Properties

Label 416.2.i.f.289.1
Level $416$
Weight $2$
Character 416.289
Analytic conductor $3.322$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(289,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.1
Root \(-0.707107 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 416.289
Dual form 416.2.i.f.321.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.207107 - 0.358719i) q^{3} -2.82843 q^{5} +(-0.792893 + 1.37333i) q^{7} +(1.41421 - 2.44949i) q^{9} +(2.62132 + 4.54026i) q^{11} +(-1.00000 + 3.46410i) q^{13} +(0.585786 + 1.01461i) q^{15} +(0.0857864 - 0.148586i) q^{17} +(-3.62132 + 6.27231i) q^{19} +0.656854 q^{21} +(3.62132 + 6.27231i) q^{23} +3.00000 q^{25} -2.41421 q^{27} +(1.32843 + 2.30090i) q^{29} -5.65685 q^{31} +(1.08579 - 1.88064i) q^{33} +(2.24264 - 3.88437i) q^{35} +(-4.74264 - 8.21449i) q^{37} +(1.44975 - 0.358719i) q^{39} +(0.0857864 + 0.148586i) q^{41} +(5.03553 - 8.72180i) q^{43} +(-4.00000 + 6.92820i) q^{45} +6.00000 q^{47} +(2.24264 + 3.88437i) q^{49} -0.0710678 q^{51} +2.82843 q^{53} +(-7.41421 - 12.8418i) q^{55} +3.00000 q^{57} +(-3.62132 + 6.27231i) q^{59} +(-3.50000 + 6.06218i) q^{61} +(2.24264 + 3.88437i) q^{63} +(2.82843 - 9.79796i) q^{65} +(-2.37868 - 4.11999i) q^{67} +(1.50000 - 2.59808i) q^{69} +(-0.621320 + 1.07616i) q^{71} -4.48528 q^{73} +(-0.621320 - 1.07616i) q^{75} -8.31371 q^{77} -6.00000 q^{79} +(-3.74264 - 6.48244i) q^{81} +4.00000 q^{83} +(-0.242641 + 0.420266i) q^{85} +(0.550253 - 0.953065i) q^{87} +(7.32843 + 12.6932i) q^{89} +(-3.96447 - 4.11999i) q^{91} +(1.17157 + 2.02922i) q^{93} +(10.2426 - 17.7408i) q^{95} +(4.50000 - 7.79423i) q^{97} +14.8284 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} - 6 q^{7} + 2 q^{11} - 4 q^{13} + 8 q^{15} + 6 q^{17} - 6 q^{19} - 20 q^{21} + 6 q^{23} + 12 q^{25} - 4 q^{27} - 6 q^{29} + 10 q^{33} - 8 q^{35} - 2 q^{37} - 14 q^{39} + 6 q^{41} + 6 q^{43}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.207107 0.358719i −0.119573 0.207107i 0.800025 0.599966i \(-0.204819\pi\)
−0.919599 + 0.392859i \(0.871486\pi\)
\(4\) 0 0
\(5\) −2.82843 −1.26491 −0.632456 0.774597i \(-0.717953\pi\)
−0.632456 + 0.774597i \(0.717953\pi\)
\(6\) 0 0
\(7\) −0.792893 + 1.37333i −0.299685 + 0.519070i −0.976064 0.217484i \(-0.930215\pi\)
0.676378 + 0.736554i \(0.263548\pi\)
\(8\) 0 0
\(9\) 1.41421 2.44949i 0.471405 0.816497i
\(10\) 0 0
\(11\) 2.62132 + 4.54026i 0.790358 + 1.36894i 0.925745 + 0.378147i \(0.123439\pi\)
−0.135388 + 0.990793i \(0.543228\pi\)
\(12\) 0 0
\(13\) −1.00000 + 3.46410i −0.277350 + 0.960769i
\(14\) 0 0
\(15\) 0.585786 + 1.01461i 0.151249 + 0.261972i
\(16\) 0 0
\(17\) 0.0857864 0.148586i 0.0208063 0.0360375i −0.855435 0.517911i \(-0.826710\pi\)
0.876241 + 0.481873i \(0.160043\pi\)
\(18\) 0 0
\(19\) −3.62132 + 6.27231i −0.830788 + 1.43897i 0.0666264 + 0.997778i \(0.478776\pi\)
−0.897414 + 0.441189i \(0.854557\pi\)
\(20\) 0 0
\(21\) 0.656854 0.143337
\(22\) 0 0
\(23\) 3.62132 + 6.27231i 0.755097 + 1.30787i 0.945326 + 0.326127i \(0.105744\pi\)
−0.190228 + 0.981740i \(0.560923\pi\)
\(24\) 0 0
\(25\) 3.00000 0.600000
\(26\) 0 0
\(27\) −2.41421 −0.464616
\(28\) 0 0
\(29\) 1.32843 + 2.30090i 0.246683 + 0.427267i 0.962603 0.270915i \(-0.0873261\pi\)
−0.715921 + 0.698182i \(0.753993\pi\)
\(30\) 0 0
\(31\) −5.65685 −1.01600 −0.508001 0.861357i \(-0.669615\pi\)
−0.508001 + 0.861357i \(0.669615\pi\)
\(32\) 0 0
\(33\) 1.08579 1.88064i 0.189011 0.327377i
\(34\) 0 0
\(35\) 2.24264 3.88437i 0.379075 0.656578i
\(36\) 0 0
\(37\) −4.74264 8.21449i −0.779685 1.35045i −0.932123 0.362142i \(-0.882046\pi\)
0.152438 0.988313i \(-0.451288\pi\)
\(38\) 0 0
\(39\) 1.44975 0.358719i 0.232145 0.0574411i
\(40\) 0 0
\(41\) 0.0857864 + 0.148586i 0.0133976 + 0.0232053i 0.872646 0.488352i \(-0.162402\pi\)
−0.859249 + 0.511558i \(0.829069\pi\)
\(42\) 0 0
\(43\) 5.03553 8.72180i 0.767912 1.33006i −0.170782 0.985309i \(-0.554629\pi\)
0.938693 0.344753i \(-0.112037\pi\)
\(44\) 0 0
\(45\) −4.00000 + 6.92820i −0.596285 + 1.03280i
\(46\) 0 0
\(47\) 6.00000 0.875190 0.437595 0.899172i \(-0.355830\pi\)
0.437595 + 0.899172i \(0.355830\pi\)
\(48\) 0 0
\(49\) 2.24264 + 3.88437i 0.320377 + 0.554910i
\(50\) 0 0
\(51\) −0.0710678 −0.00995148
\(52\) 0 0
\(53\) 2.82843 0.388514 0.194257 0.980951i \(-0.437770\pi\)
0.194257 + 0.980951i \(0.437770\pi\)
\(54\) 0 0
\(55\) −7.41421 12.8418i −0.999732 1.73159i
\(56\) 0 0
\(57\) 3.00000 0.397360
\(58\) 0 0
\(59\) −3.62132 + 6.27231i −0.471456 + 0.816585i −0.999467 0.0326522i \(-0.989605\pi\)
0.528011 + 0.849238i \(0.322938\pi\)
\(60\) 0 0
\(61\) −3.50000 + 6.06218i −0.448129 + 0.776182i −0.998264 0.0588933i \(-0.981243\pi\)
0.550135 + 0.835076i \(0.314576\pi\)
\(62\) 0 0
\(63\) 2.24264 + 3.88437i 0.282546 + 0.489384i
\(64\) 0 0
\(65\) 2.82843 9.79796i 0.350823 1.21529i
\(66\) 0 0
\(67\) −2.37868 4.11999i −0.290602 0.503337i 0.683350 0.730091i \(-0.260522\pi\)
−0.973952 + 0.226753i \(0.927189\pi\)
\(68\) 0 0
\(69\) 1.50000 2.59808i 0.180579 0.312772i
\(70\) 0 0
\(71\) −0.621320 + 1.07616i −0.0737372 + 0.127717i −0.900536 0.434781i \(-0.856826\pi\)
0.826799 + 0.562497i \(0.190159\pi\)
\(72\) 0 0
\(73\) −4.48528 −0.524962 −0.262481 0.964937i \(-0.584541\pi\)
