Properties

Label 416.2.w.d.257.4
Level $416$
Weight $2$
Character 416.257
Analytic conductor $3.322$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(225,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.225");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.w (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.18092737797525504.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 12x^{10} + 108x^{8} - 430x^{6} + 1284x^{4} - 36x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 257.4
Root \(-2.04509 - 1.18073i\) of defining polynomial
Character \(\chi\) \(=\) 416.257
Dual form 416.2.w.d.225.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.515266 + 0.892467i) q^{3} -0.701519i q^{5} +(2.54439 + 1.46900i) q^{7} +(0.969002 - 1.67836i) q^{9} +(2.54439 - 1.46900i) q^{11} +(-3.33047 + 1.38129i) q^{13} +(0.626082 - 0.361469i) q^{15} +(-0.500000 + 0.866025i) q^{17} +(1.54580 + 0.892467i) q^{19} +3.02771i q^{21} +(2.94884 + 5.10753i) q^{23} +4.50787 q^{25} +5.08877 q^{27} +(-2.86147 - 4.95621i) q^{29} +0.722938i q^{31} +(2.62207 + 1.51385i) q^{33} +(1.03053 - 1.78493i) q^{35} +(-6.79947 + 3.92568i) q^{37} +(-2.94884 - 2.26060i) q^{39} +(3.28493 - 1.89656i) q^{41} +(-3.57492 + 6.19194i) q^{43} +(-1.17740 - 0.679773i) q^{45} -5.15307i q^{47} +(0.815932 + 1.41324i) q^{49} -1.03053 q^{51} -3.21507 q^{53} +(-1.03053 - 1.78493i) q^{55} +1.83943i q^{57} +(-5.63598 - 3.25394i) q^{59} +(3.07653 - 5.32871i) q^{61} +(4.93103 - 2.84693i) q^{63} +(0.969002 + 2.33639i) q^{65} +(-10.4712 + 6.04554i) q^{67} +(-3.03887 + 5.26348i) q^{69} +(1.91830 + 1.10753i) q^{71} -10.9430i q^{73} +(2.32275 + 4.02313i) q^{75} +8.63186 q^{77} -14.2997 q^{79} +(-0.284934 - 0.493520i) q^{81} -13.8760i q^{83} +(0.607533 + 0.350759i) q^{85} +(2.94884 - 5.10753i) q^{87} +(6.83714 - 3.94742i) q^{89} +(-10.5031 - 1.37793i) q^{91} +(-0.645198 + 0.372505i) q^{93} +(0.626082 - 1.08441i) q^{95} +(-1.59299 - 0.919716i) q^{97} -5.69386i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{9} + 12 q^{13} - 6 q^{17} - 12 q^{25} - 6 q^{29} - 30 q^{33} - 6 q^{37} + 30 q^{41} + 24 q^{49} - 48 q^{53} + 18 q^{61} - 12 q^{65} + 6 q^{69} + 132 q^{77} + 6 q^{81} + 12 q^{85} + 30 q^{89}+ \cdots - 90 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.515266 + 0.892467i 0.297489 + 0.515266i 0.975561 0.219730i \(-0.0705175\pi\)
−0.678072 + 0.734996i \(0.737184\pi\)
\(4\) 0 0
\(5\) 0.701519i 0.313729i −0.987620 0.156864i \(-0.949861\pi\)
0.987620 0.156864i \(-0.0501385\pi\)
\(6\) 0 0
\(7\) 2.54439 + 1.46900i 0.961687 + 0.555230i 0.896692 0.442655i \(-0.145963\pi\)
0.0649954 + 0.997886i \(0.479297\pi\)
\(8\) 0 0
\(9\) 0.969002 1.67836i 0.323001 0.559453i
\(10\) 0 0
\(11\) 2.54439 1.46900i 0.767161 0.442921i −0.0646998 0.997905i \(-0.520609\pi\)
0.831861 + 0.554984i \(0.187276\pi\)
\(12\) 0 0
\(13\) −3.33047 + 1.38129i −0.923706 + 0.383101i
\(14\) 0 0
\(15\) 0.626082 0.361469i 0.161654 0.0933308i
\(16\) 0 0
\(17\) −0.500000 + 0.866025i −0.121268 + 0.210042i −0.920268 0.391289i \(-0.872029\pi\)
0.799000 + 0.601331i \(0.205363\pi\)
\(18\) 0 0
\(19\) 1.54580 + 0.892467i 0.354630 + 0.204746i 0.666723 0.745306i \(-0.267697\pi\)
−0.312092 + 0.950052i \(0.601030\pi\)
\(20\) 0 0
\(21\) 3.02771i 0.660700i
\(22\) 0 0
\(23\) 2.94884 + 5.10753i 0.614875 + 1.06499i 0.990406 + 0.138185i \(0.0441268\pi\)
−0.375532 + 0.926810i \(0.622540\pi\)
\(24\) 0 0
\(25\) 4.50787 0.901574
\(26\) 0 0
\(27\) 5.08877 0.979334
\(28\) 0 0
\(29\) −2.86147 4.95621i −0.531361 0.920345i −0.999330 0.0365999i \(-0.988347\pi\)
0.467969 0.883745i \(-0.344986\pi\)
\(30\) 0 0
\(31\) 0.722938i 0.129843i 0.997890 + 0.0649217i \(0.0206798\pi\)
−0.997890 + 0.0649217i \(0.979320\pi\)
\(32\) 0 0
\(33\) 2.62207 + 1.51385i 0.456444 + 0.263528i
\(34\) 0 0
\(35\) 1.03053 1.78493i 0.174192 0.301709i
\(36\) 0 0
\(37\) −6.79947 + 3.92568i −1.11783 + 0.645377i −0.940845 0.338837i \(-0.889967\pi\)
−0.176981 + 0.984214i \(0.556633\pi\)
\(38\) 0 0
\(39\) −2.94884 2.26060i −0.472192 0.361986i
\(40\) 0 0
\(41\) 3.28493 1.89656i 0.513021 0.296193i −0.221054 0.975262i \(-0.570950\pi\)
0.734074 + 0.679069i \(0.237616\pi\)
\(42\) 0 0
\(43\) −3.57492 + 6.19194i −0.545170 + 0.944262i 0.453426 + 0.891294i \(0.350202\pi\)
−0.998596 + 0.0529681i \(0.983132\pi\)
\(44\) 0 0
\(45\) −1.17740 0.679773i −0.175517 0.101335i
\(46\) 0 0
\(47\) 5.15307i 0.751652i −0.926690 0.375826i \(-0.877359\pi\)
0.926690 0.375826i \(-0.122641\pi\)
\(48\) 0 0
\(49\) 0.815932 + 1.41324i 0.116562 + 0.201891i
\(50\) 0 0
\(51\) −1.03053 −0.144303
\(52\) 0 0
\(53\) −3.21507 −0.441623 −0.220812 0.975316i \(-0.570871\pi\)
−0.220812 + 0.975316i \(0.570871\pi\)
\(54\) 0 0
\(55\) −1.03053 1.78493i −0.138957 0.240680i
\(56\) 0 0
\(57\) 1.83943i 0.243639i
\(58\) 0 0
\(59\) −5.63598 3.25394i −0.733742 0.423626i 0.0860473 0.996291i \(-0.472576\pi\)
−0.819790 + 0.572665i \(0.805910\pi\)
\(60\) 0 0
\(61\) 3.07653 5.32871i 0.393910 0.682272i −0.599051 0.800711i \(-0.704456\pi\)
0.992961 + 0.118439i \(0.0377889\pi\)
\(62\) 0 0
\(63\) 4.93103 2.84693i 0.621251 0.358680i
\(64\) 0 0
\(65\) 0.969002 + 2.33639i 0.120190 + 0.289793i
\(66\) 0 0
\(67\) −10.4712 + 6.04554i −1.27926 + 0.738580i −0.976712 0.214555i \(-0.931170\pi\)
−0.302546 + 0.953135i \(0.597837\pi\)
\(68\) 0 0
