Properties

Label 414.2.i.a.361.1
Level $414$
Weight $2$
Character 414.361
Analytic conductor $3.306$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [414,2,Mod(55,414)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(414, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("414.55");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 414 = 2 \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 414.i (of order \(11\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.30580664368\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\Q(\zeta_{22})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 138)
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 361.1
Root \(-0.841254 - 0.540641i\) of defining polynomial
Character \(\chi\) \(=\) 414.361
Dual form 414.2.i.a.289.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.654861 + 0.755750i) q^{2} +(-0.142315 - 0.989821i) q^{4} +(1.37787 + 3.01713i) q^{5} +(3.66820 - 1.07708i) q^{7} +(0.841254 + 0.540641i) q^{8} +(-3.18251 - 0.934468i) q^{10} +(-0.230471 - 0.265977i) q^{11} +(-0.367451 - 0.107893i) q^{13} +(-1.58816 + 3.47758i) q^{14} +(-0.959493 + 0.281733i) q^{16} +(1.03578 - 7.20399i) q^{17} +(0.592229 + 4.11904i) q^{19} +(2.79032 - 1.79323i) q^{20} +0.351939 q^{22} +(0.368423 + 4.78166i) q^{23} +(-3.93020 + 4.53569i) q^{25} +(0.322170 - 0.207046i) q^{26} +(-1.58816 - 3.47758i) q^{28} +(-0.637728 + 4.43549i) q^{29} +(3.65812 + 2.35093i) q^{31} +(0.415415 - 0.909632i) q^{32} +(4.76612 + 5.50040i) q^{34} +(8.30400 + 9.58333i) q^{35} +(-3.04045 + 6.65767i) q^{37} +(-3.50079 - 2.24982i) q^{38} +(-0.472039 + 3.28310i) q^{40} +(-2.92426 - 6.40324i) q^{41} +(7.42019 - 4.76867i) q^{43} +(-0.230471 + 0.265977i) q^{44} +(-3.85500 - 2.85288i) q^{46} -10.6682 q^{47} +(6.40680 - 4.11740i) q^{49} +(-0.854114 - 5.94049i) q^{50} +(-0.0545015 + 0.379066i) q^{52} +(2.43282 - 0.714342i) q^{53} +(0.484927 - 1.06184i) q^{55} +(3.66820 + 1.07708i) q^{56} +(-2.93450 - 3.38659i) q^{58} +(7.57270 + 2.22355i) q^{59} +(-10.6433 - 6.84001i) q^{61} +(-4.17227 + 1.22509i) q^{62} +(0.415415 + 0.909632i) q^{64} +(-0.180774 - 1.25731i) q^{65} +(-3.67231 + 4.23807i) q^{67} -7.27807 q^{68} -12.6806 q^{70} +(-0.217114 + 0.250563i) q^{71} +(-0.0995577 - 0.692439i) q^{73} +(-3.04045 - 6.65767i) q^{74} +(3.99283 - 1.17240i) q^{76} +(-1.13189 - 0.727422i) q^{77} +(-15.4749 - 4.54383i) q^{79} +(-2.17208 - 2.50672i) q^{80} +(6.75423 + 1.98322i) q^{82} +(1.92508 - 4.21533i) q^{83} +(23.1625 - 6.80112i) q^{85} +(-1.25527 + 8.73062i) q^{86} +(-0.0500861 - 0.348356i) q^{88} +(7.41760 - 4.76700i) q^{89} -1.46409 q^{91} +(4.68056 - 1.04517i) q^{92} +(6.98617 - 8.06247i) q^{94} +(-11.6116 + 7.46235i) q^{95} +(-4.66501 - 10.2150i) q^{97} +(-1.08384 + 7.53826i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - q^{2} - q^{4} - 2 q^{5} + 2 q^{7} - q^{8} - 13 q^{10} + 5 q^{11} + 13 q^{13} - 9 q^{14} - q^{16} + 9 q^{20} - 6 q^{22} + 32 q^{23} + q^{25} + 13 q^{26} - 9 q^{28} - 27 q^{29} - 8 q^{31} - q^{32}+ \cdots + 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/414\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(235\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.654861 + 0.755750i −0.463056 + 0.534396i
\(3\) 0 0
\(4\) −0.142315 0.989821i −0.0711574 0.494911i
\(5\) 1.37787 + 3.01713i 0.616204 + 1.34930i 0.918248 + 0.396005i \(0.129604\pi\)
−0.302044 + 0.953294i \(0.597669\pi\)
\(6\) 0 0
\(7\) 3.66820 1.07708i 1.38645 0.407098i 0.498440 0.866924i \(-0.333907\pi\)
0.888009 + 0.459826i \(0.152088\pi\)
\(8\) 0.841254 + 0.540641i 0.297428 + 0.191145i
\(9\) 0 0
\(10\) −3.18251 0.934468i −1.00640 0.295505i
\(11\) −0.230471 0.265977i −0.0694895 0.0801952i 0.719940 0.694036i \(-0.244169\pi\)
−0.789430 + 0.613841i \(0.789624\pi\)
\(12\) 0 0
\(13\) −0.367451 0.107893i −0.101913 0.0299243i 0.230379 0.973101i \(-0.426004\pi\)
−0.332291 + 0.943177i \(0.607822\pi\)
\(14\) −1.58816 + 3.47758i −0.424453 + 0.929421i
\(15\) 0 0
\(16\) −0.959493 + 0.281733i −0.239873 + 0.0704331i
\(17\) 1.03578 7.20399i 0.251213 1.74722i −0.339742 0.940519i \(-0.610340\pi\)
0.590955 0.806705i \(-0.298751\pi\)
\(18\) 0 0
\(19\) 0.592229 + 4.11904i 0.135867 + 0.944973i 0.937705 + 0.347432i \(0.112946\pi\)
−0.801839 + 0.597541i \(0.796145\pi\)
\(20\) 2.79032 1.79323i 0.623935 0.400979i
\(21\) 0 0
\(22\) 0.351939 0.0750336
\(23\) 0.368423 + 4.78166i 0.0768216 + 0.997045i
\(24\) 0 0
\(25\) −3.93020 + 4.53569i −0.786040 + 0.907139i
\(26\) 0.322170 0.207046i 0.0631827 0.0406051i
\(27\) 0 0
\(28\) −1.58816 3.47758i −0.300133 0.657200i
\(29\) −0.637728 + 4.43549i −0.118423 + 0.823650i 0.840870 + 0.541237i \(0.182044\pi\)
−0.959293 + 0.282413i \(0.908865\pi\)
\(30\) 0 0
\(31\) 3.65812 + 2.35093i 0.657017 + 0.422239i 0.826224 0.563341i \(-0.190484\pi\)
−0.169207 + 0.985581i \(0.554121\pi\)
\(32\) 0.415415 0.909632i 0.0734357 0.160802i
\(33\) 0 0
\(34\) 4.76612 + 5.50040i 0.817383 + 0.943310i
\(35\) 8.30400 + 9.58333i 1.40363 + 1.61988i
\(36\) 0 0
\(37\) −3.04045 + 6.65767i −0.499848 + 1.09451i 0.476671 + 0.879082i \(0.341843\pi\)
−0.976519 + 0.215432i \(0.930884\pi\)
\(38\) −3.50079 2.24982i −0.567903 0.364969i
\(39\) 0 0
\(40\) −0.472039 + 3.28310i −0.0746359 + 0.519104i
\(41\) −2.92426 6.40324i −0.456693 1.00002i −0.988229 0.152982i \(-0.951112\pi\)
0.531536 0.847036i \(-0.321615\pi\)
\(42\) 0 0
\(43\) 7.42019 4.76867i 1.13157 0.727215i 0.165681 0.986179i \(-0.447018\pi\)
0.965887 + 0.258965i \(0.0833813\pi\)
\(44\) −0.230471 + 0.265977i −0.0347448 + 0.0400976i
\(45\) 0 0
\(46\) −3.85500 2.85288i −0.568389 0.420635i
\(47\) −10.6682 −1.55611 −0.778056 0.628194i \(-0.783794\pi\)
−0.778056 + 0.628194i \(0.783794\pi\)
\(48\) 0 0
\(49\) 6.40680 4.11740i 0.915257 0.588200i
\(50\) −0.854114 5.94049i −0.120790 0.840113i
\(51\) 0 0
\(52\) −0.0545015 + 0.379066i −0.00755799 + 0.0525670i
\(53\) 2.43282 0.714342i 0.334174 0.0981224i −0.110341 0.993894i \(-0.535194\pi\)
0.444515 + 0.895771i \(0.353376\pi\)
\(54\) 0 0
\(55\) 0.484927 1.06184i 0.0653876 0.143179i
\(56\) 3.66820 + 1.07708i 0.490184 + 0.143931i
\(57\) 0 0
\(58\) −2.93450 3.38659i −0.385319 0.444681i
\(59\) 7.57270 + 2.22355i 0.985882 + 0.289481i 0.734650 0.678446i \(-0.237346\pi\)
0.251232 + 0.967927i \(0.419164\pi\)
\(60\) 0 0
\(61\) −10.6433 6.84001i −1.36273 0.875774i −0.364273 0.931292i \(-0.618683\pi\)
−0.998458 + 0.0555183i \(0.982319\pi\)