−0.262481 + 0.964937i \(0.584541\pi\)
\(74\) 0 0
\(75\) −0.621320 1.07616i −0.0717439 0.124264i
\(76\) 0 0
\(77\) −8.31371 −0.947435
\(78\) 0 0
\(79\) −6.00000 −0.675053 −0.337526 0.941316i \(-0.609590\pi\)
−0.337526 + 0.941316i \(0.609590\pi\)
\(80\) 0 0
\(81\) −3.74264 6.48244i −0.415849 0.720272i
\(82\) 0 0
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 0 0
\(85\) −0.242641 + 0.420266i −0.0263181 + 0.0455842i
\(86\) 0 0
\(87\) 0.550253 0.953065i 0.0589933 0.102179i
\(88\) 0 0
\(89\) 7.32843 + 12.6932i 0.776812 + 1.34548i 0.933771 + 0.357872i \(0.116498\pi\)
−0.156959 + 0.987605i \(0.550169\pi\)
\(90\) 0 0
\(91\) −3.96447 4.11999i −0.415589 0.431893i
\(92\) 0 0
\(93\) 1.17157 + 2.02922i 0.121486 + 0.210421i
\(94\) 0 0
\(95\) 10.2426 17.7408i 1.05087 1.82017i
\(96\) 0 0
\(97\) 4.50000 7.79423i 0.456906 0.791384i −0.541890 0.840450i \(-0.682291\pi\)
0.998796 + 0.0490655i \(0.0156243\pi\)
\(98\) 0 0
\(99\) 14.8284 1.49031
\(100\) 0 0
\(101\) −3.08579 5.34474i −0.307047 0.531821i 0.670668 0.741758i \(-0.266008\pi\)
−0.977715 + 0.209936i \(0.932674\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) −1.85786 −0.181309
\(106\) 0 0
\(107\) −5.37868 9.31615i −0.519977 0.900626i −0.999730 0.0232227i \(-0.992607\pi\)
0.479754 0.877403i \(-0.340726\pi\)
\(108\) 0 0
\(109\) 8.48528 0.812743 0.406371 0.913708i \(-0.366794\pi\)
0.406371 + 0.913708i \(0.366794\pi\)
\(110\) 0 0
\(111\) −1.96447 + 3.40256i −0.186459 + 0.322956i
\(112\) 0 0
\(113\) 2.91421 5.04757i 0.274146 0.474835i −0.695773 0.718262i \(-0.744938\pi\)
0.969919 + 0.243426i \(0.0782715\pi\)
\(114\) 0 0
\(115\) −10.2426 17.7408i −0.955131 1.65434i
\(116\) 0 0
\(117\) 7.07107 + 7.34847i 0.653720 + 0.679366i
\(118\) 0 0
\(119\) 0.136039 + 0.235626i 0.0124707 + 0.0215998i
\(120\) 0 0
\(121\) −8.24264 + 14.2767i −0.749331 + 1.29788i
\(122\) 0 0
\(123\) 0.0355339 0.0615465i 0.00320398 0.00554946i
\(124\) 0 0
\(125\) 5.65685 0.505964
\(126\) 0 0
\(127\) −2.20711 3.82282i −0.195849 0.339221i 0.751329 0.659927i \(-0.229413\pi\)
−0.947179 + 0.320707i \(0.896080\pi\)
\(128\) 0 0
\(129\) −4.17157 −0.367287
\(130\) 0 0
\(131\) −4.00000 −0.349482 −0.174741 0.984614i \(-0.555909\pi\)
−0.174741 + 0.984614i \(0.555909\pi\)
\(132\) 0 0
\(133\) −5.74264 9.94655i −0.497950 0.862475i
\(134\) 0 0
\(135\) 6.82843 0.587697
\(136\) 0 0
\(137\) −10.3284 + 17.8894i −0.882417 + 1.52839i −0.0337713 + 0.999430i \(0.510752\pi\)
−0.848646 + 0.528962i \(0.822582\pi\)
\(138\) 0 0
\(139\) −3.62132 + 6.27231i −0.307156 + 0.532010i −0.977739 0.209824i \(-0.932711\pi\)
0.670583 + 0.741835i \(0.266044\pi\)
\(140\) 0 0
\(141\) −1.24264 2.15232i −0.104649 0.181258i
\(142\) 0 0
\(143\) −18.3492 + 4.54026i −1.53444 + 0.379676i
\(144\) 0 0
\(145\) −3.75736 6.50794i −0.312032 0.540455i
\(146\) 0 0
\(147\) 0.928932 1.60896i 0.0766170 0.132705i
\(148\) 0 0
\(149\) 7.32843 12.6932i 0.600368 1.03987i −0.392397 0.919796i \(-0.628354\pi\)
0.992765 0.120072i \(-0.0383126\pi\)
\(150\) 0 0
\(151\) 16.9706 1.38104 0.690522 0.723311i \(-0.257381\pi\)
0.690522 + 0.723311i \(0.257381\pi\)
\(152\) 0 0
\(153\) −0.242641 0.420266i −0.0196163 0.0339765i
\(154\) 0 0
\(155\) 16.0000 1.28515
\(156\) 0 0
\(157\) 16.4853 1.31567 0.657834 0.753163i \(-0.271473\pi\)
0.657834 + 0.753163i \(0.271473\pi\)
\(158\) 0 0
\(159\) −0.585786 1.01461i −0.0464559 0.0804640i
\(160\) 0 0
\(161\) −11.4853 −0.905167
\(162\) 0 0
\(163\) −12.6213 + 21.8608i −0.988578 + 1.71227i −0.363771 + 0.931488i \(0.618511\pi\)
−0.624807 + 0.780779i \(0.714822\pi\)
\(164\) 0 0
\(165\) −3.07107 + 5.31925i −0.239082 + 0.414103i
\(166\) 0 0
\(167\) −4.86396 8.42463i −0.376385 0.651917i 0.614149 0.789190i \(-0.289500\pi\)
−0.990533 + 0.137273i \(0.956166\pi\)
\(168\) 0 0
\(169\) −11.0000 6.92820i −0.846154 0.532939i
\(170\) 0 0
\(171\) 10.2426 + 17.7408i 0.783274 + 1.35667i
\(172\) 0 0
\(173\) 4.50000 7.79423i 0.342129 0.592584i −0.642699 0.766119i \(-0.722185\pi\)
0.984828 + 0.173534i \(0.0555188\pi\)
\(174\) 0 0
\(175\) −2.37868 + 4.11999i −0.179811 + 0.311442i
\(176\) 0 0
\(177\) 3.00000 0.225494
\(178\) 0 0
\(179\) 10.6213 + 18.3967i 0.793875 + 1.37503i 0.923551 + 0.383475i \(0.125273\pi\)
−0.129676 + 0.991556i \(0.541394\pi\)
\(180\) 0 0
\(181\) 16.4853 1.22534 0.612671 0.790338i \(-0.290095\pi\)
0.612671 + 0.790338i \(0.290095\pi\)
\(182\) 0 0
\(183\) 2.89949 0.214337
\(184\) 0 0
\(185\) 13.4142 + 23.2341i 0.986233 + 1.70820i
\(186\) 0 0
\(187\) 0.899495 0.0657776
\(188\) 0 0
\(189\) 1.91421 3.31552i 0.139239 0.241168i
\(190\) 0 0
\(191\) −7.62132 + 13.2005i −0.551459 + 0.955156i 0.446710 + 0.894679i \(0.352596\pi\)
−0.998170 + 0.0604770i \(0.980738\pi\)
\(192\) 0 0
\(193\) 1.25736 + 2.17781i 0.0905067 + 0.156762i 0.907724 0.419567i \(-0.137818\pi\)
−0.817218 + 0.576329i \(0.804485\pi\)
\(194\) 0 0
\(195\) −4.10051 + 1.01461i −0.293643 + 0.0726579i
\(196\) 0 0
\(197\) −1.50000 2.59808i −0.106871 0.185105i 0.807630 0.589689i \(-0.200750\pi\)
−0.914501 + 0.404584i \(0.867416\pi\)
\(198\) 0 0
\(199\) −9.10660 + 15.7731i −0.645550 + 1.11813i 0.338624 + 0.940922i \(0.390038\pi\)
−0.984174 + 0.177204i \(0.943295\pi\)
\(200\) 0 0
\(201\) −0.985281 + 1.70656i −0.0694964 + 0.120371i
\(202\) 0 0
