Properties

Label 5408.2.a.bn.1.4
Level $5408$
Weight $2$
Character 5408.1
Self dual yes
Analytic conductor $43.183$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5408,2,Mod(1,5408)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5408, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5408.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5408 = 2^{5} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5408.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.1830974131\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.134509248.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 15x^{4} + 60x^{2} - 48 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 416)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.03053\) of defining polynomial
Character \(\chi\) \(=\) 5408.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.03053 q^{3} -0.701519 q^{5} -2.93800 q^{7} -1.93800 q^{9} +2.93800 q^{11} -0.722938 q^{15} -1.00000 q^{17} +1.78493 q^{19} -3.02771 q^{21} -5.89767 q^{23} -4.50787 q^{25} -5.08877 q^{27} +5.72294 q^{29} -0.722938 q^{31} +3.02771 q^{33} +2.06106 q^{35} +7.85135 q^{37} +3.79312 q^{41} +7.14984 q^{43} +1.35955 q^{45} -5.15307 q^{47} +1.63186 q^{49} -1.03053 q^{51} -3.21507 q^{53} -2.06106 q^{55} +1.83943 q^{57} +6.50787 q^{59} -6.15307 q^{61} +5.69386 q^{63} +12.0911 q^{67} -6.07774 q^{69} +2.21507 q^{71} +10.9430 q^{73} -4.64551 q^{75} -8.63186 q^{77} +14.2997 q^{79} +0.569868 q^{81} +13.8760 q^{83} +0.701519 q^{85} +5.89767 q^{87} -7.89485 q^{89} -0.745010 q^{93} -1.25216 q^{95} +1.83943 q^{97} -5.69386 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{7} + 12 q^{9} - 6 q^{11} + 24 q^{15} - 6 q^{17} + 6 q^{19} + 6 q^{25} + 6 q^{29} + 24 q^{31} - 12 q^{47} + 24 q^{49} - 24 q^{53} + 6 q^{59} - 18 q^{61} + 72 q^{63} + 30 q^{67} + 6 q^{69} + 18 q^{71}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.03053 0.594978 0.297489 0.954725i \(-0.403851\pi\)
0.297489 + 0.954725i \(0.403851\pi\)
\(4\) 0 0
\(5\) −0.701519 −0.313729 −0.156864 0.987620i \(-0.550139\pi\)
−0.156864 + 0.987620i \(0.550139\pi\)
\(6\) 0 0
\(7\) −2.93800 −1.11046 −0.555230 0.831697i \(-0.687370\pi\)
−0.555230 + 0.831697i \(0.687370\pi\)
\(8\) 0 0
\(9\) −1.93800 −0.646001
\(10\) 0 0
\(11\) 2.93800 0.885841 0.442921 0.896561i \(-0.353942\pi\)
0.442921 + 0.896561i \(0.353942\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −0.722938 −0.186662
\(16\) 0 0
\(17\) −1.00000 −0.242536 −0.121268 0.992620i \(-0.538696\pi\)
−0.121268 + 0.992620i \(0.538696\pi\)
\(18\) 0 0
\(19\) 1.78493 0.409492 0.204746 0.978815i \(-0.434363\pi\)
0.204746 + 0.978815i \(0.434363\pi\)
\(20\) 0 0
\(21\) −3.02771 −0.660700
\(22\) 0 0
\(23\) −5.89767 −1.22975 −0.614875 0.788625i \(-0.710793\pi\)
−0.614875 + 0.788625i \(0.710793\pi\)
\(24\) 0 0
\(25\) −4.50787 −0.901574
\(26\) 0 0
\(27\) −5.08877 −0.979334
\(28\) 0 0
\(29\) 5.72294 1.06272 0.531361 0.847145i \(-0.321681\pi\)
0.531361 + 0.847145i \(0.321681\pi\)
\(30\) 0 0
\(31\) −0.722938 −0.129843 −0.0649217 0.997890i \(-0.520680\pi\)
−0.0649217 + 0.997890i \(0.520680\pi\)
\(32\) 0 0
\(33\) 3.02771 0.527056
\(34\) 0 0
\(35\) 2.06106 0.348383
\(36\) 0 0
\(37\) 7.85135 1.29075 0.645377 0.763864i \(-0.276700\pi\)
0.645377 + 0.763864i \(0.276700\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.79312 0.592385 0.296193 0.955128i \(-0.404283\pi\)
0.296193 + 0.955128i \(0.404283\pi\)
\(42\) 0 0
\(43\) 7.14984 1.09034 0.545170 0.838326i \(-0.316465\pi\)
0.545170 + 0.838326i \(0.316465\pi\)
\(44\) 0 0
\(45\) 1.35955 0.202669
\(46\) 0 0
\(47\) −5.15307 −0.751652 −0.375826 0.926690i \(-0.622641\pi\)
−0.375826 + 0.926690i \(0.622641\pi\)
\(48\) 0 0
\(49\) 1.63186 0.233124
\(50\) 0 0
\(51\) −1.03053 −0.144303
\(52\) 0 0
\(53\) −3.21507 −0.441623 −0.220812 0.975316i \(-0.570871\pi\)
−0.220812 + 0.975316i \(0.570871\pi\)
\(54\) 0 0
\(55\) −2.06106 −0.277914
\(56\) 0 0
\(57\) 1.83943 0.243639
\(58\) 0 0
\(59\) 6.50787 0.847253 0.423626 0.905837i \(-0.360757\pi\)
0.423626 + 0.905837i \(0.360757\pi\)
\(60\) 0 0
\(61\) −6.15307 −0.787820 −0.393910 0.919149i \(-0.628878\pi\)
−0.393910 + 0.919149i \(0.628878\pi\)
\(62\) 0 0
\(63\) 5.69386 0.717359