\(62\) −4.17227 + 1.22509i −0.529879 + 0.155586i
\(63\) 0 0
\(64\) 0.415415 + 0.909632i 0.0519269 + 0.113704i
\(65\) −0.180774 1.25731i −0.0224222 0.155950i
\(66\) 0 0
\(67\) −3.67231 + 4.23807i −0.448644 + 0.517763i −0.934349 0.356360i \(-0.884018\pi\)
0.485705 + 0.874123i \(0.338563\pi\)
\(68\) −7.27807 −0.882595
\(69\) 0 0
\(70\) −12.6806 −1.51562
\(71\) −0.217114 + 0.250563i −0.0257667 + 0.0297363i −0.768487 0.639866i \(-0.778990\pi\)
0.742720 + 0.669602i \(0.233535\pi\)
\(72\) 0 0
\(73\) −0.0995577 0.692439i −0.0116524 0.0810439i 0.983165 0.182717i \(-0.0584894\pi\)
−0.994818 + 0.101674i \(0.967580\pi\)
\(74\) −3.04045 6.65767i −0.353446 0.773938i
\(75\) 0 0
\(76\) 3.99283 1.17240i 0.458009 0.134484i
\(77\) −1.13189 0.727422i −0.128991 0.0828975i
\(78\) 0 0
\(79\) −15.4749 4.54383i −1.74106 0.511221i −0.752054 0.659102i \(-0.770937\pi\)
−0.989005 + 0.147881i \(0.952755\pi\)
\(80\) −2.17208 2.50672i −0.242846 0.280260i
\(81\) 0 0
\(82\) 6.75423 + 1.98322i 0.745880 + 0.219010i
\(83\) 1.92508 4.21533i 0.211304 0.462692i −0.774069 0.633101i \(-0.781782\pi\)
0.985373 + 0.170409i \(0.0545089\pi\)
\(84\) 0 0
\(85\) 23.1625 6.80112i 2.51233 0.737685i
\(86\) −1.25527 + 8.73062i −0.135360 + 0.941447i
\(87\) 0 0
\(88\) −0.0500861 0.348356i −0.00533919 0.0371349i
\(89\) 7.41760 4.76700i 0.786264 0.505301i −0.0848429 0.996394i \(-0.527039\pi\)
0.871107 + 0.491093i \(0.163402\pi\)
\(90\) 0 0
\(91\) −1.46409 −0.153479
\(92\) 4.68056 1.04517i 0.487982 0.108967i
\(93\) 0 0
\(94\) 6.98617 8.06247i 0.720568 0.831580i
\(95\) −11.6116 + 7.46235i −1.19133 + 0.765621i
\(96\) 0 0
\(97\) −4.66501 10.2150i −0.473660 1.03717i −0.984158 0.177293i \(-0.943266\pi\)
0.510498 0.859879i \(-0.329461\pi\)
\(98\) −1.08384 + 7.53826i −0.109484 + 0.761479i
\(99\) 0 0
\(100\) 5.04885 + 3.24470i 0.504885 + 0.324470i
\(101\) 2.30782 5.05341i 0.229636 0.502833i −0.759379 0.650649i \(-0.774497\pi\)
0.989015 + 0.147816i \(0.0472242\pi\)
\(102\) 0 0
\(103\) 6.71619 + 7.75090i 0.661766 + 0.763718i 0.983065 0.183259i \(-0.0586648\pi\)
−0.321299 + 0.946978i \(0.604119\pi\)
\(104\) −0.250788 0.289425i −0.0245918 0.0283804i
\(105\) 0 0
\(106\) −1.05330 + 2.30640i −0.102305 + 0.224017i
\(107\) −8.99116 5.77827i −0.869208 0.558606i 0.0283023 0.999599i \(-0.490990\pi\)
−0.897510 + 0.440993i \(0.854626\pi\)
\(108\) 0 0
\(109\) 2.35760 16.3975i 0.225817 1.57059i −0.489632 0.871929i \(-0.662869\pi\)
0.715449 0.698665i \(-0.246222\pi\)
\(110\) 0.484927 + 1.06184i 0.0462360 + 0.101243i
\(111\) 0 0
\(112\) −3.21616 + 2.06690i −0.303899 + 0.195304i
\(113\) 8.58753 9.91053i 0.807847 0.932305i −0.190938 0.981602i \(-0.561153\pi\)
0.998784 + 0.0492976i \(0.0156983\pi\)
\(114\) 0 0
\(115\) −13.9192 + 7.70011i −1.29797 + 0.718039i
\(116\) 4.48110 0.416060
\(117\) 0 0
\(118\) −6.63951 + 4.26695i −0.611216 + 0.392805i
\(119\) −3.95984 27.5413i −0.362998 2.52470i
\(120\) 0 0
\(121\) 1.54784 10.7654i 0.140712 0.978676i
\(122\) 12.1392 3.56439i 1.09903 0.322705i
\(123\) 0 0
\(124\) 1.80640 3.95545i 0.162219 0.355210i
\(125\) −3.18754 0.935947i −0.285103 0.0837137i
\(126\) 0 0
\(127\) 9.98886 + 11.5278i 0.886368 + 1.02292i 0.999569 + 0.0293507i \(0.00934396\pi\)
−0.113202 + 0.993572i \(0.536111\pi\)
\(128\) −0.959493 0.281733i −0.0848080 0.0249019i
\(129\) 0 0
\(130\) 1.06859 + 0.686743i 0.0937218 + 0.0602314i
\(131\) −3.87151 + 1.13678i −0.338255 + 0.0993207i −0.446449 0.894809i \(-0.647312\pi\)
0.108194 + 0.994130i \(0.465493\pi\)
\(132\) 0 0
\(133\) 6.60895 + 14.4716i 0.573069 + 1.25485i
\(134\) −0.798069 5.55069i −0.0689427 0.479507i
\(135\) 0 0
\(136\) 4.76612 5.50040i 0.408691 0.471655i
\(137\) −4.16447 −0.355795 −0.177898 0.984049i \(-0.556930\pi\)
−0.177898 + 0.984049i \(0.556930\pi\)
\(138\) 0 0
\(139\) 2.19178 0.185904 0.0929521 0.995671i \(-0.470370\pi\)
0.0929521 + 0.995671i \(0.470370\pi\)
\(140\) 8.30400 9.58333i 0.701816 0.809939i
\(141\) 0 0
\(142\) −0.0471833 0.328167i −0.00395954 0.0275392i
\(143\) 0.0559896 + 0.122600i 0.00468208 + 0.0102523i
\(144\) 0 0
\(145\) −14.2611 + 4.18745i −1.18432 + 0.347749i
\(146\) 0.588507 + 0.378211i 0.0487052 + 0.0313009i
\(147\) 0 0
\(148\) 7.02260 + 2.06202i 0.577254 + 0.169497i
\(149\) −0.901293 1.04015i −0.0738368 0.0852122i 0.717629 0.696425i \(-0.245227\pi\)
−0.791466 + 0.611213i \(0.790682\pi\)
\(150\) 0 0
\(151\) −12.9802 3.81132i −1.05631 0.310161i −0.292946 0.956129i \(-0.594636\pi\)
−0.763364 + 0.645968i \(0.776454\pi\)
\(152\) −1.72871 + 3.78534i −0.140217 + 0.307032i
\(153\) 0 0
\(154\) 1.29098 0.379066i 0.104030 0.0305460i
\(155\) −2.05262 + 14.2763i −0.164870 + 1.14670i
\(156\) 0 0
\(157\) 2.04059 + 14.1926i 0.162857 + 1.13270i 0.893215 + 0.449630i \(0.148444\pi\)
−0.730358 + 0.683065i \(0.760647\pi\)
\(158\) 13.5679 8.71955i 1.07940 0.693690i
\(159\) 0 0
\(160\) 3.31686 0.262221
\(161\) 6.50168 + 17.1433i 0.512404 + 1.35108i
\(162\) 0 0
\(163\) 4.88246 5.63466i 0.382424 0.441341i −0.531603 0.846993i \(-0.678410\pi\)
0.914027 + 0.405653i \(0.132956\pi\)
\(164\) −5.92190 + 3.80577i −0.462423 + 0.297181i
\(165\) 0 0
\(166\) 1.92508 + 4.21533i 0.149415 + 0.327173i
\(167\) 0.0534699 0.371891i 0.00413763 0.0287778i −0.987648 0.156689i \(-0.949918\pi\)
0.991786 + 0.127911i \(0.0408272\pi\)
\(168\) 0 0
\(169\) −10.8129 6.94904i −0.831763 0.534541i
\(170\) −10.0283 + 21.9588i −0.769133 + 1.68417i
\(171\) 0 0
\(172\) −5.77613 6.66601i −0.440426 0.508279i
\(173\) 10.3056 + 11.8933i 0.783519 + 0.904229i 0.997358 0.0726401i \(-0.0231424\pi\)
−0.213840 + 0.976869i \(0.568597\pi\)
\(174\) 0 0
\(175\) −9.53145 + 20.8710i −0.720510 + 1.57770i
\(176\) 0.296070 + 0.190272i 0.0223171 + 0.0143423i
\(177\) 0 0
\(178\) −1.25484 + 8.72757i −0.0940539 + 0.654159i
\(179\) 2.48154 + 5.43382i 0.185479 + 0.406143i 0.979415 0.201859i \(-0.0646984\pi\)
−0.793935 + 0.608002i \(0.791971\pi\)
\(180\) 0 0
\(181\) −15.4007 + 9.89742i −1.14472 + 0.735669i −0.968582 0.248696i \(-0.919998\pi\)
−0.176142 + 0.984365i \(0.556362\pi\)
\(182\) 0.958778 1.10649i 0.0710693 0.0820184i
\(183\) 0 0
\(184\) −2.27522 + 4.22177i −0.167732 + 0.311233i
\(185\) −24.2764 −1.78483
\(186\) 0 0
\(187\) −2.15481 + 1.38481i −0.157576 + 0.101268i
\(188\) 1.51824 + 10.5596i 0.110729 + 0.770137i
\(189\) 0 0
\(190\) 1.96434 13.6623i 0.142508 0.991167i
\(191\) −7.79149 + 2.28779i −0.563773 + 0.165539i −0.551186 0.834382i \(-0.685825\pi\)