\(203\) −4.21320 −0.295709
\(204\) 0 0
\(205\) −0.242641 0.420266i −0.0169468 0.0293527i
\(206\) 0 0
\(207\) 20.4853 1.42383
\(208\) 0 0
\(209\) −37.9706 −2.62648
\(210\) 0 0
\(211\) −8.20711 14.2151i −0.565001 0.978610i −0.997050 0.0767595i \(-0.975543\pi\)
0.432049 0.901850i \(-0.357791\pi\)
\(212\) 0 0
\(213\) 0.514719 0.0352679
\(214\) 0 0
\(215\) −14.2426 + 24.6690i −0.971340 + 1.68241i
\(216\) 0 0
\(217\) 4.48528 7.76874i 0.304481 0.527376i
\(218\) 0 0
\(219\) 0.928932 + 1.60896i 0.0627714 + 0.108723i
\(220\) 0 0
\(221\) 0.428932 + 0.445759i 0.0288531 + 0.0299850i
\(222\) 0 0
\(223\) 6.44975 + 11.1713i 0.431907 + 0.748085i 0.997038 0.0769166i \(-0.0245075\pi\)
−0.565130 + 0.825002i \(0.691174\pi\)
\(224\) 0 0
\(225\) 4.24264 7.34847i 0.282843 0.489898i
\(226\) 0 0
\(227\) 4.86396 8.42463i 0.322832 0.559162i −0.658239 0.752809i \(-0.728698\pi\)
0.981071 + 0.193647i \(0.0620316\pi\)
\(228\) 0 0
\(229\) −8.48528 −0.560723 −0.280362 0.959894i \(-0.590454\pi\)
−0.280362 + 0.959894i \(0.590454\pi\)
\(230\) 0 0
\(231\) 1.72183 + 2.98229i 0.113288 + 0.196220i
\(232\) 0 0
\(233\) −3.51472 −0.230257 −0.115128 0.993351i \(-0.536728\pi\)
−0.115128 + 0.993351i \(0.536728\pi\)
\(234\) 0 0
\(235\) −16.9706 −1.10704
\(236\) 0 0
\(237\) 1.24264 + 2.15232i 0.0807182 + 0.139808i
\(238\) 0 0
\(239\) 24.9706 1.61521 0.807606 0.589723i \(-0.200763\pi\)
0.807606 + 0.589723i \(0.200763\pi\)
\(240\) 0 0
\(241\) 10.2279 17.7153i 0.658838 1.14114i −0.322078 0.946713i \(-0.604381\pi\)
0.980917 0.194429i \(-0.0622852\pi\)
\(242\) 0 0
\(243\) −5.17157 + 8.95743i −0.331757 + 0.574619i
\(244\) 0 0
\(245\) −6.34315 10.9867i −0.405249 0.701911i
\(246\) 0 0
\(247\) −18.1066 18.8169i −1.15210 1.19729i
\(248\) 0 0
\(249\) −0.828427 1.43488i −0.0524994 0.0909317i
\(250\) 0 0
\(251\) 3.86396 6.69258i 0.243891 0.422432i −0.717928 0.696117i \(-0.754909\pi\)
0.961819 + 0.273685i \(0.0882427\pi\)
\(252\) 0 0
\(253\) −18.9853 + 32.8835i −1.19359 + 2.06737i
\(254\) 0 0
\(255\) 0.201010 0.0125877
\(256\) 0 0
\(257\) 11.3995 + 19.7445i 0.711081 + 1.23163i 0.964452 + 0.264259i \(0.0851274\pi\)
−0.253371 + 0.967369i \(0.581539\pi\)
\(258\) 0 0
\(259\) 15.0416 0.934641
\(260\) 0 0
\(261\) 7.51472 0.465149
\(262\) 0 0
\(263\) −0.378680 0.655892i −0.0233504 0.0404441i 0.854114 0.520086i \(-0.174100\pi\)
−0.877464 + 0.479642i \(0.840767\pi\)
\(264\) 0 0
\(265\) −8.00000 −0.491436
\(266\) 0 0
\(267\) 3.03553 5.25770i 0.185772 0.321766i
\(268\) 0 0
\(269\) 5.74264 9.94655i 0.350135 0.606452i −0.636138 0.771575i \(-0.719469\pi\)
0.986273 + 0.165124i \(0.0528024\pi\)
\(270\) 0 0
\(271\) −8.37868 14.5123i −0.508969 0.881559i −0.999946 0.0103871i \(-0.996694\pi\)
0.490978 0.871172i \(-0.336640\pi\)
\(272\) 0 0
\(273\) −0.656854 + 2.27541i −0.0397546 + 0.137714i
\(274\) 0 0
\(275\) 7.86396 + 13.6208i 0.474215 + 0.821364i
\(276\) 0 0
\(277\) 1.74264 3.01834i 0.104705 0.181355i −0.808913 0.587929i \(-0.799943\pi\)
0.913618 + 0.406574i \(0.133277\pi\)
\(278\) 0 0
\(279\) −8.00000 + 13.8564i −0.478947 + 0.829561i
\(280\) 0 0
\(281\) 26.1421 1.55951 0.779755 0.626085i \(-0.215344\pi\)
0.779755 + 0.626085i \(0.215344\pi\)
\(282\) 0 0
\(283\) 3.79289 + 6.56948i 0.225464 + 0.390515i 0.956459 0.291868i \(-0.0942768\pi\)
−0.730994 + 0.682383i \(0.760943\pi\)
\(284\) 0 0
\(285\) −8.48528 −0.502625
\(286\) 0 0
\(287\) −0.272078 −0.0160603
\(288\) 0 0
\(289\) 8.48528 + 14.6969i 0.499134 + 0.864526i
\(290\) 0 0
\(291\) −3.72792 −0.218535
\(292\) 0 0
\(293\) 10.1569 17.5922i 0.593370 1.02775i −0.400405 0.916338i \(-0.631131\pi\)
0.993775 0.111408i \(-0.0355361\pi\)
\(294\) 0 0
\(295\) 10.2426 17.7408i 0.596350 1.03291i
\(296\) 0 0
\(297\) −6.32843 10.9612i −0.367213 0.636031i
\(298\) 0 0
\(299\) −25.3492 + 6.27231i −1.46598 + 0.362737i
\(300\) 0 0
\(301\) 7.98528 + 13.8309i 0.460264 + 0.797201i
\(302\) 0 0
\(303\) −1.27817 + 2.21386i −0.0734292 + 0.127183i
\(304\) 0 0
\(305\) 9.89949 17.1464i 0.566843 0.981802i
\(306\) 0 0
\(307\) 12.0000 0.684876 0.342438 0.939540i \(-0.388747\pi\)
0.342438 + 0.939540i \(0.388747\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 24.0000 1.36092 0.680458 0.732787i \(-0.261781\pi\)
0.680458 + 0.732787i \(0.261781\pi\)
\(312\) 0 0
\(313\) 3.51472 0.198664 0.0993318 0.995054i \(-0.468329\pi\)
0.0993318 + 0.995054i \(0.468329\pi\)
\(314\) 0 0
\(315\) −6.34315 10.9867i −0.357396 0.619028i
\(316\) 0 0
\(317\) 5.31371 0.298448 0.149224 0.988803i \(-0.452323\pi\)
0.149224 + 0.988803i \(0.452323\pi\)
\(318\) 0 0
\(319\) −6.96447 + 12.0628i −0.389935 + 0.675388i
\(320\) 0 0
\(321\) −2.22792 + 3.85887i −0.124350 + 0.215381i
\(322\) 0 0
\(323\) 0.621320 + 1.07616i 0.0345712 + 0.0598791i
\(324\) 0 0
\(325\) −3.00000 + 10.3923i −0.166410 + 0.576461i
\(326\) 0 0
\(327\) −1.75736 3.04384i −0.0971822 0.168324i
\(328\) 0 0
\(329\) −4.75736 + 8.23999i −0.262282 + 0.454285i
\(330\) 0 0
\(331\) −0.621320 + 1.07616i −0.0341509 + 0.0591510i −0.882596 0.470133i \(-0.844206\pi\)
0.848445 + 0.529284i \(0.177539\pi\)
\(332\) 0 0
\(333\) −26.8284 −1.47019
\(334\) 0 0
\(335\) 6.72792 + 11.6531i 0.367586 + 0.636677i
\(336\) 0 0
\(337\) −12.4853 −0.680117 −0.340058 0.940404i \(-0.610447\pi\)