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 12.0911 1.47716 0.738580 0.674166i \(-0.235497\pi\)
0.738580 + 0.674166i \(0.235497\pi\)
\(68\) 0 0
\(69\) −6.07774 −0.731674
\(70\) 0 0
\(71\) 2.21507 0.262880 0.131440 0.991324i \(-0.458040\pi\)
0.131440 + 0.991324i \(0.458040\pi\)
\(72\) 0 0
\(73\) 10.9430 1.28078 0.640388 0.768052i \(-0.278774\pi\)
0.640388 + 0.768052i \(0.278774\pi\)
\(74\) 0 0
\(75\) −4.64551 −0.536417
\(76\) 0 0
\(77\) −8.63186 −0.983692
\(78\) 0 0
\(79\) 14.2997 1.60884 0.804419 0.594062i \(-0.202477\pi\)
0.804419 + 0.594062i \(0.202477\pi\)
\(80\) 0 0
\(81\) 0.569868 0.0633187
\(82\) 0 0
\(83\) 13.8760 1.52309 0.761545 0.648112i \(-0.224441\pi\)
0.761545 + 0.648112i \(0.224441\pi\)
\(84\) 0 0
\(85\) 0.701519 0.0760904
\(86\) 0 0
\(87\) 5.89767 0.632297
\(88\) 0 0
\(89\) −7.89485 −0.836852 −0.418426 0.908251i \(-0.637418\pi\)
−0.418426 + 0.908251i \(0.637418\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −0.745010 −0.0772540
\(94\) 0 0
\(95\) −1.25216 −0.128469
\(96\) 0 0
\(97\) 1.83943 0.186766 0.0933830 0.995630i \(-0.470232\pi\)
0.0933830 + 0.995630i \(0.470232\pi\)
\(98\) 0 0
\(99\) −5.69386 −0.572255
\(100\) 0 0
\(101\) 1.72294 0.171439 0.0857193 0.996319i \(-0.472681\pi\)
0.0857193 + 0.996319i \(0.472681\pi\)
\(102\) 0 0
\(103\) −17.1696 −1.69177 −0.845887 0.533362i \(-0.820928\pi\)
−0.845887 + 0.533362i \(0.820928\pi\)
\(104\) 0 0
\(105\) 2.12399 0.207280
\(106\) 0 0
\(107\) 5.15266 0.498127 0.249063 0.968487i \(-0.419877\pi\)
0.249063 + 0.968487i \(0.419877\pi\)
\(108\) 0 0
\(109\) −4.86714 −0.466187 −0.233094 0.972454i \(-0.574885\pi\)
−0.233094 + 0.972454i \(0.574885\pi\)
\(110\) 0 0
\(111\) 8.09107 0.767971
\(112\) 0 0
\(113\) 20.7520 1.95219 0.976093 0.217355i \(-0.0697429\pi\)
0.976093 + 0.217355i \(0.0697429\pi\)
\(114\) 0 0
\(115\) 4.13733 0.385808
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.93800 0.269326
\(120\) 0 0
\(121\) −2.36814 −0.215285
\(122\) 0 0
\(123\) 3.90893 0.352456
\(124\) 0 0
\(125\) 6.66995 0.596578
\(126\) 0 0
\(127\) −20.1973 −1.79222 −0.896112 0.443828i \(-0.853620\pi\)
−0.896112 + 0.443828i \(0.853620\pi\)
\(128\) 0 0
\(129\) 7.36814 0.648728
\(130\) 0 0
\(131\) 1.99717 0.174494 0.0872470 0.996187i \(-0.472193\pi\)
0.0872470 + 0.996187i \(0.472193\pi\)
\(132\) 0 0
\(133\) −5.24414 −0.454725
\(134\) 0 0
\(135\) 3.56987 0.307245
\(136\) 0 0
\(137\) −22.9599 −1.96160 −0.980799 0.195019i \(-0.937523\pi\)
−0.980799 + 0.195019i \(0.937523\pi\)
\(138\) 0 0
\(139\) 8.76764 0.743661 0.371831 0.928301i \(-0.378730\pi\)
0.371831 + 0.928301i \(0.378730\pi\)
\(140\) 0 0
\(141\) −5.31040 −0.447217
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −4.01475 −0.333407
\(146\) 0 0
\(147\) 1.68169 0.138703
\(148\) 0 0
\(149\) −1.13791 −0.0932215 −0.0466107 0.998913i \(-0.514842\pi\)
−0.0466107 + 0.998913i \(0.514842\pi\)
\(150\) 0 0
\(151\) 0.722938 0.0588318 0.0294159 0.999567i \(-0.490635\pi\)
0.0294159 + 0.999567i \(0.490635\pi\)
\(152\) 0 0
\(153\) 1.93800 0.156678
\(154\) 0 0
\(155\) 0.507154 0.0407356
\(156\) 0 0
\(157\) 4.66094 0.371984 0.185992 0.982551i \(-0.440450\pi\)
0.185992 + 0.982551i \(0.440450\pi\)
\(158\) 0 0
\(159\) −3.31323 −0.262756
\(160\) 0 0
\(161\) 17.3274 1.36559
\(162\) 0 0
\(163\) 10.9380 0.856731 0.428365 0.903606i \(-0.359090\pi\)
0.428365 + 0.903606i \(0.359090\pi\)
\(164\) 0 0
\(165\) −2.12399 −0.165353
\(166\) 0 0
\(167\) 23.9537 1.85360 0.926798 0.375560i \(-0.122549\pi\)
0.926798 + 0.375560i \(0.122549\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −3.45921 −0.264532
\(172\) 0 0
\(173\) 12.2599 0.932102 0.466051 0.884758i \(-0.345676\pi\)
0.466051 + 0.884758i \(0.345676\pi\)
\(174\) 0 0
\(175\) 13.2441 1.00116
\(176\) 0 0
\(177\) 6.70657 0.504097
\(178\) 0 0
\(179\) −21.0062 −1.57008 −0.785040 0.619445i \(-0.787358\pi\)
−0.785040 + 0.619445i \(0.787358\pi\)
\(180\) 0 0
\(181\) −8.66094 −0.643763 −0.321881 0.946780i \(-0.604315\pi\)
−0.321881 + 0.946780i \(0.604315\pi\)
\(182\) 0 0
\(183\) −6.34094 −0.468735
\(184\) 0 0
\(185\) −5.50787 −0.404947
\(186\) 0 0
\(187\) −2.93800 −0.214848
\(188\) 0 0
\(189\) 14.9508 1.08751
\(190\) 0 0
\(191\) 16.0752 1.16316 0.581581 0.813489i \(-0.302434\pi\)
