Properties

Label 832.2.i.p.705.1
Level $832$
Weight $2$
Character 832.705
Analytic conductor $6.644$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [832,2,Mod(321,832)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(832, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("832.321");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 832.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.64355344817\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 416)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 705.1
Root \(-0.707107 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 832.705
Dual form 832.2.i.p.321.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.207107 - 0.358719i) q^{3} +2.82843 q^{5} +(0.792893 - 1.37333i) q^{7} +(1.41421 - 2.44949i) q^{9} +(2.62132 + 4.54026i) q^{11} +(1.00000 - 3.46410i) q^{13} +(-0.585786 - 1.01461i) q^{15} +(0.0857864 - 0.148586i) q^{17} +(-3.62132 + 6.27231i) q^{19} -0.656854 q^{21} +(-3.62132 - 6.27231i) q^{23} +3.00000 q^{25} -2.41421 q^{27} +(-1.32843 - 2.30090i) q^{29} +5.65685 q^{31} +(1.08579 - 1.88064i) q^{33} +(2.24264 - 3.88437i) q^{35} +(4.74264 + 8.21449i) q^{37} +(-1.44975 + 0.358719i) q^{39} +(0.0857864 + 0.148586i) q^{41} +(5.03553 - 8.72180i) q^{43} +(4.00000 - 6.92820i) q^{45} -6.00000 q^{47} +(2.24264 + 3.88437i) q^{49} -0.0710678 q^{51} -2.82843 q^{53} +(7.41421 + 12.8418i) q^{55} +3.00000 q^{57} +(-3.62132 + 6.27231i) q^{59} +(3.50000 - 6.06218i) q^{61} +(-2.24264 - 3.88437i) q^{63} +(2.82843 - 9.79796i) q^{65} +(-2.37868 - 4.11999i) q^{67} +(-1.50000 + 2.59808i) q^{69} +(0.621320 - 1.07616i) q^{71} -4.48528 q^{73} +(-0.621320 - 1.07616i) q^{75} +8.31371 q^{77} +6.00000 q^{79} +(-3.74264 - 6.48244i) q^{81} +4.00000 q^{83} +(0.242641 - 0.420266i) q^{85} +(-0.550253 + 0.953065i) q^{87} +(7.32843 + 12.6932i) q^{89} +(-3.96447 - 4.11999i) q^{91} +(-1.17157 - 2.02922i) q^{93} +(-10.2426 + 17.7408i) q^{95} +(4.50000 - 7.79423i) q^{97} +14.8284 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} + 6 q^{7} + 2 q^{11} + 4 q^{13} - 8 q^{15} + 6 q^{17} - 6 q^{19} + 20 q^{21} - 6 q^{23} + 12 q^{25} - 4 q^{27} + 6 q^{29} + 10 q^{33} - 8 q^{35} + 2 q^{37} + 14 q^{39} + 6 q^{41} + 6 q^{43}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/832\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(703\) \(769\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.207107 0.358719i −0.119573 0.207107i 0.800025 0.599966i \(-0.204819\pi\)
−0.919599 + 0.392859i \(0.871486\pi\)
\(4\) 0 0
\(5\) 2.82843 1.26491 0.632456 0.774597i \(-0.282047\pi\)
0.632456 + 0.774597i \(0.282047\pi\)
\(6\) 0 0
\(7\) 0.792893 1.37333i 0.299685 0.519070i −0.676378 0.736554i \(-0.736452\pi\)
0.976064 + 0.217484i \(0.0697849\pi\)
\(8\) 0 0
\(9\) 1.41421 2.44949i 0.471405 0.816497i
\(10\) 0 0
\(11\) 2.62132 + 4.54026i 0.790358 + 1.36894i 0.925745 + 0.378147i \(0.123439\pi\)
−0.135388 + 0.990793i \(0.543228\pi\)
\(12\) 0 0
\(13\) 1.00000 3.46410i 0.277350 0.960769i
\(14\) 0 0
\(15\) −0.585786 1.01461i −0.151249 0.261972i
\(16\) 0 0
\(17\) 0.0857864 0.148586i 0.0208063 0.0360375i −0.855435 0.517911i \(-0.826710\pi\)
0.876241 + 0.481873i \(0.160043\pi\)
\(18\) 0 0
\(19\) −3.62132 + 6.27231i −0.830788 + 1.43897i 0.0666264 + 0.997778i \(0.478776\pi\)
−0.897414 + 0.441189i \(0.854557\pi\)
\(20\) 0 0
\(21\) −0.656854 −0.143337
\(22\) 0 0
\(23\) −3.62132 6.27231i −0.755097 1.30787i −0.945326 0.326127i \(-0.894256\pi\)
0.190228 0.981740i \(-0.439077\pi\)
\(24\) 0 0
\(25\) 3.00000 0.600000
\(26\) 0 0
\(27\) −2.41421 −0.464616
\(28\) 0 0
\(29\) −1.32843 2.30090i −0.246683 0.427267i 0.715921 0.698182i \(-0.246007\pi\)
−0.962603 + 0.270915i \(0.912674\pi\)
\(30\) 0 0
\(31\) 5.65685 1.01600 0.508001 0.861357i \(-0.330385\pi\)
0.508001 + 0.861357i \(0.330385\pi\)
\(32\) 0 0
\(33\) 1.08579 1.88064i 0.189011 0.327377i
\(34\) 0 0
\(35\) 2.24264 3.88437i 0.379075 0.656578i
\(36\) 0 0
\(37\) 4.74264 + 8.21449i 0.779685 + 1.35045i 0.932123 + 0.362142i \(0.117954\pi\)
−0.152438 + 0.988313i \(0.548712\pi\)
\(38\) 0 0
\(39\) −1.44975 + 0.358719i −0.232145 + 0.0574411i
\(40\) 0 0
\(41\) 0.0857864 + 0.148586i 0.0133976 + 0.0232053i 0.872646 0.488352i \(-0.162402\pi\)
−0.859249 + 0.511558i \(0.829069\pi\)
\(42\) 0 0
\(43\) 5.03553 8.72180i 0.767912 1.33006i −0.170782 0.985309i \(-0.554629\pi\)
0.938693 0.344753i \(-0.112037\pi\)
\(44\) 0 0
\(45\) 4.00000 6.92820i 0.596285 1.03280i
\(46\) 0 0
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) 0 0
\(49\) 2.24264 + 3.88437i 0.320377 + 0.554910i
\(50\) 0 0
\(51\) −0.0710678 −0.00995148
\(52\) 0 0
\(53\) −2.82843 −0.388514 −0.194257 0.980951i \(-0.562230\pi\)
−0.194257 + 0.980951i \(0.562230\pi\)
\(54\) 0 0
\(55\) 7.41421 + 12.8418i 0.999732 + 1.73159i
\(56\) 0 0
\(57\) 3.00000 0.397360
\(58\) 0 0
\(59\) −3.62132 + 6.27231i −0.471456 + 0.816585i −0.999467 0.0326522i \(-0.989605\pi\)
0.528011 + 0.849238i \(0.322938\pi\)
\(60\) 0 0
\(61\) 3.50000 6.06218i 0.448129 0.776182i −0.550135 0.835076i \(-0.685424\pi\)
0.998264 + 0.0588933i \(0.0187572\pi\)
\(62\) 0 0
\(63\) −2.24264 3.88437i −0.282546 0.489384i
\(64\) 0 0
\(65\) 2.82843 9.79796i 0.350823 1.21529i
\(66\) 0 0
\(67\) −2.37868 4.11999i −0.290602 0.503337i 0.683350 0.730091i \(-0.260522\pi\)
