770430i \(0.720042\pi\)
\(702\) 0 0
\(703\) 18.0392 + 11.5931i 0.680363 + 0.437243i
\(704\) 1.90176 + 2.19475i 0.0716754 + 0.0827178i
\(705\) 0 0
\(706\) −3.07624 + 1.97698i −0.115776 + 0.0744045i
\(707\) 2.92575 + 0.859077i 0.110034 + 0.0323089i
\(708\) 0 0
\(709\) −30.6067 + 8.98694i −1.14946 + 0.337511i −0.800328 0.599563i \(-0.795341\pi\)
−0.349131 + 0.937074i \(0.613523\pi\)
\(710\) 14.6542 32.0881i 0.549961 1.20425i
\(711\) 0 0
\(712\) −6.77984 −0.254085
\(713\) −18.2599 27.4432i −0.683840 1.02776i
\(714\) 0 0
\(715\) −1.23968 8.62213i −0.0463612 0.322449i
\(716\) −2.17898 + 4.77130i −0.0814323 + 0.178312i
\(717\) 0 0
\(718\) −8.61646 + 9.94392i −0.321563 + 0.371104i
\(719\) −24.1545 7.09239i −0.900809 0.264502i −0.201642 0.979459i \(-0.564628\pi\)
−0.699168 + 0.714958i \(0.746446\pi\)
\(720\) 0 0
\(721\) 0.762197 + 1.66898i 0.0283857 + 0.0621560i
\(722\) −0.381279 0.440019i −0.0141897 0.0163758i
\(723\) 0 0
\(724\) 2.31337 16.0898i 0.0859757 0.597974i
\(725\) −3.50853 + 24.4023i −0.130303 + 0.906280i
\(726\) 0 0
\(727\) −1.54963 1.78836i −0.0574725 0.0663268i 0.726285 0.687393i \(-0.241245\pi\)
−0.783758 + 0.621067i \(0.786700\pi\)
\(728\) 0.0873647 + 0.191302i 0.00323795 + 0.00709013i
\(729\) 0 0
\(730\) 7.94372 + 2.33249i 0.294010 + 0.0863292i
\(731\) −23.0018 + 26.5455i −0.850754 + 0.981822i
\(732\) 0 0
\(733\) −0.181280 + 0.396947i −0.00669571 + 0.0146616i −0.912950 0.408071i \(-0.866202\pi\)
0.906255 + 0.422732i \(0.138929\pi\)
\(734\) 1.75595 + 12.2129i 0.0648133 + 0.450786i
\(735\) 0 0
\(736\) −3.67394 3.08255i −0.135423 0.113624i
\(737\) 42.5079 1.56580
\(738\) 0 0
\(739\) −14.5747 + 31.9141i −0.536138 + 1.17398i 0.426822 + 0.904336i \(0.359633\pi\)
−0.962960 + 0.269643i \(0.913094\pi\)
\(740\) −12.8821 + 3.78252i −0.473555 + 0.139048i
\(741\) 0 0
\(742\) −0.772148 0.226723i −0.0283464 0.00832327i
\(743\) −28.2800 + 18.1745i −1.03749 + 0.666756i −0.944366 0.328898i \(-0.893323\pi\)
−0.0931277 + 0.995654i \(0.529686\pi\)
\(744\) 0 0
\(745\) 17.2647 + 19.9245i 0.632529 + 0.729977i
\(746\) −15.6050 10.0287i −0.571340 0.367178i
\(747\) 0 0
\(748\) 1.91845 13.3431i 0.0701455 0.487873i
\(749\) −1.55449 0.999008i −0.0567997 0.0365030i
\(750\) 0 0
\(751\) 16.5189 + 36.1713i 0.602782 + 1.31991i 0.927403 + 0.374064i \(0.122036\pi\)
−0.324621 + 0.945844i \(0.605237\pi\)
\(752\) 4.72328 3.03546i 0.172240 0.110692i