0.581581 + 0.813489i \(0.302434\pi\)
\(192\) 0 0
\(193\) 8.44549 0.607920 0.303960 0.952685i \(-0.401691\pi\)
0.303960 + 0.952685i \(0.401691\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 7.89485 0.562484 0.281242 0.959637i \(-0.409254\pi\)
0.281242 + 0.959637i \(0.409254\pi\)
\(198\) 0 0
\(199\) 16.0752 1.13954 0.569771 0.821804i \(-0.307032\pi\)
0.569771 + 0.821804i \(0.307032\pi\)
\(200\) 0 0
\(201\) 12.4602 0.878878
\(202\) 0 0
\(203\) −16.8140 −1.18011
\(204\) 0 0
\(205\) −2.66094 −0.185848
\(206\) 0 0
\(207\) 11.4297 0.794420
\(208\) 0 0
\(209\) 5.24414 0.362745
\(210\) 0 0
\(211\) 23.0034 1.58362 0.791810 0.610767i \(-0.209139\pi\)
0.791810 + 0.610767i \(0.209139\pi\)
\(212\) 0 0
\(213\) 2.28270 0.156408
\(214\) 0 0
\(215\) −5.01574 −0.342071
\(216\) 0 0
\(217\) 2.12399 0.144186
\(218\) 0 0
\(219\) 11.2771 0.762033
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 15.2308 1.01993 0.509965 0.860195i \(-0.329658\pi\)
0.509965 + 0.860195i \(0.329658\pi\)
\(224\) 0 0
\(225\) 8.73627 0.582418
\(226\) 0 0
\(227\) 29.5369 1.96044 0.980218 0.197921i \(-0.0634188\pi\)
0.980218 + 0.197921i \(0.0634188\pi\)
\(228\) 0 0
\(229\) −13.1114 −0.866425 −0.433213 0.901292i \(-0.642620\pi\)
−0.433213 + 0.901292i \(0.642620\pi\)
\(230\) 0 0
\(231\) −8.89541 −0.585275
\(232\) 0 0
\(233\) 25.3219 1.65889 0.829446 0.558587i \(-0.188656\pi\)
0.829446 + 0.558587i \(0.188656\pi\)
\(234\) 0 0
\(235\) 3.61497 0.235815
\(236\) 0 0
\(237\) 14.7363 0.957224
\(238\) 0 0
\(239\) 6.73627 0.435733 0.217867 0.975979i \(-0.430090\pi\)
0.217867 + 0.975979i \(0.430090\pi\)
\(240\) 0 0
\(241\) −20.8989 −1.34621 −0.673107 0.739545i \(-0.735041\pi\)
−0.673107 + 0.739545i \(0.735041\pi\)
\(242\) 0 0
\(243\) 15.8536 1.01701
\(244\) 0 0
\(245\) −1.14478 −0.0731375
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 14.2997 0.906205
\(250\) 0 0
\(251\) 18.8813 1.19178 0.595888 0.803067i \(-0.296800\pi\)
0.595888 + 0.803067i \(0.296800\pi\)
\(252\) 0 0
\(253\) −17.3274 −1.08936
\(254\) 0 0
\(255\) 0.722938 0.0452721
\(256\) 0 0
\(257\) 21.1821 1.32131 0.660653 0.750691i \(-0.270279\pi\)
0.660653 + 0.750691i \(0.270279\pi\)
\(258\) 0 0
\(259\) −23.0673 −1.43333
\(260\) 0 0
\(261\) −11.0911 −0.686520
\(262\) 0 0
\(263\) 0.966643 0.0596057 0.0298029 0.999556i \(-0.490512\pi\)
0.0298029 + 0.999556i \(0.490512\pi\)
\(264\) 0 0
\(265\) 2.25543 0.138550
\(266\) 0 0
\(267\) −8.13589 −0.497909
\(268\) 0 0
\(269\) −14.6319 −0.892121 −0.446060 0.895003i \(-0.647173\pi\)
−0.446060 + 0.895003i \(0.647173\pi\)
\(270\) 0 0
\(271\) 22.5079 1.36726 0.683628 0.729831i \(-0.260401\pi\)
0.683628 + 0.729831i \(0.260401\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −13.2441 −0.798652
\(276\) 0 0
\(277\) −16.3352 −0.981488 −0.490744 0.871304i \(-0.663275\pi\)
−0.490744 + 0.871304i \(0.663275\pi\)
\(278\) 0 0
\(279\) 1.40106 0.0838790
\(280\) 0 0
\(281\) −16.2534 −0.969594 −0.484797 0.874627i \(-0.661106\pi\)
−0.484797 + 0.874627i \(0.661106\pi\)
\(282\) 0 0
\(283\) −7.14984 −0.425014 −0.212507 0.977160i \(-0.568163\pi\)
−0.212507 + 0.977160i \(0.568163\pi\)
\(284\) 0 0
\(285\) −1.29040 −0.0764365
\(286\) 0 0
\(287\) −11.1442 −0.657820
\(288\) 0 0
\(289\) −16.0000 −0.941176
\(290\) 0 0
\(291\) 1.89559 0.111122
\(292\) 0 0
\(293\) 17.5856 1.02736 0.513682 0.857981i \(-0.328281\pi\)
0.513682 + 0.857981i \(0.328281\pi\)
\(294\) 0 0
\(295\) −4.56539 −0.265807
\(296\) 0 0
\(297\) −14.9508 −0.867535
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −21.0062 −1.21078
\(302\) 0 0
\(303\) 1.77554 0.102002
\(304\) 0 0
\(305\) 4.31649 0.247162
\(306\) 0 0
\(307\) 3.27706 0.187032 0.0935159 0.995618i \(-0.470189\pi\)
0.0935159 + 0.995618i \(0.470189\pi\)
\(308\) 0 0
\(309\) −17.6939 −1.00657
\(310\) 0 0
\(311\) −21.1640 −1.20010 −0.600050 0.799963i \(-0.704853\pi\)
−0.600050 + 0.799963i \(0.704853\pi\)
\(312\) 0 0
\(313\) 10.1821 0.575529 0.287764 0.957701i \(-0.407088\pi\)
0.287764 + 0.957701i \(0.407088\pi\)
\(314\) 0 0
\(315\) −3.99435 −0.225056
\(316\) 0 0
\(317\) −28.7706 −1.61592 −0.807959 0.589238i \(-0.799428\pi\)
−0.807959 + 0.589238i \(0.799428\pi\)
\(318\) 0 0
\(319\) 16.8140 0.941404
\(320\) 0 0
\(321\) 5.30998 0.296374
\(322\) 0 0