\(69\) −3.03887 + 5.26348i −0.365837 + 0.633648i
\(70\) 0 0
\(71\) 1.91830 + 1.10753i 0.227661 + 0.131440i 0.609492 0.792792i \(-0.291373\pi\)
−0.381832 + 0.924232i \(0.624707\pi\)
\(72\) 0 0
\(73\) 10.9430i 1.28078i −0.768052 0.640388i \(-0.778774\pi\)
0.768052 0.640388i \(-0.221226\pi\)
\(74\) 0 0
\(75\) 2.32275 + 4.02313i 0.268208 + 0.464551i
\(76\) 0 0
\(77\) 8.63186 0.983692
\(78\) 0 0
\(79\) −14.2997 −1.60884 −0.804419 0.594062i \(-0.797523\pi\)
−0.804419 + 0.594062i \(0.797523\pi\)
\(80\) 0 0
\(81\) −0.284934 0.493520i −0.0316593 0.0548356i
\(82\) 0 0
\(83\) 13.8760i 1.52309i −0.648112 0.761545i \(-0.724441\pi\)
0.648112 0.761545i \(-0.275559\pi\)
\(84\) 0 0
\(85\) 0.607533 + 0.350759i 0.0658962 + 0.0380452i
\(86\) 0 0
\(87\) 2.94884 5.10753i 0.316148 0.547585i
\(88\) 0 0
\(89\) 6.83714 3.94742i 0.724735 0.418426i −0.0917579 0.995781i \(-0.529249\pi\)
0.816493 + 0.577355i \(0.195915\pi\)
\(90\) 0 0
\(91\) −10.5031 1.37793i −1.10103 0.144446i
\(92\) 0 0
\(93\) −0.645198 + 0.372505i −0.0669039 + 0.0386270i
\(94\) 0 0
\(95\) 0.626082 1.08441i 0.0642347 0.111258i
\(96\) 0 0
\(97\) −1.59299 0.919716i −0.161744 0.0933830i 0.416943 0.908933i \(-0.363101\pi\)
−0.578687 + 0.815550i \(0.696435\pi\)
\(98\) 0 0
\(99\) 5.69386i 0.572255i
\(100\) 0 0
\(101\) 0.861469 + 1.49211i 0.0857193 + 0.148470i 0.905698 0.423925i \(-0.139348\pi\)
−0.819978 + 0.572395i \(0.806014\pi\)
\(102\) 0 0
\(103\) −17.1696 −1.69177 −0.845887 0.533362i \(-0.820928\pi\)
−0.845887 + 0.533362i \(0.820928\pi\)
\(104\) 0 0
\(105\) 2.12399 0.207280
\(106\) 0 0
\(107\) 2.57633 + 4.46234i 0.249063 + 0.431390i 0.963266 0.268549i \(-0.0865440\pi\)
−0.714203 + 0.699939i \(0.753211\pi\)
\(108\) 0 0
\(109\) 4.86714i 0.466187i −0.972454 0.233094i \(-0.925115\pi\)
0.972454 0.233094i \(-0.0748849\pi\)
\(110\) 0 0
\(111\) −7.00707 4.04554i −0.665082 0.383985i
\(112\) 0 0
\(113\) −10.3760 + 17.9718i −0.976093 + 1.69064i −0.299811 + 0.953998i \(0.596924\pi\)
−0.676281 + 0.736644i \(0.736410\pi\)
\(114\) 0 0
\(115\) 3.58303 2.06866i 0.334119 0.192904i
\(116\) 0 0
\(117\) −0.908927 + 6.92820i −0.0840303 + 0.640513i
\(118\) 0 0
\(119\) −2.54439 + 1.46900i −0.233243 + 0.134663i
\(120\) 0 0
\(121\) −1.18407 + 2.05087i −0.107643 + 0.186442i
\(122\) 0 0
\(123\) 3.38523 + 1.95446i 0.305236 + 0.176228i
\(124\) 0 0
\(125\) 6.66995i 0.596578i
\(126\) 0 0
\(127\) 10.0987 + 17.4914i 0.896112 + 1.55211i 0.832422 + 0.554142i \(0.186954\pi\)
0.0636900 + 0.997970i \(0.479713\pi\)
\(128\) 0 0
\(129\) −7.36814 −0.648728
\(130\) 0 0
\(131\) −1.99717 −0.174494 −0.0872470 0.996187i \(-0.527807\pi\)
−0.0872470 + 0.996187i \(0.527807\pi\)
\(132\) 0 0
\(133\) 2.62207 + 4.54156i 0.227362 + 0.393803i
\(134\) 0 0
\(135\) 3.56987i 0.307245i
\(136\) 0 0
\(137\) −19.8839 11.4800i −1.69879 0.980799i −0.946907 0.321508i \(-0.895810\pi\)
−0.751888 0.659291i \(-0.770856\pi\)
\(138\) 0 0
\(139\) 4.38382 7.59299i 0.371831 0.644029i −0.618017 0.786165i \(-0.712064\pi\)
0.989847 + 0.142136i \(0.0453969\pi\)
\(140\) 0 0
\(141\) 4.59894 2.65520i 0.387301 0.223608i
\(142\) 0 0
\(143\) −6.44488 + 8.40701i −0.538948 + 0.703029i
\(144\) 0 0
\(145\) −3.47687 + 2.00737i −0.288739 + 0.166703i
\(146\) 0 0
\(147\) −0.840844 + 1.45639i −0.0693517 + 0.120121i
\(148\) 0 0
\(149\) 0.985462 + 0.568957i 0.0807322 + 0.0466107i 0.539823 0.841779i \(-0.318491\pi\)
−0.459090 + 0.888390i \(0.651825\pi\)
\(150\) 0 0
\(151\) 0.722938i 0.0588318i 0.999567 + 0.0294159i \(0.00936473\pi\)
−0.999567 + 0.0294159i \(0.990635\pi\)
\(152\) 0 0
\(153\) 0.969002 + 1.67836i 0.0783391 + 0.135687i
\(154\) 0 0
\(155\) 0.507154 0.0407356
\(156\) 0 0
\(157\) 4.66094 0.371984 0.185992 0.982551i \(-0.440450\pi\)
0.185992 + 0.982551i \(0.440450\pi\)
\(158\) 0 0
\(159\) −1.65661 2.86934i −0.131378 0.227553i
\(160\) 0 0
\(161\) 17.3274i 1.36559i
\(162\) 0 0
\(163\) −9.47259 5.46900i −0.741950 0.428365i 0.0808276 0.996728i \(-0.474244\pi\)
−0.822778 + 0.568363i \(0.807577\pi\)
\(164\) 0 0
\(165\) 1.06200 1.83943i 0.0826763 0.143200i
\(166\) 0 0
\(167\) 20.7446 11.9769i 1.60526 0.926798i 0.614851 0.788643i \(-0.289216\pi\)
0.990411 0.138155i \(-0.0441172\pi\)
\(168\) 0 0
\(169\) 9.18407 9.20070i 0.706467 0.707746i
\(170\) 0 0
\(171\) 2.99576 1.72960i 0.229092 0.132266i
\(172\) 0 0
\(173\) 6.12994 10.6174i 0.466051 0.807224i −0.533197 0.845991i \(-0.679010\pi\)
0.999248 + 0.0387670i \(0.0123430\pi\)
\(174\) 0 0
\(175\) 11.4698 + 6.62207i 0.867033 + 0.500582i
\(176\) 0 0
\(177\) 6.70657i 0.504097i
\(178\) 0 0
\(179\) 10.5031 + 18.1919i 0.785040 + 1.35973i 0.928975 + 0.370142i \(0.120691\pi\)
−0.143935 + 0.989587i \(0.545976\pi\)
\(180\) 0 0
\(181\) 8.66094 0.643763 0.321881 0.946780i \(-0.395685\pi\)
0.321881 + 0.946780i \(0.395685\pi\)
\(182\) 0 0
\(183\) 6.34094 0.468735
\(184\) 0 0
\(185\) 2.75394 + 4.76996i 0.202473 + 0.350694i
\(186\) 0 0
\(187\) 2.93800i 0.214848i
\(188\) 0 0
\(189\) 12.9478 + 7.47541i 0.941814 + 0.543756i
\(190\) 0 0
\(191\) 8.03761 13.9215i 0.581581 1.00733i −0.413711 0.910408i \(-0.635768\pi\)
0.995292 0.0969195i \(-0.0308989\pi\)
\(192\) 0 0
\(193\) −7.31401 + 4.22275i −0.526474 + 0.303960i −0.739579 0.673069i \(-0.764976\pi\)
0.213105 + 0.977029i \(0.431642\pi\)
\(194\) 0 0
\(195\) −1.58585 + 2.06866i −0.113565 + 0.148140i
\(196\) 0 0