−0.973952 + 0.226753i \(0.927189\pi\)
\(68\) 0 0
\(69\) −1.50000 + 2.59808i −0.180579 + 0.312772i
\(70\) 0 0
\(71\) 0.621320 1.07616i 0.0737372 0.127717i −0.826799 0.562497i \(-0.809841\pi\)
0.900536 + 0.434781i \(0.143174\pi\)
\(72\) 0 0
\(73\) −4.48528 −0.524962 −0.262481 0.964937i \(-0.584541\pi\)
−0.262481 + 0.964937i \(0.584541\pi\)
\(74\) 0 0
\(75\) −0.621320 1.07616i −0.0717439 0.124264i
\(76\) 0 0
\(77\) 8.31371 0.947435
\(78\) 0 0
\(79\) 6.00000 0.675053 0.337526 0.941316i \(-0.390410\pi\)
0.337526 + 0.941316i \(0.390410\pi\)
\(80\) 0 0
\(81\) −3.74264 6.48244i −0.415849 0.720272i
\(82\) 0 0
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 0 0
\(85\) 0.242641 0.420266i 0.0263181 0.0455842i
\(86\) 0 0
\(87\) −0.550253 + 0.953065i −0.0589933 + 0.102179i
\(88\) 0 0
\(89\) 7.32843 + 12.6932i 0.776812 + 1.34548i 0.933771 + 0.357872i \(0.116498\pi\)
−0.156959 + 0.987605i \(0.550169\pi\)
\(90\) 0 0
\(91\) −3.96447 4.11999i −0.415589 0.431893i
\(92\) 0 0
\(93\) −1.17157 2.02922i −0.121486 0.210421i
\(94\) 0 0
\(95\) −10.2426 + 17.7408i −1.05087 + 1.82017i
\(96\) 0 0
\(97\) 4.50000 7.79423i 0.456906 0.791384i −0.541890 0.840450i \(-0.682291\pi\)
0.998796 + 0.0490655i \(0.0156243\pi\)
\(98\) 0 0
\(99\) 14.8284 1.49031
\(100\) 0 0
\(101\) 3.08579 + 5.34474i 0.307047 + 0.531821i 0.977715 0.209936i \(-0.0673257\pi\)
−0.670668 + 0.741758i \(0.733992\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) −1.85786 −0.181309
\(106\) 0 0
\(107\) −5.37868 9.31615i −0.519977 0.900626i −0.999730 0.0232227i \(-0.992607\pi\)
0.479754 0.877403i \(-0.340726\pi\)
\(108\) 0 0
\(109\) −8.48528 −0.812743 −0.406371 0.913708i \(-0.633206\pi\)
−0.406371 + 0.913708i \(0.633206\pi\)
\(110\) 0 0
\(111\) 1.96447 3.40256i 0.186459 0.322956i
\(112\) 0 0
\(113\) 2.91421 5.04757i 0.274146 0.474835i −0.695773 0.718262i \(-0.744938\pi\)
0.969919 + 0.243426i \(0.0782715\pi\)
\(114\) 0 0
\(115\) −10.2426 17.7408i −0.955131 1.65434i
\(116\) 0 0
\(117\) −7.07107 7.34847i −0.653720 0.679366i
\(118\) 0 0
\(119\) −0.136039 0.235626i −0.0124707 0.0215998i
\(120\) 0 0
\(121\) −8.24264 + 14.2767i −0.749331 + 1.29788i
\(122\) 0 0
\(123\) 0.0355339 0.0615465i 0.00320398 0.00554946i
\(124\) 0 0
\(125\) −5.65685 −0.505964
\(126\) 0 0
\(127\) 2.20711 + 3.82282i 0.195849 + 0.339221i 0.947179 0.320707i \(-0.103920\pi\)
−0.751329 + 0.659927i \(0.770587\pi\)
\(128\) 0 0
\(129\) −4.17157 −0.367287
\(130\) 0 0
\(131\) −4.00000 −0.349482 −0.174741 0.984614i \(-0.555909\pi\)
−0.174741 + 0.984614i \(0.555909\pi\)
\(132\) 0 0
\(133\) 5.74264 + 9.94655i 0.497950 + 0.862475i
\(134\) 0 0
\(135\) −6.82843 −0.587697
\(136\) 0 0
\(137\) −10.3284 + 17.8894i −0.882417 + 1.52839i −0.0337713 + 0.999430i \(0.510752\pi\)
−0.848646 + 0.528962i \(0.822582\pi\)
\(138\) 0 0
\(139\) −3.62132 + 6.27231i −0.307156 + 0.532010i −0.977739 0.209824i \(-0.932711\pi\)
0.670583 + 0.741835i \(0.266044\pi\)
\(140\) 0 0
\(141\) 1.24264 + 2.15232i 0.104649 + 0.181258i
\(142\) 0 0
\(143\) 18.3492 4.54026i 1.53444 0.379676i
\(144\) 0 0
\(145\) −3.75736 6.50794i −0.312032 0.540455i
\(146\) 0 0
\(147\) 0.928932 1.60896i 0.0766170 0.132705i
\(148\) 0 0
\(149\) −7.32843 + 12.6932i −0.600368 + 1.03987i 0.392397 + 0.919796i \(0.371646\pi\)
−0.992765 + 0.120072i \(0.961687\pi\)
\(150\) 0 0
\(151\) −16.9706 −1.38104 −0.690522 0.723311i \(-0.742619\pi\)
−0.690522 + 0.723311i \(0.742619\pi\)
\(152\) 0 0
\(153\) −0.242641 0.420266i −0.0196163 0.0339765i
\(154\) 0 0
\(155\) 16.0000 1.28515
\(156\) 0 0
\(157\) −16.4853 −1.31567 −0.657834 0.753163i \(-0.728527\pi\)
−0.657834 + 0.753163i \(0.728527\pi\)
\(158\) 0 0
\(159\) 0.585786 + 1.01461i 0.0464559 + 0.0804640i
\(160\) 0 0
\(161\) −11.4853 −0.905167
\(162\) 0 0
\(163\) −12.6213 + 21.8608i −0.988578 + 1.71227i −0.363771 + 0.931488i \(0.618511\pi\)
−0.624807 + 0.780779i \(0.714822\pi\)
\(164\) 0 0
\(165\) 3.07107 5.31925i 0.239082 0.414103i
\(166\) 0 0
\(167\) 4.86396 + 8.42463i 0.376385 + 0.651917i 0.990533 0.137273i \(-0.0438338\pi\)
−0.614149 + 0.789190i \(0.710500\pi\)
\(168\) 0 0
\(169\) −11.0000 6.92820i −0.846154 0.532939i
\(170\) 0 0
\(171\) 10.2426 + 17.7408i 0.783274 + 1.35667i
\(172\) 0 0
\(173\) −4.50000 + 7.79423i −0.342129 + 0.592584i −0.984828 0.173534i \(-0.944481\pi\)
0.642699 + 0.766119i \(0.277815\pi\)
\(174\) 0 0
\(175\) 2.37868 4.11999i 0.179811 0.311442i
\(176\) 0 0
\(177\) 3.00000 0.225494
\(178\) 0 0
\(179\) 10.6213 + 18.3967i 0.793875 + 1.37503i 0.923551 + 0.383475i \(0.125273\pi\)
−0.129676 + 0.991556i \(0.541394\pi\)
\(180\) 0 0
\(181\) −16.4853 −1.22534 −0.612671 0.790338i \(-0.709905\pi\)
−0.612671 + 0.790338i \(0.709905\pi\)
\(182\) 0 0
\(183\) −2.89949 −0.214337
\(184\) 0 0
\(185\) 13.4142 + 23.2341i 0.986233 + 1.70820i
\(186\) 0 0
\(187\) 0.899495 0.0657776
\(188\) 0 0
\(189\) −1.91421 + 3.31552i −0.139239 + 0.241168i
\(190\) 0 0
\(191\) 7.62132 13.2005i 0.551459 0.955156i −0.446710 0.894679i \(-0.647404\pi\)
0.998170 0.0604770i \(-0.0192622\pi\)
\(192\) 0 0
\(193\) 1.25736 + 2.17781i 0.0905067 + 0.156762i 0.907724 0.419567i \(-0.137818\pi\)
−0.817218 + 0.576329i \(0.804485\pi\)
\(194\) 0 0
\(195\) −4.10051 + 1.01461i −0.293643 + 0.0726579i
\(196\) 0 0