\(323\) −1.78493 −0.0993164
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −5.01574 −0.277371
\(328\) 0 0
\(329\) 15.1397 0.834681
\(330\) 0 0
\(331\) −4.38388 −0.240960 −0.120480 0.992716i \(-0.538443\pi\)
−0.120480 + 0.992716i \(0.538443\pi\)
\(332\) 0 0
\(333\) −15.2160 −0.833829
\(334\) 0 0
\(335\) −8.48211 −0.463427
\(336\) 0 0
\(337\) −1.22840 −0.0669152 −0.0334576 0.999440i \(-0.510652\pi\)
−0.0334576 + 0.999440i \(0.510652\pi\)
\(338\) 0 0
\(339\) 21.3856 1.16151
\(340\) 0 0
\(341\) −2.12399 −0.115021
\(342\) 0 0
\(343\) 15.7716 0.851586
\(344\) 0 0
\(345\) 4.26365 0.229547
\(346\) 0 0
\(347\) 7.21373 0.387253 0.193627 0.981075i \(-0.437975\pi\)
0.193627 + 0.981075i \(0.437975\pi\)
\(348\) 0 0
\(349\) 26.7599 1.43243 0.716213 0.697882i \(-0.245874\pi\)
0.716213 + 0.697882i \(0.245874\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −14.8434 −0.790037 −0.395018 0.918673i \(-0.629262\pi\)
−0.395018 + 0.918673i \(0.629262\pi\)
\(354\) 0 0
\(355\) −1.55391 −0.0824730
\(356\) 0 0
\(357\) 3.02771 0.160243
\(358\) 0 0
\(359\) −19.5699 −1.03286 −0.516429 0.856330i \(-0.672739\pi\)
−0.516429 + 0.856330i \(0.672739\pi\)
\(360\) 0 0
\(361\) −15.8140 −0.832316
\(362\) 0 0
\(363\) −2.44044 −0.128090
\(364\) 0 0
\(365\) −7.67668 −0.401816
\(366\) 0 0
\(367\) 10.0198 0.523029 0.261515 0.965200i \(-0.415778\pi\)
0.261515 + 0.965200i \(0.415778\pi\)
\(368\) 0 0
\(369\) −7.35107 −0.382681
\(370\) 0 0
\(371\) 9.44588 0.490405
\(372\) 0 0
\(373\) −25.5989 −1.32546 −0.662732 0.748857i \(-0.730603\pi\)
−0.662732 + 0.748857i \(0.730603\pi\)
\(374\) 0 0
\(375\) 6.87360 0.354951
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 23.6609 1.21538 0.607690 0.794174i \(-0.292096\pi\)
0.607690 + 0.794174i \(0.292096\pi\)
\(380\) 0 0
\(381\) −20.8140 −1.06633
\(382\) 0 0
\(383\) −19.7058 −1.00692 −0.503459 0.864019i \(-0.667939\pi\)
−0.503459 + 0.864019i \(0.667939\pi\)
\(384\) 0 0
\(385\) 6.05541 0.308612
\(386\) 0 0
\(387\) −13.8564 −0.704361
\(388\) 0 0
\(389\) 4.35480 0.220797 0.110399 0.993887i \(-0.464787\pi\)
0.110399 + 0.993887i \(0.464787\pi\)
\(390\) 0 0
\(391\) 5.89767 0.298258
\(392\) 0 0
\(393\) 2.05815 0.103820
\(394\) 0 0
\(395\) −10.0315 −0.504739
\(396\) 0 0
\(397\) 31.9288 1.60246 0.801230 0.598356i \(-0.204179\pi\)
0.801230 + 0.598356i \(0.204179\pi\)
\(398\) 0 0
\(399\) −5.40426 −0.270551
\(400\) 0 0
\(401\) −17.4348 −0.870650 −0.435325 0.900273i \(-0.643367\pi\)
−0.435325 + 0.900273i \(0.643367\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −0.399773 −0.0198649
\(406\) 0 0
\(407\) 23.0673 1.14340
\(408\) 0 0
\(409\) −27.0821 −1.33912 −0.669561 0.742757i \(-0.733518\pi\)
−0.669561 + 0.742757i \(0.733518\pi\)
\(410\) 0 0
\(411\) −23.6609 −1.16711
\(412\) 0 0
\(413\) −19.1201 −0.940841
\(414\) 0 0
\(415\) −9.73428 −0.477837
\(416\) 0 0
\(417\) 9.03533 0.442462
\(418\) 0 0
\(419\) −39.3642 −1.92306 −0.961532 0.274692i \(-0.911424\pi\)
−0.961532 + 0.274692i \(0.911424\pi\)
\(420\) 0 0
\(421\) −18.4653 −0.899943 −0.449972 0.893043i \(-0.648566\pi\)
−0.449972 + 0.893043i \(0.648566\pi\)
\(422\) 0 0
\(423\) 9.98667 0.485568
\(424\) 0 0
\(425\) 4.50787 0.218664
\(426\) 0 0
\(427\) 18.0777 0.874843
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 7.95375 0.383118 0.191559 0.981481i \(-0.438646\pi\)
0.191559 + 0.981481i \(0.438646\pi\)
\(432\) 0 0
\(433\) 24.5699 1.18075 0.590376 0.807128i \(-0.298979\pi\)
0.590376 + 0.807128i \(0.298979\pi\)
\(434\) 0 0
\(435\) −4.13733 −0.198370
\(436\) 0 0
\(437\) −10.5270 −0.503572
\(438\) 0 0
\(439\) 13.3330 0.636351 0.318175 0.948032i \(-0.396930\pi\)
0.318175 + 0.948032i \(0.396930\pi\)
\(440\) 0 0
\(441\) −3.16256 −0.150598
\(442\) 0 0
\(443\) 6.62646 0.314833 0.157416 0.987532i \(-0.449684\pi\)
0.157416 + 0.987532i \(0.449684\pi\)
\(444\) 0 0
\(445\) 5.53838 0.262544
\(446\) 0 0
\(447\) −1.17266 −0.0554647
\(448\) 0 0
\(449\) 12.4602 0.588035 0.294018 0.955800i \(-0.405008\pi\)
0.294018 + 0.955800i \(0.405008\pi\)
\(450\) 0 0
\(451\) 11.1442 0.524759
\(452\) 0 0
\(453\) 0.745010 0.0350036
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 8.66025 0.405110 0.202555 0.979271i \(-0.435076\pi\)
0.202555 + 0.979271i \(0.435076\pi\)
\(458\) 0 0