−0.0125864 + 0.999921i \(0.504006\pi\)
\(192\) 0 0
\(193\) 6.21393 13.6066i 0.447288 0.979425i −0.542914 0.839788i \(-0.682679\pi\)
0.990203 0.139637i \(-0.0445935\pi\)
\(194\) 10.7749 + 3.16379i 0.773591 + 0.227147i
\(195\) 0 0
\(196\) −4.98727 5.75562i −0.356234 0.411116i
\(197\) −19.6536 5.77082i −1.40026 0.411154i −0.507487 0.861659i \(-0.669426\pi\)
−0.892774 + 0.450505i \(0.851244\pi\)
\(198\) 0 0
\(199\) 11.8433 + 7.61124i 0.839551 + 0.539547i 0.888300 0.459264i \(-0.151887\pi\)
−0.0487487 + 0.998811i \(0.515523\pi\)
\(200\) −5.75848 + 1.69084i −0.407186 + 0.119561i
\(201\) 0 0
\(202\) 2.30782 + 5.05341i 0.162377 + 0.355557i
\(203\) 2.43807 + 16.9571i 0.171119 + 1.19016i
\(204\) 0 0
\(205\) 15.2901 17.6457i 1.06791 1.23243i
\(206\) −10.2559 −0.714563
\(207\) 0 0
\(208\) 0.382964 0.0265538
\(209\) 0.959081 1.10684i 0.0663410 0.0765616i
\(210\) 0 0
\(211\) −0.569168 3.95865i −0.0391832 0.272525i 0.960806 0.277222i \(-0.0894139\pi\)
−0.999989 + 0.00469740i \(0.998505\pi\)
\(212\) −1.05330 2.30640i −0.0723408 0.158404i
\(213\) 0 0
\(214\) 10.2549 3.01110i 0.701009 0.205835i
\(215\) 24.6118 + 15.8170i 1.67851 + 1.07871i
\(216\) 0 0
\(217\) 15.9508 + 4.68359i 1.08281 + 0.317943i
\(218\) 10.8485 + 12.5198i 0.734753 + 0.847950i
\(219\) 0 0
\(220\) −1.12005 0.328875i −0.0755136 0.0221728i
\(221\) −1.15786 + 2.53536i −0.0778861 + 0.170547i
\(222\) 0 0
\(223\) −5.76119 + 1.69164i −0.385798 + 0.113280i −0.468879 0.883262i \(-0.655342\pi\)
0.0830815 + 0.996543i \(0.473524\pi\)
\(224\) 0.544078 3.78415i 0.0363527 0.252839i
\(225\) 0 0
\(226\) 1.86625 + 12.9800i 0.124141 + 0.863419i
\(227\) −0.363529 + 0.233626i −0.0241283 + 0.0155063i −0.552649 0.833414i \(-0.686383\pi\)
0.528521 + 0.848920i \(0.322747\pi\)
\(228\) 0 0
\(229\) −9.80029 −0.647621 −0.323811 0.946122i \(-0.604964\pi\)
−0.323811 + 0.946122i \(0.604964\pi\)
\(230\) 3.29580 15.5619i 0.217319 1.02612i
\(231\) 0 0
\(232\) −2.93450 + 3.38659i −0.192659 + 0.222341i
\(233\) 7.41438 4.76493i 0.485732 0.312161i −0.274755 0.961514i \(-0.588597\pi\)
0.760487 + 0.649353i \(0.224960\pi\)
\(234\) 0 0
\(235\) −14.6994 32.1872i −0.958884 2.09966i
\(236\) 1.12321 7.81207i 0.0731145 0.508522i
\(237\) 0 0
\(238\) 23.4074 + 15.0430i 1.51728 + 0.975096i
\(239\) 8.09697 17.7299i 0.523750 1.14685i −0.444251 0.895903i \(-0.646530\pi\)
0.968000 0.250949i \(-0.0807427\pi\)
\(240\) 0 0
\(241\) 1.52599 + 1.76108i 0.0982974 + 0.113441i 0.802767 0.596293i \(-0.203360\pi\)
−0.704469 + 0.709734i \(0.748815\pi\)
\(242\) 7.12236 + 8.21964i 0.457842 + 0.528378i
\(243\) 0 0
\(244\) −5.25570 + 11.5084i −0.336461 + 0.736748i
\(245\) 21.2505 + 13.6569i 1.35764 + 0.872504i
\(246\) 0 0
\(247\) 0.226802 1.57744i 0.0144311 0.100370i
\(248\) 1.80640 + 3.95545i 0.114706 + 0.251172i
\(249\) 0 0
\(250\) 2.79474 1.79607i 0.176755 0.113593i
\(251\) 9.69515 11.1888i 0.611953 0.706231i −0.362205 0.932098i \(-0.617976\pi\)
0.974158 + 0.225867i \(0.0725216\pi\)
\(252\) 0 0
\(253\) 1.18690 1.20002i 0.0746199 0.0754449i
\(254\) −15.2534 −0.957084
\(255\) 0 0
\(256\) 0.841254 0.540641i 0.0525783 0.0337901i
\(257\) 3.52467 + 24.5146i 0.219863 + 1.52918i 0.738540 + 0.674209i \(0.235515\pi\)
−0.518678 + 0.854970i \(0.673575\pi\)
\(258\) 0 0
\(259\) −3.98215 + 27.6964i −0.247439 + 1.72097i
\(260\) −1.21879 + 0.357868i −0.0755859 + 0.0221940i
\(261\) 0 0
\(262\) 1.67618 3.67032i 0.103555 0.226753i
\(263\) 2.48394 + 0.729350i 0.153166 + 0.0449736i 0.357417 0.933945i \(-0.383658\pi\)
−0.204251 + 0.978919i \(0.565476\pi\)
\(264\) 0 0
\(265\) 5.50739 + 6.35586i 0.338316 + 0.390438i
\(266\) −15.2648 4.48216i −0.935947 0.274819i
\(267\) 0 0
\(268\) 4.71756 + 3.03179i 0.288171 + 0.185196i
\(269\) −12.4123 + 3.64457i −0.756790 + 0.222214i −0.637294 0.770621i \(-0.719946\pi\)
−0.119496 + 0.992835i \(0.538128\pi\)
\(270\) 0 0
\(271\) −4.85060 10.6213i −0.294653 0.645199i 0.703179 0.711013i \(-0.251763\pi\)
−0.997832 + 0.0658132i \(0.979036\pi\)
\(272\) 1.03578 + 7.20399i 0.0628032 + 0.436806i
\(273\) 0 0
\(274\) 2.72715 3.14730i 0.164753 0.190135i
\(275\) 2.11219 0.127370
\(276\) 0 0
\(277\) 14.2109 0.853849 0.426925 0.904287i \(-0.359597\pi\)
0.426925 + 0.904287i \(0.359597\pi\)
\(278\) −1.43531 + 1.65644i −0.0860842 + 0.0993464i
\(279\) 0 0
\(280\) 1.80463 + 12.5515i 0.107847 + 0.750095i
\(281\) 5.30272 + 11.6113i 0.316334 + 0.692674i 0.999286 0.0377891i \(-0.0120315\pi\)
−0.682952 + 0.730463i \(0.739304\pi\)
\(282\) 0 0
\(283\) 2.55003 0.748757i 0.151584 0.0445090i −0.205060 0.978749i \(-0.565739\pi\)
0.356644 + 0.934240i \(0.383921\pi\)
\(284\) 0.278911 + 0.179245i 0.0165503 + 0.0106362i
\(285\) 0 0
\(286\) −0.129320 0.0379719i −0.00764687 0.00224532i
\(287\) −17.6236 20.3387i −1.04029 1.20055i
\(288\) 0 0
\(289\) −34.5132 10.1340i −2.03019 0.596117i
\(290\) 6.17440 13.5200i 0.362573 0.793925i
\(291\) 0 0
\(292\) −0.671223 + 0.197089i −0.0392803 + 0.0115337i
\(293\) 1.55113 10.7883i 0.0906178 0.630261i −0.893008 0.450040i \(-0.851410\pi\)
0.983626 0.180221i \(-0.0576812\pi\)
\(294\) 0 0
\(295\) 3.72552 + 25.9116i 0.216908 + 1.50863i
\(296\) −6.15720 + 3.95699i −0.357880 + 0.229995i
\(297\) 0 0
\(298\) 1.37631 0.0797276
\(299\) 0.380532 1.79678i 0.0220067 0.103910i
\(300\) 0 0
\(301\) 22.0825 25.4845i 1.27281 1.46890i
\(302\) 11.3806 7.31387i 0.654880 0.420866i
\(303\) 0 0
\(304\) −1.72871 3.78534i −0.0991482 0.217104i
\(305\) 5.97208 41.5368i 0.341960 2.37839i
\(306\) 0 0
\(307\) −9.08434 5.83815i −0.518471 0.333201i 0.255096 0.966916i \(-0.417893\pi\)
−0.773567 + 0.633715i \(0.781529\pi\)
\(308\) −0.558933 + 1.22389i −0.0318482 + 0.0697378i
\(309\) 0 0
\(310\) −9.44511 10.9002i −0.536446 0.619092i
\(311\) 4.92470 + 5.68341i 0.279254 + 0.322276i 0.877998 0.478664i \(-0.158879\pi\)
−0.598744 + 0.800940i \(0.704333\pi\)
\(312\) 0 0
\(313\) −6.73499 + 14.7476i −0.380684 + 0.833582i 0.618185 + 0.786033i \(0.287868\pi\)
−0.998869 + 0.0475490i \(0.984859\pi\)
\(314\) −12.0624 7.75202i −0.680719 0.437472i
\(315\) 0 0
\(316\) −2.29528 + 15.9640i −0.129119 + 0.898046i
\(317\) −2.40859 5.27407i −0.135280 0.296221i 0.829853 0.557982i \(-0.188424\pi\)
−0.965133 + 0.261761i \(0.915697\pi\)
\(318\) 0 0
\(319\) 1.32672 0.852630i 0.0742820 0.0477381i
\(320\) −2.17208 + 2.50672i −0.121423 + 0.140130i
\(321\) 0 0
\(322\) −17.2137 6.31280i −0.959282 0.351799i
\(323\) 30.2869 1.68521