\(197\) 6.83714 3.94742i 0.487126 0.281242i −0.236255 0.971691i \(-0.575920\pi\)
0.723381 + 0.690449i \(0.242587\pi\)
\(198\) 0 0
\(199\) −8.03761 + 13.9215i −0.569771 + 0.986872i 0.426817 + 0.904338i \(0.359635\pi\)
−0.996588 + 0.0825342i \(0.973699\pi\)
\(200\) 0 0
\(201\) −10.7909 6.23012i −0.761130 0.439439i
\(202\) 0 0
\(203\) 16.8140i 1.18011i
\(204\) 0 0
\(205\) −1.33047 2.30444i −0.0929241 0.160949i
\(206\) 0 0
\(207\) 11.4297 0.794420
\(208\) 0 0
\(209\) 5.24414 0.362745
\(210\) 0 0
\(211\) 11.5017 + 19.9215i 0.791810 + 1.37146i 0.924845 + 0.380344i \(0.124194\pi\)
−0.133035 + 0.991111i \(0.542472\pi\)
\(212\) 0 0
\(213\) 2.28270i 0.156408i
\(214\) 0 0
\(215\) 4.34376 + 2.50787i 0.296242 + 0.171035i
\(216\) 0 0
\(217\) −1.06200 + 1.83943i −0.0720930 + 0.124869i
\(218\) 0 0
\(219\) 9.76622 5.63853i 0.659940 0.381017i
\(220\) 0 0
\(221\) 0.469002 3.57492i 0.0315485 0.240475i
\(222\) 0 0
\(223\) −13.1903 + 7.61540i −0.883286 + 0.509965i −0.871740 0.489968i \(-0.837008\pi\)
−0.0115453 + 0.999933i \(0.503675\pi\)
\(224\) 0 0
\(225\) 4.36814 7.56583i 0.291209 0.504389i
\(226\) 0 0
\(227\) 25.5797 + 14.7685i 1.69779 + 0.980218i 0.947854 + 0.318705i \(0.103248\pi\)
0.749933 + 0.661513i \(0.230085\pi\)
\(228\) 0 0
\(229\) 13.1114i 0.866425i 0.901292 + 0.433213i \(0.142620\pi\)
−0.901292 + 0.433213i \(0.857380\pi\)
\(230\) 0 0
\(231\) 4.44771 + 7.70365i 0.292638 + 0.506863i
\(232\) 0 0
\(233\) −25.3219 −1.65889 −0.829446 0.558587i \(-0.811344\pi\)
−0.829446 + 0.558587i \(0.811344\pi\)
\(234\) 0 0
\(235\) −3.61497 −0.235815
\(236\) 0 0
\(237\) −7.36814 12.7620i −0.478612 0.828980i
\(238\) 0 0
\(239\) 6.73627i 0.435733i −0.975979 0.217867i \(-0.930090\pi\)
0.975979 0.217867i \(-0.0699098\pi\)
\(240\) 0 0
\(241\) −18.0989 10.4494i −1.16586 0.673107i −0.213155 0.977018i \(-0.568374\pi\)
−0.952700 + 0.303911i \(0.901707\pi\)
\(242\) 0 0
\(243\) 7.92679 13.7296i 0.508504 0.880755i
\(244\) 0 0
\(245\) 0.991412 0.572392i 0.0633390 0.0365688i
\(246\) 0 0
\(247\) −6.38099 0.837137i −0.406013 0.0532658i
\(248\) 0 0
\(249\) 12.3839 7.14984i 0.784796 0.453102i
\(250\) 0 0
\(251\) −9.44064 + 16.3517i −0.595888 + 1.03211i 0.397533 + 0.917588i \(0.369867\pi\)
−0.993421 + 0.114521i \(0.963467\pi\)
\(252\) 0 0
\(253\) 15.0059 + 8.66369i 0.943416 + 0.544681i
\(254\) 0 0
\(255\) 0.722938i 0.0452721i
\(256\) 0 0
\(257\) 10.5911 + 18.3443i 0.660653 + 1.14428i 0.980444 + 0.196797i \(0.0630538\pi\)
−0.319791 + 0.947488i \(0.603613\pi\)
\(258\) 0 0
\(259\) −23.0673 −1.43333
\(260\) 0 0
\(261\) −11.0911 −0.686520
\(262\) 0 0
\(263\) 0.483321 + 0.837137i 0.0298029 + 0.0516201i 0.880542 0.473968i \(-0.157179\pi\)
−0.850739 + 0.525588i \(0.823845\pi\)
\(264\) 0 0
\(265\) 2.25543i 0.138550i
\(266\) 0 0
\(267\) 7.04589 + 4.06795i 0.431201 + 0.248954i
\(268\) 0 0
\(269\) 7.31593 12.6716i 0.446060 0.772599i −0.552065 0.833801i \(-0.686160\pi\)
0.998125 + 0.0612019i \(0.0194934\pi\)
\(270\) 0 0
\(271\) 19.4924 11.2539i 1.18408 0.683628i 0.227124 0.973866i \(-0.427068\pi\)
0.956954 + 0.290238i \(0.0937345\pi\)
\(272\) 0 0
\(273\) −4.18215 10.0837i −0.253115 0.610293i
\(274\) 0 0
\(275\) 11.4698 6.62207i 0.691653 0.399326i
\(276\) 0 0
\(277\) −8.16761 + 14.1467i −0.490744 + 0.849994i −0.999943 0.0106552i \(-0.996608\pi\)
0.509199 + 0.860649i \(0.329942\pi\)
\(278\) 0 0
\(279\) 1.21335 + 0.700528i 0.0726413 + 0.0419395i
\(280\) 0 0
\(281\) 16.2534i 0.969594i 0.874627 + 0.484797i \(0.161106\pi\)
−0.874627 + 0.484797i \(0.838894\pi\)
\(282\) 0 0
\(283\) 3.57492 + 6.19194i 0.212507 + 0.368073i 0.952498 0.304544i \(-0.0985039\pi\)
−0.739992 + 0.672616i \(0.765171\pi\)
\(284\) 0 0
\(285\) 1.29040 0.0764365
\(286\) 0 0
\(287\) 11.1442 0.657820
\(288\) 0 0
\(289\) 8.00000 + 13.8564i 0.470588 + 0.815083i
\(290\) 0 0
\(291\) 1.89559i 0.111122i
\(292\) 0 0
\(293\) 15.2296 + 8.79282i 0.889723 + 0.513682i 0.873852 0.486192i \(-0.161615\pi\)
0.0158711 + 0.999874i \(0.494948\pi\)
\(294\) 0 0
\(295\) −2.28270 + 3.95375i −0.132904 + 0.230196i
\(296\) 0 0
\(297\) 12.9478 7.47541i 0.751307 0.433768i
\(298\) 0 0
\(299\) −16.8760 12.9373i −0.975964 0.748183i
\(300\) 0 0
\(301\) −18.1919 + 10.5031i −1.04857 + 0.605390i
\(302\) 0 0
\(303\) −0.887771 + 1.53766i −0.0510011 + 0.0883365i
\(304\) 0 0
\(305\) −3.73819 2.15825i −0.214048 0.123581i
\(306\) 0 0
\(307\) 3.27706i 0.187032i 0.995618 + 0.0935159i \(0.0298106\pi\)
−0.995618 + 0.0935159i \(0.970189\pi\)
\(308\) 0 0
\(309\) −8.84693 15.3233i −0.503284 0.871714i
\(310\) 0 0
\(311\) −21.1640 −1.20010 −0.600050 0.799963i \(-0.704853\pi\)
−0.600050 + 0.799963i \(0.704853\pi\)
\(312\) 0 0
\(313\) 10.1821 0.575529 0.287764 0.957701i \(-0.407088\pi\)
0.287764 + 0.957701i \(0.407088\pi\)
\(314\) 0 0
\(315\) −1.99717 3.45921i −0.112528 0.194904i
\(316\) 0 0
\(317\) 28.7706i 1.61592i −0.589238 0.807959i \(-0.700572\pi\)
0.589238 0.807959i \(-0.299428\pi\)
\(318\) 0 0
\(319\) −14.5614 8.40701i −0.815280 0.470702i
\(320\) 0 0
\(321\) −2.65499 + 4.59858i −0.148187 + 0.256668i
\(322\) 0 0
\(323\) −1.54580 + 0.892467i −0.0860105 + 0.0496582i
\(324\) 0 0
\(325\) −15.0133 + 6.22668i −0.832790 + 0.345394i
\(326\) 0 0
\(327\) 4.34376 2.50787i 0.240211 0.138686i
\(328\) 0 0
\(329\) 7.56987 13.1114i 0.417340 0.722855i
\(330\) 0 0
\(331\) −3.79655 2.19194i −0.208677 0.120480i 0.392019 0.919957i \(-0.371777\pi\)