\(459\) 5.08877 0.237524
\(460\) 0 0
\(461\) 11.8457 0.551709 0.275855 0.961199i \(-0.411039\pi\)
0.275855 + 0.961199i \(0.411039\pi\)
\(462\) 0 0
\(463\) 13.8760 0.644873 0.322436 0.946591i \(-0.395498\pi\)
0.322436 + 0.946591i \(0.395498\pi\)
\(464\) 0 0
\(465\) 0.522639 0.0242368
\(466\) 0 0
\(467\) 6.05541 0.280211 0.140106 0.990137i \(-0.455256\pi\)
0.140106 + 0.990137i \(0.455256\pi\)
\(468\) 0 0
\(469\) −35.5236 −1.64033
\(470\) 0 0
\(471\) 4.80325 0.221322
\(472\) 0 0
\(473\) 21.0062 0.965868
\(474\) 0 0
\(475\) −8.04625 −0.369187
\(476\) 0 0
\(477\) 6.23081 0.285289
\(478\) 0 0
\(479\) −14.8273 −0.677479 −0.338739 0.940880i \(-0.610000\pi\)
−0.338739 + 0.940880i \(0.610000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 17.8564 0.812495
\(484\) 0 0
\(485\) −1.29040 −0.0585939
\(486\) 0 0
\(487\) 23.0935 1.04647 0.523233 0.852190i \(-0.324726\pi\)
0.523233 + 0.852190i \(0.324726\pi\)
\(488\) 0 0
\(489\) 11.2720 0.509736
\(490\) 0 0
\(491\) −14.8230 −0.668955 −0.334477 0.942404i \(-0.608560\pi\)
−0.334477 + 0.942404i \(0.608560\pi\)
\(492\) 0 0
\(493\) −5.72294 −0.257748
\(494\) 0 0
\(495\) 3.99435 0.179533
\(496\) 0 0
\(497\) −6.50787 −0.291918
\(498\) 0 0
\(499\) 23.6147 1.05714 0.528569 0.848890i \(-0.322729\pi\)
0.528569 + 0.848890i \(0.322729\pi\)
\(500\) 0 0
\(501\) 24.6851 1.10285
\(502\) 0 0
\(503\) 5.53204 0.246661 0.123331 0.992366i \(-0.460642\pi\)
0.123331 + 0.992366i \(0.460642\pi\)
\(504\) 0 0
\(505\) −1.20867 −0.0537852
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −27.2329 −1.20708 −0.603539 0.797333i \(-0.706243\pi\)
−0.603539 + 0.797333i \(0.706243\pi\)
\(510\) 0 0
\(511\) −32.1504 −1.42225
\(512\) 0 0
\(513\) −9.08312 −0.401030
\(514\) 0 0
\(515\) 12.0448 0.530758
\(516\) 0 0
\(517\) −15.1397 −0.665845
\(518\) 0 0
\(519\) 12.6342 0.554580
\(520\) 0 0
\(521\) −27.1359 −1.18885 −0.594423 0.804153i \(-0.702619\pi\)
−0.594423 + 0.804153i \(0.702619\pi\)
\(522\) 0 0
\(523\) 14.8230 0.648167 0.324083 0.946029i \(-0.394944\pi\)
0.324083 + 0.946029i \(0.394944\pi\)
\(524\) 0 0
\(525\) 13.6485 0.595670
\(526\) 0 0
\(527\) 0.722938 0.0314917
\(528\) 0 0
\(529\) 11.7825 0.512284
\(530\) 0 0
\(531\) −12.6123 −0.547326
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −3.61469 −0.156277
\(536\) 0 0
\(537\) −21.6476 −0.934163
\(538\) 0 0
\(539\) 4.79442 0.206510
\(540\) 0 0
\(541\) −12.1951 −0.524309 −0.262154 0.965026i \(-0.584433\pi\)
−0.262154 + 0.965026i \(0.584433\pi\)
\(542\) 0 0
\(543\) −8.92538 −0.383025
\(544\) 0 0
\(545\) 3.41439 0.146256
\(546\) 0 0
\(547\) −30.5965 −1.30821 −0.654106 0.756403i \(-0.726955\pi\)
−0.654106 + 0.756403i \(0.726955\pi\)
\(548\) 0 0
\(549\) 11.9247 0.508933
\(550\) 0 0
\(551\) 10.2151 0.435176
\(552\) 0 0
\(553\) −42.0125 −1.78655
\(554\) 0 0
\(555\) −5.67604 −0.240934
\(556\) 0 0
\(557\) 12.9333 0.548000 0.274000 0.961730i \(-0.411653\pi\)
0.274000 + 0.961730i \(0.411653\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −3.02771 −0.127830
\(562\) 0 0
\(563\) −5.53204 −0.233148 −0.116574 0.993182i \(-0.537191\pi\)
−0.116574 + 0.993182i \(0.537191\pi\)
\(564\) 0 0
\(565\) −14.5579 −0.612457
\(566\) 0 0
\(567\) −1.67427 −0.0703129
\(568\) 0 0
\(569\) 17.9537 0.752660 0.376330 0.926486i \(-0.377186\pi\)
0.376330 + 0.926486i \(0.377186\pi\)
\(570\) 0 0
\(571\) −1.61780 −0.0677028 −0.0338514 0.999427i \(-0.510777\pi\)
−0.0338514 + 0.999427i \(0.510777\pi\)
\(572\) 0 0
\(573\) 16.5660 0.692056
\(574\) 0 0
\(575\) 26.5859 1.10871
\(576\) 0 0
\(577\) −17.8712 −0.743986 −0.371993 0.928236i \(-0.621325\pi\)
−0.371993 + 0.928236i \(0.621325\pi\)
\(578\) 0 0
\(579\) 8.70335 0.361699
\(580\) 0 0
\(581\) −40.7678 −1.69133
\(582\) 0 0
\(583\) −9.44588 −0.391208
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −7.95375 −0.328286 −0.164143 0.986437i \(-0.552486\pi\)
−0.164143 + 0.986437i \(0.552486\pi\)
\(588\) 0 0
\(589\) −1.29040 −0.0531698
\(590\) 0 0
\(591\) 8.13589 0.334666
\(592\) 0 0
\(593\) 24.6716 1.01314 0.506570 0.862199i \(-0.330913\pi\)
0.506570 + 0.862199i \(0.330913\pi\)
\(594\) 0 0
\(595\) −2.06106 −0.0844954
\(596\) 0 0
\(597\) 16.5660 0.678002
\(598\) 0 0
\(599\) −8.48211 −0.346570 −0.173285 0.984872i \(-0.555438\pi\)