\(753\) 0 0
\(754\) −6.52997 + 7.53598i −0.237807 + 0.274444i
\(755\) −23.0718 + 6.77449i −0.839669 + 0.246549i
\(756\) 0 0
\(757\) 3.53539 + 24.5892i 0.128496 + 0.893709i 0.947462 + 0.319868i \(0.103638\pi\)
−0.818966 + 0.573842i \(0.805452\pi\)
\(758\) 2.85973 0.103870
\(759\) 0 0
\(760\) 12.2607 0.444742
\(761\) −3.46327 24.0876i −0.125543 0.873174i −0.951106 0.308864i \(-0.900051\pi\)
0.825563 0.564310i \(-0.190858\pi\)
\(762\) 0 0
\(763\) 3.76918 1.10673i 0.136453 0.0400663i
\(764\) −5.03762 + 5.81372i −0.182255 + 0.210333i
\(765\) 0 0
\(766\) 0.0676928 0.0435035i 0.00244584 0.00157185i
\(767\) 4.82033 + 10.5551i 0.174052 + 0.381121i
\(768\) 0 0
\(769\) −22.2445 14.2957i −0.802159 0.515516i 0.0741608 0.997246i \(-0.476372\pi\)
−0.876320 + 0.481730i \(0.840009\pi\)
\(770\) −0.222448 + 1.54716i −0.00801647 + 0.0557558i
\(771\) 0 0
\(772\) −1.20085 0.771737i −0.0432194 0.0277754i
\(773\) 14.4872 + 16.7191i 0.521067 + 0.601343i 0.953898 0.300132i \(-0.0970307\pi\)
−0.432831 + 0.901475i \(0.642485\pi\)
\(774\) 0 0
\(775\) −15.4763 + 9.94603i −0.555926 + 0.357272i
\(776\) 11.8670 + 3.48445i 0.425999 + 0.125085i
\(777\) 0 0
\(778\) −13.1955 + 3.87455i −0.473081 + 0.138909i
\(779\) −10.5608 + 23.1250i −0.378382 + 0.828540i
\(780\) 0 0
\(781\) 36.9745 1.32305
\(782\) 0.354100 + 22.2588i 0.0126626 + 0.795974i
\(783\) 0 0
\(784\) 0.990833 + 6.89140i 0.0353869 + 0.246121i
\(785\) −22.8081 + 49.9428i −0.814056 + 1.78253i
\(786\) 0 0
\(787\) −2.95813 + 3.41387i −0.105446 + 0.121691i −0.806019 0.591889i \(-0.798382\pi\)
0.700573 + 0.713581i \(0.252928\pi\)
\(788\) 6.00232 + 1.76244i 0.213824 + 0.0627844i
\(789\) 0 0
\(790\) −2.94532 6.44934i −0.104790 0.229457i
\(791\) 0.167499 + 0.193304i 0.00595559 + 0.00687311i
\(792\) 0 0
\(793\) 0.443660 3.08572i 0.0157548 0.109577i
\(794\) 0.943402 6.56150i 0.0334801 0.232859i
\(795\) 0 0
\(796\) −0.565234 0.652315i −0.0200342 0.0231207i
\(797\) 12.5900 + 27.5683i 0.445961 + 0.976518i 0.990466 + 0.137760i \(0.0439903\pi\)
−0.544505 + 0.838758i \(0.683282\pi\)
\(798\) 0 0
\(799\) −25.0064 7.34255i −0.884663 0.259761i
\(800\) −1.75278 + 2.02282i −0.0619702 + 0.0715175i
\(801\) 0 0
\(802\) 14.6598 32.1005i 0.517656 1.13351i
\(803\) 1.23497 + 8.58940i 0.0435811 + 0.303113i
\(804\) 0 0
\(805\) −0.0410586 2.58095i −0.00144712 0.0909666i
\(806\) −7.44095 −0.262096