\(324\) 0 0
\(325\) 1.93353 1.24260i 0.107253 0.0689272i
\(326\) 1.06106 + 7.37984i 0.0587667 + 0.408731i
\(327\) 0 0
\(328\) 1.00181 6.96772i 0.0553156 0.384728i
\(329\) −39.1330 + 11.4905i −2.15747 + 0.633490i
\(330\) 0 0
\(331\) −1.76651 + 3.86811i −0.0970959 + 0.212610i −0.951947 0.306263i \(-0.900921\pi\)
0.854851 + 0.518874i \(0.173648\pi\)
\(332\) −4.44639 1.30558i −0.244027 0.0716529i
\(333\) 0 0
\(334\) 0.246041 + 0.283947i 0.0134628 + 0.0155369i
\(335\) −17.8468 5.24028i −0.975073 0.286307i
\(336\) 0 0
\(337\) −6.14322 3.94801i −0.334642 0.215062i 0.362518 0.931977i \(-0.381917\pi\)
−0.697160 + 0.716915i \(0.745553\pi\)
\(338\) 12.3327 3.62120i 0.670810 0.196968i
\(339\) 0 0
\(340\) −10.0283 21.9588i −0.543859 1.19089i
\(341\) −0.217795 1.51480i −0.0117943 0.0820309i
\(342\) 0 0
\(343\) 1.54164 1.77915i 0.0832408 0.0960650i
\(344\) 8.82040 0.475564
\(345\) 0 0
\(346\) −15.7371 −0.846029
\(347\) −14.7553 + 17.0285i −0.792104 + 0.914137i −0.997921 0.0644537i \(-0.979470\pi\)
0.205817 + 0.978591i \(0.434015\pi\)
\(348\) 0 0
\(349\) −3.00628 20.9092i −0.160923 1.11924i −0.896899 0.442235i \(-0.854186\pi\)
0.735976 0.677007i \(-0.236723\pi\)
\(350\) −9.53145 20.8710i −0.509477 1.11560i
\(351\) 0 0
\(352\) −0.337683 + 0.0991526i −0.0179985 + 0.00528485i
\(353\) −14.3088 9.19572i −0.761581 0.489439i 0.101293 0.994857i \(-0.467702\pi\)
−0.862875 + 0.505418i \(0.831338\pi\)
\(354\) 0 0
\(355\) −1.05513 0.309815i −0.0560007 0.0164433i
\(356\) −5.77412 6.66369i −0.306028 0.353175i
\(357\) 0 0
\(358\) −5.73167 1.68297i −0.302928 0.0889478i
\(359\) −4.13610 + 9.05680i −0.218295 + 0.478000i −0.986820 0.161820i \(-0.948264\pi\)
0.768525 + 0.639820i \(0.220991\pi\)
\(360\) 0 0
\(361\) 1.61460 0.474089i 0.0849789 0.0249521i
\(362\) 2.60533 18.1205i 0.136933 0.952392i
\(363\) 0 0
\(364\) 0.208362 + 1.44919i 0.0109212 + 0.0759583i
\(365\) 1.95200 1.25447i 0.102172 0.0656621i
\(366\) 0 0
\(367\) 24.3414 1.27061 0.635306 0.772261i \(-0.280874\pi\)
0.635306 + 0.772261i \(0.280874\pi\)
\(368\) −1.70065 4.48417i −0.0886524 0.233754i
\(369\) 0 0
\(370\) 15.8976 18.3469i 0.826479 0.953808i
\(371\) 8.15468 5.24069i 0.423370 0.272083i
\(372\) 0 0
\(373\) 14.4280 + 31.5930i 0.747056 + 1.63582i 0.771586 + 0.636125i \(0.219464\pi\)
−0.0245297 + 0.999699i \(0.507809\pi\)
\(374\) 0.364530 2.53536i 0.0188494 0.131100i
\(375\) 0 0
\(376\) −8.97464 5.76765i −0.462832 0.297444i
\(377\) 0.712894 1.56102i 0.0367159 0.0803967i
\(378\) 0 0
\(379\) 16.5256 + 19.0715i 0.848862 + 0.979639i 0.999961 0.00887990i \(-0.00282660\pi\)
−0.151099 + 0.988519i \(0.548281\pi\)
\(380\) 9.03891 + 10.4315i 0.463686 + 0.535122i
\(381\) 0 0
\(382\) 3.37335 7.38660i 0.172596 0.377931i
\(383\) 23.2551 + 14.9451i 1.18828 + 0.763660i 0.976890 0.213742i \(-0.0685651\pi\)
0.211389 + 0.977402i \(0.432201\pi\)
\(384\) 0 0
\(385\) 0.635120 4.41735i 0.0323687 0.225129i
\(386\) 6.21393 + 13.6066i 0.316281 + 0.692558i
\(387\) 0 0
\(388\) −9.44708 + 6.07127i −0.479603 + 0.308222i
\(389\) 9.83860 11.3544i 0.498837 0.575688i −0.449368 0.893347i \(-0.648351\pi\)
0.948205 + 0.317658i \(0.102896\pi\)
\(390\) 0 0
\(391\) 34.8286 + 2.29861i 1.76136 + 0.116246i
\(392\) 7.61578 0.384655
\(393\) 0 0
\(394\) 17.2317 11.0741i 0.868119 0.557906i
\(395\) −7.61312 52.9504i −0.383058 2.66423i
\(396\) 0 0
\(397\) 2.65753 18.4835i 0.133378 0.927663i −0.807729 0.589554i \(-0.799304\pi\)
0.941107 0.338109i \(-0.109787\pi\)
\(398\) −13.5079 + 3.96628i −0.677091 + 0.198812i
\(399\) 0 0
\(400\) 2.49315 5.45923i 0.124657 0.272962i
\(401\) −31.0836 9.12697i −1.55224 0.455779i −0.610472 0.792038i \(-0.709020\pi\)
−0.941770 + 0.336258i \(0.890838\pi\)
\(402\) 0 0
\(403\) −1.09053 1.25854i −0.0543232 0.0626923i
\(404\) −5.33041 1.56515i −0.265198 0.0778691i
\(405\) 0 0
\(406\) −14.4120 9.26200i −0.715253 0.459665i
\(407\) 2.47152 0.725705i 0.122509 0.0359719i
\(408\) 0 0
\(409\) −5.58677 12.2333i −0.276248 0.604898i 0.719754 0.694229i \(-0.244254\pi\)
−0.996002 + 0.0893307i \(0.971527\pi\)
\(410\) 3.32286 + 23.1110i 0.164104 + 1.14137i
\(411\) 0 0
\(412\) 6.71619 7.75090i 0.330883 0.381859i
\(413\) 30.1731 1.48472
\(414\) 0 0
\(415\) 15.3707 0.754517
\(416\) −0.250788 + 0.289425i −0.0122959 + 0.0141902i
\(417\) 0 0
\(418\) 0.208428 + 1.44965i 0.0101946 + 0.0709047i
\(419\) 5.62009 + 12.3063i 0.274559 + 0.601201i 0.995807 0.0914759i \(-0.0291585\pi\)
−0.721248 + 0.692677i \(0.756431\pi\)
\(420\) 0 0
\(421\) −24.6050 + 7.22468i −1.19917 + 0.352109i −0.819537 0.573026i \(-0.805769\pi\)
−0.379637 + 0.925135i \(0.623951\pi\)
\(422\) 3.36448 + 2.16222i 0.163780 + 0.105255i
\(423\) 0 0
\(424\) 2.43282 + 0.714342i 0.118148 + 0.0346915i
\(425\) 28.6043 + 33.0111i 1.38751 + 1.60127i
\(426\) 0 0
\(427\) −46.4089 13.6269i −2.24588 0.659450i
\(428\) −4.43988 + 9.72197i −0.214610 + 0.469929i
\(429\) 0 0
\(430\) −28.0710 + 8.24238i −1.35370 + 0.397483i
\(431\) −2.44186 + 16.9835i −0.117620 + 0.818068i 0.842543 + 0.538629i \(0.181058\pi\)
−0.960163 + 0.279439i \(0.909852\pi\)
\(432\) 0 0
\(433\) 1.35870 + 9.44994i 0.0652948 + 0.454135i 0.996072 + 0.0885481i \(0.0282227\pi\)
−0.930777 + 0.365587i \(0.880868\pi\)
\(434\) −13.9852 + 8.98774i −0.671311 + 0.431425i
\(435\) 0 0
\(436\) −16.5661 −0.793373
\(437\) −19.4777 + 4.34939i −0.931743 + 0.208059i
\(438\) 0 0
\(439\) 15.6250 18.0322i 0.745742 0.860632i −0.248407 0.968656i \(-0.579907\pi\)
0.994148 + 0.108024i \(0.0344523\pi\)
\(440\) 0.982022 0.631107i 0.0468161 0.0300869i
\(441\) 0 0
\(442\) −1.15786 2.53536i −0.0550738 0.120595i
\(443\) −1.00236 + 6.97159i −0.0476237 + 0.331230i 0.952056 + 0.305924i \(0.0989652\pi\)
−0.999680 + 0.0253065i \(0.991944\pi\)
\(444\) 0 0
\(445\) 24.6032 + 15.8115i 1.16630 + 0.749537i
\(446\) 2.49432 5.46180i 0.118110 0.258624i
\(447\) 0 0
\(448\) 2.50357 + 2.88927i 0.118283 + 0.136505i
\(449\) −24.6978 28.5028i −1.16556 1.34513i −0.927475 0.373885i \(-0.878025\pi\)
−0.238086 0.971244i \(-0.576520\pi\)
\(450\) 0 0
\(451\) −1.02916 + 2.25355i −0.0484613 + 0.106115i
\(452\) −11.0318 7.08970i −0.518892 0.333472i
\(453\) 0 0
\(454\) 0.0614982 0.427730i 0.00288626 0.0200743i
\(455\) −2.01734 4.41735i −0.0945743 0.207089i
\(456\) 0 0
\(457\) −1.64284 + 1.05579i −0.0768490 + 0.0493879i −0.578501 0.815682i \(-0.696362\pi\)
0.501652 + 0.865069i \(0.332726\pi\)
\(458\) 6.41782 7.40656i 0.299885 0.346086i