−0.173285 + 0.984872i \(0.555438\pi\)
\(600\) 0 0
\(601\) −39.0896 −1.59450 −0.797250 0.603650i \(-0.793713\pi\)
−0.797250 + 0.603650i \(0.793713\pi\)
\(602\) 0 0
\(603\) −23.4325 −0.954247
\(604\) 0 0
\(605\) 1.66129 0.0675411
\(606\) 0 0
\(607\) 20.6406 0.837776 0.418888 0.908038i \(-0.362420\pi\)
0.418888 + 0.908038i \(0.362420\pi\)
\(608\) 0 0
\(609\) −17.3274 −0.702141
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 25.1719 1.01668 0.508341 0.861156i \(-0.330259\pi\)
0.508341 + 0.861156i \(0.330259\pi\)
\(614\) 0 0
\(615\) −2.74219 −0.110576
\(616\) 0 0
\(617\) 17.3478 0.698395 0.349198 0.937049i \(-0.386454\pi\)
0.349198 + 0.937049i \(0.386454\pi\)
\(618\) 0 0
\(619\) 37.0157 1.48779 0.743894 0.668297i \(-0.232977\pi\)
0.743894 + 0.668297i \(0.232977\pi\)
\(620\) 0 0
\(621\) 30.0119 1.20434
\(622\) 0 0
\(623\) 23.1951 0.929291
\(624\) 0 0
\(625\) 17.8603 0.714411
\(626\) 0 0
\(627\) 5.40426 0.215825
\(628\) 0 0
\(629\) −7.85135 −0.313054
\(630\) 0 0
\(631\) −39.9537 −1.59053 −0.795267 0.606260i \(-0.792669\pi\)
−0.795267 + 0.606260i \(0.792669\pi\)
\(632\) 0 0
\(633\) 23.7058 0.942219
\(634\) 0 0
\(635\) 14.1688 0.562272
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −4.29281 −0.169821
\(640\) 0 0
\(641\) 17.5541 0.693346 0.346673 0.937986i \(-0.387311\pi\)
0.346673 + 0.937986i \(0.387311\pi\)
\(642\) 0 0
\(643\) 1.30998 0.0516607 0.0258303 0.999666i \(-0.491777\pi\)
0.0258303 + 0.999666i \(0.491777\pi\)
\(644\) 0 0
\(645\) −5.16888 −0.203525
\(646\) 0 0
\(647\) −26.6960 −1.04953 −0.524764 0.851247i \(-0.675847\pi\)
−0.524764 + 0.851247i \(0.675847\pi\)
\(648\) 0 0
\(649\) 19.1201 0.750532
\(650\) 0 0
\(651\) 2.18884 0.0857875
\(652\) 0 0
\(653\) 13.1201 0.513431 0.256716 0.966487i \(-0.417360\pi\)
0.256716 + 0.966487i \(0.417360\pi\)
\(654\) 0 0
\(655\) −1.40106 −0.0547438
\(656\) 0 0
\(657\) −21.2075 −0.827382
\(658\) 0 0
\(659\) −43.8657 −1.70876 −0.854382 0.519646i \(-0.826064\pi\)
−0.854382 + 0.519646i \(0.826064\pi\)
\(660\) 0 0
\(661\) −16.9276 −0.658408 −0.329204 0.944259i \(-0.606780\pi\)
−0.329204 + 0.944259i \(0.606780\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.67886 0.142660
\(666\) 0 0
\(667\) −33.7520 −1.30688
\(668\) 0 0
\(669\) 15.6958 0.606836
\(670\) 0 0
\(671\) −18.0777 −0.697883
\(672\) 0 0
\(673\) 19.1555 0.738389 0.369195 0.929352i \(-0.379634\pi\)
0.369195 + 0.929352i \(0.379634\pi\)
\(674\) 0 0
\(675\) 22.9395 0.882943
\(676\) 0 0
\(677\) 36.2136 1.39180 0.695901 0.718137i \(-0.255005\pi\)
0.695901 + 0.718137i \(0.255005\pi\)
\(678\) 0 0
\(679\) −5.40426 −0.207396
\(680\) 0 0
\(681\) 30.4388 1.16642
\(682\) 0 0
\(683\) 4.76919 0.182488 0.0912440 0.995829i \(-0.470916\pi\)
0.0912440 + 0.995829i \(0.470916\pi\)
\(684\) 0 0
\(685\) 16.1068 0.615410
\(686\) 0 0
\(687\) −13.5117 −0.515504
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −28.9695 −1.10205 −0.551026 0.834488i \(-0.685763\pi\)
−0.551026 + 0.834488i \(0.685763\pi\)
\(692\) 0 0
\(693\) 16.7286 0.635466
\(694\) 0 0
\(695\) −6.15066 −0.233308
\(696\) 0 0
\(697\) −3.79312 −0.143674
\(698\) 0 0
\(699\) 26.0950 0.987004
\(700\) 0 0
\(701\) −39.0157 −1.47360 −0.736802 0.676108i \(-0.763665\pi\)
−0.736802 + 0.676108i \(0.763665\pi\)
\(702\) 0 0
\(703\) 14.0141 0.528554
\(704\) 0 0
\(705\) 3.72535 0.140305
\(706\) 0 0
\(707\) −5.06200 −0.190376
\(708\) 0 0
\(709\) −28.2064 −1.05932 −0.529658 0.848212i \(-0.677680\pi\)
−0.529658 + 0.848212i \(0.677680\pi\)
\(710\) 0 0
\(711\) −27.7128 −1.03931
\(712\) 0 0
\(713\) 4.26365 0.159675
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 6.94194 0.259252
\(718\) 0 0
\(719\) 9.21090 0.343509 0.171754 0.985140i \(-0.445056\pi\)
0.171754 + 0.985140i \(0.445056\pi\)
\(720\) 0 0
\(721\) 50.4444 1.87865
\(722\) 0 0
\(723\) −21.5369 −0.800968
\(724\) 0 0
\(725\) −25.7983 −0.958124
\(726\) 0 0
\(727\) 12.2386 0.453905 0.226952 0.973906i \(-0.427124\pi\)
0.226952 + 0.973906i \(0.427124\pi\)
\(728\) 0 0
\(729\) 14.6280 0.541779
\(730\) 0 0
\(731\) −7.14984 −0.264446
\(732\) 0 0
\(733\) 6.66995 0.246360 0.123180 0.992384i \(-0.460691\pi\)
0.123180 + 0.992384i \(0.460691\pi\)
\(734\) 0 0
\(735\) −1.17974 −0.0435152
\(736\) 0 0
\(737\) 35.5236 1.30853