−0.340058 + 0.940404i \(0.610447\pi\)
\(338\) 0 0
\(339\) −2.41421 −0.131122
\(340\) 0 0
\(341\) −14.8284 25.6836i −0.803004 1.39084i
\(342\) 0 0
\(343\) −18.2132 −0.983421
\(344\) 0 0
\(345\) −4.24264 + 7.34847i −0.228416 + 0.395628i
\(346\) 0 0
\(347\) 11.3787 19.7085i 0.610840 1.05801i −0.380260 0.924880i \(-0.624165\pi\)
0.991099 0.133125i \(-0.0425013\pi\)
\(348\) 0 0
\(349\) 8.22792 + 14.2512i 0.440431 + 0.762848i 0.997721 0.0674693i \(-0.0214925\pi\)
−0.557291 + 0.830317i \(0.688159\pi\)
\(350\) 0 0
\(351\) 2.41421 8.36308i 0.128861 0.446388i
\(352\) 0 0
\(353\) 1.67157 + 2.89525i 0.0889688 + 0.154099i 0.907076 0.420968i \(-0.138310\pi\)
−0.818107 + 0.575066i \(0.804976\pi\)
\(354\) 0 0
\(355\) 1.75736 3.04384i 0.0932709 0.161550i
\(356\) 0 0
\(357\) 0.0563492 0.0975997i 0.00298232 0.00516552i
\(358\) 0 0
\(359\) −8.00000 −0.422224 −0.211112 0.977462i \(-0.567708\pi\)
−0.211112 + 0.977462i \(0.567708\pi\)
\(360\) 0 0
\(361\) −16.7279 28.9736i −0.880417 1.52493i
\(362\) 0 0
\(363\) 6.82843 0.358399
\(364\) 0 0
\(365\) 12.6863 0.664031
\(366\) 0 0
\(367\) −16.8640 29.2092i −0.880292 1.52471i −0.851017 0.525138i \(-0.824014\pi\)
−0.0292747 0.999571i \(-0.509320\pi\)
\(368\) 0 0
\(369\) 0.485281 0.0252627
\(370\) 0 0
\(371\) −2.24264 + 3.88437i −0.116432 + 0.201666i
\(372\) 0 0
\(373\) −10.2574 + 17.7663i −0.531106 + 0.919902i 0.468235 + 0.883604i \(0.344890\pi\)
−0.999341 + 0.0362985i \(0.988443\pi\)
\(374\) 0 0
\(375\) −1.17157 2.02922i −0.0604998 0.104789i
\(376\) 0 0
\(377\) −9.29899 + 2.30090i −0.478922 + 0.118503i
\(378\) 0 0
\(379\) −4.69239 8.12745i −0.241032 0.417479i 0.719977 0.693998i \(-0.244152\pi\)
−0.961008 + 0.276519i \(0.910819\pi\)
\(380\) 0 0
\(381\) −0.914214 + 1.58346i −0.0468366 + 0.0811233i
\(382\) 0 0
\(383\) 4.86396 8.42463i 0.248537 0.430478i −0.714583 0.699550i \(-0.753384\pi\)
0.963120 + 0.269072i \(0.0867170\pi\)
\(384\) 0 0
\(385\) 23.5147 1.19842
\(386\) 0 0
\(387\) −14.2426 24.6690i −0.723994 1.25399i
\(388\) 0 0
\(389\) 28.6274 1.45147 0.725734 0.687976i \(-0.241500\pi\)
0.725734 + 0.687976i \(0.241500\pi\)
\(390\) 0 0
\(391\) 1.24264 0.0628430
\(392\) 0 0
\(393\) 0.828427 + 1.43488i 0.0417886 + 0.0723800i
\(394\) 0 0
\(395\) 16.9706 0.853882
\(396\) 0 0
\(397\) −2.74264 + 4.75039i −0.137649 + 0.238415i −0.926606 0.376033i \(-0.877288\pi\)
0.788957 + 0.614448i \(0.210621\pi\)
\(398\) 0 0
\(399\) −2.37868 + 4.11999i −0.119083 + 0.206258i
\(400\) 0 0
\(401\) 8.57107 + 14.8455i 0.428019 + 0.741350i 0.996697 0.0812099i \(-0.0258784\pi\)
−0.568678 + 0.822560i \(0.692545\pi\)
\(402\) 0 0
\(403\) 5.65685 19.5959i 0.281788 0.976142i
\(404\) 0 0
\(405\) 10.5858 + 18.3351i 0.526012 + 0.911079i
\(406\) 0 0
\(407\) 24.8640 43.0656i 1.23246 2.13468i
\(408\) 0 0
\(409\) 13.7426 23.8030i 0.679530 1.17698i −0.295593 0.955314i \(-0.595517\pi\)
0.975123 0.221666i \(-0.0711495\pi\)
\(410\) 0 0
\(411\) 8.55635 0.422054
\(412\) 0 0
\(413\) −5.74264 9.94655i −0.282577 0.489438i
\(414\) 0 0
\(415\) −11.3137 −0.555368
\(416\) 0 0
\(417\) 3.00000 0.146911
\(418\) 0 0
\(419\) −6.86396 11.8887i −0.335326 0.580802i 0.648221 0.761452i \(-0.275513\pi\)
−0.983547 + 0.180650i \(0.942180\pi\)
\(420\) 0 0
\(421\) −16.4853 −0.803443 −0.401722 0.915762i \(-0.631588\pi\)
−0.401722 + 0.915762i \(0.631588\pi\)
\(422\) 0 0
\(423\) 8.48528 14.6969i 0.412568 0.714590i
\(424\) 0 0
\(425\) 0.257359 0.445759i 0.0124838 0.0216225i
\(426\) 0 0
\(427\) −5.55025 9.61332i −0.268596 0.465221i
\(428\) 0 0
\(429\) 5.42893 + 5.64191i 0.262111 + 0.272394i
\(430\) 0 0
\(431\) −12.3492 21.3895i −0.594842 1.03030i −0.993569 0.113227i \(-0.963881\pi\)
0.398727 0.917070i \(-0.369452\pi\)
\(432\) 0 0
\(433\) 9.74264 16.8747i 0.468201 0.810949i −0.531138 0.847285i \(-0.678235\pi\)
0.999340 + 0.0363365i \(0.0115688\pi\)
\(434\) 0 0
\(435\) −1.55635 + 2.69568i −0.0746212 + 0.129248i
\(436\) 0 0
\(437\) −52.4558 −2.50930
\(438\) 0 0
\(439\) 6.96447 + 12.0628i 0.332396 + 0.575726i 0.982981 0.183707i \(-0.0588097\pi\)
−0.650585 + 0.759433i \(0.725476\pi\)
\(440\) 0 0
\(441\) 12.6863 0.604109
\(442\) 0 0
\(443\) 4.97056 0.236159 0.118079 0.993004i \(-0.462326\pi\)
0.118079 + 0.993004i \(0.462326\pi\)
\(444\) 0 0
\(445\) −20.7279 35.9018i −0.982598 1.70191i
\(446\) 0 0
\(447\) −6.07107 −0.287152
\(448\) 0 0
\(449\) −14.7426 + 25.5350i −0.695748 + 1.20507i 0.274180 + 0.961679i \(0.411594\pi\)
−0.969928 + 0.243393i \(0.921740\pi\)
\(450\) 0 0
\(451\) −0.449747 + 0.778985i −0.0211778 + 0.0366810i
\(452\) 0 0
\(453\) −3.51472 6.08767i −0.165136 0.286024i
\(454\) 0 0
\(455\) 11.2132 + 11.6531i 0.525683 + 0.546306i
\(456\) 0 0
\(457\) −15.5000 26.8468i −0.725059 1.25584i −0.958950 0.283577i \(-0.908479\pi\)
0.233890 0.972263i \(-0.424854\pi\)
\(458\) 0 0
\(459\) −0.207107 + 0.358719i −0.00966692 + 0.0167436i
\(460\) 0 0
\(461\) −20.3995 + 35.3330i −0.950099 + 1.64562i −0.204895 + 0.978784i \(0.565685\pi\)
−0.745204 + 0.666836i \(0.767648\pi\)
\(462\) 0 0
\(463\) 29.6569 1.37827 0.689135 0.724633i \(-0.257990\pi\)
0.689135 + 0.724633i \(0.257990\pi\)
\(464\) 0 0
\(465\) −3.31371 5.73951i −0.153670 0.266163i
\(466\) 0 0
\(467\) −26.9706 −1.24805 −0.624024 0.781405i \(-0.714503\pi\)