−0.600697 + 0.799477i \(0.705110\pi\)
\(332\) 0 0
\(333\) 15.2160i 0.833829i
\(334\) 0 0
\(335\) 4.24106 + 7.34573i 0.231714 + 0.401340i
\(336\) 0 0
\(337\) 1.22840 0.0669152 0.0334576 0.999440i \(-0.489348\pi\)
0.0334576 + 0.999440i \(0.489348\pi\)
\(338\) 0 0
\(339\) −21.3856 −1.16151
\(340\) 0 0
\(341\) 1.06200 + 1.83943i 0.0575103 + 0.0996108i
\(342\) 0 0
\(343\) 15.7716i 0.851586i
\(344\) 0 0
\(345\) 3.69243 + 2.13182i 0.198794 + 0.114774i
\(346\) 0 0
\(347\) 3.60686 6.24727i 0.193627 0.335371i −0.752823 0.658223i \(-0.771308\pi\)
0.946449 + 0.322852i \(0.104642\pi\)
\(348\) 0 0
\(349\) −23.1748 + 13.3800i −1.24052 + 0.716213i −0.969199 0.246277i \(-0.920793\pi\)
−0.271317 + 0.962490i \(0.587459\pi\)
\(350\) 0 0
\(351\) −16.9480 + 7.02908i −0.904617 + 0.375184i
\(352\) 0 0
\(353\) −12.8548 + 7.42172i −0.684192 + 0.395018i −0.801433 0.598085i \(-0.795928\pi\)
0.117241 + 0.993104i \(0.462595\pi\)
\(354\) 0 0
\(355\) 0.776955 1.34573i 0.0412365 0.0714237i
\(356\) 0 0
\(357\) −2.62207 1.51385i −0.138775 0.0801216i
\(358\) 0 0
\(359\) 19.5699i 1.03286i −0.856330 0.516429i \(-0.827261\pi\)
0.856330 0.516429i \(-0.172739\pi\)
\(360\) 0 0
\(361\) −7.90701 13.6953i −0.416158 0.720807i
\(362\) 0 0
\(363\) −2.44044 −0.128090
\(364\) 0 0
\(365\) −7.67668 −0.401816
\(366\) 0 0
\(367\) 5.00990 + 8.67740i 0.261515 + 0.452957i 0.966645 0.256121i \(-0.0824447\pi\)
−0.705130 + 0.709078i \(0.749111\pi\)
\(368\) 0 0
\(369\) 7.35107i 0.382681i
\(370\) 0 0
\(371\) −8.18037 4.72294i −0.424704 0.245203i
\(372\) 0 0
\(373\) 12.7995 22.1693i 0.662732 1.14788i −0.317163 0.948371i \(-0.602730\pi\)
0.979895 0.199514i \(-0.0639363\pi\)
\(374\) 0 0
\(375\) 5.95271 3.43680i 0.307397 0.177476i
\(376\) 0 0
\(377\) 16.3760 + 12.5540i 0.843407 + 0.646563i
\(378\) 0 0
\(379\) −20.4910 + 11.8305i −1.05255 + 0.607690i −0.923362 0.383930i \(-0.874571\pi\)
−0.129188 + 0.991620i \(0.541237\pi\)
\(380\) 0 0
\(381\) −10.4070 + 18.0255i −0.533167 + 0.923472i
\(382\) 0 0
\(383\) −17.0657 9.85288i −0.872016 0.503459i −0.00399834 0.999992i \(-0.501273\pi\)
−0.868018 + 0.496533i \(0.834606\pi\)
\(384\) 0 0
\(385\) 6.05541i 0.308612i
\(386\) 0 0
\(387\) 6.92820 + 12.0000i 0.352180 + 0.609994i
\(388\) 0 0
\(389\) −4.35480 −0.220797 −0.110399 0.993887i \(-0.535213\pi\)
−0.110399 + 0.993887i \(0.535213\pi\)
\(390\) 0 0
\(391\) −5.89767 −0.298258
\(392\) 0 0
\(393\) −1.02908 1.78241i −0.0519100 0.0899108i
\(394\) 0 0
\(395\) 10.0315i 0.504739i
\(396\) 0 0
\(397\) 27.6511 + 15.9644i 1.38777 + 0.801230i 0.993064 0.117577i \(-0.0375126\pi\)
0.394708 + 0.918807i \(0.370846\pi\)
\(398\) 0 0
\(399\) −2.70213 + 4.68022i −0.135276 + 0.234304i
\(400\) 0 0
\(401\) 15.0989 8.71738i 0.754005 0.435325i −0.0731340 0.997322i \(-0.523300\pi\)
0.827139 + 0.561997i \(0.189967\pi\)
\(402\) 0 0
\(403\) −0.998587 2.40772i −0.0497432 0.119937i
\(404\) 0 0
\(405\) −0.346214 + 0.199887i −0.0172035 + 0.00993244i
\(406\) 0 0
\(407\) −11.5337 + 19.9769i −0.571702 + 0.990217i
\(408\) 0 0
\(409\) 23.4537 + 13.5410i 1.15971 + 0.669561i 0.951235 0.308466i \(-0.0998157\pi\)
0.208478 + 0.978027i \(0.433149\pi\)
\(410\) 0 0
\(411\) 23.6609i 1.16711i
\(412\) 0 0
\(413\) −9.56007 16.5585i −0.470421 0.814792i
\(414\) 0 0
\(415\) −9.73428 −0.477837
\(416\) 0 0
\(417\) 9.03533 0.442462
\(418\) 0 0
\(419\) −19.6821 34.0904i −0.961532 1.66542i −0.718656 0.695366i \(-0.755242\pi\)
−0.242876 0.970057i \(-0.578091\pi\)
\(420\) 0 0
\(421\) 18.4653i 0.899943i −0.893043 0.449972i \(-0.851434\pi\)
0.893043 0.449972i \(-0.148566\pi\)
\(422\) 0 0
\(423\) −8.64871 4.99333i −0.420515 0.242784i
\(424\) 0 0
\(425\) −2.25394 + 3.90393i −0.109332 + 0.189368i
\(426\) 0 0
\(427\) 15.6558 9.03887i 0.757636 0.437422i
\(428\) 0 0
\(429\) −10.8238 1.42000i −0.522578 0.0685582i
\(430\) 0 0
\(431\) −6.88815 + 3.97687i −0.331790 + 0.191559i −0.656636 0.754208i \(-0.728021\pi\)
0.324845 + 0.945767i \(0.394688\pi\)
\(432\) 0 0
\(433\) 12.2849 21.2781i 0.590376 1.02256i −0.403805 0.914845i \(-0.632313\pi\)
0.994182 0.107717i \(-0.0343540\pi\)
\(434\) 0 0
\(435\) −3.58303 2.06866i −0.171793 0.0991848i
\(436\) 0 0
\(437\) 10.5270i 0.503572i
\(438\) 0 0
\(439\) −6.66651 11.5467i −0.318175 0.551096i 0.661932 0.749564i \(-0.269737\pi\)
−0.980107 + 0.198468i \(0.936403\pi\)
\(440\) 0 0
\(441\) 3.16256 0.150598
\(442\) 0 0
\(443\) −6.62646 −0.314833 −0.157416 0.987532i \(-0.550316\pi\)
−0.157416 + 0.987532i \(0.550316\pi\)
\(444\) 0 0
\(445\) −2.76919 4.79638i −0.131272 0.227370i
\(446\) 0 0
\(447\) 1.17266i 0.0554647i
\(448\) 0 0
\(449\) 10.7909 + 6.23012i 0.509253 + 0.294018i 0.732527 0.680738i \(-0.238341\pi\)
−0.223273 + 0.974756i \(0.571674\pi\)
\(450\) 0 0
\(451\) 5.57209 9.65115i 0.262380 0.454455i
\(452\) 0 0
\(453\) −0.645198 + 0.372505i −0.0303140 + 0.0175018i
\(454\) 0 0
\(455\) −0.966643 + 7.36814i −0.0453169 + 0.345424i
\(456\) 0 0
\(457\) 7.50000 4.33013i 0.350835 0.202555i −0.314218 0.949351i \(-0.601742\pi\)
0.665053 + 0.746796i \(0.268409\pi\)
\(458\) 0 0
\(459\) −2.54439 + 4.40701i −0.118762 + 0.205701i
\(460\) 0 0
\(461\) −10.2587 5.92285i −0.477794 0.275855i 0.241702 0.970350i \(-0.422294\pi\)
−0.719497 + 0.694496i \(0.755628\pi\)
\(462\) 0 0
\(463\) 13.8760i 0.644873i 0.946591 + 0.322436i \(0.104502\pi\)