\(738\) 0 0
\(739\) 20.5660 0.756533 0.378267 0.925697i \(-0.376520\pi\)
0.378267 + 0.925697i \(0.376520\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −0.0462534 −0.00169687 −0.000848436 1.00000i \(-0.500270\pi\)
−0.000848436 1.00000i \(0.500270\pi\)
\(744\) 0 0
\(745\) 0.798267 0.0292463
\(746\) 0 0
\(747\) −26.8918 −0.983918
\(748\) 0 0
\(749\) −15.1385 −0.553150
\(750\) 0 0
\(751\) 38.9848 1.42257 0.711287 0.702901i \(-0.248112\pi\)
0.711287 + 0.702901i \(0.248112\pi\)
\(752\) 0 0
\(753\) 19.4578 0.709081
\(754\) 0 0
\(755\) −0.507154 −0.0184572
\(756\) 0 0
\(757\) 0.259886 0.00944570 0.00472285 0.999989i \(-0.498497\pi\)
0.00472285 + 0.999989i \(0.498497\pi\)
\(758\) 0 0
\(759\) −17.8564 −0.648147
\(760\) 0 0
\(761\) −34.1176 −1.23676 −0.618382 0.785878i \(-0.712211\pi\)
−0.618382 + 0.785878i \(0.712211\pi\)
\(762\) 0 0
\(763\) 14.2997 0.517683
\(764\) 0 0
\(765\) −1.35955 −0.0491545
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 2.72596 0.0983007 0.0491503 0.998791i \(-0.484349\pi\)
0.0491503 + 0.998791i \(0.484349\pi\)
\(770\) 0 0
\(771\) 21.8289 0.786148
\(772\) 0 0
\(773\) −45.4835 −1.63593 −0.817963 0.575271i \(-0.804897\pi\)
−0.817963 + 0.575271i \(0.804897\pi\)
\(774\) 0 0
\(775\) 3.25891 0.117063
\(776\) 0 0
\(777\) −23.7716 −0.852801
\(778\) 0 0
\(779\) 6.77046 0.242577
\(780\) 0 0
\(781\) 6.50787 0.232870
\(782\) 0 0
\(783\) −29.1227 −1.04076
\(784\) 0 0
\(785\) −3.26974 −0.116702
\(786\) 0 0
\(787\) −36.8588 −1.31388 −0.656938 0.753945i \(-0.728149\pi\)
−0.656938 + 0.753945i \(0.728149\pi\)
\(788\) 0 0
\(789\) 0.996156 0.0354641
\(790\) 0 0
\(791\) −60.9695 −2.16783
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 2.32429 0.0824341
\(796\) 0 0
\(797\) −10.1359 −0.359032 −0.179516 0.983755i \(-0.557453\pi\)
−0.179516 + 0.983755i \(0.557453\pi\)
\(798\) 0 0
\(799\) 5.15307 0.182302
\(800\) 0 0
\(801\) 15.3002 0.540607
\(802\) 0 0
\(803\) 32.1504 1.13456
\(804\) 0 0
\(805\) −12.1555 −0.428424
\(806\) 0 0
\(807\) −15.0786 −0.530792
\(808\) 0 0
\(809\) 19.2795 0.677830 0.338915 0.940817i \(-0.389940\pi\)
0.338915 + 0.940817i \(0.389940\pi\)
\(810\) 0 0
\(811\) 21.7653 0.764285 0.382142 0.924103i \(-0.375186\pi\)
0.382142 + 0.924103i \(0.375186\pi\)
\(812\) 0 0
\(813\) 23.1951 0.813487
\(814\) 0 0
\(815\) −7.67321 −0.268781
\(816\) 0 0
\(817\) 12.7620 0.446485
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 44.7384 1.56138 0.780691 0.624917i \(-0.214867\pi\)
0.780691 + 0.624917i \(0.214867\pi\)
\(822\) 0 0
\(823\) −12.3187 −0.429404 −0.214702 0.976680i \(-0.568878\pi\)
−0.214702 + 0.976680i \(0.568878\pi\)
\(824\) 0 0
\(825\) −13.6485 −0.475180
\(826\) 0 0
\(827\) 43.6595 1.51819 0.759095 0.650980i \(-0.225642\pi\)
0.759095 + 0.650980i \(0.225642\pi\)
\(828\) 0 0
\(829\) 49.0448 1.70340 0.851698 0.524032i \(-0.175573\pi\)
0.851698 + 0.524032i \(0.175573\pi\)
\(830\) 0 0
\(831\) −16.8340 −0.583964
\(832\) 0 0
\(833\) −1.63186 −0.0565408
\(834\) 0 0
\(835\) −16.8040 −0.581526
\(836\) 0 0
\(837\) 3.67886 0.127160
\(838\) 0 0
\(839\) 39.8164 1.37462 0.687308 0.726366i \(-0.258792\pi\)
0.687308 + 0.726366i \(0.258792\pi\)
\(840\) 0 0
\(841\) 3.75201 0.129380
\(842\) 0 0
\(843\) −16.7496 −0.576887
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 6.95759 0.239066
\(848\) 0 0
\(849\) −7.36814 −0.252874
\(850\) 0 0
\(851\) −46.3047 −1.58730
\(852\) 0 0
\(853\) 33.4230 1.14438 0.572191 0.820121i \(-0.306094\pi\)
0.572191 + 0.820121i \(0.306094\pi\)
\(854\) 0 0
\(855\) 2.42670 0.0829914
\(856\) 0 0
\(857\) 11.5345 0.394012 0.197006 0.980402i \(-0.436878\pi\)
0.197006 + 0.980402i \(0.436878\pi\)
\(858\) 0 0
\(859\) −3.61497 −0.123341 −0.0616707 0.998097i \(-0.519643\pi\)
−0.0616707 + 0.998097i \(0.519643\pi\)
\(860\) 0 0
\(861\) −11.4844 −0.391389
\(862\) 0 0
\(863\) −46.8259 −1.59397 −0.796986 0.603997i \(-0.793574\pi\)
−0.796986 + 0.603997i \(0.793574\pi\)
\(864\) 0 0
\(865\) −8.60054 −0.292427
\(866\) 0 0
\(867\) −16.4885 −0.559979
\(868\) 0 0
\(869\) 42.0125 1.42518
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −3.56483 −0.120651
\(874\) 0 0
\(875\) −19.5963 −0.662477
\(876\) 0 0
\(877\) 22.0640 0.745050 0.372525 0.928022i \(-0.378492\pi\)