−0.624024 + 0.781405i \(0.714503\pi\)
\(468\) 0 0
\(469\) 7.54416 0.348357
\(470\) 0 0
\(471\) −3.41421 5.91359i −0.157319 0.272484i
\(472\) 0 0
\(473\) 52.7990 2.42770
\(474\) 0 0
\(475\) −10.8640 + 18.8169i −0.498473 + 0.863380i
\(476\) 0 0
\(477\) 4.00000 6.92820i 0.183147 0.317221i
\(478\) 0 0
\(479\) 8.62132 + 14.9326i 0.393918 + 0.682286i 0.992962 0.118430i \(-0.0377860\pi\)
−0.599044 + 0.800716i \(0.704453\pi\)
\(480\) 0 0
\(481\) 33.1985 8.21449i 1.51372 0.374549i
\(482\) 0 0
\(483\) 2.37868 + 4.11999i 0.108234 + 0.187466i
\(484\) 0 0
\(485\) −12.7279 + 22.0454i −0.577945 + 1.00103i
\(486\) 0 0
\(487\) −3.44975 + 5.97514i −0.156323 + 0.270759i −0.933540 0.358473i \(-0.883297\pi\)
0.777217 + 0.629233i \(0.216631\pi\)
\(488\) 0 0
\(489\) 10.4558 0.472830
\(490\) 0 0
\(491\) 10.1066 + 17.5051i 0.456105 + 0.789996i 0.998751 0.0499650i \(-0.0159110\pi\)
−0.542646 + 0.839961i \(0.682578\pi\)
\(492\) 0 0
\(493\) 0.455844 0.0205302
\(494\) 0 0
\(495\) −41.9411 −1.88511
\(496\) 0 0
\(497\) −0.985281 1.70656i −0.0441959 0.0765496i
\(498\) 0 0
\(499\) −6.34315 −0.283958 −0.141979 0.989870i \(-0.545347\pi\)
−0.141979 + 0.989870i \(0.545347\pi\)
\(500\) 0 0
\(501\) −2.01472 + 3.48960i −0.0900110 + 0.155904i
\(502\) 0 0
\(503\) −11.6213 + 20.1287i −0.518169 + 0.897495i 0.481608 + 0.876387i \(0.340053\pi\)
−0.999777 + 0.0211085i \(0.993280\pi\)
\(504\) 0 0
\(505\) 8.72792 + 15.1172i 0.388387 + 0.672707i
\(506\) 0 0
\(507\) −0.207107 + 5.38079i −0.00919794 + 0.238969i
\(508\) 0 0
\(509\) −11.5711 20.0417i −0.512879 0.888332i −0.999888 0.0149353i \(-0.995246\pi\)
0.487010 0.873396i \(-0.338088\pi\)
\(510\) 0 0
\(511\) 3.55635 6.15978i 0.157324 0.272493i
\(512\) 0 0
\(513\) 8.74264 15.1427i 0.385997 0.668566i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 15.7279 + 27.2416i 0.691713 + 1.19808i
\(518\) 0 0
\(519\) −3.72792 −0.163638
\(520\) 0 0
\(521\) −14.8284 −0.649645 −0.324823 0.945775i \(-0.605305\pi\)
−0.324823 + 0.945775i \(0.605305\pi\)
\(522\) 0 0
\(523\) 6.79289 + 11.7656i 0.297032 + 0.514475i 0.975456 0.220196i \(-0.0706697\pi\)
−0.678423 + 0.734671i \(0.737336\pi\)
\(524\) 0 0
\(525\) 1.97056 0.0860024
\(526\) 0 0
\(527\) −0.485281 + 0.840532i −0.0211392 + 0.0366141i
\(528\) 0 0
\(529\) −14.7279 + 25.5095i −0.640344 + 1.10911i
\(530\) 0 0
\(531\) 10.2426 + 17.7408i 0.444493 + 0.769884i
\(532\) 0 0
\(533\) −0.600505 + 0.148586i −0.0260108 + 0.00643599i
\(534\) 0 0
\(535\) 15.2132 + 26.3500i 0.657724 + 1.13921i
\(536\) 0 0
\(537\) 4.39949 7.62015i 0.189852 0.328834i
\(538\) 0 0
\(539\) −11.7574 + 20.3643i −0.506425 + 0.877154i
\(540\) 0 0
\(541\) −2.00000 −0.0859867 −0.0429934 0.999075i \(-0.513689\pi\)
−0.0429934 + 0.999075i \(0.513689\pi\)
\(542\) 0 0
\(543\) −3.41421 5.91359i −0.146518 0.253776i
\(544\) 0 0
\(545\) −24.0000 −1.02805
\(546\) 0 0
\(547\) 36.0000 1.53925 0.769624 0.638497i \(-0.220443\pi\)
0.769624 + 0.638497i \(0.220443\pi\)
\(548\) 0 0
\(549\) 9.89949 + 17.1464i 0.422500 + 0.731792i
\(550\) 0 0
\(551\) −19.2426 −0.819764
\(552\) 0 0
\(553\) 4.75736 8.23999i 0.202303 0.350400i
\(554\) 0 0
\(555\) 5.55635 9.62388i 0.235854 0.408511i
\(556\) 0 0
\(557\) 1.32843 + 2.30090i 0.0562873 + 0.0974924i 0.892796 0.450461i \(-0.148740\pi\)
−0.836509 + 0.547954i \(0.815407\pi\)
\(558\) 0 0
\(559\) 25.1777 + 26.1654i 1.06490 + 1.10668i
\(560\) 0 0
\(561\) −0.186292 0.322666i −0.00786523 0.0136230i
\(562\) 0 0
\(563\) 13.3492 23.1216i 0.562603 0.974458i −0.434665 0.900592i \(-0.643133\pi\)
0.997268 0.0738655i \(-0.0235335\pi\)
\(564\) 0 0
\(565\) −8.24264 + 14.2767i −0.346770 + 0.600624i
\(566\) 0 0
\(567\) 11.8701 0.498496
\(568\) 0 0
\(569\) −3.98528 6.90271i −0.167072 0.289377i 0.770317 0.637661i \(-0.220098\pi\)
−0.937389 + 0.348284i \(0.886764\pi\)
\(570\) 0 0
\(571\) −16.2843 −0.681476 −0.340738 0.940158i \(-0.610677\pi\)
−0.340738 + 0.940158i \(0.610677\pi\)
\(572\) 0 0
\(573\) 6.31371 0.263759
\(574\) 0 0
\(575\) 10.8640 + 18.8169i 0.453058 + 0.784720i
\(576\) 0 0
\(577\) −12.4853 −0.519769 −0.259885 0.965640i \(-0.583685\pi\)
−0.259885 + 0.965640i \(0.583685\pi\)
\(578\) 0 0
\(579\) 0.520815 0.902079i 0.0216443 0.0374891i
\(580\) 0 0
\(581\) −3.17157 + 5.49333i −0.131579 + 0.227902i
\(582\) 0 0
\(583\) 7.41421 + 12.8418i 0.307065 + 0.531853i
\(584\) 0 0
\(585\) −20.0000 20.7846i −0.826898 0.859338i
\(586\) 0 0
\(587\) −19.3492 33.5139i −0.798629 1.38327i −0.920509 0.390721i \(-0.872226\pi\)
0.121881 0.992545i \(-0.461108\pi\)
\(588\) 0 0
\(589\) 20.4853 35.4815i 0.844081 1.46199i
\(590\) 0 0
\(591\) −0.621320 + 1.07616i −0.0255577 + 0.0442672i
\(592\) 0 0
\(593\) 9.17157 0.376631 0.188316 0.982109i \(-0.439697\pi\)
0.188316 + 0.982109i \(0.439697\pi\)
\(594\) 0 0
\(595\) −0.384776 0.666452i −0.0157743 0.0273219i
\(596\) 0 0
\(597\) 7.54416 0.308762
\(598\) 0 0
\(599\) −19.9411 −0.814772 −0.407386 0.913256i \(-0.633560\pi\)
−0.407386 + 0.913256i \(0.633560\pi\)
\(600\) 0 0
\(601\) 13.7426 + 23.8030i 0.560574 + 0.970943i 0.997446 + 0.0714192i \(0.0227528\pi\)
−0.436872 + 0.899523i \(0.643914\pi\)
\(602\) 0 0
\(603\) −13.4558 −0.547964
\(604\) 0 0
\(605\) 23.3137 40.3805i 0.947837 1.64170i
\(606\) 0 0
\(607\) 2.20711 3.82282i 0.0895837 0.155164i −0.817752 0.575571i \(-0.804780\pi\)