\(459\) 0 0
\(460\) 9.60264 + 12.6817i 0.447726 + 0.591288i
\(461\) −6.85072 −0.319070 −0.159535 0.987192i \(-0.550999\pi\)
−0.159535 + 0.987192i \(0.550999\pi\)
\(462\) 0 0
\(463\) −1.24196 + 0.798159i −0.0577188 + 0.0370936i −0.569182 0.822212i \(-0.692740\pi\)
0.511463 + 0.859305i \(0.329104\pi\)
\(464\) −0.637728 4.43549i −0.0296058 0.205913i
\(465\) 0 0
\(466\) −1.25429 + 8.72378i −0.0581039 + 0.404121i
\(467\) 10.9280 3.20875i 0.505687 0.148483i −0.0189309 0.999821i \(-0.506026\pi\)
0.524618 + 0.851338i \(0.324208\pi\)
\(468\) 0 0
\(469\) −8.90601 + 19.5015i −0.411242 + 0.900493i
\(470\) 33.9515 + 9.96907i 1.56607 + 0.459839i
\(471\) 0 0
\(472\) 5.16842 + 5.96468i 0.237896 + 0.274547i
\(473\) −2.97849 0.874565i −0.136951 0.0402125i
\(474\) 0 0
\(475\) −21.0103 13.5025i −0.964018 0.619537i
\(476\) −26.6974 + 7.83906i −1.22367 + 0.359303i
\(477\) 0 0
\(478\) 8.09697 + 17.7299i 0.370347 + 0.810947i
\(479\) 2.54204 + 17.6802i 0.116149 + 0.807831i 0.961733 + 0.273989i \(0.0883432\pi\)
−0.845584 + 0.533842i \(0.820748\pi\)
\(480\) 0 0
\(481\) 1.83554 2.11832i 0.0836933 0.0965872i
\(482\) −2.33025 −0.106140
\(483\) 0 0
\(484\) −10.8761 −0.494370
\(485\) 24.3920 28.1499i 1.10758 1.27822i
\(486\) 0 0
\(487\) −1.29822 9.02935i −0.0588281 0.409159i −0.997863 0.0653374i \(-0.979188\pi\)
0.939035 0.343821i \(-0.111721\pi\)
\(488\) −5.25570 11.5084i −0.237914 0.520959i
\(489\) 0 0
\(490\) −24.2373 + 7.11670i −1.09493 + 0.321500i
\(491\) −27.7836 17.8554i −1.25385 0.805803i −0.266424 0.963856i \(-0.585842\pi\)
−0.987431 + 0.158053i \(0.949478\pi\)
\(492\) 0 0
\(493\) 31.2927 + 9.18836i 1.40935 + 0.413823i
\(494\) 1.04363 + 1.20441i 0.0469551 + 0.0541891i
\(495\) 0 0
\(496\) −4.17227 1.22509i −0.187340 0.0550081i
\(497\) −0.526540 + 1.15296i −0.0236186 + 0.0517174i
\(498\) 0 0
\(499\) −7.78105 + 2.28472i −0.348328 + 0.102278i −0.451216 0.892415i \(-0.649010\pi\)
0.102889 + 0.994693i \(0.467191\pi\)
\(500\) −0.472786 + 3.28830i −0.0211436 + 0.147057i
\(501\) 0 0
\(502\) 2.10696 + 14.6542i 0.0940381 + 0.654050i
\(503\) −15.7802 + 10.1413i −0.703604 + 0.452179i −0.842899 0.538072i \(-0.819153\pi\)
0.139295 + 0.990251i \(0.455516\pi\)
\(504\) 0 0
\(505\) 18.4267 0.819976
\(506\) 0.129662 + 1.68285i 0.00576420 + 0.0748118i
\(507\) 0 0
\(508\) 9.98886 11.5278i 0.443184 0.511461i
\(509\) 9.03662 5.80748i 0.400541 0.257412i −0.324827 0.945774i \(-0.605306\pi\)
0.725368 + 0.688361i \(0.241670\pi\)
\(510\) 0 0
\(511\) −1.11101 2.43277i −0.0491482 0.107620i
\(512\) −0.142315 + 0.989821i −0.00628949 + 0.0437443i
\(513\) 0 0
\(514\) −20.8351 13.3899i −0.918996 0.590603i
\(515\) −14.1314 + 30.9433i −0.622702 + 1.36353i
\(516\) 0 0
\(517\) 2.45870 + 2.83749i 0.108134 + 0.124793i
\(518\) −18.3238 21.1468i −0.805103 0.929138i
\(519\) 0 0
\(520\) 0.527677 1.15545i 0.0231401 0.0506699i
\(521\) −5.58535 3.58949i −0.244699 0.157258i 0.412543 0.910938i \(-0.364641\pi\)
−0.657242 + 0.753680i \(0.728277\pi\)
\(522\) 0 0
\(523\) −5.27639 + 36.6981i −0.230720 + 1.60469i 0.464282 + 0.885687i \(0.346312\pi\)
−0.695002 + 0.719007i \(0.744597\pi\)
\(524\) 1.67618 + 3.67032i 0.0732242 + 0.160339i
\(525\) 0 0
\(526\) −2.17784 + 1.39961i −0.0949583 + 0.0610260i
\(527\) 20.7251 23.9180i 0.902797 1.04188i
\(528\) 0 0
\(529\) −22.7285 + 3.52335i −0.988197 + 0.153189i
\(530\) −8.41001 −0.365308
\(531\) 0 0
\(532\) 13.3837 8.60120i 0.580258 0.372909i
\(533\) 0.383656 + 2.66839i 0.0166180 + 0.115581i
\(534\) 0 0
\(535\) 5.04506 35.0892i 0.218117 1.51704i
\(536\) −5.38062 + 1.57989i −0.232407 + 0.0682409i
\(537\) 0 0
\(538\) 5.37393 11.7673i 0.231687 0.507323i
\(539\) −2.57172 0.755124i −0.110772 0.0325255i
\(540\) 0 0
\(541\) 16.6529 + 19.2184i 0.715963 + 0.826266i 0.990815 0.135221i \(-0.0431744\pi\)
−0.274852 + 0.961486i \(0.588629\pi\)
\(542\) 11.2035 + 3.28965i 0.481233 + 0.141303i
\(543\) 0 0
\(544\) −6.12270 3.93482i −0.262509 0.168704i
\(545\) 52.7218 15.4805i 2.25835 0.663112i
\(546\) 0 0
\(547\) 1.41850 + 3.10609i 0.0606508 + 0.132807i 0.937530 0.347903i \(-0.113106\pi\)
−0.876880 + 0.480710i \(0.840379\pi\)
\(548\) 0.592667 + 4.12209i 0.0253175 + 0.176087i
\(549\) 0 0
\(550\) −1.38319 + 1.59629i −0.0589794 + 0.0680658i
\(551\) −18.6477 −0.794417
\(552\) 0 0
\(553\) −61.6590 −2.62201
\(554\) −9.30615 + 10.7399i −0.395380 + 0.456293i
\(555\) 0 0
\(556\) −0.311923 2.16947i −0.0132285 0.0920060i
\(557\) 9.17672 + 20.0942i 0.388830 + 0.851420i 0.998282 + 0.0585962i \(0.0186624\pi\)
−0.609452 + 0.792823i \(0.708610\pi\)
\(558\) 0 0
\(559\) −3.24107 + 0.951663i −0.137082 + 0.0402511i
\(560\) −10.6676 6.85563i −0.450787 0.289703i
\(561\) 0 0
\(562\) −12.2478 3.59628i −0.516642 0.151700i
\(563\) 17.7737 + 20.5119i 0.749071 + 0.864474i 0.994478 0.104946i \(-0.0334669\pi\)
−0.245407 + 0.969420i \(0.578921\pi\)
\(564\) 0 0
\(565\) 41.7339 + 12.2542i 1.75576 + 0.515537i
\(566\) −1.10404 + 2.41752i −0.0464064 + 0.101616i
\(567\) 0 0
\(568\) −0.318112 + 0.0934062i −0.0133477 + 0.00391924i
\(569\) −3.96731 + 27.5933i −0.166318 + 1.15677i 0.720095 + 0.693875i \(0.244098\pi\)
−0.886414 + 0.462894i \(0.846811\pi\)
\(570\) 0 0
\(571\) −1.42324 9.89886i −0.0595608 0.414255i −0.997688 0.0679632i \(-0.978350\pi\)
0.938127 0.346291i \(-0.112559\pi\)
\(572\) 0.113384 0.0728675i 0.00474082 0.00304674i
\(573\) 0 0
\(574\) 26.9119 1.12328
\(575\) −23.1361 17.1218i −0.964843 0.714029i
\(576\) 0 0
\(577\) −22.6238 + 26.1092i −0.941839 + 1.08694i 0.0542445 + 0.998528i \(0.482725\pi\)
−0.996084 + 0.0884129i \(0.971821\pi\)
\(578\) 30.2601 19.4470i 1.25865 0.808888i
\(579\) 0 0
\(580\) 6.17440 + 13.5200i 0.256378 + 0.561389i
\(581\) 2.52131 17.5361i 0.104602 0.727520i
\(582\) 0 0
\(583\) −0.750694 0.482442i −0.0310906 0.0199807i
\(584\) 0.290608 0.636342i 0.0120254 0.0263320i
\(585\) 0 0
\(586\) 7.13750 + 8.23711i 0.294847 + 0.340272i
\(587\) −19.2179 22.1787i −0.793209 0.915412i 0.204779 0.978808i \(-0.434352\pi\)
−0.997988 + 0.0633958i \(0.979807\pi\)
\(588\) 0 0
\(589\) −7.51713 + 16.4602i −0.309738 + 0.678232i
\(590\) −22.0223 14.1529i −0.906646 0.582666i
\(591\) 0 0
\(592\) 1.04161 7.24458i 0.0428100 0.297750i
\(593\) 17.5461 + 38.4205i 0.720530 + 1.57774i 0.813160 + 0.582041i \(0.197746\pi\)
−0.0926291 + 0.995701i \(0.529527\pi\)
\(594\) 0 0
\(595\) 77.6393 49.8957i 3.18290 2.04553i
\(596\) −0.901293 + 1.04015i −0.0369184 + 0.0426061i