−0.946591 + 0.322436i \(0.895498\pi\)
\(464\) 0 0
\(465\) 0.261319 + 0.452618i 0.0121184 + 0.0209897i
\(466\) 0 0
\(467\) 6.05541 0.280211 0.140106 0.990137i \(-0.455256\pi\)
0.140106 + 0.990137i \(0.455256\pi\)
\(468\) 0 0
\(469\) −35.5236 −1.64033
\(470\) 0 0
\(471\) 2.40162 + 4.15974i 0.110661 + 0.191671i
\(472\) 0 0
\(473\) 21.0062i 0.965868i
\(474\) 0 0
\(475\) 6.96826 + 4.02313i 0.319726 + 0.184594i
\(476\) 0 0
\(477\) −3.11540 + 5.39604i −0.142645 + 0.247068i
\(478\) 0 0
\(479\) −12.8409 + 7.41367i −0.586714 + 0.338739i −0.763797 0.645457i \(-0.776667\pi\)
0.177083 + 0.984196i \(0.443334\pi\)
\(480\) 0 0
\(481\) 17.2229 22.4664i 0.785298 1.02438i
\(482\) 0 0
\(483\) −15.4641 + 8.92821i −0.703642 + 0.406248i
\(484\) 0 0
\(485\) −0.645198 + 1.11752i −0.0292969 + 0.0507438i
\(486\) 0 0
\(487\) 19.9995 + 11.5467i 0.906266 + 0.523233i 0.879228 0.476402i \(-0.158059\pi\)
0.0270380 + 0.999634i \(0.491392\pi\)
\(488\) 0 0
\(489\) 11.2720i 0.509736i
\(490\) 0 0
\(491\) 7.41152 + 12.8371i 0.334477 + 0.579332i 0.983384 0.181536i \(-0.0581069\pi\)
−0.648907 + 0.760868i \(0.724774\pi\)
\(492\) 0 0
\(493\) 5.72294 0.257748
\(494\) 0 0
\(495\) −3.99435 −0.179533
\(496\) 0 0
\(497\) 3.25394 + 5.63598i 0.145959 + 0.252808i
\(498\) 0 0
\(499\) 23.6147i 1.05714i −0.848890 0.528569i \(-0.822729\pi\)
0.848890 0.528569i \(-0.177271\pi\)
\(500\) 0 0
\(501\) 21.3779 + 12.3426i 0.955095 + 0.551425i
\(502\) 0 0
\(503\) 2.76602 4.79088i 0.123331 0.213615i −0.797749 0.602990i \(-0.793976\pi\)
0.921079 + 0.389375i \(0.127309\pi\)
\(504\) 0 0
\(505\) 1.04674 0.604336i 0.0465794 0.0268926i
\(506\) 0 0
\(507\) 12.9436 + 3.45567i 0.574844 + 0.153472i
\(508\) 0 0
\(509\) −23.5844 + 13.6165i −1.04536 + 0.603539i −0.921347 0.388741i \(-0.872910\pi\)
−0.124014 + 0.992281i \(0.539577\pi\)
\(510\) 0 0
\(511\) 16.0752 27.8431i 0.711126 1.23171i
\(512\) 0 0
\(513\) 7.86621 + 4.54156i 0.347302 + 0.200515i
\(514\) 0 0
\(515\) 12.0448i 0.530758i
\(516\) 0 0
\(517\) −7.56987 13.1114i −0.332922 0.576639i
\(518\) 0 0
\(519\) 12.6342 0.554580
\(520\) 0 0
\(521\) −27.1359 −1.18885 −0.594423 0.804153i \(-0.702619\pi\)
−0.594423 + 0.804153i \(0.702619\pi\)
\(522\) 0 0
\(523\) 7.41152 + 12.8371i 0.324083 + 0.561329i 0.981326 0.192350i \(-0.0616108\pi\)
−0.657243 + 0.753679i \(0.728278\pi\)
\(524\) 0 0
\(525\) 13.6485i 0.595670i
\(526\) 0 0
\(527\) −0.626082 0.361469i −0.0272726 0.0157458i
\(528\) 0 0
\(529\) −5.89126 + 10.2040i −0.256142 + 0.443651i
\(530\) 0 0
\(531\) −10.9226 + 6.30614i −0.473998 + 0.273663i
\(532\) 0 0
\(533\) −8.32068 + 10.8539i −0.360409 + 0.470134i
\(534\) 0 0
\(535\) 3.13041 1.80734i 0.135339 0.0781383i
\(536\) 0 0
\(537\) −10.8238 + 18.7474i −0.467082 + 0.809009i
\(538\) 0 0
\(539\) 4.15209 + 2.39721i 0.178843 + 0.103255i
\(540\) 0 0
\(541\) 12.1951i 0.524309i 0.965026 + 0.262154i \(0.0844330\pi\)
−0.965026 + 0.262154i \(0.915567\pi\)
\(542\) 0 0
\(543\) 4.46269 + 7.72960i 0.191512 + 0.331709i
\(544\) 0 0
\(545\) −3.41439 −0.146256
\(546\) 0 0
\(547\) 30.5965 1.30821 0.654106 0.756403i \(-0.273045\pi\)
0.654106 + 0.756403i \(0.273045\pi\)
\(548\) 0 0
\(549\) −5.96234 10.3271i −0.254466 0.440748i
\(550\) 0 0
\(551\) 10.2151i 0.435176i
\(552\) 0 0
\(553\) −36.3839 21.0062i −1.54720 0.893276i
\(554\) 0 0
\(555\) −2.83802 + 4.91559i −0.120467 + 0.208655i
\(556\) 0 0
\(557\) −11.2005 + 6.46663i −0.474582 + 0.274000i −0.718156 0.695882i \(-0.755013\pi\)
0.243574 + 0.969882i \(0.421680\pi\)
\(558\) 0 0
\(559\) 3.35329 25.5601i 0.141829 1.08108i
\(560\) 0 0
\(561\) −2.62207 + 1.51385i −0.110704 + 0.0639149i
\(562\) 0 0
\(563\) 2.76602 4.79088i 0.116574 0.201912i −0.801834 0.597547i \(-0.796142\pi\)
0.918408 + 0.395635i \(0.129476\pi\)
\(564\) 0 0
\(565\) 12.6075 + 7.27896i 0.530403 + 0.306228i
\(566\) 0 0
\(567\) 1.67427i 0.0703129i
\(568\) 0 0
\(569\) 8.97687 + 15.5484i 0.376330 + 0.651823i 0.990525 0.137331i \(-0.0438525\pi\)
−0.614195 + 0.789154i \(0.710519\pi\)
\(570\) 0 0
\(571\) −1.61780 −0.0677028 −0.0338514 0.999427i \(-0.510777\pi\)
−0.0338514 + 0.999427i \(0.510777\pi\)
\(572\) 0 0
\(573\) 16.5660 0.692056
\(574\) 0 0
\(575\) 13.2930 + 23.0241i 0.554355 + 0.960171i
\(576\) 0 0
\(577\) 17.8712i 0.743986i −0.928236 0.371993i \(-0.878675\pi\)
0.928236 0.371993i \(-0.121325\pi\)
\(578\) 0 0
\(579\) −7.53732 4.35168i −0.313240 0.180849i
\(580\) 0 0
\(581\) 20.3839 35.3059i 0.845666 1.46474i
\(582\) 0 0
\(583\) −8.18037 + 4.72294i −0.338796 + 0.195604i
\(584\) 0 0
\(585\) 4.86026 + 0.637629i 0.200947 + 0.0263627i
\(586\) 0 0
\(587\) 6.88815 3.97687i 0.284304 0.164143i −0.351066 0.936351i \(-0.614181\pi\)
0.635370 + 0.772208i \(0.280847\pi\)
\(588\) 0 0
\(589\) −0.645198 + 1.11752i −0.0265849 + 0.0460464i
\(590\) 0 0
\(591\) 7.04589 + 4.06795i 0.289829 + 0.167333i
\(592\) 0 0
\(593\) 24.6716i 1.01314i −0.862199 0.506570i \(-0.830913\pi\)
0.862199 0.506570i \(-0.169087\pi\)
\(594\) 0 0
\(595\) 1.03053 + 1.78493i 0.0422477 + 0.0731752i
\(596\) 0 0
\(597\) −16.5660 −0.678002
\(598\) 0 0
\(599\) 8.48211 0.346570 0.173285 0.984872i \(-0.444562\pi\)
0.173285 + 0.984872i \(0.444562\pi\)
\(600\) 0 0
\(601\) 19.5448 + 33.8526i 0.797250 + 1.38088i 0.921401 + 0.388614i \(0.127046\pi\)
−0.124151 + 0.992263i \(0.539621\pi\)
\(602\) 0 0
\(603\) 23.4325i 0.954247i