0.907335 + 0.420408i \(0.138113\pi\)
\(608\) 0 0
\(609\) 0.872583 + 1.51136i 0.0353588 + 0.0612433i
\(610\) 0 0
\(611\) −6.00000 + 20.7846i −0.242734 + 0.840855i
\(612\) 0 0
\(613\) 15.7426 + 27.2671i 0.635839 + 1.10131i 0.986337 + 0.164742i \(0.0526792\pi\)
−0.350497 + 0.936564i \(0.613987\pi\)
\(614\) 0 0
\(615\) −0.100505 + 0.174080i −0.00405276 + 0.00701958i
\(616\) 0 0
\(617\) 10.8431 18.7809i 0.436529 0.756090i −0.560890 0.827890i \(-0.689541\pi\)
0.997419 + 0.0718003i \(0.0228744\pi\)
\(618\) 0 0
\(619\) 28.9706 1.16443 0.582213 0.813037i \(-0.302187\pi\)
0.582213 + 0.813037i \(0.302187\pi\)
\(620\) 0 0
\(621\) −8.74264 15.1427i −0.350830 0.607656i
\(622\) 0 0
\(623\) −23.2426 −0.931197
\(624\) 0 0
\(625\) −31.0000 −1.24000
\(626\) 0 0
\(627\) 7.86396 + 13.6208i 0.314056 + 0.543962i
\(628\) 0 0
\(629\) −1.62742 −0.0648894
\(630\) 0 0
\(631\) −0.621320 + 1.07616i −0.0247344 + 0.0428412i −0.878128 0.478426i \(-0.841207\pi\)
0.853393 + 0.521268i \(0.174541\pi\)
\(632\) 0 0
\(633\) −3.39949 + 5.88810i −0.135118 + 0.234031i
\(634\) 0 0
\(635\) 6.24264 + 10.8126i 0.247732 + 0.429084i
\(636\) 0 0
\(637\) −15.6985 + 3.88437i −0.621997 + 0.153904i
\(638\) 0 0
\(639\) 1.75736 + 3.04384i 0.0695201 + 0.120412i
\(640\) 0 0
\(641\) −8.39949 + 14.5484i −0.331760 + 0.574625i −0.982857 0.184369i \(-0.940976\pi\)
0.651097 + 0.758995i \(0.274309\pi\)
\(642\) 0 0
\(643\) −21.1066 + 36.5577i −0.832363 + 1.44170i 0.0637963 + 0.997963i \(0.479679\pi\)
−0.896159 + 0.443732i \(0.853654\pi\)
\(644\) 0 0
\(645\) 11.7990 0.464585
\(646\) 0 0
\(647\) −7.37868 12.7802i −0.290086 0.502443i 0.683744 0.729722i \(-0.260351\pi\)
−0.973830 + 0.227279i \(0.927017\pi\)
\(648\) 0 0
\(649\) −37.9706 −1.49047
\(650\) 0 0
\(651\) −3.71573 −0.145631
\(652\) 0 0
\(653\) 2.57107 + 4.45322i 0.100614 + 0.174268i 0.911938 0.410329i \(-0.134586\pi\)
−0.811324 + 0.584597i \(0.801253\pi\)
\(654\) 0 0
\(655\) 11.3137 0.442063
\(656\) 0 0
\(657\) −6.34315 + 10.9867i −0.247470 + 0.428630i
\(658\) 0 0
\(659\) −9.10660 + 15.7731i −0.354743 + 0.614433i −0.987074 0.160266i \(-0.948765\pi\)
0.632331 + 0.774698i \(0.282098\pi\)
\(660\) 0 0
\(661\) −13.2279 22.9114i −0.514507 0.891151i −0.999858 0.0168325i \(-0.994642\pi\)
0.485352 0.874319i \(-0.338692\pi\)
\(662\) 0 0
\(663\) 0.0710678 0.246186i 0.00276005 0.00956108i
\(664\) 0 0
\(665\) 16.2426 + 28.1331i 0.629863 + 1.09095i
\(666\) 0 0
\(667\) −9.62132 + 16.6646i −0.372539 + 0.645256i
\(668\) 0 0
\(669\) 2.67157 4.62730i 0.103289 0.178902i
\(670\) 0 0
\(671\) −36.6985 −1.41673
\(672\) 0 0
\(673\) 20.9853 + 36.3476i 0.808923 + 1.40110i 0.913610 + 0.406591i \(0.133283\pi\)
−0.104687 + 0.994505i \(0.533384\pi\)
\(674\) 0 0
\(675\) −7.24264 −0.278769
\(676\) 0 0
\(677\) 25.4558 0.978348 0.489174 0.872186i \(-0.337298\pi\)
0.489174 + 0.872186i \(0.337298\pi\)
\(678\) 0 0
\(679\) 7.13604 + 12.3600i 0.273856 + 0.474333i
\(680\) 0 0
\(681\) −4.02944 −0.154408
\(682\) 0 0
\(683\) 0.378680 0.655892i 0.0144898 0.0250970i −0.858690 0.512496i \(-0.828721\pi\)
0.873179 + 0.487399i \(0.162054\pi\)
\(684\) 0 0
\(685\) 29.2132 50.5988i 1.11618 1.93328i
\(686\) 0 0
\(687\) 1.75736 + 3.04384i 0.0670474 + 0.116130i
\(688\) 0 0
\(689\) −2.82843 + 9.79796i −0.107754 + 0.373273i
\(690\) 0 0
\(691\) 0.964466 + 1.67050i 0.0366900 + 0.0635490i 0.883787 0.467889i \(-0.154985\pi\)
−0.847097 + 0.531438i \(0.821652\pi\)
\(692\) 0 0
\(693\) −11.7574 + 20.3643i −0.446625 + 0.773577i
\(694\) 0 0
\(695\) 10.2426 17.7408i 0.388526 0.672946i
\(696\) 0 0
\(697\) 0.0294373 0.00111502
\(698\) 0 0
\(699\) 0.727922 + 1.26080i 0.0275325 + 0.0476878i
\(700\) 0 0
\(701\) 8.48528 0.320485 0.160242 0.987078i \(-0.448772\pi\)
0.160242 + 0.987078i \(0.448772\pi\)
\(702\) 0 0
\(703\) 68.6985 2.59101
\(704\) 0 0
\(705\) 3.51472 + 6.08767i 0.132372 + 0.229275i
\(706\) 0 0
\(707\) 9.78680 0.368070
\(708\) 0 0
\(709\) 1.25736 2.17781i 0.0472211 0.0817894i −0.841449 0.540337i \(-0.818297\pi\)
0.888670 + 0.458548i \(0.151630\pi\)
\(710\) 0 0
\(711\) −8.48528 + 14.6969i −0.318223 + 0.551178i
\(712\) 0 0
\(713\) −20.4853 35.4815i −0.767180 1.32879i
\(714\) 0 0
\(715\) 51.8995 12.8418i 1.94093 0.480256i
\(716\) 0 0
\(717\) −5.17157 8.95743i −0.193136 0.334521i
\(718\) 0 0
\(719\) −15.6213 + 27.0569i −0.582577 + 1.00905i 0.412596 + 0.910914i \(0.364622\pi\)
−0.995173 + 0.0981387i \(0.968711\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −8.47309 −0.315118
\(724\) 0 0
\(725\) 3.98528 + 6.90271i 0.148010 + 0.256360i
\(726\) 0 0
\(727\) −12.6863 −0.470509 −0.235254 0.971934i \(-0.575592\pi\)
−0.235254 + 0.971934i \(0.575592\pi\)
\(728\) 0 0
\(729\) −18.1716 −0.673021
\(730\) 0 0
\(731\) −0.863961 1.49642i −0.0319548 0.0553473i
\(732\) 0 0
\(733\) −23.9411 −0.884286 −0.442143 0.896945i \(-0.645782\pi\)
−0.442143 + 0.896945i \(0.645782\pi\)
\(734\) 0 0
\(735\) −2.62742 + 4.55082i −0.0969137 + 0.167860i
\(736\) 0 0
\(737\) 12.4706 21.5996i 0.459359 0.795633i
\(738\) 0 0
\(739\) 6.10660 + 10.5769i 0.224635 + 0.389079i 0.956210 0.292682i \(-0.0945477\pi\)
−0.731575 + 0.681761i \(0.761214\pi\)
\(740\) 0 0
\(741\) −3.00000 + 10.3923i −0.110208 + 0.381771i
\(742\) 0 0