\(807\) 0 0
\(808\) −6.52063 + 14.2782i −0.229395 + 0.502305i
\(809\) 27.2132 7.99050i 0.956764 0.280931i 0.234163 0.972197i \(-0.424765\pi\)
0.722600 + 0.691266i \(0.242947\pi\)
\(810\) 0 0
\(811\) 10.1871 + 2.99120i 0.357718 + 0.105035i 0.455653 0.890157i \(-0.349406\pi\)
−0.0979355 + 0.995193i \(0.531224\pi\)
\(812\) 1.50525 0.967368i 0.0528240 0.0339479i
\(813\) 0 0
\(814\) −9.21546 10.6352i −0.323002 0.372764i
\(815\) −33.8003 21.7221i −1.18397 0.760894i
\(816\) 0 0
\(817\) 4.76542 33.1443i 0.166721 1.15957i
\(818\) −24.6094 15.8155i −0.860449 0.552977i
\(819\) 0 0
\(820\) −6.61228 14.4789i −0.230911 0.505625i
\(821\) −13.0634 + 8.39532i −0.455915 + 0.292999i −0.748371 0.663280i \(-0.769164\pi\)
0.292456 + 0.956279i \(0.405527\pi\)
\(822\) 0 0
\(823\) 32.8520 37.9133i 1.14515 1.32157i 0.205808 0.978592i \(-0.434018\pi\)
0.939342 0.342981i \(-0.111437\pi\)
\(824\) −9.06232 + 2.66094i −0.315701 + 0.0926982i
\(825\) 0 0
\(826\) −0.296323 2.06097i −0.0103104 0.0717104i
\(827\) 33.0620 1.14968 0.574839 0.818267i \(-0.305065\pi\)
0.574839 + 0.818267i \(0.305065\pi\)
\(828\) 0 0
\(829\) −11.7345 −0.407556 −0.203778 0.979017i \(-0.565322\pi\)
−0.203778 + 0.979017i \(0.565322\pi\)
\(830\) 0.320005 + 2.22569i 0.0111076 + 0.0772547i
\(831\) 0 0
\(832\) −1.03874 + 0.305003i −0.0360120 + 0.0105741i
\(833\) 21.1637 24.4243i 0.733280 0.846251i
\(834\) 0 0
\(835\) −23.0547 + 14.8163i −0.797840 + 0.512741i
\(836\) 5.33852 + 11.6897i 0.184637 + 0.404298i
\(837\) 0 0
\(838\) −0.612459 0.393604i −0.0211571 0.0135968i
\(839\) −1.09621 + 7.62430i −0.0378453 + 0.263220i −0.999955 0.00944127i \(-0.996995\pi\)
0.962110 + 0.272661i \(0.0879038\pi\)
\(840\) 0 0
\(841\) 46.9740 + 30.1883i 1.61979 + 1.04098i
\(842\) 22.1691 + 25.5845i 0.763997 + 0.881700i
\(843\) 0 0
\(844\) 16.0382 10.3071i 0.552058 0.354786i
\(845\) −31.4439 9.23276i −1.08170 0.317617i
\(846\) 0 0
\(847\) 0.478351 0.140457i 0.0164364 0.00482615i
\(848\) 1.72089 3.76823i 0.0590957 0.129401i
\(849\) 0 0
\(850\) 12.4243 0.426150
\(851\) 17.8030 + 14.9373i 0.610279 + 0.512043i
\(852\) 0 0
\(853\) 6.01254 + 41.8181i 0.205865 + 1.43183i 0.786464 + 0.617636i \(0.211909\pi\)
−0.580599 + 0.814190i \(0.697181\pi\)
\(854\) −0.232382 + 0.508847i −0.00795196 + 0.0174124i
\(855\) 0 0
\(856\) 6.22905 7.18871i 0.212905 0.245705i
\(857\) −18.5488 5.44641i −0.633613 0.186046i −0.0508744 0.998705i \(-0.516201\pi\)