\(604\) 0 0
\(605\) 1.43872 + 0.830646i 0.0584923 + 0.0337705i
\(606\) 0 0
\(607\) 10.3203 17.8753i 0.418888 0.725536i −0.576940 0.816787i \(-0.695753\pi\)
0.995828 + 0.0912511i \(0.0290866\pi\)
\(608\) 0 0
\(609\) 15.0059 8.66369i 0.608072 0.351070i
\(610\) 0 0
\(611\) 7.11789 + 17.1621i 0.287959 + 0.694306i
\(612\) 0 0
\(613\) 21.7995 12.5859i 0.880472 0.508341i 0.00965825 0.999953i \(-0.496926\pi\)
0.870814 + 0.491612i \(0.163592\pi\)
\(614\) 0 0
\(615\) 1.37109 2.37480i 0.0552878 0.0957613i
\(616\) 0 0
\(617\) −15.0236 8.67389i −0.604828 0.349198i 0.166111 0.986107i \(-0.446879\pi\)
−0.770939 + 0.636910i \(0.780212\pi\)
\(618\) 0 0
\(619\) 37.0157i 1.48779i 0.668297 + 0.743894i \(0.267023\pi\)
−0.668297 + 0.743894i \(0.732977\pi\)
\(620\) 0 0
\(621\) 15.0059 + 25.9911i 0.602168 + 1.04299i
\(622\) 0 0
\(623\) 23.1951 0.929291
\(624\) 0 0
\(625\) 17.8603 0.714411
\(626\) 0 0
\(627\) 2.70213 + 4.68022i 0.107913 + 0.186910i
\(628\) 0 0
\(629\) 7.85135i 0.313054i
\(630\) 0 0
\(631\) 34.6010 + 19.9769i 1.37744 + 0.795267i 0.991851 0.127403i \(-0.0406641\pi\)
0.385591 + 0.922670i \(0.373997\pi\)
\(632\) 0 0
\(633\) −11.8529 + 20.5298i −0.471110 + 0.815986i
\(634\) 0 0
\(635\) 12.2706 7.08441i 0.486942 0.281136i
\(636\) 0 0
\(637\) −4.66953 3.57970i −0.185013 0.141833i
\(638\) 0 0
\(639\) 3.71768 2.14640i 0.147069 0.0849104i
\(640\) 0 0
\(641\) 8.77706 15.2023i 0.346673 0.600455i −0.638983 0.769221i \(-0.720645\pi\)
0.985656 + 0.168765i \(0.0539780\pi\)
\(642\) 0 0
\(643\) 1.13448 + 0.654991i 0.0447394 + 0.0258303i 0.522203 0.852821i \(-0.325110\pi\)
−0.477463 + 0.878652i \(0.658444\pi\)
\(644\) 0 0
\(645\) 5.16888i 0.203525i
\(646\) 0 0
\(647\) 13.3480 + 23.1194i 0.524764 + 0.908919i 0.999584 + 0.0288356i \(0.00917993\pi\)
−0.474820 + 0.880083i \(0.657487\pi\)
\(648\) 0 0
\(649\) −19.1201 −0.750532
\(650\) 0 0
\(651\) −2.18884 −0.0857875
\(652\) 0 0
\(653\) −6.56007 11.3624i −0.256716 0.444644i 0.708645 0.705566i \(-0.249307\pi\)
−0.965360 + 0.260921i \(0.915974\pi\)
\(654\) 0 0
\(655\) 1.40106i 0.0547438i
\(656\) 0 0
\(657\) −18.3662 10.6037i −0.716534 0.413691i
\(658\) 0 0
\(659\) −21.9328 + 37.9888i −0.854382 + 1.47983i 0.0228358 + 0.999739i \(0.492731\pi\)
−0.877217 + 0.480093i \(0.840603\pi\)
\(660\) 0 0
\(661\) 14.6597 8.46380i 0.570198 0.329204i −0.187031 0.982354i \(-0.559886\pi\)
0.757228 + 0.653150i \(0.226553\pi\)
\(662\) 0 0
\(663\) 3.43216 1.42347i 0.133294 0.0552828i
\(664\) 0 0
\(665\) 3.18599 1.83943i 0.123547 0.0713301i
\(666\) 0 0
\(667\) 16.8760 29.2301i 0.653441 1.13179i
\(668\) 0 0
\(669\) −13.5930 7.84792i −0.525536 0.303418i
\(670\) 0 0
\(671\) 18.0777i 0.697883i
\(672\) 0 0
\(673\) 9.57774 + 16.5891i 0.369195 + 0.639464i 0.989440 0.144944i \(-0.0463002\pi\)
−0.620245 + 0.784408i \(0.712967\pi\)
\(674\) 0 0
\(675\) 22.9395 0.882943
\(676\) 0 0
\(677\) 36.2136 1.39180 0.695901 0.718137i \(-0.255005\pi\)
0.695901 + 0.718137i \(0.255005\pi\)
\(678\) 0 0
\(679\) −2.70213 4.68022i −0.103698 0.179611i
\(680\) 0 0
\(681\) 30.4388i 1.16642i
\(682\) 0 0
\(683\) −4.13024 2.38460i −0.158039 0.0912440i 0.418895 0.908035i \(-0.362418\pi\)
−0.576934 + 0.816791i \(0.695751\pi\)
\(684\) 0 0
\(685\) −8.05341 + 13.9489i −0.307705 + 0.532961i
\(686\) 0 0
\(687\) −11.7015 + 6.75586i −0.446440 + 0.257752i
\(688\) 0 0
\(689\) 10.7077 4.44094i 0.407930 0.169186i
\(690\) 0 0
\(691\) 25.0883 14.4847i 0.954404 0.551026i 0.0599581 0.998201i \(-0.480903\pi\)
0.894446 + 0.447175i \(0.147570\pi\)
\(692\) 0 0
\(693\) 8.36429 14.4874i 0.317733 0.550330i
\(694\) 0 0
\(695\) −5.32663 3.07533i −0.202050 0.116654i
\(696\) 0 0
\(697\) 3.79312i 0.143674i
\(698\) 0 0
\(699\) −13.0475 22.5989i −0.493502 0.854771i
\(700\) 0 0
\(701\) 39.0157 1.47360 0.736802 0.676108i \(-0.236335\pi\)
0.736802 + 0.676108i \(0.236335\pi\)
\(702\) 0 0
\(703\) −14.0141 −0.528554
\(704\) 0 0
\(705\) −1.86267 3.22625i −0.0701523 0.121507i
\(706\) 0 0
\(707\) 5.06200i 0.190376i
\(708\) 0 0
\(709\) −24.4275 14.1032i −0.917394 0.529658i −0.0345911 0.999402i \(-0.511013\pi\)
−0.882803 + 0.469744i \(0.844346\pi\)
\(710\) 0 0
\(711\) −13.8564 + 24.0000i −0.519656 + 0.900070i
\(712\) 0 0
\(713\) −3.69243 + 2.13182i −0.138282 + 0.0798374i
\(714\) 0 0
\(715\) 5.89767 + 4.52120i 0.220560 + 0.169083i
\(716\) 0 0
\(717\) 6.01190 3.47097i 0.224519 0.129626i
\(718\) 0 0
\(719\) −4.60545 + 7.97687i −0.171754 + 0.297487i −0.939033 0.343826i \(-0.888277\pi\)
0.767279 + 0.641313i \(0.221610\pi\)
\(720\) 0 0
\(721\) −43.6862 25.2222i −1.62696 0.939325i
\(722\) 0 0
\(723\) 21.5369i 0.800968i
\(724\) 0 0
\(725\) −12.8991 22.3420i −0.479062 0.829759i
\(726\) 0 0
\(727\) 12.2386 0.453905 0.226952 0.973906i \(-0.427124\pi\)
0.226952 + 0.973906i \(0.427124\pi\)
\(728\) 0 0
\(729\) 14.6280 0.541779
\(730\) 0 0
\(731\) −3.57492 6.19194i −0.132223 0.229017i
\(732\) 0 0
\(733\) 6.66995i 0.246360i 0.992384 + 0.123180i \(0.0393093\pi\)
−0.992384 + 0.123180i \(0.960691\pi\)
\(734\) 0 0
\(735\) 1.02168 + 0.589868i 0.0376853 + 0.0217576i
\(736\) 0 0
\(737\) −17.7618 + 30.7644i −0.654265 + 1.13322i
\(738\) 0 0
\(739\) 17.8107 10.2830i 0.655177 0.378267i −0.135260 0.990810i \(-0.543187\pi\)
0.790437 + 0.612543i \(0.209854\pi\)
\(740\) 0 0
\(741\) −2.54079 6.12617i −0.0933383 0.225051i
\(742\) 0 0