\(197\) 1.50000 + 2.59808i 0.106871 + 0.185105i 0.914501 0.404584i \(-0.132584\pi\)
−0.807630 + 0.589689i \(0.799250\pi\)
\(198\) 0 0
\(199\) 9.10660 15.7731i 0.645550 1.11813i −0.338624 0.940922i \(-0.609962\pi\)
0.984174 0.177204i \(-0.0567051\pi\)
\(200\) 0 0
\(201\) −0.985281 + 1.70656i −0.0694964 + 0.120371i
\(202\) 0 0
\(203\) −4.21320 −0.295709
\(204\) 0 0
\(205\) 0.242641 + 0.420266i 0.0169468 + 0.0293527i
\(206\) 0 0
\(207\) −20.4853 −1.42383
\(208\) 0 0
\(209\) −37.9706 −2.62648
\(210\) 0 0
\(211\) −8.20711 14.2151i −0.565001 0.978610i −0.997050 0.0767595i \(-0.975543\pi\)
0.432049 0.901850i \(-0.357791\pi\)
\(212\) 0 0
\(213\) −0.514719 −0.0352679
\(214\) 0 0
\(215\) 14.2426 24.6690i 0.971340 1.68241i
\(216\) 0 0
\(217\) 4.48528 7.76874i 0.304481 0.527376i
\(218\) 0 0
\(219\) 0.928932 + 1.60896i 0.0627714 + 0.108723i
\(220\) 0 0
\(221\) −0.428932 0.445759i −0.0288531 0.0299850i
\(222\) 0 0
\(223\) −6.44975 11.1713i −0.431907 0.748085i 0.565130 0.825002i \(-0.308826\pi\)
−0.997038 + 0.0769166i \(0.975492\pi\)
\(224\) 0 0
\(225\) 4.24264 7.34847i 0.282843 0.489898i
\(226\) 0 0
\(227\) 4.86396 8.42463i 0.322832 0.559162i −0.658239 0.752809i \(-0.728698\pi\)
0.981071 + 0.193647i \(0.0620316\pi\)
\(228\) 0 0
\(229\) 8.48528 0.560723 0.280362 0.959894i \(-0.409546\pi\)
0.280362 + 0.959894i \(0.409546\pi\)
\(230\) 0 0
\(231\) −1.72183 2.98229i −0.113288 0.196220i
\(232\) 0 0
\(233\) −3.51472 −0.230257 −0.115128 0.993351i \(-0.536728\pi\)
−0.115128 + 0.993351i \(0.536728\pi\)
\(234\) 0 0
\(235\) −16.9706 −1.10704
\(236\) 0 0
\(237\) −1.24264 2.15232i −0.0807182 0.139808i
\(238\) 0 0
\(239\) −24.9706 −1.61521 −0.807606 0.589723i \(-0.799237\pi\)
−0.807606 + 0.589723i \(0.799237\pi\)
\(240\) 0 0
\(241\) 10.2279 17.7153i 0.658838 1.14114i −0.322078 0.946713i \(-0.604381\pi\)
0.980917 0.194429i \(-0.0622852\pi\)
\(242\) 0 0
\(243\) −5.17157 + 8.95743i −0.331757 + 0.574619i
\(244\) 0 0
\(245\) 6.34315 + 10.9867i 0.405249 + 0.701911i
\(246\) 0 0
\(247\) 18.1066 + 18.8169i 1.15210 + 1.19729i
\(248\) 0 0
\(249\) −0.828427 1.43488i −0.0524994 0.0909317i
\(250\) 0 0
\(251\) 3.86396 6.69258i 0.243891 0.422432i −0.717928 0.696117i \(-0.754909\pi\)
0.961819 + 0.273685i \(0.0882427\pi\)
\(252\) 0 0
\(253\) 18.9853 32.8835i 1.19359 2.06737i
\(254\) 0 0
\(255\) −0.201010 −0.0125877
\(256\) 0 0
\(257\) 11.3995 + 19.7445i 0.711081 + 1.23163i 0.964452 + 0.264259i \(0.0851274\pi\)
−0.253371 + 0.967369i \(0.581539\pi\)
\(258\) 0 0
\(259\) 15.0416 0.934641
\(260\) 0 0
\(261\) −7.51472 −0.465149
\(262\) 0 0
\(263\) 0.378680 + 0.655892i 0.0233504 + 0.0404441i 0.877464 0.479642i \(-0.159233\pi\)
−0.854114 + 0.520086i \(0.825900\pi\)
\(264\) 0 0
\(265\) −8.00000 −0.491436
\(266\) 0 0
\(267\) 3.03553 5.25770i 0.185772 0.321766i
\(268\) 0 0
\(269\) −5.74264 + 9.94655i −0.350135 + 0.606452i −0.986273 0.165124i \(-0.947198\pi\)
0.636138 + 0.771575i \(0.280531\pi\)
\(270\) 0 0
\(271\) 8.37868 + 14.5123i 0.508969 + 0.881559i 0.999946 + 0.0103871i \(0.00330638\pi\)
−0.490978 + 0.871172i \(0.663360\pi\)
\(272\) 0 0
\(273\) −0.656854 + 2.27541i −0.0397546 + 0.137714i
\(274\) 0 0
\(275\) 7.86396 + 13.6208i 0.474215 + 0.821364i
\(276\) 0 0
\(277\) −1.74264 + 3.01834i −0.104705 + 0.181355i −0.913618 0.406574i \(-0.866723\pi\)
0.808913 + 0.587929i \(0.200057\pi\)
\(278\) 0 0
\(279\) 8.00000 13.8564i 0.478947 0.829561i
\(280\) 0 0
\(281\) 26.1421 1.55951 0.779755 0.626085i \(-0.215344\pi\)
0.779755 + 0.626085i \(0.215344\pi\)
\(282\) 0 0
\(283\) 3.79289 + 6.56948i 0.225464 + 0.390515i 0.956459 0.291868i \(-0.0942768\pi\)
−0.730994 + 0.682383i \(0.760943\pi\)
\(284\) 0 0
\(285\) 8.48528 0.502625
\(286\) 0 0
\(287\) 0.272078 0.0160603
\(288\) 0 0
\(289\) 8.48528 + 14.6969i 0.499134 + 0.864526i
\(290\) 0 0
\(291\) −3.72792 −0.218535
\(292\) 0 0
\(293\) −10.1569 + 17.5922i −0.593370 + 1.02775i 0.400405 + 0.916338i \(0.368869\pi\)
−0.993775 + 0.111408i \(0.964464\pi\)
\(294\) 0 0
\(295\) −10.2426 + 17.7408i −0.596350 + 1.03291i
\(296\) 0 0
\(297\) −6.32843 10.9612i −0.367213 0.636031i
\(298\) 0 0
\(299\) −25.3492 + 6.27231i −1.46598 + 0.362737i
\(300\) 0 0
\(301\) −7.98528 13.8309i −0.460264 0.797201i
\(302\) 0 0
\(303\) 1.27817 2.21386i 0.0734292 0.127183i
\(304\) 0 0
\(305\) 9.89949 17.1464i 0.566843 0.981802i
\(306\) 0 0
\(307\) 12.0000 0.684876 0.342438 0.939540i \(-0.388747\pi\)
0.342438 + 0.939540i \(0.388747\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −24.0000 −1.36092 −0.680458 0.732787i \(-0.738219\pi\)
−0.680458 + 0.732787i \(0.738219\pi\)
\(312\) 0 0
\(313\) 3.51472 0.198664 0.0993318 0.995054i \(-0.468329\pi\)
0.0993318 + 0.995054i \(0.468329\pi\)
\(314\) 0 0
\(315\) −6.34315 10.9867i −0.357396 0.619028i
\(316\) 0 0
\(317\) −5.31371 −0.298448 −0.149224 0.988803i \(-0.547677\pi\)
−0.149224 + 0.988803i \(0.547677\pi\)
\(318\) 0 0
\(319\) 6.96447 12.0628i 0.389935 0.675388i
\(320\) 0 0
\(321\) −2.22792 + 3.85887i −0.124350 + 0.215381i
\(322\) 0 0
\(323\) 0.621320 + 1.07616i 0.0345712 + 0.0598791i
\(324\) 0 0
\(325\) 3.00000 10.3923i 0.166410 0.576461i
\(326\) 0 0
\(327\) 1.75736 + 3.04384i 0.0971822 + 0.168324i
\(328\) 0 0
\(329\) −4.75736 + 8.23999i −0.262282 + 0.454285i
\(330\) 0 0
\(331\) −0.621320 + 1.07616i −0.0341509 + 0.0591510i −0.882596 0.470133i \(-0.844206\pi\)