−0.582739 + 0.812659i \(0.698019\pi\)
\(858\) 0 0
\(859\) −8.34241 18.2673i −0.284639 0.623273i 0.712264 0.701912i \(-0.247670\pi\)
−0.996903 + 0.0786387i \(0.974943\pi\)
\(860\) 13.7294 + 15.8446i 0.468170 + 0.540297i
\(861\) 0 0
\(862\) 0.211188 1.46885i 0.00719309 0.0500291i
\(863\) 0.826096 5.74562i 0.0281206 0.195583i −0.970919 0.239410i \(-0.923046\pi\)
0.999039 + 0.0438270i \(0.0139550\pi\)
\(864\) 0 0
\(865\) −24.0289 27.7308i −0.817006 0.942875i
\(866\) −2.89742 6.34447i −0.0984584 0.215594i
\(867\) 0 0
\(868\) 1.28112 + 0.376172i 0.0434841 + 0.0127681i
\(869\) 4.86656 5.61631i 0.165087 0.190520i
\(870\) 0 0
\(871\) −6.58281 + 14.4143i −0.223050 + 0.488411i
\(872\) 2.87785 + 20.0159i 0.0974562 + 0.677823i
\(873\) 0 0
\(874\) −11.7562 17.6687i −0.397661 0.597652i
\(875\) 1.25055 0.0422762
\(876\) 0 0
\(877\) 14.9519 32.7400i 0.504889 1.10555i −0.469960 0.882688i \(-0.655732\pi\)
0.974849 0.222865i \(-0.0715410\pi\)
\(878\) −8.94336 + 2.62601i −0.301824 + 0.0886234i
\(879\) 0 0
\(880\) −7.72028 2.26688i −0.260251 0.0764165i
\(881\) −31.4703 + 20.2247i −1.06026 + 0.681388i −0.949916 0.312506i \(-0.898832\pi\)
−0.110344 + 0.993893i \(0.535195\pi\)
\(882\) 0 0
\(883\) 32.9735 + 38.0535i 1.10965 + 1.28060i 0.956287 + 0.292431i \(0.0944643\pi\)
0.153361 + 0.988170i \(0.450990\pi\)
\(884\) 4.22753 + 2.71687i 0.142187 + 0.0913782i
\(885\) 0 0
\(886\) 4.50415 31.3270i 0.151320 1.05245i
\(887\) −25.8216 16.5945i −0.867004 0.557190i 0.0298308 0.999555i \(-0.490503\pi\)
−0.896835 + 0.442365i \(0.854140\pi\)
\(888\) 0 0
\(889\) −0.388847 0.851456i −0.0130415 0.0285569i
\(890\) 15.8026 10.1557i 0.529706 0.340421i
\(891\) 0 0
\(892\) −4.20260 + 4.85006i −0.140713 + 0.162392i
\(893\) 23.8391 6.99978i 0.797744 0.234239i
\(894\) 0 0
\(895\) −2.06826 14.3851i −0.0691343 0.480840i
\(896\) 0.194262 0.00648983
\(897\) 0 0
\(898\) 9.56061 0.319042
\(899\) 9.00963 + 62.6634i 0.300488 + 2.08994i
\(900\) 0 0
\(901\) −18.4504 + 5.41753i −0.614673 + 0.180484i
\(902\) 10.9255 12.6087i 0.363780 0.419824i
\(903\) 0 0
\(904\) −1.10765 + 0.711845i −0.0368400 + 0.0236756i
\(905\) 18.7094 + 40.9680i 0.621923 + 1.36182i
\(906\) 0 0
\(907\) −4.54974 2.92394i −0.151071 0.0970877i 0.462921 0.886399i \(-0.346801\pi\)
−0.613993 + 0.789312i \(0.710438\pi\)
\(908\) −0.170329 + 1.18467i −0.00565257 + 0.0393145i