\(743\) 0.0400566 0.0231267i 0.00146953 0.000848436i −0.499265 0.866449i \(-0.666397\pi\)
0.500735 + 0.865601i \(0.333063\pi\)
\(744\) 0 0
\(745\) 0.399134 0.691320i 0.0146231 0.0253280i
\(746\) 0 0
\(747\) −23.2889 13.4459i −0.852098 0.491959i
\(748\) 0 0
\(749\) 15.1385i 0.553150i
\(750\) 0 0
\(751\) −19.4924 33.7618i −0.711287 1.23199i −0.964374 0.264542i \(-0.914779\pi\)
0.253087 0.967444i \(-0.418554\pi\)
\(752\) 0 0
\(753\) −19.4578 −0.709081
\(754\) 0 0
\(755\) 0.507154 0.0184572
\(756\) 0 0
\(757\) −0.129943 0.225068i −0.00472285 0.00818022i 0.863654 0.504085i \(-0.168170\pi\)
−0.868377 + 0.495904i \(0.834837\pi\)
\(758\) 0 0
\(759\) 17.8564i 0.648147i
\(760\) 0 0
\(761\) −29.5467 17.0588i −1.07107 0.618382i −0.142595 0.989781i \(-0.545545\pi\)
−0.928473 + 0.371399i \(0.878878\pi\)
\(762\) 0 0
\(763\) 7.14984 12.3839i 0.258841 0.448327i
\(764\) 0 0
\(765\) 1.17740 0.679773i 0.0425690 0.0245772i
\(766\) 0 0
\(767\) 23.2651 + 3.05220i 0.840054 + 0.110209i
\(768\) 0 0
\(769\) 2.36075 1.36298i 0.0851309 0.0491503i −0.456830 0.889554i \(-0.651015\pi\)
0.541961 + 0.840404i \(0.317682\pi\)
\(770\) 0 0
\(771\) −10.9144 + 18.9044i −0.393074 + 0.680824i
\(772\) 0 0
\(773\) 39.3898 + 22.7417i 1.41675 + 0.817963i 0.996012 0.0892175i \(-0.0284366\pi\)
0.420741 + 0.907181i \(0.361770\pi\)
\(774\) 0 0
\(775\) 3.25891i 0.117063i
\(776\) 0 0
\(777\) −11.8858 20.5868i −0.426401 0.738548i
\(778\) 0 0
\(779\) 6.77046 0.242577
\(780\) 0 0
\(781\) 6.50787 0.232870
\(782\) 0 0
\(783\) −14.5614 25.2210i −0.520381 0.901326i
\(784\) 0 0
\(785\) 3.26974i 0.116702i
\(786\) 0 0
\(787\) 31.9207 + 18.4294i 1.13785 + 0.656938i 0.945897 0.324467i \(-0.105185\pi\)
0.191952 + 0.981404i \(0.438518\pi\)
\(788\) 0 0
\(789\) −0.498078 + 0.862697i −0.0177321 + 0.0307128i
\(790\) 0 0
\(791\) −52.8011 + 30.4847i −1.87739 + 1.08391i
\(792\) 0 0
\(793\) −2.88580 + 21.9967i −0.102478 + 0.781126i
\(794\) 0 0
\(795\) −2.01290 + 1.16215i −0.0713901 + 0.0412171i
\(796\) 0 0
\(797\) −5.06795 + 8.77794i −0.179516 + 0.310931i −0.941715 0.336412i \(-0.890786\pi\)
0.762199 + 0.647343i \(0.224120\pi\)
\(798\) 0 0
\(799\) 4.46269 + 2.57653i 0.157879 + 0.0911512i
\(800\) 0 0
\(801\) 15.3002i 0.540607i
\(802\) 0 0
\(803\) −16.0752 27.8431i −0.567282 0.982561i
\(804\) 0 0
\(805\) 12.1555 0.428424
\(806\) 0 0
\(807\) 15.0786 0.530792
\(808\) 0 0
\(809\) −9.63974 16.6965i −0.338915 0.587018i 0.645314 0.763918i \(-0.276727\pi\)
−0.984229 + 0.176899i \(0.943393\pi\)
\(810\) 0 0
\(811\) 21.7653i 0.764285i −0.924103 0.382142i \(-0.875186\pi\)
0.924103 0.382142i \(-0.124814\pi\)
\(812\) 0 0
\(813\) 20.0875 + 11.5975i 0.704501 + 0.406744i
\(814\) 0 0
\(815\) −3.83661 + 6.64520i −0.134390 + 0.232771i
\(816\) 0 0
\(817\) −11.0522 + 6.38099i −0.386668 + 0.223243i
\(818\) 0 0
\(819\) −12.4902 + 16.2928i −0.436443 + 0.569317i
\(820\) 0 0
\(821\) 38.7446 22.3692i 1.35220 0.780691i 0.363640 0.931540i \(-0.381534\pi\)
0.988557 + 0.150848i \(0.0482005\pi\)
\(822\) 0 0
\(823\) 6.15936 10.6683i 0.214702 0.371874i −0.738478 0.674277i \(-0.764455\pi\)
0.953180 + 0.302403i \(0.0977887\pi\)
\(824\) 0 0
\(825\) 11.8200 + 6.82426i 0.411518 + 0.237590i
\(826\) 0 0
\(827\) 43.6595i 1.51819i 0.650980 + 0.759095i \(0.274358\pi\)
−0.650980 + 0.759095i \(0.725642\pi\)
\(828\) 0 0
\(829\) 24.5224 + 42.4741i 0.851698 + 1.47519i 0.879674 + 0.475576i \(0.157761\pi\)
−0.0279759 + 0.999609i \(0.508906\pi\)
\(830\) 0 0
\(831\) −16.8340 −0.583964
\(832\) 0 0
\(833\) −1.63186 −0.0565408
\(834\) 0 0
\(835\) −8.40200 14.5527i −0.290763 0.503617i
\(836\) 0 0
\(837\) 3.67886i 0.127160i
\(838\) 0 0
\(839\) −34.4820 19.9082i −1.19045 0.687308i −0.232043 0.972706i \(-0.574541\pi\)
−0.958409 + 0.285398i \(0.907874\pi\)
\(840\) 0 0
\(841\) −1.87601 + 3.24934i −0.0646899 + 0.112046i
\(842\) 0 0
\(843\) −14.5056 + 8.37480i −0.499599 + 0.288444i
\(844\) 0 0
\(845\) −6.45446 6.44279i −0.222040 0.221639i
\(846\) 0 0
\(847\) −6.02545 + 3.47880i −0.207037 + 0.119533i
\(848\) 0 0
\(849\) −3.68407 + 6.38099i −0.126437 + 0.218995i
\(850\) 0 0
\(851\) −40.1011 23.1524i −1.37465 0.793652i
\(852\) 0 0
\(853\) 33.4230i 1.14438i −0.820121 0.572191i \(-0.806094\pi\)
0.820121 0.572191i \(-0.193906\pi\)
\(854\) 0 0
\(855\) −1.21335 2.10158i −0.0414957 0.0718726i
\(856\) 0 0
\(857\) −11.5345 −0.394012 −0.197006 0.980402i \(-0.563122\pi\)
−0.197006 + 0.980402i \(0.563122\pi\)
\(858\) 0 0
\(859\) 3.61497 0.123341 0.0616707 0.998097i \(-0.480357\pi\)
0.0616707 + 0.998097i \(0.480357\pi\)
\(860\) 0 0
\(861\) 5.74222 + 9.94582i 0.195694 + 0.338953i
\(862\) 0 0
\(863\) 46.8259i 1.59397i 0.603997 + 0.796986i \(0.293574\pi\)
−0.603997 + 0.796986i \(0.706426\pi\)
\(864\) 0 0
\(865\) −7.44828 4.30027i −0.253249 0.146214i
\(866\) 0 0
\(867\) −8.24426 + 14.2795i −0.279990 + 0.484956i
\(868\) 0 0
\(869\) −36.3839 + 21.0062i −1.23424 + 0.712588i
\(870\) 0 0
\(871\) 26.5233 34.5982i 0.898708 1.17232i
\(872\) 0 0
\(873\) −3.08723 + 1.78241i −0.104487 + 0.0603255i
\(874\) 0 0
\(875\) 9.79817 16.9709i 0.331239 0.573722i
\(876\) 0 0
\(877\) −19.1080 11.0320i −0.645232 0.372525i 0.141395 0.989953i \(-0.454841\pi\)
−0.786627 + 0.617428i \(0.788175\pi\)
\(878\) 0 0
\(879\) 18.1226i 0.611259i
\(880\) 0 0
\(881\) 16.2849 + 28.2063i 0.548653 + 0.950296i 0.998367 + 0.0571228i \(0.0181927\pi\)