0.848445 + 0.529284i \(0.177539\pi\)
\(332\) 0 0
\(333\) 26.8284 1.47019
\(334\) 0 0
\(335\) −6.72792 11.6531i −0.367586 0.636677i
\(336\) 0 0
\(337\) −12.4853 −0.680117 −0.340058 0.940404i \(-0.610447\pi\)
−0.340058 + 0.940404i \(0.610447\pi\)
\(338\) 0 0
\(339\) −2.41421 −0.131122
\(340\) 0 0
\(341\) 14.8284 + 25.6836i 0.803004 + 1.39084i
\(342\) 0 0
\(343\) 18.2132 0.983421
\(344\) 0 0
\(345\) −4.24264 + 7.34847i −0.228416 + 0.395628i
\(346\) 0 0
\(347\) 11.3787 19.7085i 0.610840 1.05801i −0.380260 0.924880i \(-0.624165\pi\)
0.991099 0.133125i \(-0.0425013\pi\)
\(348\) 0 0
\(349\) −8.22792 14.2512i −0.440431 0.762848i 0.557291 0.830317i \(-0.311841\pi\)
−0.997721 + 0.0674693i \(0.978508\pi\)
\(350\) 0 0
\(351\) −2.41421 + 8.36308i −0.128861 + 0.446388i
\(352\) 0 0
\(353\) 1.67157 + 2.89525i 0.0889688 + 0.154099i 0.907076 0.420968i \(-0.138310\pi\)
−0.818107 + 0.575066i \(0.804976\pi\)
\(354\) 0 0
\(355\) 1.75736 3.04384i 0.0932709 0.161550i
\(356\) 0 0
\(357\) −0.0563492 + 0.0975997i −0.00298232 + 0.00516552i
\(358\) 0 0
\(359\) 8.00000 0.422224 0.211112 0.977462i \(-0.432292\pi\)
0.211112 + 0.977462i \(0.432292\pi\)
\(360\) 0 0
\(361\) −16.7279 28.9736i −0.880417 1.52493i
\(362\) 0 0
\(363\) 6.82843 0.358399
\(364\) 0 0
\(365\) −12.6863 −0.664031
\(366\) 0 0
\(367\) 16.8640 + 29.2092i 0.880292 + 1.52471i 0.851017 + 0.525138i \(0.175986\pi\)
0.0292747 + 0.999571i \(0.490680\pi\)
\(368\) 0 0
\(369\) 0.485281 0.0252627
\(370\) 0 0
\(371\) −2.24264 + 3.88437i −0.116432 + 0.201666i
\(372\) 0 0
\(373\) 10.2574 17.7663i 0.531106 0.919902i −0.468235 0.883604i \(-0.655110\pi\)
0.999341 0.0362985i \(-0.0115567\pi\)
\(374\) 0 0
\(375\) 1.17157 + 2.02922i 0.0604998 + 0.104789i
\(376\) 0 0
\(377\) −9.29899 + 2.30090i −0.478922 + 0.118503i
\(378\) 0 0
\(379\) −4.69239 8.12745i −0.241032 0.417479i 0.719977 0.693998i \(-0.244152\pi\)
−0.961008 + 0.276519i \(0.910819\pi\)
\(380\) 0 0
\(381\) 0.914214 1.58346i 0.0468366 0.0811233i
\(382\) 0 0
\(383\) −4.86396 + 8.42463i −0.248537 + 0.430478i −0.963120 0.269072i \(-0.913283\pi\)
0.714583 + 0.699550i \(0.246616\pi\)
\(384\) 0 0
\(385\) 23.5147 1.19842
\(386\) 0 0
\(387\) −14.2426 24.6690i −0.723994 1.25399i
\(388\) 0 0
\(389\) −28.6274 −1.45147 −0.725734 0.687976i \(-0.758500\pi\)
−0.725734 + 0.687976i \(0.758500\pi\)
\(390\) 0 0
\(391\) −1.24264 −0.0628430
\(392\) 0 0
\(393\) 0.828427 + 1.43488i 0.0417886 + 0.0723800i
\(394\) 0 0
\(395\) 16.9706 0.853882
\(396\) 0 0
\(397\) 2.74264 4.75039i 0.137649 0.238415i −0.788957 0.614448i \(-0.789379\pi\)
0.926606 + 0.376033i \(0.122712\pi\)
\(398\) 0 0
\(399\) 2.37868 4.11999i 0.119083 0.206258i
\(400\) 0 0
\(401\) 8.57107 + 14.8455i 0.428019 + 0.741350i 0.996697 0.0812099i \(-0.0258784\pi\)
−0.568678 + 0.822560i \(0.692545\pi\)
\(402\) 0 0
\(403\) 5.65685 19.5959i 0.281788 0.976142i
\(404\) 0 0
\(405\) −10.5858 18.3351i −0.526012 0.911079i
\(406\) 0 0
\(407\) −24.8640 + 43.0656i −1.23246 + 2.13468i
\(408\) 0 0
\(409\) 13.7426 23.8030i 0.679530 1.17698i −0.295593 0.955314i \(-0.595517\pi\)
0.975123 0.221666i \(-0.0711495\pi\)
\(410\) 0 0
\(411\) 8.55635 0.422054
\(412\) 0 0
\(413\) 5.74264 + 9.94655i 0.282577 + 0.489438i
\(414\) 0 0
\(415\) 11.3137 0.555368
\(416\) 0 0
\(417\) 3.00000 0.146911
\(418\) 0 0
\(419\) −6.86396 11.8887i −0.335326 0.580802i 0.648221 0.761452i \(-0.275513\pi\)
−0.983547 + 0.180650i \(0.942180\pi\)
\(420\) 0 0
\(421\) 16.4853 0.803443 0.401722 0.915762i \(-0.368412\pi\)
0.401722 + 0.915762i \(0.368412\pi\)
\(422\) 0 0
\(423\) −8.48528 + 14.6969i −0.412568 + 0.714590i
\(424\) 0 0
\(425\) 0.257359 0.445759i 0.0124838 0.0216225i
\(426\) 0 0
\(427\) −5.55025 9.61332i −0.268596 0.465221i
\(428\) 0 0
\(429\) −5.42893 5.64191i −0.262111 0.272394i
\(430\) 0 0
\(431\) 12.3492 + 21.3895i 0.594842 + 1.03030i 0.993569 + 0.113227i \(0.0361187\pi\)
−0.398727 + 0.917070i \(0.630548\pi\)
\(432\) 0 0
\(433\) 9.74264 16.8747i 0.468201 0.810949i −0.531138 0.847285i \(-0.678235\pi\)
0.999340 + 0.0363365i \(0.0115688\pi\)
\(434\) 0 0
\(435\) −1.55635 + 2.69568i −0.0746212 + 0.129248i
\(436\) 0 0
\(437\) 52.4558 2.50930
\(438\) 0 0
\(439\) −6.96447 12.0628i −0.332396 0.575726i 0.650585 0.759433i \(-0.274524\pi\)
−0.982981 + 0.183707i \(0.941190\pi\)
\(440\) 0 0
\(441\) 12.6863 0.604109
\(442\) 0 0
\(443\) 4.97056 0.236159 0.118079 0.993004i \(-0.462326\pi\)
0.118079 + 0.993004i \(0.462326\pi\)
\(444\) 0 0
\(445\) 20.7279 + 35.9018i 0.982598 + 1.70191i
\(446\) 0 0
\(447\) 6.07107 0.287152
\(448\) 0 0
\(449\) −14.7426 + 25.5350i −0.695748 + 1.20507i 0.274180 + 0.961679i \(0.411594\pi\)
−0.969928 + 0.243393i \(0.921740\pi\)
\(450\) 0 0
\(451\) −0.449747 + 0.778985i −0.0211778 + 0.0366810i
\(452\) 0 0
\(453\) 3.51472 + 6.08767i 0.165136 + 0.286024i
\(454\) 0 0
\(455\) −11.2132 11.6531i −0.525683 0.546306i
\(456\) 0 0
\(457\) −15.5000 26.8468i −0.725059 1.25584i −0.958950 0.283577i \(-0.908479\pi\)
0.233890 0.972263i \(-0.424854\pi\)
\(458\) 0 0
\(459\) −0.207107 + 0.358719i −0.00966692 + 0.0167436i
\(460\) 0 0
\(461\) 20.3995 35.3330i 0.950099 1.64562i 0.204895 0.978784i \(-0.434315\pi\)
0.745204 0.666836i \(-0.232352\pi\)
\(462\) 0 0
\(463\) −29.6569 −1.37827 −0.689135 0.724633i \(-0.742010\pi\)