\(597\) 0 0
\(598\) 1.10872 + 1.46423i 0.0453389 + 0.0598766i
\(599\) 19.2147 0.785092 0.392546 0.919732i \(-0.371594\pi\)
0.392546 + 0.919732i \(0.371594\pi\)
\(600\) 0 0
\(601\) −10.9196 + 7.01758i −0.445418 + 0.286253i −0.744061 0.668112i \(-0.767103\pi\)
0.298642 + 0.954365i \(0.403466\pi\)
\(602\) 4.79898 + 33.3777i 0.195592 + 1.36037i
\(603\) 0 0
\(604\) −1.92526 + 13.3904i −0.0783375 + 0.544850i
\(605\) 34.6134 10.1634i 1.40723 0.413201i
\(606\) 0 0
\(607\) −10.4445 + 22.8703i −0.423930 + 0.928277i 0.570343 + 0.821407i \(0.306810\pi\)
−0.994273 + 0.106871i \(0.965917\pi\)
\(608\) 3.99283 + 1.17240i 0.161931 + 0.0475472i
\(609\) 0 0
\(610\) 27.4805 + 31.7142i 1.11265 + 1.28407i
\(611\) 3.92003 + 1.15103i 0.158588 + 0.0465655i
\(612\) 0 0
\(613\) −16.1352 10.3695i −0.651696 0.418819i 0.172590 0.984994i \(-0.444787\pi\)
−0.824285 + 0.566174i \(0.808423\pi\)
\(614\) 10.3612 3.04231i 0.418142 0.122778i
\(615\) 0 0
\(616\) −0.558933 1.22389i −0.0225201 0.0493121i
\(617\) 4.21557 + 29.3199i 0.169712 + 1.18037i 0.879479 + 0.475938i \(0.157891\pi\)
−0.709767 + 0.704437i \(0.751200\pi\)
\(618\) 0 0
\(619\) 30.2148 34.8697i 1.21444 1.40153i 0.324226 0.945979i \(-0.394896\pi\)
0.890209 0.455553i \(-0.150559\pi\)
\(620\) 14.4231 0.579245
\(621\) 0 0
\(622\) −7.52022 −0.301533
\(623\) 22.0748 25.4757i 0.884408 1.02066i
\(624\) 0 0
\(625\) 2.70241 + 18.7956i 0.108096 + 0.751826i
\(626\) −6.73499 14.7476i −0.269184 0.589431i
\(627\) 0 0
\(628\) 13.7578 4.03964i 0.548995 0.161199i
\(629\) 44.8125 + 28.7992i 1.78679 + 1.14830i
\(630\) 0 0
\(631\) 13.7896 + 4.04900i 0.548956 + 0.161188i 0.544437 0.838802i \(-0.316743\pi\)
0.00451927 + 0.999990i \(0.498561\pi\)
\(632\) −10.5617 12.1889i −0.420122 0.484847i
\(633\) 0 0
\(634\) 5.56316 + 1.63349i 0.220941 + 0.0648742i
\(635\) −21.0173 + 46.0214i −0.834045 + 1.82630i
\(636\) 0 0
\(637\) −2.79843 + 0.821692i −0.110878 + 0.0325566i
\(638\) −0.224441 + 1.56102i −0.00888570 + 0.0618014i
\(639\) 0 0
\(640\) −0.472039 3.28310i −0.0186590 0.129776i
\(641\) −4.83962 + 3.11024i −0.191154 + 0.122847i −0.632717 0.774383i \(-0.718060\pi\)
0.441563 + 0.897230i \(0.354424\pi\)
\(642\) 0 0
\(643\) 10.2171 0.402924 0.201462 0.979496i \(-0.435431\pi\)
0.201462 + 0.979496i \(0.435431\pi\)
\(644\) 16.0435 8.87524i 0.632201 0.349733i
\(645\) 0 0
\(646\) −19.8337 + 22.8893i −0.780347 + 0.900569i
\(647\) −24.8914 + 15.9967i −0.978581 + 0.628896i −0.929080 0.369878i \(-0.879399\pi\)
−0.0495008 + 0.998774i \(0.515763\pi\)
\(648\) 0 0
\(649\) −1.15387 2.52663i −0.0452935 0.0991789i
\(650\) −0.327095 + 2.27500i −0.0128297 + 0.0892327i
\(651\) 0 0
\(652\) −6.27216 4.03087i −0.245637 0.157861i
\(653\) −3.23536 + 7.08445i −0.126609 + 0.277236i −0.962313 0.271945i \(-0.912333\pi\)
0.835703 + 0.549181i \(0.185060\pi\)
\(654\) 0 0
\(655\) −8.76425 10.1145i −0.342448 0.395206i
\(656\) 4.60981 + 5.32001i 0.179983 + 0.207711i
\(657\) 0 0
\(658\) 16.9427 37.0994i 0.660496 1.44628i
\(659\) 7.83147 + 5.03298i 0.305071 + 0.196057i 0.684215 0.729281i \(-0.260145\pi\)
−0.379144 + 0.925338i \(0.623781\pi\)
\(660\) 0 0
\(661\) 3.60225 25.0542i 0.140111 0.974494i −0.791534 0.611125i \(-0.790717\pi\)
0.931645 0.363369i \(-0.118374\pi\)
\(662\) −1.76651 3.86811i −0.0686572 0.150338i
\(663\) 0 0
\(664\) 3.89845 2.50538i 0.151289 0.0972278i
\(665\) −34.5563 + 39.8801i −1.34003 + 1.54648i
\(666\) 0 0
\(667\) −21.4440 1.41526i −0.830314 0.0547989i
\(668\) −0.375716 −0.0145369
\(669\) 0 0
\(670\) 15.6475 10.0560i 0.604515 0.388498i
\(671\) 0.633673 + 4.40729i 0.0244627 + 0.170142i
\(672\) 0 0
\(673\) −3.37850 + 23.4980i −0.130232 + 0.905780i 0.815019 + 0.579434i \(0.196727\pi\)
−0.945250 + 0.326346i \(0.894183\pi\)
\(674\) 7.00666 2.05734i 0.269886 0.0792458i
\(675\) 0 0
\(676\) −5.33947 + 11.6918i −0.205364 + 0.449685i
\(677\) −1.40913 0.413758i −0.0541572 0.0159020i 0.254542 0.967062i \(-0.418075\pi\)
−0.308699 + 0.951160i \(0.599894\pi\)
\(678\) 0 0
\(679\) −28.1145 32.4459i −1.07894 1.24516i
\(680\) 23.1625 + 6.80112i 0.888241 + 0.260811i
\(681\) 0 0
\(682\) 1.28743 + 0.827383i 0.0492983 + 0.0316821i
\(683\) −19.5561 + 5.74219i −0.748293 + 0.219719i −0.633577 0.773680i \(-0.718414\pi\)
−0.114716 + 0.993398i \(0.536596\pi\)
\(684\) 0 0
\(685\) −5.73812 12.5647i −0.219242 0.480074i
\(686\) 0.335031 + 2.33019i 0.0127915 + 0.0889670i
\(687\) 0 0
\(688\) −5.77613 + 6.66601i −0.220213 + 0.254139i
\(689\) −0.971018 −0.0369928
\(690\) 0 0
\(691\) 27.6880 1.05330 0.526650 0.850082i \(-0.323448\pi\)
0.526650 + 0.850082i \(0.323448\pi\)
\(692\) 10.3056 11.8933i 0.391759 0.452114i
\(693\) 0 0
\(694\) −3.20663 22.3026i −0.121722 0.846594i
\(695\) 3.02000 + 6.61287i 0.114555 + 0.250840i
\(696\) 0 0
\(697\) −49.1577 + 14.4340i −1.86198 + 0.546727i
\(698\) 17.7708 + 11.4206i 0.672634 + 0.432276i
\(699\) 0 0
\(700\) 22.0150 + 6.46418i 0.832088 + 0.244323i
\(701\) −7.33904 8.46970i −0.277192 0.319896i 0.600034 0.799974i \(-0.295154\pi\)
−0.877226 + 0.480078i \(0.840608\pi\)
\(702\) 0 0
\(703\) −29.2238 8.58089i −1.10220 0.323635i
\(704\) 0.146201 0.320135i 0.00551014 0.0120655i
\(705\) 0 0
\(706\) 16.3199 4.79197i 0.614209 0.180348i
\(707\) 3.02260 21.0226i 0.113676 0.790637i
\(708\) 0 0
\(709\) −0.537380 3.73756i −0.0201817 0.140367i 0.977239 0.212140i \(-0.0680434\pi\)
−0.997421 + 0.0717731i \(0.977134\pi\)
\(710\) 0.925109 0.594532i 0.0347187 0.0223124i
\(711\) 0 0
\(712\) 8.81732 0.330443
\(713\) −9.89360 + 18.3580i −0.370518 + 0.687513i
\(714\) 0 0
\(715\) −0.292753 + 0.337855i −0.0109483 + 0.0126351i
\(716\) 5.02535 3.22960i 0.187806 0.120696i
\(717\) 0 0
\(718\) −4.13610 9.05680i −0.154358 0.337997i
\(719\) −4.98867 + 34.6969i −0.186046 + 1.29398i 0.656078 + 0.754693i \(0.272214\pi\)
−0.842124 + 0.539284i \(0.818695\pi\)
\(720\) 0 0
\(721\) 32.9846 + 21.1979i 1.22841 + 0.789453i
\(722\) −0.699045 + 1.53069i −0.0260158 + 0.0569666i
\(723\) 0 0
\(724\) 11.9884 + 13.8354i 0.445546 + 0.514188i
\(725\) −17.6116 20.3249i −0.654080 0.754848i
\(726\) 0 0
\(727\) 14.3475 31.4165i 0.532118 1.16517i −0.432527 0.901621i \(-0.642378\pi\)
0.964645 0.263554i \(-0.0848947\pi\)
\(728\) −1.23167 0.791549i −0.0456489 0.0293368i
\(729\) 0 0
\(730\) −0.330219 + 2.29673i −0.0122220 + 0.0850056i
\(731\) −26.6677 58.3942i −0.986342 2.15979i
\(732\) 0 0
\(733\) 8.18277 5.25875i 0.302237 0.194236i −0.380728 0.924687i \(-0.624326\pi\)