−0.449714 + 0.893173i \(0.648474\pi\)
\(882\) 0 0
\(883\) −44.5807 −1.50026 −0.750130 0.661290i \(-0.770009\pi\)
−0.750130 + 0.661290i \(0.770009\pi\)
\(884\) 0 0
\(885\) −4.70478 −0.158150
\(886\) 0 0
\(887\) −19.7140 34.1457i −0.661932 1.14650i −0.980107 0.198468i \(-0.936403\pi\)
0.318175 0.948032i \(-0.396930\pi\)
\(888\) 0 0
\(889\) 59.3399i 1.99020i
\(890\) 0 0
\(891\) −1.44996 0.837137i −0.0485756 0.0280452i
\(892\) 0 0
\(893\) 4.59894 7.96561i 0.153898 0.266559i
\(894\) 0 0
\(895\) 12.7620 7.36814i 0.426586 0.246290i
\(896\) 0 0
\(897\) 2.85047 21.7274i 0.0951744 0.725457i
\(898\) 0 0
\(899\) 3.58303 2.06866i 0.119501 0.0689938i
\(900\) 0 0
\(901\) 1.60753 2.78433i 0.0535547 0.0927594i
\(902\) 0 0
\(903\) −18.7474 10.8238i −0.623874 0.360194i
\(904\) 0 0
\(905\) 6.07581i 0.201967i
\(906\) 0 0
\(907\) −29.3844 50.8953i −0.975693 1.68995i −0.677628 0.735405i \(-0.736992\pi\)
−0.298065 0.954545i \(-0.596341\pi\)
\(908\) 0 0
\(909\) 3.33906 0.110750
\(910\) 0 0
\(911\) −9.86206 −0.326745 −0.163372 0.986564i \(-0.552237\pi\)
−0.163372 + 0.986564i \(0.552237\pi\)
\(912\) 0 0
\(913\) −20.3839 35.3059i −0.674608 1.16846i
\(914\) 0 0
\(915\) 4.44828i 0.147056i
\(916\) 0 0
\(917\) −5.08158 2.93385i −0.167809 0.0968844i
\(918\) 0 0
\(919\) 6.84933 11.8634i 0.225939 0.391337i −0.730662 0.682739i \(-0.760788\pi\)
0.956601 + 0.291402i \(0.0941218\pi\)
\(920\) 0 0
\(921\) −2.92467 + 1.68856i −0.0963712 + 0.0556399i
\(922\) 0 0
\(923\) −7.91868 1.03887i −0.260646 0.0341948i
\(924\) 0 0
\(925\) −30.6511 + 17.6964i −1.00780 + 0.581856i
\(926\) 0 0
\(927\) −16.6374 + 28.8168i −0.546444 + 0.946469i
\(928\) 0 0
\(929\) −7.31401 4.22275i −0.239965 0.138544i 0.375196 0.926946i \(-0.377576\pi\)
−0.615161 + 0.788402i \(0.710909\pi\)
\(930\) 0 0
\(931\) 2.91277i 0.0954622i
\(932\) 0 0
\(933\) −10.9051 18.8882i −0.357016 0.618371i
\(934\) 0 0
\(935\) 2.06106 0.0674040
\(936\) 0 0
\(937\) −10.6743 −0.348713 −0.174357 0.984683i \(-0.555785\pi\)
−0.174357 + 0.984683i \(0.555785\pi\)
\(938\) 0 0
\(939\) 5.24651 + 9.08723i 0.171214 + 0.296551i
\(940\) 0 0
\(941\) 25.9672i 0.846508i −0.906011 0.423254i \(-0.860888\pi\)
0.906011 0.423254i \(-0.139112\pi\)
\(942\) 0 0
\(943\) 19.3735 + 11.1853i 0.630887 + 0.364243i
\(944\) 0 0
\(945\) 5.24414 9.08312i 0.170592 0.295474i
\(946\) 0 0
\(947\) −29.4164 + 16.9835i −0.955903 + 0.551891i −0.894910 0.446247i \(-0.852760\pi\)
−0.0609934 + 0.998138i \(0.519427\pi\)
\(948\) 0 0
\(949\) 15.1154 + 36.4452i 0.490667 + 1.18306i
\(950\) 0 0
\(951\) 25.6768 14.8245i 0.832628 0.480718i
\(952\) 0 0
\(953\) −2.17620 + 3.76928i −0.0704939 + 0.122099i −0.899118 0.437707i \(-0.855791\pi\)
0.828624 + 0.559806i \(0.189124\pi\)
\(954\) 0 0
\(955\) −9.76622 5.63853i −0.316028 0.182459i
\(956\) 0 0
\(957\) 17.3274i 0.560115i
\(958\) 0 0
\(959\) −33.7282 58.4189i −1.08914 1.88644i
\(960\) 0 0
\(961\) 30.4774 0.983141
\(962\) 0 0
\(963\) 9.98587 0.321790
\(964\) 0 0
\(965\) 2.96234 + 5.13091i 0.0953609 + 0.165170i
\(966\) 0 0
\(967\) 19.0291i 0.611934i 0.952042 + 0.305967i \(0.0989797\pi\)
−0.952042 + 0.305967i \(0.901020\pi\)
\(968\) 0 0
\(969\) −1.59299 0.919716i −0.0511744 0.0295455i
\(970\) 0 0
\(971\) −17.6210 + 30.5205i −0.565485 + 0.979449i 0.431519 + 0.902104i \(0.357978\pi\)
−0.997004 + 0.0773453i \(0.975356\pi\)
\(972\) 0 0
\(973\) 22.3082 12.8797i 0.715170 0.412903i
\(974\) 0 0
\(975\) −13.2930 10.1905i −0.425716 0.326357i
\(976\) 0 0
\(977\) −4.61066 + 2.66197i −0.147508 + 0.0851638i −0.571938 0.820297i \(-0.693808\pi\)
0.424429 + 0.905461i \(0.360475\pi\)
\(978\) 0 0
\(979\) 11.5975 20.0875i 0.370659 0.642000i
\(980\) 0 0
\(981\) −8.16881 4.71627i −0.260810 0.150579i
\(982\) 0 0
\(983\) 12.4750i 0.397889i −0.980011 0.198945i \(-0.936249\pi\)
0.980011 0.198945i \(-0.0637514\pi\)
\(984\) 0 0
\(985\) −2.76919 4.79638i −0.0882338 0.152825i
\(986\) 0 0
\(987\) 15.6020 0.496617
\(988\) 0 0
\(989\) −42.1674 −1.34084
\(990\) 0 0
\(991\) 22.7029 + 39.3226i 0.721182 + 1.24912i 0.960526 + 0.278189i \(0.0897341\pi\)
−0.239345 + 0.970935i \(0.576933\pi\)
\(992\) 0 0
\(993\) 4.51773i 0.143366i
\(994\) 0 0
\(995\) 9.76622 + 5.63853i 0.309610 + 0.178753i
\(996\) 0 0
\(997\) 9.50667 16.4660i 0.301079 0.521484i −0.675302 0.737542i \(-0.735986\pi\)
0.976381 + 0.216057i \(0.0693198\pi\)
\(998\) 0 0
\(999\) −34.6010 + 19.9769i −1.09473 + 0.632040i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 416.2.w.d.257.4 yes 12
4.3 odd 2 inner 416.2.w.d.257.3 yes 12
8.3 odd 2 832.2.w.j.257.4 12
8.5 even 2 832.2.w.j.257.3 12
13.2 odd 12 5408.2.a.bm.1.3 6
13.4 even 6 inner 416.2.w.d.225.4 yes 12
13.11 odd 12 5408.2.a.bn.1.3 6
52.11 even 12 5408.2.a.bm.1.4 6
52.15 even 12 5408.2.a.bn.1.4 6
52.43 odd 6 inner 416.2.w.d.225.3 12
104.43 odd 6 832.2.w.j.641.4 12
104.69 even 6 832.2.w.j.641.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.2.w.d.225.3 12 52.43 odd 6 inner
416.2.w.d.225.4 yes 12 13.4 even 6 inner
416.2.w.d.257.3 yes 12 4.3 odd 2 inner
416.2.w.d.257.4 yes 12 1.1 even 1 trivial
832.2.w.j.257.3 12 8.5 even 2
832.2.w.j.257.4 12 8.3 odd 2
832.2.w.j.641.3 12 104.69 even 6
832.2.w.j.641.4 12 104.43 odd 6
5408.2.a.bm.1.3 6 13.2 odd 12
5408.2.a.bm.1.4 6 52.11 even 12
5408.2.a.bn.1.3 6 13.11 odd 12
5408.2.a.bn.1.4 6 52.15 even 12