−0.689135 + 0.724633i \(0.742010\pi\)
\(464\) 0 0
\(465\) −3.31371 5.73951i −0.153670 0.266163i
\(466\) 0 0
\(467\) −26.9706 −1.24805 −0.624024 0.781405i \(-0.714503\pi\)
−0.624024 + 0.781405i \(0.714503\pi\)
\(468\) 0 0
\(469\) −7.54416 −0.348357
\(470\) 0 0
\(471\) 3.41421 + 5.91359i 0.157319 + 0.272484i
\(472\) 0 0
\(473\) 52.7990 2.42770
\(474\) 0 0
\(475\) −10.8640 + 18.8169i −0.498473 + 0.863380i
\(476\) 0 0
\(477\) −4.00000 + 6.92820i −0.183147 + 0.317221i
\(478\) 0 0
\(479\) −8.62132 14.9326i −0.393918 0.682286i 0.599044 0.800716i \(-0.295547\pi\)
−0.992962 + 0.118430i \(0.962214\pi\)
\(480\) 0 0
\(481\) 33.1985 8.21449i 1.51372 0.374549i
\(482\) 0 0
\(483\) 2.37868 + 4.11999i 0.108234 + 0.187466i
\(484\) 0 0
\(485\) 12.7279 22.0454i 0.577945 1.00103i
\(486\) 0 0
\(487\) 3.44975 5.97514i 0.156323 0.270759i −0.777217 0.629233i \(-0.783369\pi\)
0.933540 + 0.358473i \(0.116703\pi\)
\(488\) 0 0
\(489\) 10.4558 0.472830
\(490\) 0 0
\(491\) 10.1066 + 17.5051i 0.456105 + 0.789996i 0.998751 0.0499650i \(-0.0159110\pi\)
−0.542646 + 0.839961i \(0.682578\pi\)
\(492\) 0 0
\(493\) −0.455844 −0.0205302
\(494\) 0 0
\(495\) 41.9411 1.88511
\(496\) 0 0
\(497\) −0.985281 1.70656i −0.0441959 0.0765496i
\(498\) 0 0
\(499\) −6.34315 −0.283958 −0.141979 0.989870i \(-0.545347\pi\)
−0.141979 + 0.989870i \(0.545347\pi\)
\(500\) 0 0
\(501\) 2.01472 3.48960i 0.0900110 0.155904i
\(502\) 0 0
\(503\) 11.6213 20.1287i 0.518169 0.897495i −0.481608 0.876387i \(-0.659947\pi\)
0.999777 0.0211085i \(-0.00671953\pi\)
\(504\) 0 0
\(505\) 8.72792 + 15.1172i 0.388387 + 0.672707i
\(506\) 0 0
\(507\) −0.207107 + 5.38079i −0.00919794 + 0.238969i
\(508\) 0 0
\(509\) 11.5711 + 20.0417i 0.512879 + 0.888332i 0.999888 + 0.0149353i \(0.00475422\pi\)
−0.487010 + 0.873396i \(0.661912\pi\)
\(510\) 0 0
\(511\) −3.55635 + 6.15978i −0.157324 + 0.272493i
\(512\) 0 0
\(513\) 8.74264 15.1427i 0.385997 0.668566i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −15.7279 27.2416i −0.691713 1.19808i
\(518\) 0 0
\(519\) 3.72792 0.163638
\(520\) 0 0
\(521\) −14.8284 −0.649645 −0.324823 0.945775i \(-0.605305\pi\)
−0.324823 + 0.945775i \(0.605305\pi\)
\(522\) 0 0
\(523\) 6.79289 + 11.7656i 0.297032 + 0.514475i 0.975456 0.220196i \(-0.0706697\pi\)
−0.678423 + 0.734671i \(0.737336\pi\)
\(524\) 0 0
\(525\) −1.97056 −0.0860024
\(526\) 0 0
\(527\) 0.485281 0.840532i 0.0211392 0.0366141i
\(528\) 0 0
\(529\) −14.7279 + 25.5095i −0.640344 + 1.10911i
\(530\) 0 0
\(531\) 10.2426 + 17.7408i 0.444493 + 0.769884i
\(532\) 0 0
\(533\) 0.600505 0.148586i 0.0260108 0.00643599i
\(534\) 0 0
\(535\) −15.2132 26.3500i −0.657724 1.13921i
\(536\) 0 0
\(537\) 4.39949 7.62015i 0.189852 0.328834i
\(538\) 0 0
\(539\) −11.7574 + 20.3643i −0.506425 + 0.877154i
\(540\) 0 0
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) 0 0
\(543\) 3.41421 + 5.91359i 0.146518 + 0.253776i
\(544\) 0 0
\(545\) −24.0000 −1.02805
\(546\) 0 0
\(547\) 36.0000 1.53925 0.769624 0.638497i \(-0.220443\pi\)
0.769624 + 0.638497i \(0.220443\pi\)
\(548\) 0 0
\(549\) −9.89949 17.1464i −0.422500 0.731792i
\(550\) 0 0
\(551\) 19.2426 0.819764
\(552\) 0 0
\(553\) 4.75736 8.23999i 0.202303 0.350400i
\(554\) 0 0
\(555\) 5.55635 9.62388i 0.235854 0.408511i
\(556\) 0 0
\(557\) −1.32843 2.30090i −0.0562873 0.0974924i 0.836509 0.547954i \(-0.184593\pi\)
−0.892796 + 0.450461i \(0.851260\pi\)
\(558\) 0 0
\(559\) −25.1777 26.1654i −1.06490 1.10668i
\(560\) 0 0
\(561\) −0.186292 0.322666i −0.00786523 0.0136230i
\(562\) 0 0
\(563\) 13.3492 23.1216i 0.562603 0.974458i −0.434665 0.900592i \(-0.643133\pi\)
0.997268 0.0738655i \(-0.0235335\pi\)
\(564\) 0 0
\(565\) 8.24264 14.2767i 0.346770 0.600624i
\(566\) 0 0
\(567\) −11.8701 −0.498496
\(568\) 0 0
\(569\) −3.98528 6.90271i −0.167072 0.289377i 0.770317 0.637661i \(-0.220098\pi\)
−0.937389 + 0.348284i \(0.886764\pi\)
\(570\) 0 0
\(571\) −16.2843 −0.681476 −0.340738 0.940158i \(-0.610677\pi\)
−0.340738 + 0.940158i \(0.610677\pi\)
\(572\) 0 0
\(573\) −6.31371 −0.263759
\(574\) 0 0
\(575\) −10.8640 18.8169i −0.453058 0.784720i
\(576\) 0 0
\(577\) −12.4853 −0.519769 −0.259885 0.965640i \(-0.583685\pi\)
−0.259885 + 0.965640i \(0.583685\pi\)
\(578\) 0 0
\(579\) 0.520815 0.902079i 0.0216443 0.0374891i
\(580\) 0 0
\(581\) 3.17157 5.49333i 0.131579 0.227902i
\(582\) 0 0
\(583\) −7.41421 12.8418i −0.307065 0.531853i
\(584\) 0 0
\(585\) −20.0000 20.7846i −0.826898 0.859338i
\(586\) 0 0
\(587\) −19.3492 33.5139i −0.798629 1.38327i −0.920509 0.390721i \(-0.872226\pi\)
0.121881 0.992545i \(-0.461108\pi\)
\(588\) 0 0
\(589\) −20.4853 + 35.4815i −0.844081 + 1.46199i
\(590\) 0 0
\(591\) 0.621320 1.07616i 0.0255577 0.0442672i
\(592\) 0 0
\(593\) 9.17157 0.376631 0.188316 0.982109i \(-0.439697\pi\)
0.188316 + 0.982109i \(0.439697\pi\)
\(594\) 0 0
\(595\) −0.384776 0.666452i −0.0157743 0.0273219i
\(596\) 0 0
\(597\) −7.54416 −0.308762
\(598\) 0 0
\(599\) 19.9411 0.814772 0.407386 0.913256i \(-0.366440\pi\)
0.407386 + 0.913256i \(0.366440\pi\)
\(600\) 0 0
\(601\) 13.7426 + 23.8030i 0.560574 + 0.970943i 0.997446 + 0.0714192i \(0.0227528\pi\)
−0.436872 + 0.899523i \(0.643914\pi\)
\(602\) 0 0
\(603\) −13.4558 −0.547964
\(604\) 0 0
\(605\) −23.3137 + 40.3805i −0.947837 + 1.64170i