\(743\) 0.621320 + 1.07616i 0.0227940 + 0.0394804i 0.877197 0.480130i \(-0.159410\pi\)
−0.854403 + 0.519610i \(0.826077\pi\)
\(744\) 0 0
\(745\) −20.7279 + 35.9018i −0.759412 + 1.31534i
\(746\) 0 0
\(747\) 5.65685 9.79796i 0.206973 0.358489i
\(748\) 0 0
\(749\) 17.0589 0.623318
\(750\) 0 0
\(751\) 18.4497 + 31.9559i 0.673241 + 1.16609i 0.976980 + 0.213332i \(0.0684316\pi\)
−0.303739 + 0.952755i \(0.598235\pi\)
\(752\) 0 0
\(753\) −3.20101 −0.116651
\(754\) 0 0
\(755\) −48.0000 −1.74690
\(756\) 0 0
\(757\) 3.25736 + 5.64191i 0.118391 + 0.205059i 0.919130 0.393954i \(-0.128893\pi\)
−0.800739 + 0.599013i \(0.795560\pi\)
\(758\) 0 0
\(759\) 15.7279 0.570887
\(760\) 0 0
\(761\) −6.25736 + 10.8381i −0.226829 + 0.392880i −0.956867 0.290528i \(-0.906169\pi\)
0.730038 + 0.683407i \(0.239503\pi\)
\(762\) 0 0
\(763\) −6.72792 + 11.6531i −0.243567 + 0.421871i
\(764\) 0 0
\(765\) 0.686292 + 1.18869i 0.0248129 + 0.0429772i
\(766\) 0 0
\(767\) −18.1066 18.8169i −0.653791 0.679440i
\(768\) 0 0
\(769\) −19.7132 34.1443i −0.710876 1.23127i −0.964529 0.263978i \(-0.914965\pi\)
0.253652 0.967295i \(-0.418368\pi\)
\(770\) 0 0
\(771\) 4.72183 8.17844i 0.170052 0.294539i
\(772\) 0 0
\(773\) −2.74264 + 4.75039i −0.0986459 + 0.170860i −0.911124 0.412131i \(-0.864784\pi\)
0.812478 + 0.582991i \(0.198118\pi\)
\(774\) 0 0
\(775\) −16.9706 −0.609601
\(776\) 0 0
\(777\) −3.11522 5.39573i −0.111758 0.193571i
\(778\) 0 0
\(779\) −1.24264 −0.0445222
\(780\) 0 0
\(781\) −6.51472 −0.233115
\(782\) 0 0
\(783\) −3.20711 5.55487i −0.114613 0.198515i
\(784\) 0 0
\(785\) −46.6274 −1.66420
\(786\) 0 0
\(787\) 22.0061 38.1157i 0.784433 1.35868i −0.144905 0.989446i \(-0.546288\pi\)
0.929337 0.369232i \(-0.120379\pi\)
\(788\) 0 0
\(789\) −0.156854 + 0.271680i −0.00558416 + 0.00967205i
\(790\) 0 0
\(791\) 4.62132 + 8.00436i 0.164315 + 0.284602i
\(792\) 0 0
\(793\) −17.5000 18.1865i −0.621443 0.645823i
\(794\) 0 0
\(795\) 1.65685 + 2.86976i 0.0587626 + 0.101780i
\(796\) 0 0
\(797\) 16.5000 28.5788i 0.584460 1.01231i −0.410483 0.911868i \(-0.634640\pi\)
0.994943 0.100446i \(-0.0320269\pi\)
\(798\) 0 0
\(799\) 0.514719 0.891519i 0.0182094 0.0315397i
\(800\) 0 0
\(801\) 41.4558 1.46477
\(802\) 0 0
\(803\) −11.7574 20.3643i −0.414908 0.718642i
\(804\) 0 0
\(805\) 32.4853 1.14496
\(806\) 0 0
\(807\) −4.75736 −0.167467
\(808\) 0 0
\(809\) 0.0857864 + 0.148586i 0.00301609 + 0.00522402i 0.867530 0.497386i \(-0.165707\pi\)
−0.864513 + 0.502610i \(0.832373\pi\)
\(810\) 0 0
\(811\) −23.6569 −0.830705 −0.415352 0.909661i \(-0.636342\pi\)
−0.415352 + 0.909661i \(0.636342\pi\)
\(812\) 0 0
\(813\) −3.47056 + 6.01119i −0.121718 + 0.210822i
\(814\) 0 0
\(815\) 35.6985 61.8316i 1.25046 2.16587i
\(816\) 0 0
\(817\) 36.4706 + 63.1689i 1.27594 + 2.21000i
\(818\) 0 0
\(819\) −15.6985 + 3.88437i −0.548549 + 0.135731i
\(820\) 0 0
\(821\) 6.98528 + 12.0989i 0.243788 + 0.422253i 0.961790 0.273788i \(-0.0882766\pi\)
−0.718002 + 0.696041i \(0.754943\pi\)
\(822\) 0 0
\(823\) −21.1066 + 36.5577i −0.735730 + 1.27432i 0.218672 + 0.975798i \(0.429827\pi\)
−0.954402 + 0.298523i \(0.903506\pi\)
\(824\) 0 0
\(825\) 3.25736 5.64191i 0.113407 0.196426i
\(826\) 0 0
\(827\) −45.9411 −1.59753 −0.798765 0.601644i \(-0.794513\pi\)
−0.798765 + 0.601644i \(0.794513\pi\)
\(828\) 0 0
\(829\) −1.01472 1.75754i −0.0352426 0.0610420i 0.847866 0.530210i \(-0.177887\pi\)
−0.883109 + 0.469168i \(0.844554\pi\)
\(830\) 0 0
\(831\) −1.44365 −0.0500797
\(832\) 0 0
\(833\) 0.769553 0.0266634
\(834\) 0 0
\(835\) 13.7574 + 23.8284i 0.476093 + 0.824617i
\(836\) 0 0
\(837\) 13.6569 0.472050
\(838\) 0 0
\(839\) 24.3492 42.1741i 0.840629 1.45601i −0.0487343 0.998812i \(-0.515519\pi\)
0.889364 0.457201i \(-0.151148\pi\)
\(840\) 0 0
\(841\) 10.9706 19.0016i 0.378295 0.655227i
\(842\) 0 0
\(843\) −5.41421 9.37769i −0.186475 0.322985i
\(844\) 0 0
\(845\) 31.1127 + 19.5959i 1.07031 + 0.674120i
\(846\) 0 0
\(847\) −13.0711 22.6398i −0.449127 0.777911i
\(848\) 0 0
\(849\) 1.57107 2.72117i 0.0539189 0.0933903i
\(850\) 0 0
\(851\) 34.3492 59.4946i 1.17748 2.03945i
\(852\) 0 0
\(853\) 9.45584 0.323762 0.161881 0.986810i \(-0.448244\pi\)
0.161881 + 0.986810i \(0.448244\pi\)
\(854\) 0 0
\(855\) −28.9706 50.1785i −0.990772 1.71607i
\(856\) 0 0
\(857\) 38.8284 1.32635 0.663177 0.748463i \(-0.269208\pi\)
0.663177 + 0.748463i \(0.269208\pi\)
\(858\) 0 0
\(859\) 36.0000 1.22830 0.614152 0.789188i \(-0.289498\pi\)
0.614152 + 0.789188i \(0.289498\pi\)
\(860\) 0 0
\(861\) 0.0563492 + 0.0975997i 0.00192038 + 0.00332619i
\(862\) 0 0
\(863\) −32.0000 −1.08929 −0.544646 0.838666i \(-0.683336\pi\)
−0.544646 + 0.838666i \(0.683336\pi\)
\(864\) 0 0
\(865\) −12.7279 + 22.0454i −0.432762 + 0.749566i
\(866\) 0 0
\(867\) 3.51472 6.08767i 0.119366 0.206748i
\(868\) 0 0
\(869\) −15.7279 27.2416i −0.533533 0.924107i
\(870\) 0 0
\(871\) 16.6508 4.11999i 0.564189 0.139601i
\(872\) 0 0
\(873\) −12.7279 22.0454i −0.430775 0.746124i
\(874\) 0 0
\(875\) −4.48528 + 7.76874i −0.151630 + 0.262631i
\(876\) 0 0
\(877\) 4.98528 8.63476i 0.168341 0.291575i −0.769496 0.638652i \(-0.779492\pi\)
0.937837 + 0.347077i \(0.112826\pi\)
\(878\) 0 0
\(879\) −8.41421 −0.283804
\(880\) 0 0