0.682965 + 0.730451i \(0.260690\pi\)
\(734\) −15.9402 + 18.3960i −0.588365 + 0.679009i
\(735\) 0 0
\(736\) 4.50260 + 1.65124i 0.165968 + 0.0608656i
\(737\) 1.97359 0.0726982
\(738\) 0 0
\(739\) −16.3220 + 10.4895i −0.600414 + 0.385863i −0.805252 0.592933i \(-0.797970\pi\)
0.204837 + 0.978796i \(0.434333\pi\)
\(740\) 3.45489 + 24.0293i 0.127004 + 0.883334i
\(741\) 0 0
\(742\) −1.37953 + 9.59482i −0.0506440 + 0.352237i
\(743\) 3.68671 1.08251i 0.135252 0.0397136i −0.213406 0.976964i \(-0.568456\pi\)
0.348658 + 0.937250i \(0.386637\pi\)
\(744\) 0 0
\(745\) 1.89639 4.15251i 0.0694782 0.152136i
\(746\) −33.3248 9.78504i −1.22011 0.358256i
\(747\) 0 0
\(748\) 1.67738 + 1.93580i 0.0613311 + 0.0707799i
\(749\) −39.2050 11.5116i −1.43252 0.420626i
\(750\) 0 0
\(751\) −13.5502 8.70815i −0.494452 0.317765i 0.269542 0.962989i \(-0.413128\pi\)
−0.763994 + 0.645224i \(0.776764\pi\)
\(752\) 10.2360 3.00557i 0.373270 0.109602i
\(753\) 0 0
\(754\) 0.712894 + 1.56102i 0.0259621 + 0.0568490i
\(755\) −6.38581 44.4143i −0.232403 1.61640i
\(756\) 0 0
\(757\) −1.71316 + 1.97709i −0.0622658 + 0.0718586i −0.786028 0.618191i \(-0.787866\pi\)
0.723762 + 0.690050i \(0.242411\pi\)
\(758\) −25.2353 −0.916586
\(759\) 0 0
\(760\) −13.8028 −0.500680
\(761\) 16.1066 18.5880i 0.583863 0.673813i −0.384568 0.923097i \(-0.625650\pi\)
0.968431 + 0.249283i \(0.0801950\pi\)
\(762\) 0 0
\(763\) −9.01325 62.6886i −0.326302 2.26948i
\(764\) 3.37335 + 7.38660i 0.122043 + 0.267238i
\(765\) 0 0
\(766\) −26.5236 + 7.78803i −0.958337 + 0.281393i
\(767\) −2.54269 1.63409i −0.0918113 0.0590036i
\(768\) 0 0
\(769\) −30.2906 8.89412i −1.09231 0.320730i −0.314515 0.949252i \(-0.601842\pi\)
−0.777792 + 0.628522i \(0.783660\pi\)
\(770\) 2.92250 + 3.37274i 0.105320 + 0.121545i
\(771\) 0 0
\(772\) −14.3524 4.21426i −0.516556 0.151674i
\(773\) −19.8367 + 43.4363i −0.713477 + 1.56230i 0.109349 + 0.994003i \(0.465123\pi\)
−0.822826 + 0.568293i \(0.807604\pi\)
\(774\) 0 0
\(775\) −25.0402 + 7.35247i −0.899471 + 0.264109i
\(776\) 1.59816 11.1155i 0.0573707 0.399022i
\(777\) 0 0
\(778\) 2.13813 + 14.8710i 0.0766558 + 0.533153i
\(779\) 24.6434 15.8373i 0.882941 0.567432i
\(780\) 0 0
\(781\) 0.116682 0.00417522
\(782\) −24.5451 + 24.8164i −0.877730 + 0.887434i
\(783\) 0 0
\(784\) −4.98727 + 5.75562i −0.178117 + 0.205558i
\(785\) −40.0093 + 25.7124i −1.42799 + 0.917715i
\(786\) 0 0
\(787\) 13.9057 + 30.4493i 0.495686 + 1.08540i 0.977847 + 0.209319i \(0.0671247\pi\)
−0.482161 + 0.876083i \(0.660148\pi\)
\(788\) −2.91508 + 20.2748i −0.103845 + 0.722261i
\(789\) 0 0
\(790\) 45.0028 + 28.9216i 1.60113 + 1.02898i
\(791\) 20.8263 45.6033i 0.740498 1.62146i
\(792\) 0 0
\(793\) 3.17289 + 3.66171i 0.112673 + 0.130031i
\(794\) 12.2286 + 14.1126i 0.433977 + 0.500837i
\(795\) 0 0
\(796\) 5.84829 12.8060i 0.207287 0.453895i
\(797\) −12.9998 8.35449i −0.460478 0.295931i 0.289760 0.957099i \(-0.406425\pi\)
−0.750238 + 0.661168i \(0.770061\pi\)
\(798\) 0 0
\(799\) −11.0498 + 76.8534i −0.390915 + 2.71888i
\(800\) 2.49315 + 5.45923i 0.0881461 + 0.193013i
\(801\) 0 0
\(802\) 27.2531 17.5145i 0.962342 0.618460i
\(803\) −0.161228 + 0.186067i −0.00568961 + 0.00656617i
\(804\) 0 0
\(805\) −42.7648 + 43.2376i −1.50726 + 1.52393i
\(806\) 1.66529 0.0586572
\(807\) 0 0
\(808\) 4.67354 3.00350i 0.164415 0.105663i
\(809\) −0.913503 6.35355i −0.0321171 0.223379i 0.967441 0.253095i \(-0.0814487\pi\)
−0.999558 + 0.0297164i \(0.990540\pi\)
\(810\) 0 0
\(811\) −5.58616 + 38.8526i −0.196156 + 1.36430i 0.619152 + 0.785271i \(0.287476\pi\)
−0.815308 + 0.579027i \(0.803433\pi\)
\(812\) 16.4376 4.82651i 0.576846 0.169377i
\(813\) 0 0
\(814\) −1.07005 + 2.34309i −0.0375053 + 0.0821252i
\(815\) 23.7279 + 6.96714i 0.831152 + 0.244048i
\(816\) 0 0
\(817\) 24.0368 + 27.7399i 0.840941 + 0.970497i
\(818\) 12.9039 + 3.78892i 0.451173 + 0.132476i
\(819\) 0 0
\(820\) −19.6421 12.6232i −0.685933 0.440822i
\(821\) 49.1161 14.4218i 1.71416 0.503323i 0.730434 0.682984i \(-0.239318\pi\)
0.983729 + 0.179660i \(0.0574999\pi\)
\(822\) 0 0
\(823\) −20.9730 45.9244i −0.731072 1.60082i −0.797706 0.603046i \(-0.793953\pi\)
0.0666347 0.997777i \(-0.478774\pi\)
\(824\) 1.45957 + 10.1515i 0.0508464 + 0.353645i
\(825\) 0 0
\(826\) −19.7592 + 22.8033i −0.687510 + 0.793429i
\(827\) 48.0754 1.67174 0.835872 0.548924i \(-0.184962\pi\)
0.835872 + 0.548924i \(0.184962\pi\)
\(828\) 0 0
\(829\) 27.4066 0.951871 0.475936 0.879480i \(-0.342110\pi\)
0.475936 + 0.879480i \(0.342110\pi\)
\(830\) −10.0657 + 11.6164i −0.349384 + 0.403211i
\(831\) 0 0
\(832\) −0.0545015 0.379066i −0.00188950 0.0131418i
\(833\) −23.0257 50.4192i −0.797792 1.74692i
\(834\) 0 0
\(835\) 1.19572 0.351094i 0.0413795 0.0121501i
\(836\) −1.23206 0.791799i −0.0426118 0.0273849i
\(837\) 0 0
\(838\) −12.9808 3.81152i −0.448416 0.131667i
\(839\) 12.9755 + 14.9745i 0.447962 + 0.516976i 0.934151 0.356878i \(-0.116159\pi\)
−0.486189 + 0.873854i \(0.661613\pi\)
\(840\) 0 0
\(841\) 8.55840 + 2.51297i 0.295117 + 0.0866543i
\(842\) 10.6528 23.3264i 0.367120 0.803880i
\(843\) 0 0
\(844\) −3.83736 + 1.12675i −0.132087 + 0.0387843i
\(845\) 6.06728 42.1988i 0.208721 1.45168i
\(846\) 0 0
\(847\) −5.91747 41.1569i −0.203327 1.41417i
\(848\) −2.13303 + 1.37081i −0.0732484 + 0.0470739i
\(849\) 0 0
\(850\) −43.6799 −1.49821
\(851\) −32.9549 12.0856i −1.12968 0.414288i
\(852\) 0 0
\(853\) 13.4772 15.5536i 0.461452 0.532544i −0.476562 0.879141i \(-0.658117\pi\)
0.938014 + 0.346597i \(0.112663\pi\)
\(854\) 40.6898 26.1498i 1.39238 0.894827i
\(855\) 0 0
\(856\) −4.43988 9.72197i −0.151752 0.332290i
\(857\) −1.22485 + 8.51902i −0.0418401 + 0.291004i 0.958149 + 0.286271i \(0.0924158\pi\)
−0.999989 + 0.00473330i \(0.998493\pi\)
\(858\) 0 0
\(859\) 34.9945 + 22.4896i 1.19400 + 0.767336i 0.977908 0.209038i \(-0.0670331\pi\)
0.216090 + 0.976373i \(0.430669\pi\)
\(860\) 12.1534 26.6122i 0.414428 0.907470i
\(861\) 0 0
\(862\) −11.2362 12.9673i −0.382707 0.441668i
\(863\) 9.11321 + 10.5172i 0.310217 + 0.358010i 0.889353 0.457221i \(-0.151155\pi\)
−0.579136 + 0.815231i \(0.696610\pi\)
\(864\) 0 0
\(865\) −21.6837 + 47.4807i −0.737268 + 1.61439i
\(866\) −8.03155 5.16156i −0.272923 0.175397i
\(867\) 0 0
\(868\) 2.36588 16.4550i 0.0803030 0.558520i
\(869\) 2.35795 + 5.16319i 0.0799879 + 0.175149i
\(870\) 0 0
\(871\) 1.80665 1.16107i 0.0612162 0.0393412i