\(606\) 0 0
\(607\) −2.20711 + 3.82282i −0.0895837 + 0.155164i −0.907335 0.420408i \(-0.861887\pi\)
0.817752 + 0.575571i \(0.195220\pi\)
\(608\) 0 0
\(609\) 0.872583 + 1.51136i 0.0353588 + 0.0612433i
\(610\) 0 0
\(611\) −6.00000 + 20.7846i −0.242734 + 0.840855i
\(612\) 0 0
\(613\) −15.7426 27.2671i −0.635839 1.10131i −0.986337 0.164742i \(-0.947321\pi\)
0.350497 0.936564i \(-0.386013\pi\)
\(614\) 0 0
\(615\) 0.100505 0.174080i 0.00405276 0.00701958i
\(616\) 0 0
\(617\) 10.8431 18.7809i 0.436529 0.756090i −0.560890 0.827890i \(-0.689541\pi\)
0.997419 + 0.0718003i \(0.0228744\pi\)
\(618\) 0 0
\(619\) 28.9706 1.16443 0.582213 0.813037i \(-0.302187\pi\)
0.582213 + 0.813037i \(0.302187\pi\)
\(620\) 0 0
\(621\) 8.74264 + 15.1427i 0.350830 + 0.607656i
\(622\) 0 0
\(623\) 23.2426 0.931197
\(624\) 0 0
\(625\) −31.0000 −1.24000
\(626\) 0 0
\(627\) 7.86396 + 13.6208i 0.314056 + 0.543962i
\(628\) 0 0
\(629\) 1.62742 0.0648894
\(630\) 0 0
\(631\) 0.621320 1.07616i 0.0247344 0.0428412i −0.853393 0.521268i \(-0.825459\pi\)
0.878128 + 0.478426i \(0.158793\pi\)
\(632\) 0 0
\(633\) −3.39949 + 5.88810i −0.135118 + 0.234031i
\(634\) 0 0
\(635\) 6.24264 + 10.8126i 0.247732 + 0.429084i
\(636\) 0 0
\(637\) 15.6985 3.88437i 0.621997 0.153904i
\(638\) 0 0
\(639\) −1.75736 3.04384i −0.0695201 0.120412i
\(640\) 0 0
\(641\) −8.39949 + 14.5484i −0.331760 + 0.574625i −0.982857 0.184369i \(-0.940976\pi\)
0.651097 + 0.758995i \(0.274309\pi\)
\(642\) 0 0
\(643\) −21.1066 + 36.5577i −0.832363 + 1.44170i 0.0637963 + 0.997963i \(0.479679\pi\)
−0.896159 + 0.443732i \(0.853654\pi\)
\(644\) 0 0
\(645\) −11.7990 −0.464585
\(646\) 0 0
\(647\) 7.37868 + 12.7802i 0.290086 + 0.502443i 0.973830 0.227279i \(-0.0729828\pi\)
−0.683744 + 0.729722i \(0.739649\pi\)
\(648\) 0 0
\(649\) −37.9706 −1.49047
\(650\) 0 0
\(651\) −3.71573 −0.145631
\(652\) 0 0
\(653\) −2.57107 4.45322i −0.100614 0.174268i 0.811324 0.584597i \(-0.198747\pi\)
−0.911938 + 0.410329i \(0.865414\pi\)
\(654\) 0 0
\(655\) −11.3137 −0.442063
\(656\) 0 0
\(657\) −6.34315 + 10.9867i −0.247470 + 0.428630i
\(658\) 0 0
\(659\) −9.10660 + 15.7731i −0.354743 + 0.614433i −0.987074 0.160266i \(-0.948765\pi\)
0.632331 + 0.774698i \(0.282098\pi\)
\(660\) 0 0
\(661\) 13.2279 + 22.9114i 0.514507 + 0.891151i 0.999858 + 0.0168325i \(0.00535821\pi\)
−0.485352 + 0.874319i \(0.661308\pi\)
\(662\) 0 0
\(663\) −0.0710678 + 0.246186i −0.00276005 + 0.00956108i
\(664\) 0 0
\(665\) 16.2426 + 28.1331i 0.629863 + 1.09095i
\(666\) 0 0
\(667\) −9.62132 + 16.6646i −0.372539 + 0.645256i
\(668\) 0 0
\(669\) −2.67157 + 4.62730i −0.103289 + 0.178902i
\(670\) 0 0
\(671\) 36.6985 1.41673
\(672\) 0 0
\(673\) 20.9853 + 36.3476i 0.808923 + 1.40110i 0.913610 + 0.406591i \(0.133283\pi\)
−0.104687 + 0.994505i \(0.533384\pi\)
\(674\) 0 0
\(675\) −7.24264 −0.278769
\(676\) 0 0
\(677\) −25.4558 −0.978348 −0.489174 0.872186i \(-0.662702\pi\)
−0.489174 + 0.872186i \(0.662702\pi\)
\(678\) 0 0
\(679\) −7.13604 12.3600i −0.273856 0.474333i
\(680\) 0 0
\(681\) −4.02944 −0.154408
\(682\) 0 0
\(683\) 0.378680 0.655892i 0.0144898 0.0250970i −0.858690 0.512496i \(-0.828721\pi\)
0.873179 + 0.487399i \(0.162054\pi\)
\(684\) 0 0
\(685\) −29.2132 + 50.5988i −1.11618 + 1.93328i
\(686\) 0 0
\(687\) −1.75736 3.04384i −0.0670474 0.116130i
\(688\) 0 0
\(689\) −2.82843 + 9.79796i −0.107754 + 0.373273i
\(690\) 0 0
\(691\) 0.964466 + 1.67050i 0.0366900 + 0.0635490i 0.883787 0.467889i \(-0.154985\pi\)
−0.847097 + 0.531438i \(0.821652\pi\)
\(692\) 0 0
\(693\) 11.7574 20.3643i 0.446625 0.773577i
\(694\) 0 0
\(695\) −10.2426 + 17.7408i −0.388526 + 0.672946i
\(696\) 0 0
\(697\) 0.0294373 0.00111502
\(698\) 0 0
\(699\) 0.727922 + 1.26080i 0.0275325 + 0.0476878i
\(700\) 0 0
\(701\) −8.48528 −0.320485 −0.160242 0.987078i \(-0.551228\pi\)
−0.160242 + 0.987078i \(0.551228\pi\)
\(702\) 0 0
\(703\) −68.6985 −2.59101
\(704\) 0 0
\(705\) 3.51472 + 6.08767i 0.132372 + 0.229275i
\(706\) 0 0
\(707\) 9.78680 0.368070
\(708\) 0 0
\(709\) −1.25736 + 2.17781i −0.0472211 + 0.0817894i −0.888670 0.458548i \(-0.848370\pi\)
0.841449 + 0.540337i \(0.181703\pi\)
\(710\) 0 0
\(711\) 8.48528 14.6969i 0.318223 0.551178i
\(712\) 0 0
\(713\) −20.4853 35.4815i −0.767180 1.32879i
\(714\) 0 0
\(715\) 51.8995 12.8418i 1.94093 0.480256i
\(716\) 0 0
\(717\) 5.17157 + 8.95743i 0.193136 + 0.334521i
\(718\) 0 0
\(719\) 15.6213 27.0569i 0.582577 1.00905i −0.412596 0.910914i \(-0.635378\pi\)
0.995173 0.0981387i \(-0.0312889\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −8.47309 −0.315118
\(724\) 0 0
\(725\) −3.98528 6.90271i −0.148010 0.256360i
\(726\) 0 0
\(727\) 12.6863 0.470509 0.235254 0.971934i \(-0.424408\pi\)
0.235254 + 0.971934i \(0.424408\pi\)
\(728\) 0 0
\(729\) −18.1716 −0.673021
\(730\) 0 0
\(731\) −0.863961 1.49642i −0.0319548 0.0553473i
\(732\) 0 0
\(733\) 23.9411 0.884286 0.442143 0.896945i \(-0.354218\pi\)
0.442143 + 0.896945i \(0.354218\pi\)
\(734\) 0 0
\(735\) 2.62742 4.55082i 0.0969137 0.167860i
\(736\) 0 0
\(737\) 12.4706 21.5996i 0.459359 0.795633i
\(738\) 0 0
\(739\) 6.10660 + 10.5769i 0.224635 + 0.389079i 0.956210 0.292682i \(-0.0945477\pi\)
−0.731575 + 0.681761i \(0.761214\pi\)
\(740\) 0 0
\(741\) 3.00000 10.3923i 0.110208 0.381771i