\(881\) −11.9142 20.6360i −0.401400 0.695245i 0.592495 0.805574i \(-0.298143\pi\)
−0.993895 + 0.110329i \(0.964810\pi\)
\(882\) 0 0
\(883\) 51.5980 1.73641 0.868205 0.496205i \(-0.165274\pi\)
0.868205 + 0.496205i \(0.165274\pi\)
\(884\) 0 0
\(885\) −8.48528 −0.285230
\(886\) 0 0
\(887\) 9.10660 + 15.7731i 0.305770 + 0.529609i 0.977432 0.211248i \(-0.0677529\pi\)
−0.671663 + 0.740857i \(0.734420\pi\)
\(888\) 0 0
\(889\) 7.00000 0.234772
\(890\) 0 0
\(891\) 19.6213 33.9851i 0.657339 1.13854i
\(892\) 0 0
\(893\) −21.7279 + 37.6339i −0.727097 + 1.25937i
\(894\) 0 0
\(895\) −30.0416 52.0336i −1.00418 1.73929i
\(896\) 0 0
\(897\) 7.50000 + 7.79423i 0.250418 + 0.260242i
\(898\) 0 0
\(899\) −7.51472 13.0159i −0.250630 0.434104i
\(900\) 0 0
\(901\) 0.242641 0.420266i 0.00808353 0.0140011i
\(902\) 0 0
\(903\) 3.30761 5.72895i 0.110070 0.190648i
\(904\) 0 0
\(905\) −46.6274 −1.54995
\(906\) 0 0
\(907\) 3.10660 + 5.38079i 0.103153 + 0.178666i 0.912982 0.408000i \(-0.133774\pi\)
−0.809829 + 0.586666i \(0.800440\pi\)
\(908\) 0 0
\(909\) −17.4558 −0.578974
\(910\) 0 0
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) 0 0
\(913\) 10.4853 + 18.1610i 0.347012 + 0.601043i
\(914\) 0 0
\(915\) −8.20101 −0.271117
\(916\) 0 0
\(917\) 3.17157 5.49333i 0.104735 0.181406i
\(918\) 0 0
\(919\) 16.1777 28.0205i 0.533652 0.924313i −0.465575 0.885008i \(-0.654153\pi\)
0.999227 0.0393042i \(-0.0125141\pi\)
\(920\) 0 0
\(921\) −2.48528 4.30463i −0.0818928 0.141843i
\(922\) 0 0
\(923\) −3.10660 3.22848i −0.102255 0.106267i
\(924\) 0 0
\(925\) −14.2279 24.6435i −0.467811 0.810273i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −26.0563 + 45.1309i −0.854881 + 1.48070i 0.0218742 + 0.999761i \(0.493037\pi\)
−0.876755 + 0.480937i \(0.840297\pi\)
\(930\) 0 0
\(931\) −32.4853 −1.06466
\(932\) 0 0
\(933\) −4.97056 8.60927i −0.162729 0.281855i
\(934\) 0 0
\(935\) −2.54416 −0.0832028
\(936\) 0 0
\(937\) 5.45584 0.178235 0.0891173 0.996021i \(-0.471595\pi\)
0.0891173 + 0.996021i \(0.471595\pi\)
\(938\) 0 0
\(939\) −0.727922 1.26080i −0.0237548 0.0411446i
\(940\) 0 0
\(941\) −18.0000 −0.586783 −0.293392 0.955992i \(-0.594784\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(942\) 0 0
\(943\) −0.621320 + 1.07616i −0.0202330 + 0.0350445i
\(944\) 0 0
\(945\) −5.41421 + 9.37769i −0.176124 + 0.305056i
\(946\) 0 0
\(947\) 2.62132 + 4.54026i 0.0851815 + 0.147539i 0.905469 0.424413i \(-0.139520\pi\)
−0.820287 + 0.571952i \(0.806186\pi\)
\(948\) 0 0
\(949\) 4.48528 15.5375i 0.145598 0.504368i
\(950\) 0 0
\(951\) −1.10051 1.90613i −0.0356863 0.0618105i
\(952\) 0 0
\(953\) 7.32843 12.6932i 0.237391 0.411173i −0.722574 0.691294i \(-0.757041\pi\)
0.959965 + 0.280120i \(0.0903744\pi\)
\(954\) 0 0
\(955\) 21.5563 37.3367i 0.697547 1.20819i
\(956\) 0 0
\(957\) 5.76955 0.186503
\(958\) 0 0
\(959\) −16.3787 28.3687i −0.528895 0.916073i
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) −30.4264 −0.980477
\(964\) 0 0
\(965\) −3.55635 6.15978i −0.114483 0.198290i
\(966\) 0 0
\(967\) 40.9706 1.31752 0.658762 0.752351i \(-0.271080\pi\)
0.658762 + 0.752351i \(0.271080\pi\)
\(968\) 0 0
\(969\) 0.257359 0.445759i 0.00826757 0.0143199i
\(970\) 0 0
\(971\) −20.6213 + 35.7172i −0.661770 + 1.14622i 0.318381 + 0.947963i \(0.396861\pi\)
−0.980150 + 0.198256i \(0.936472\pi\)
\(972\) 0 0
\(973\) −5.74264 9.94655i −0.184101 0.318872i
\(974\) 0 0
\(975\) 4.34924 1.07616i 0.139287 0.0344647i
\(976\) 0 0
\(977\) 6.64214 + 11.5045i 0.212501 + 0.368062i 0.952497 0.304549i \(-0.0985059\pi\)
−0.739996 + 0.672611i \(0.765173\pi\)
\(978\) 0 0
\(979\) −38.4203 + 66.5459i −1.22792 + 2.12682i
\(980\) 0 0
\(981\) 12.0000 20.7846i 0.383131 0.663602i
\(982\) 0 0
\(983\) −32.9706 −1.05160 −0.525799 0.850609i \(-0.676234\pi\)
−0.525799 + 0.850609i \(0.676234\pi\)
\(984\) 0 0
\(985\) 4.24264 + 7.34847i 0.135182 + 0.234142i
\(986\) 0 0
\(987\) 3.94113 0.125447
\(988\) 0 0
\(989\) 72.9411 2.31939
\(990\) 0 0
\(991\) 26.0772 + 45.1670i 0.828368 + 1.43478i 0.899318 + 0.437296i \(0.144064\pi\)
−0.0709491 + 0.997480i \(0.522603\pi\)
\(992\) 0 0
\(993\) 0.514719 0.0163341
\(994\) 0 0
\(995\) 25.7574 44.6131i 0.816563 1.41433i
\(996\) 0 0
\(997\) −16.4706 + 28.5279i −0.521628 + 0.903486i 0.478056 + 0.878330i \(0.341342\pi\)
−0.999684 + 0.0251565i \(0.991992\pi\)
\(998\) 0 0
\(999\) 11.4497 + 19.8315i 0.362254 + 0.627442i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 416.2.i.f.289.1 yes 4
4.3 odd 2 416.2.i.c.289.2 4
8.3 odd 2 832.2.i.p.705.1 4
8.5 even 2 832.2.i.k.705.2 4
13.3 even 3 5408.2.a.o.1.2 2
13.9 even 3 inner 416.2.i.f.321.1 yes 4
13.10 even 6 5408.2.a.n.1.2 2
52.3 odd 6 5408.2.a.be.1.1 2
52.23 odd 6 5408.2.a.bf.1.1 2
52.35 odd 6 416.2.i.c.321.2 yes 4
104.35 odd 6 832.2.i.p.321.1 4
104.61 even 6 832.2.i.k.321.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.2.i.c.289.2 4 4.3 odd 2
416.2.i.c.321.2 yes 4 52.35 odd 6
416.2.i.f.289.1 yes 4 1.1 even 1 trivial
416.2.i.f.321.1 yes 4 13.9 even 3 inner
832.2.i.k.321.2 4 104.61 even 6
832.2.i.k.705.2 4 8.5 even 2
832.2.i.p.321.1 4 104.35 odd 6
832.2.i.p.705.1 4 8.3 odd 2
5408.2.a.n.1.2 2 13.10 even 6
5408.2.a.o.1.2 2 13.3 even 3
5408.2.a.be.1.1 2 52.3 odd 6
5408.2.a.bf.1.1 2 52.23 odd 6