\(909\) 0 0
\(910\) −0.490190 0.315026i −0.0162496 0.0104430i
\(911\) −29.6277 34.1922i −0.981610 1.13284i −0.991132 0.132883i \(-0.957576\pi\)
0.00952202 0.999955i \(-0.496969\pi\)
\(912\) 0 0
\(913\) −1.98270 + 1.27421i −0.0656179 + 0.0421701i
\(914\) 12.3395 + 3.62319i 0.408153 + 0.119845i
\(915\) 0 0
\(916\) 26.9479 7.91262i 0.890384 0.261440i
\(917\) −1.28939 + 2.82338i −0.0425795 + 0.0932361i
\(918\) 0 0
\(919\) 10.7793 0.355576 0.177788 0.984069i \(-0.443106\pi\)
0.177788 + 0.984069i \(0.443106\pi\)
\(920\) 13.1808 + 1.68158i 0.434558 + 0.0554401i
\(921\) 0 0
\(922\) 2.61914 + 18.2165i 0.0862566 + 0.599928i
\(923\) −5.72590 + 12.5380i −0.188470 + 0.412692i
\(924\) 0 0
\(925\) 8.49354 9.80206i 0.279266 0.322290i
\(926\) −26.5366 7.79186i −0.872048 0.256056i
\(927\) 0 0
\(928\) 3.82629 + 8.37840i 0.125604 + 0.275034i
\(929\) −20.5270 23.6894i −0.673470 0.777226i 0.311445 0.950264i \(-0.399187\pi\)
−0.984915 + 0.173038i \(0.944642\pi\)
\(930\) 0 0
\(931\) −4.38462 + 30.4957i −0.143700 + 0.999455i
\(932\) −2.33578 + 16.2457i −0.0765111 + 0.532146i
\(933\) 0 0
\(934\) 15.9425 + 18.3986i 0.521655 + 0.602022i
\(935\) 15.5155 + 33.9743i 0.507412 + 1.11108i
\(936\) 0 0
\(937\) −15.5397 4.56287i −0.507661 0.149063i 0.0178650 0.999840i \(-0.494313\pi\)
−0.525526 + 0.850778i \(0.676131\pi\)
\(938\) 1.86208 2.14896i 0.0607991 0.0701659i
\(939\) 0 0
\(940\) −6.46223 + 14.1503i −0.210775 + 0.461532i
\(941\) −3.42607 23.8289i −0.111687 0.776798i −0.966279 0.257498i \(-0.917102\pi\)
0.854592 0.519300i \(-0.173807\pi\)
\(942\) 0 0
\(943\) −14.5251 + 23.4120i −0.473001 + 0.762400i
\(944\) 10.7184 0.348853
\(945\) 0 0
\(946\) −9.12872 + 19.9891i −0.296800 + 0.649902i
\(947\) 4.75553 1.39635i 0.154534 0.0453753i −0.203551 0.979064i \(-0.565248\pi\)
0.358085 + 0.933689i \(0.383430\pi\)
\(948\) 0 0
\(949\) −3.10389 0.911386i −0.100757 0.0295848i
\(950\) −9.96408 + 6.40352i −0.323277 + 0.207758i
\(951\) 0 0
\(952\) −0.590513 0.681488i −0.0191386 0.0220872i
\(953\) 32.4534 + 20.8566i 1.05127 + 0.675610i 0.947749 0.319017i \(-0.103353\pi\)
0.103521 + 0.994627i \(0.466989\pi\)
\(954\) 0 0
\(955\) 3.03326 21.0968i 0.0981541 0.682677i
\(956\) −8.69497 5.58792i −0.281215 0.180726i
\(957\) 0 0
\(958\) 3.02925 + 6.63312i 0.0978705 + 0.214306i
\(959\) −3.06778 + 1.97154i −0.0990637 + 0.0636644i
\(960\) 0 0