\(742\) 0 0
\(743\) −0.621320 1.07616i −0.0227940 0.0394804i 0.854403 0.519610i \(-0.173923\pi\)
−0.877197 + 0.480130i \(0.840590\pi\)
\(744\) 0 0
\(745\) −20.7279 + 35.9018i −0.759412 + 1.31534i
\(746\) 0 0
\(747\) 5.65685 9.79796i 0.206973 0.358489i
\(748\) 0 0
\(749\) −17.0589 −0.623318
\(750\) 0 0
\(751\) −18.4497 31.9559i −0.673241 1.16609i −0.976980 0.213332i \(-0.931568\pi\)
0.303739 0.952755i \(-0.401765\pi\)
\(752\) 0 0
\(753\) −3.20101 −0.116651
\(754\) 0 0
\(755\) −48.0000 −1.74690
\(756\) 0 0
\(757\) −3.25736 5.64191i −0.118391 0.205059i 0.800739 0.599013i \(-0.204440\pi\)
−0.919130 + 0.393954i \(0.871107\pi\)
\(758\) 0 0
\(759\) −15.7279 −0.570887
\(760\) 0 0
\(761\) −6.25736 + 10.8381i −0.226829 + 0.392880i −0.956867 0.290528i \(-0.906169\pi\)
0.730038 + 0.683407i \(0.239503\pi\)
\(762\) 0 0
\(763\) −6.72792 + 11.6531i −0.243567 + 0.421871i
\(764\) 0 0
\(765\) −0.686292 1.18869i −0.0248129 0.0429772i
\(766\) 0 0
\(767\) 18.1066 + 18.8169i 0.653791 + 0.679440i
\(768\) 0 0
\(769\) −19.7132 34.1443i −0.710876 1.23127i −0.964529 0.263978i \(-0.914965\pi\)
0.253652 0.967295i \(-0.418368\pi\)
\(770\) 0 0
\(771\) 4.72183 8.17844i 0.170052 0.294539i
\(772\) 0 0
\(773\) 2.74264 4.75039i 0.0986459 0.170860i −0.812478 0.582991i \(-0.801882\pi\)
0.911124 + 0.412131i \(0.135216\pi\)
\(774\) 0 0
\(775\) 16.9706 0.609601
\(776\) 0 0
\(777\) −3.11522 5.39573i −0.111758 0.193571i
\(778\) 0 0
\(779\) −1.24264 −0.0445222
\(780\) 0 0
\(781\) 6.51472 0.233115
\(782\) 0 0
\(783\) 3.20711 + 5.55487i 0.114613 + 0.198515i
\(784\) 0 0
\(785\) −46.6274 −1.66420
\(786\) 0 0
\(787\) 22.0061 38.1157i 0.784433 1.35868i −0.144905 0.989446i \(-0.546288\pi\)
0.929337 0.369232i \(-0.120379\pi\)
\(788\) 0 0
\(789\) 0.156854 0.271680i 0.00558416 0.00967205i
\(790\) 0 0
\(791\) −4.62132 8.00436i −0.164315 0.284602i
\(792\) 0 0
\(793\) −17.5000 18.1865i −0.621443 0.645823i
\(794\) 0 0
\(795\) 1.65685 + 2.86976i 0.0587626 + 0.101780i
\(796\) 0 0
\(797\) −16.5000 + 28.5788i −0.584460 + 1.01231i 0.410483 + 0.911868i \(0.365360\pi\)
−0.994943 + 0.100446i \(0.967973\pi\)
\(798\) 0 0
\(799\) −0.514719 + 0.891519i −0.0182094 + 0.0315397i
\(800\) 0 0
\(801\) 41.4558 1.46477
\(802\) 0 0
\(803\) −11.7574 20.3643i −0.414908 0.718642i
\(804\) 0 0
\(805\) −32.4853 −1.14496
\(806\) 0 0
\(807\) 4.75736 0.167467
\(808\) 0 0
\(809\) 0.0857864 + 0.148586i 0.00301609 + 0.00522402i 0.867530 0.497386i \(-0.165707\pi\)
−0.864513 + 0.502610i \(0.832373\pi\)
\(810\) 0 0
\(811\) −23.6569 −0.830705 −0.415352 0.909661i \(-0.636342\pi\)
−0.415352 + 0.909661i \(0.636342\pi\)
\(812\) 0 0
\(813\) 3.47056 6.01119i 0.121718 0.210822i
\(814\) 0 0
\(815\) −35.6985 + 61.8316i −1.25046 + 2.16587i
\(816\) 0 0
\(817\) 36.4706 + 63.1689i 1.27594 + 2.21000i
\(818\) 0 0
\(819\) −15.6985 + 3.88437i −0.548549 + 0.135731i
\(820\) 0 0
\(821\) −6.98528 12.0989i −0.243788 0.422253i 0.718002 0.696041i \(-0.245057\pi\)
−0.961790 + 0.273788i \(0.911723\pi\)
\(822\) 0 0
\(823\) 21.1066 36.5577i 0.735730 1.27432i −0.218672 0.975798i \(-0.570173\pi\)
0.954402 0.298523i \(-0.0964940\pi\)
\(824\) 0 0
\(825\) 3.25736 5.64191i 0.113407 0.196426i
\(826\) 0 0
\(827\) −45.9411 −1.59753 −0.798765 0.601644i \(-0.794513\pi\)
−0.798765 + 0.601644i \(0.794513\pi\)
\(828\) 0 0
\(829\) 1.01472 + 1.75754i 0.0352426 + 0.0610420i 0.883109 0.469168i \(-0.155446\pi\)
−0.847866 + 0.530210i \(0.822113\pi\)
\(830\) 0 0
\(831\) 1.44365 0.0500797
\(832\) 0 0
\(833\) 0.769553 0.0266634
\(834\) 0 0
\(835\) 13.7574 + 23.8284i 0.476093 + 0.824617i
\(836\) 0 0
\(837\) −13.6569 −0.472050
\(838\) 0 0
\(839\) −24.3492 + 42.1741i −0.840629 + 1.45601i 0.0487343 + 0.998812i \(0.484481\pi\)
−0.889364 + 0.457201i \(0.848852\pi\)
\(840\) 0 0
\(841\) 10.9706 19.0016i 0.378295 0.655227i
\(842\) 0 0
\(843\) −5.41421 9.37769i −0.186475 0.322985i
\(844\) 0 0
\(845\) −31.1127 19.5959i −1.07031 0.674120i
\(846\) 0 0
\(847\) 13.0711 + 22.6398i 0.449127 + 0.777911i
\(848\) 0 0
\(849\) 1.57107 2.72117i 0.0539189 0.0933903i
\(850\) 0 0
\(851\) 34.3492 59.4946i 1.17748 2.03945i
\(852\) 0 0
\(853\) −9.45584 −0.323762 −0.161881 0.986810i \(-0.551756\pi\)
−0.161881 + 0.986810i \(0.551756\pi\)
\(854\) 0 0
\(855\) 28.9706 + 50.1785i 0.990772 + 1.71607i
\(856\) 0 0
\(857\) 38.8284 1.32635 0.663177 0.748463i \(-0.269208\pi\)
0.663177 + 0.748463i \(0.269208\pi\)
\(858\) 0 0
\(859\) 36.0000 1.22830 0.614152 0.789188i \(-0.289498\pi\)
0.614152 + 0.789188i \(0.289498\pi\)
\(860\) 0 0
\(861\) −0.0563492 0.0975997i −0.00192038 0.00332619i
\(862\) 0 0
\(863\) 32.0000 1.08929 0.544646 0.838666i \(-0.316664\pi\)
0.544646 + 0.838666i \(0.316664\pi\)
\(864\) 0 0
\(865\) −12.7279 + 22.0454i −0.432762 + 0.749566i
\(866\) 0 0
\(867\) 3.51472 6.08767i 0.119366 0.206748i
\(868\) 0 0
\(869\) 15.7279 + 27.2416i 0.533533 + 0.924107i
\(870\) 0 0
\(871\) −16.6508 + 4.11999i −0.564189 + 0.139601i
\(872\) 0 0
\(873\) −12.7279 22.0454i −0.430775 0.746124i
\(874\) 0 0
\(875\) −4.48528 + 7.76874i −0.151630 + 0.262631i
\(876\) 0 0
\(877\) −4.98528 + 8.63476i −0.168341 + 0.291575i −0.937837 0.347077i \(-0.887174\pi\)
0.769496 + 0.638652i \(0.220508\pi\)
\(878\) 0 0
\(879\) 8.41421 0.283804
\(880\) 0 0
\(881\) −11.9142 20.6360i −0.401400 0.695245i 0.592495 0.805574i \(-0.298143\pi\)