\(872\) 10.8485 12.5198i 0.367376 0.423975i
\(873\) 0 0
\(874\) 9.46811 17.5685i 0.320264 0.594263i
\(875\) −12.7006 −0.429360
\(876\) 0 0
\(877\) 8.64520 5.55594i 0.291928 0.187611i −0.386477 0.922299i \(-0.626308\pi\)
0.678405 + 0.734689i \(0.262672\pi\)
\(878\) 3.39564 + 23.6172i 0.114597 + 0.797042i
\(879\) 0 0
\(880\) −0.166129 + 1.15545i −0.00560020 + 0.0389502i
\(881\) −17.8776 + 5.24934i −0.602312 + 0.176855i −0.568651 0.822579i \(-0.692535\pi\)
−0.0336603 + 0.999433i \(0.510716\pi\)
\(882\) 0 0
\(883\) 8.20154 17.9589i 0.276004 0.604364i −0.719970 0.694005i \(-0.755845\pi\)
0.995974 + 0.0896408i \(0.0285719\pi\)
\(884\) 2.67434 + 0.785256i 0.0899476 + 0.0264110i
\(885\) 0 0
\(886\) −4.61237 5.32296i −0.154955 0.178828i
\(887\) 21.9589 + 6.44772i 0.737308 + 0.216493i 0.628762 0.777598i \(-0.283562\pi\)
0.108547 + 0.994091i \(0.465380\pi\)
\(888\) 0 0
\(889\) 49.0574 + 31.5273i 1.64533 + 1.05739i
\(890\) −28.0612 + 8.23951i −0.940613 + 0.276189i
\(891\) 0 0
\(892\) 2.49432 + 5.46180i 0.0835160 + 0.182875i
\(893\) −6.31800 43.9426i −0.211424 1.47048i
\(894\) 0 0
\(895\) −12.9753 + 14.9743i −0.433715 + 0.500534i
\(896\) −3.82306 −0.127719
\(897\) 0 0
\(898\) 37.7146 1.25855
\(899\) −12.7604 + 14.7263i −0.425583 + 0.491150i
\(900\) 0 0
\(901\) −2.62625 18.2659i −0.0874929 0.608527i
\(902\) −1.02916 2.25355i −0.0342673 0.0750349i
\(903\) 0 0
\(904\) 12.5823 3.69450i 0.418482 0.122877i
\(905\) −51.0820 32.8284i −1.69802 1.09125i
\(906\) 0 0
\(907\) 19.0109 + 5.58211i 0.631247 + 0.185351i 0.581677 0.813420i \(-0.302397\pi\)
0.0495699 + 0.998771i \(0.484215\pi\)
\(908\) 0.282984 + 0.326581i 0.00939114 + 0.0108380i
\(909\) 0 0
\(910\) 4.65949 + 1.36815i 0.154461 + 0.0453537i
\(911\) 8.70510 19.0615i 0.288413 0.631536i −0.708859 0.705350i \(-0.750790\pi\)
0.997272 + 0.0738141i \(0.0235171\pi\)
\(912\) 0 0
\(913\) −1.56486 + 0.459483i −0.0517891 + 0.0152067i
\(914\) 0.277920 1.93298i 0.00919278 0.0639372i
\(915\) 0 0
\(916\) 1.39473 + 9.70053i 0.0460830 + 0.320515i
\(917\) −12.9771 + 8.33985i −0.428540 + 0.275406i
\(918\) 0 0
\(919\) −33.7364 −1.11286 −0.556431 0.830894i \(-0.687830\pi\)
−0.556431 + 0.830894i \(0.687830\pi\)
\(920\) −15.8726 1.04756i −0.523304 0.0345369i
\(921\) 0 0
\(922\) 4.48627 5.17743i 0.147747 0.170510i
\(923\) 0.106813 0.0686444i 0.00351579 0.00225946i
\(924\) 0 0
\(925\) −18.2475 39.9565i −0.599975 1.31376i
\(926\) 0.210102 1.46129i 0.00690439 0.0480211i
\(927\) 0 0
\(928\) 3.76974 + 2.42267i 0.123748 + 0.0795280i
\(929\) 18.8567 41.2904i 0.618668 1.35469i −0.297816 0.954623i \(-0.596258\pi\)
0.916484 0.400071i \(-0.131015\pi\)
\(930\) 0 0
\(931\) 20.7540 + 23.9514i 0.680186 + 0.784976i
\(932\) −5.77161 6.66079i −0.189055 0.218181i
\(933\) 0 0
\(934\) −4.73130 + 10.3601i −0.154813 + 0.338993i
\(935\) −7.14722 4.59324i −0.233739 0.150215i
\(936\) 0 0
\(937\) 8.53433 59.3575i 0.278804 1.93913i −0.0598305 0.998209i \(-0.519056\pi\)
0.338635 0.940918i \(-0.390035\pi\)
\(938\) −8.90601 19.5015i −0.290792 0.636745i
\(939\) 0 0
\(940\) −29.7676 + 19.1305i −0.970914 + 0.623968i
\(941\) −32.8241 + 37.8811i −1.07004 + 1.23489i −0.0992194 + 0.995066i \(0.531635\pi\)
−0.970817 + 0.239822i \(0.922911\pi\)
\(942\) 0 0
\(943\) 29.5408 16.3419i 0.961979 0.532166i
\(944\) −7.89240 −0.256876
\(945\) 0 0
\(946\) 2.61145 1.67828i 0.0849056 0.0545655i
\(947\) −3.06937 21.3479i −0.0997411 0.693715i −0.976929 0.213566i \(-0.931492\pi\)
0.877187 0.480148i \(-0.159417\pi\)
\(948\) 0 0
\(949\) −0.0381270 + 0.265179i −0.00123766 + 0.00860808i
\(950\) 23.9633 7.03626i 0.777473 0.228287i
\(951\) 0 0
\(952\) 11.5587 25.3100i 0.374620 0.820303i
\(953\) −13.7135 4.02664i −0.444224 0.130436i 0.0519682 0.998649i \(-0.483451\pi\)
−0.496192 + 0.868213i \(0.665269\pi\)
\(954\) 0 0
\(955\) −17.6383 20.3556i −0.570760 0.658693i
\(956\) −18.7018 5.49133i −0.604858 0.177602i
\(957\) 0 0
\(958\) −15.0265 9.65696i −0.485485 0.312002i
\(959\) −15.2761 + 4.48547i −0.493292 + 0.144843i
\(960\) 0 0
\(961\) −5.02291 10.9986i −0.162029 0.354795i
\(962\) 0.398900 + 2.77441i 0.0128611 + 0.0894507i
\(963\) 0 0
\(964\) 1.52599 1.76108i 0.0491487 0.0567206i
\(965\) 49.6148 1.59716
\(966\) 0 0
\(967\) −52.3238 −1.68262 −0.841310 0.540553i \(-0.818215\pi\)
−0.841310 + 0.540553i \(0.818215\pi\)
\(968\) 7.12236 8.21964i 0.228921 0.264189i
\(969\) 0 0
\(970\) 5.30089 + 36.8685i 0.170201 + 1.18378i
\(971\) −3.43811 7.52842i −0.110334 0.241598i 0.846408 0.532535i \(-0.178760\pi\)
−0.956742 + 0.290936i \(0.906033\pi\)
\(972\) 0 0
\(973\) 8.03988 2.36072i 0.257747 0.0756812i
\(974\) 7.67408 + 4.93183i 0.245893 + 0.158026i
\(975\) 0 0
\(976\) 12.1392 + 3.56439i 0.388566 + 0.114093i
\(977\) 1.32060 + 1.52405i 0.0422496 + 0.0487587i 0.776481 0.630141i \(-0.217003\pi\)
−0.734231 + 0.678899i \(0.762457\pi\)
\(978\) 0 0
\(979\) −2.97746 0.874260i −0.0951599 0.0279415i
\(980\) 10.4936 22.9778i 0.335205 0.733997i
\(981\) 0 0
\(982\) 31.6886 9.30461i 1.01122 0.296922i
\(983\) 1.79669 12.4963i 0.0573055 0.398569i −0.940900 0.338685i \(-0.890018\pi\)
0.998205 0.0598838i \(-0.0190730\pi\)
\(984\) 0 0
\(985\) −9.66892 67.2488i −0.308078 2.14273i
\(986\) −27.4364 + 17.6323i −0.873754 + 0.561528i
\(987\) 0 0
\(988\) −1.59367 −0.0507013
\(989\) 25.5359 + 33.7239i 0.811995 + 1.07236i
\(990\) 0 0
\(991\) 17.3281 19.9978i 0.550447 0.635249i −0.410540 0.911842i \(-0.634660\pi\)
0.960987 + 0.276593i \(0.0892054\pi\)
\(992\) 3.65812 2.35093i 0.116145 0.0746421i
\(993\) 0 0
\(994\) −0.526540 1.15296i −0.0167008 0.0365698i
\(995\) −6.64545 + 46.2201i −0.210675 + 1.46528i
\(996\) 0 0
\(997\) −28.8712 18.5544i −0.914359 0.587623i −0.00334331 0.999994i \(-0.501064\pi\)
−0.911016 + 0.412372i \(0.864701\pi\)
\(998\) 3.36883 7.37670i 0.106638 0.233505i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 414.2.i.a.361.1 10
3.2 odd 2 138.2.e.d.85.1 yes 10
23.6 even 11 9522.2.a.bx.1.5 5
23.13 even 11 inner 414.2.i.a.289.1 10
23.17 odd 22 9522.2.a.by.1.1 5
69.17 even 22 3174.2.a.w.1.5 5
69.29 odd 22 3174.2.a.x.1.1 5
69.59 odd 22 138.2.e.d.13.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
138.2.e.d.13.1 10 69.59 odd 22
138.2.e.d.85.1 yes 10 3.2 odd 2
414.2.i.a.289.1 10 23.13 even 11 inner
414.2.i.a.361.1 10 1.1 even 1 trivial
3174.2.a.w.1.5 5 69.17 even 22
3174.2.a.x.1.1 5 69.29 odd 22
9522.2.a.bx.1.5 5 23.6 even 11
9522.2.a.by.1.1 5 23.17 odd 22