\(961\) −10.6359 + 12.2745i −0.343093 + 0.395951i
\(962\) 5.03349 1.47796i 0.162286 0.0476515i
\(963\) 0 0
\(964\) 3.12210 + 21.7147i 0.100556 + 0.699383i
\(965\) 3.95498 0.127315
\(966\) 0 0
\(967\) 47.2484 1.51940 0.759702 0.650271i \(-0.225345\pi\)
0.759702 + 0.650271i \(0.225345\pi\)
\(968\) 0.365231 + 2.54024i 0.0117390 + 0.0816464i
\(969\) 0 0
\(970\) −32.8793 + 9.65424i −1.05569 + 0.309979i
\(971\) 11.2136 12.9412i 0.359863 0.415304i −0.546731 0.837308i \(-0.684128\pi\)
0.906594 + 0.422005i \(0.138673\pi\)
\(972\) 0 0
\(973\) 2.90142 1.86463i 0.0930153 0.0597773i
\(974\) 9.30911 + 20.3841i 0.298283 + 0.653149i
\(975\) 0 0
\(976\) −2.42248 1.55683i −0.0775418 0.0498331i
\(977\) −3.35123 + 23.3083i −0.107215 + 0.745699i 0.863306 + 0.504682i \(0.168390\pi\)
−0.970521 + 0.241017i \(0.922519\pi\)
\(978\) 0 0
\(979\) 16.5636 + 10.6448i 0.529374 + 0.340208i
\(980\) −12.6323 14.5785i −0.403525 0.465692i
\(981\) 0 0
\(982\) −16.5729 + 10.6507i −0.528861 + 0.339878i
\(983\) −7.70621 2.26275i −0.245790 0.0721704i 0.156517 0.987675i \(-0.449973\pi\)
−0.402307 + 0.915505i \(0.631792\pi\)
\(984\) 0 0
\(985\) −16.6304 + 4.88313i −0.529889 + 0.155589i
\(986\) 17.7611 38.8915i 0.565630 1.23856i
\(987\) 0 0
\(988\) −4.79069 −0.152412
\(989\) 9.66886 34.9780i 0.307452 1.11224i
\(990\) 0 0
\(991\) 7.56451 + 52.6123i 0.240294 + 1.67128i 0.650664 + 0.759365i \(0.274490\pi\)
−0.410370 + 0.911919i \(0.634600\pi\)
\(992\) −2.85525 + 6.25212i −0.0906542 + 0.198505i
\(993\) 0 0
\(994\) 1.61969 1.86922i 0.0513734 0.0592880i
\(995\) 2.29459 + 0.673752i 0.0727434 + 0.0213594i
\(996\) 0 0
\(997\) −5.98347 13.1020i −0.189498 0.414944i 0.790906 0.611937i \(-0.209610\pi\)
−0.980405 + 0.196993i \(0.936882\pi\)
\(998\) 11.3250 + 13.0697i 0.358487 + 0.413716i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 414.2.i.a.325.1 10
3.2 odd 2 138.2.e.d.49.1 yes 10
23.8 even 11 inner 414.2.i.a.307.1 10
23.10 odd 22 9522.2.a.by.1.4 5
23.13 even 11 9522.2.a.bx.1.2 5
69.8 odd 22 138.2.e.d.31.1 10
69.56 even 22 3174.2.a.w.1.2 5
69.59 odd 22 3174.2.a.x.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
138.2.e.d.31.1 10 69.8 odd 22
138.2.e.d.49.1 yes 10 3.2 odd 2
414.2.i.a.307.1 10 23.8 even 11 inner
414.2.i.a.325.1 10 1.1 even 1 trivial
3174.2.a.w.1.2 5 69.56 even 22
3174.2.a.x.1.4 5 69.59 odd 22
9522.2.a.bx.1.2 5 23.13 even 11
9522.2.a.by.1.4 5 23.10 odd 22