−0.993895 + 0.110329i \(0.964810\pi\)
\(882\) 0 0
\(883\) 51.5980 1.73641 0.868205 0.496205i \(-0.165274\pi\)
0.868205 + 0.496205i \(0.165274\pi\)
\(884\) 0 0
\(885\) 8.48528 0.285230
\(886\) 0 0
\(887\) −9.10660 15.7731i −0.305770 0.529609i 0.671663 0.740857i \(-0.265580\pi\)
−0.977432 + 0.211248i \(0.932247\pi\)
\(888\) 0 0
\(889\) 7.00000 0.234772
\(890\) 0 0
\(891\) 19.6213 33.9851i 0.657339 1.13854i
\(892\) 0 0
\(893\) 21.7279 37.6339i 0.727097 1.25937i
\(894\) 0 0
\(895\) 30.0416 + 52.0336i 1.00418 + 1.73929i
\(896\) 0 0
\(897\) 7.50000 + 7.79423i 0.250418 + 0.260242i
\(898\) 0 0
\(899\) −7.51472 13.0159i −0.250630 0.434104i
\(900\) 0 0
\(901\) −0.242641 + 0.420266i −0.00808353 + 0.0140011i
\(902\) 0 0
\(903\) −3.30761 + 5.72895i −0.110070 + 0.190648i
\(904\) 0 0
\(905\) −46.6274 −1.54995
\(906\) 0 0
\(907\) 3.10660 + 5.38079i 0.103153 + 0.178666i 0.912982 0.408000i \(-0.133774\pi\)
−0.809829 + 0.586666i \(0.800440\pi\)
\(908\) 0 0
\(909\) 17.4558 0.578974
\(910\) 0 0
\(911\) −24.0000 −0.795155 −0.397578 0.917568i \(-0.630149\pi\)
−0.397578 + 0.917568i \(0.630149\pi\)
\(912\) 0 0
\(913\) 10.4853 + 18.1610i 0.347012 + 0.601043i
\(914\) 0 0
\(915\) −8.20101 −0.271117
\(916\) 0 0
\(917\) −3.17157 + 5.49333i −0.104735 + 0.181406i
\(918\) 0 0
\(919\) −16.1777 + 28.0205i −0.533652 + 0.924313i 0.465575 + 0.885008i \(0.345847\pi\)
−0.999227 + 0.0393042i \(0.987486\pi\)
\(920\) 0 0
\(921\) −2.48528 4.30463i −0.0818928 0.141843i
\(922\) 0 0
\(923\) −3.10660 3.22848i −0.102255 0.106267i
\(924\) 0 0
\(925\) 14.2279 + 24.6435i 0.467811 + 0.810273i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −26.0563 + 45.1309i −0.854881 + 1.48070i 0.0218742 + 0.999761i \(0.493037\pi\)
−0.876755 + 0.480937i \(0.840297\pi\)
\(930\) 0 0
\(931\) −32.4853 −1.06466
\(932\) 0 0
\(933\) 4.97056 + 8.60927i 0.162729 + 0.281855i
\(934\) 0 0
\(935\) 2.54416 0.0832028
\(936\) 0 0
\(937\) 5.45584 0.178235 0.0891173 0.996021i \(-0.471595\pi\)
0.0891173 + 0.996021i \(0.471595\pi\)
\(938\) 0 0
\(939\) −0.727922 1.26080i −0.0237548 0.0411446i
\(940\) 0 0
\(941\) 18.0000 0.586783 0.293392 0.955992i \(-0.405216\pi\)
0.293392 + 0.955992i \(0.405216\pi\)
\(942\) 0 0
\(943\) 0.621320 1.07616i 0.0202330 0.0350445i
\(944\) 0 0
\(945\) −5.41421 + 9.37769i −0.176124 + 0.305056i
\(946\) 0 0
\(947\) 2.62132 + 4.54026i 0.0851815 + 0.147539i 0.905469 0.424413i \(-0.139520\pi\)
−0.820287 + 0.571952i \(0.806186\pi\)
\(948\) 0 0
\(949\) −4.48528 + 15.5375i −0.145598 + 0.504368i
\(950\) 0 0
\(951\) 1.10051 + 1.90613i 0.0356863 + 0.0618105i
\(952\) 0 0
\(953\) 7.32843 12.6932i 0.237391 0.411173i −0.722574 0.691294i \(-0.757041\pi\)
0.959965 + 0.280120i \(0.0903744\pi\)
\(954\) 0 0
\(955\) 21.5563 37.3367i 0.697547 1.20819i
\(956\) 0 0
\(957\) −5.76955 −0.186503
\(958\) 0 0
\(959\) 16.3787 + 28.3687i 0.528895 + 0.916073i
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) −30.4264 −0.980477
\(964\) 0 0
\(965\) 3.55635 + 6.15978i 0.114483 + 0.198290i
\(966\) 0 0
\(967\) −40.9706 −1.31752 −0.658762 0.752351i \(-0.728920\pi\)
−0.658762 + 0.752351i \(0.728920\pi\)
\(968\) 0 0
\(969\) 0.257359 0.445759i 0.00826757 0.0143199i
\(970\) 0 0
\(971\) −20.6213 + 35.7172i −0.661770 + 1.14622i 0.318381 + 0.947963i \(0.396861\pi\)
−0.980150 + 0.198256i \(0.936472\pi\)
\(972\) 0 0
\(973\) 5.74264 + 9.94655i 0.184101 + 0.318872i
\(974\) 0 0
\(975\) −4.34924 + 1.07616i −0.139287 + 0.0344647i
\(976\) 0 0
\(977\) 6.64214 + 11.5045i 0.212501 + 0.368062i 0.952497 0.304549i \(-0.0985059\pi\)
−0.739996 + 0.672611i \(0.765173\pi\)
\(978\) 0 0
\(979\) −38.4203 + 66.5459i −1.22792 + 2.12682i
\(980\) 0 0
\(981\) −12.0000 + 20.7846i −0.383131 + 0.663602i
\(982\) 0 0
\(983\) 32.9706 1.05160 0.525799 0.850609i \(-0.323766\pi\)
0.525799 + 0.850609i \(0.323766\pi\)
\(984\) 0 0
\(985\) 4.24264 + 7.34847i 0.135182 + 0.234142i
\(986\) 0 0
\(987\) 3.94113 0.125447
\(988\) 0 0
\(989\) −72.9411 −2.31939
\(990\) 0 0
\(991\) −26.0772 45.1670i −0.828368 1.43478i −0.899318 0.437296i \(-0.855936\pi\)
0.0709491 0.997480i \(-0.477397\pi\)
\(992\) 0 0
\(993\) 0.514719 0.0163341
\(994\) 0 0
\(995\) 25.7574 44.6131i 0.816563 1.41433i
\(996\) 0 0
\(997\) 16.4706 28.5279i 0.521628 0.903486i −0.478056 0.878330i \(-0.658658\pi\)
0.999684 0.0251565i \(-0.00800842\pi\)
\(998\) 0 0
\(999\) −11.4497 19.8315i −0.362254 0.627442i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 832.2.i.p.705.1 4
4.3 odd 2 832.2.i.k.705.2 4
8.3 odd 2 416.2.i.f.289.1 yes 4
8.5 even 2 416.2.i.c.289.2 4
13.9 even 3 inner 832.2.i.p.321.1 4
52.35 odd 6 832.2.i.k.321.2 4
104.3 odd 6 5408.2.a.o.1.2 2
104.29 even 6 5408.2.a.be.1.1 2
104.35 odd 6 416.2.i.f.321.1 yes 4
104.61 even 6 416.2.i.c.321.2 yes 4
104.75 odd 6 5408.2.a.n.1.2 2
104.101 even 6 5408.2.a.bf.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.2.i.c.289.2 4 8.5 even 2
416.2.i.c.321.2 yes 4 104.61 even 6
416.2.i.f.289.1 yes 4 8.3 odd 2
416.2.i.f.321.1 yes 4 104.35 odd 6
832.2.i.k.321.2 4 52.35 odd 6
832.2.i.k.705.2 4 4.3 odd 2
832.2.i.p.321.1 4 13.9 even 3 inner
832.2.i.p.705.1 4 1.1 even 1 trivial
5408.2.a.n.1.2 2 104.75 odd 6
5408.2.a.o.1.2 2 104.3 odd 6
5408.2.a.be.1.1 2 104.29 even 6
5408.2.a.bf.1.1 2 104.101 even 6