0.372525 + 0.928022i \(0.378492\pi\)
\(878\) 0 0
\(879\) 18.1226 0.611259
\(880\) 0 0
\(881\) 32.5699 1.09731 0.548653 0.836050i \(-0.315141\pi\)
0.548653 + 0.836050i \(0.315141\pi\)
\(882\) 0 0
\(883\) −44.5807 −1.50026 −0.750130 0.661290i \(-0.770009\pi\)
−0.750130 + 0.661290i \(0.770009\pi\)
\(884\) 0 0
\(885\) −4.70478 −0.158150
\(886\) 0 0
\(887\) −39.4280 −1.32386 −0.661932 0.749564i \(-0.730263\pi\)
−0.661932 + 0.749564i \(0.730263\pi\)
\(888\) 0 0
\(889\) 59.3399 1.99020
\(890\) 0 0
\(891\) 1.67427 0.0560903
\(892\) 0 0
\(893\) −9.19789 −0.307796
\(894\) 0 0
\(895\) 14.7363 0.492579
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −4.13733 −0.137988
\(900\) 0 0
\(901\) 3.21507 0.107109
\(902\) 0 0
\(903\) −21.6476 −0.720387
\(904\) 0 0
\(905\) 6.07581 0.201967
\(906\) 0 0
\(907\) 58.7688 1.95139 0.975693 0.219141i \(-0.0703253\pi\)
0.975693 + 0.219141i \(0.0703253\pi\)
\(908\) 0 0
\(909\) −3.33906 −0.110750
\(910\) 0 0
\(911\) 9.86206 0.326745 0.163372 0.986564i \(-0.447763\pi\)
0.163372 + 0.986564i \(0.447763\pi\)
\(912\) 0 0
\(913\) 40.7678 1.34922
\(914\) 0 0
\(915\) 4.44828 0.147056
\(916\) 0 0
\(917\) −5.86771 −0.193769
\(918\) 0 0
\(919\) 13.6987 0.451877 0.225939 0.974142i \(-0.427455\pi\)
0.225939 + 0.974142i \(0.427455\pi\)
\(920\) 0 0
\(921\) 3.37712 0.111280
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −35.3929 −1.16371
\(926\) 0 0
\(927\) 33.2748 1.09289
\(928\) 0 0
\(929\) 8.44549 0.277088 0.138544 0.990356i \(-0.455758\pi\)
0.138544 + 0.990356i \(0.455758\pi\)
\(930\) 0 0
\(931\) 2.91277 0.0954622
\(932\) 0 0
\(933\) −21.8102 −0.714033
\(934\) 0 0
\(935\) 2.06106 0.0674040
\(936\) 0 0
\(937\) −10.6743 −0.348713 −0.174357 0.984683i \(-0.555785\pi\)
−0.174357 + 0.984683i \(0.555785\pi\)
\(938\) 0 0
\(939\) 10.4930 0.342427
\(940\) 0 0
\(941\) −25.9672 −0.846508 −0.423254 0.906011i \(-0.639112\pi\)
−0.423254 + 0.906011i \(0.639112\pi\)
\(942\) 0 0
\(943\) −22.3705 −0.728485
\(944\) 0 0
\(945\) −10.4883 −0.341184
\(946\) 0 0
\(947\) −33.9671 −1.10378 −0.551891 0.833916i \(-0.686094\pi\)
−0.551891 + 0.833916i \(0.686094\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −29.6490 −0.961436
\(952\) 0 0
\(953\) −4.35239 −0.140988 −0.0704939 0.997512i \(-0.522458\pi\)
−0.0704939 + 0.997512i \(0.522458\pi\)
\(954\) 0 0
\(955\) −11.2771 −0.364917
\(956\) 0 0
\(957\) 17.3274 0.560115
\(958\) 0 0
\(959\) 67.4563 2.17828
\(960\) 0 0
\(961\) −30.4774 −0.983141
\(962\) 0 0
\(963\) −9.98587 −0.321790
\(964\) 0 0
\(965\) −5.92467 −0.190722
\(966\) 0 0
\(967\) −19.0291 −0.611934 −0.305967 0.952042i \(-0.598980\pi\)
−0.305967 + 0.952042i \(0.598980\pi\)
\(968\) 0 0
\(969\) −1.83943 −0.0590911
\(970\) 0 0
\(971\) −35.2420 −1.13097 −0.565485 0.824758i \(-0.691311\pi\)
−0.565485 + 0.824758i \(0.691311\pi\)
\(972\) 0 0
\(973\) −25.7593 −0.825807
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −5.32393 −0.170328 −0.0851638 0.996367i \(-0.527141\pi\)
−0.0851638 + 0.996367i \(0.527141\pi\)
\(978\) 0 0
\(979\) −23.1951 −0.741318
\(980\) 0 0
\(981\) 9.43253 0.301158
\(982\) 0 0
\(983\) −12.4750 −0.397889 −0.198945 0.980011i \(-0.563751\pi\)
−0.198945 + 0.980011i \(0.563751\pi\)
\(984\) 0 0
\(985\) −5.53838 −0.176468
\(986\) 0 0
\(987\) 15.6020 0.496617
\(988\) 0 0
\(989\) −42.1674 −1.34084
\(990\) 0 0
\(991\) 45.4058 1.44236 0.721182 0.692746i \(-0.243599\pi\)
0.721182 + 0.692746i \(0.243599\pi\)
\(992\) 0 0
\(993\) −4.51773 −0.143366
\(994\) 0 0
\(995\) −11.2771 −0.357507
\(996\) 0 0
\(997\) −19.0133 −0.602158 −0.301079 0.953599i \(-0.597347\pi\)
−0.301079 + 0.953599i \(0.597347\pi\)
\(998\) 0 0
\(999\) −39.9537 −1.26408
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5408.2.a.bn.1.4 6
4.3 odd 2 5408.2.a.bm.1.3 6
13.2 odd 12 416.2.w.d.225.3 12
13.7 odd 12 416.2.w.d.257.3 yes 12
13.12 even 2 5408.2.a.bm.1.4 6
52.7 even 12 416.2.w.d.257.4 yes 12
52.15 even 12 416.2.w.d.225.4 yes 12
52.51 odd 2 inner 5408.2.a.bn.1.3 6
104.59 even 12 832.2.w.j.257.3 12
104.67 even 12 832.2.w.j.641.3 12
104.85 odd 12 832.2.w.j.257.4 12
104.93 odd 12 832.2.w.j.641.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.2.w.d.225.3 12 13.2 odd 12
416.2.w.d.225.4 yes 12 52.15 even 12
416.2.w.d.257.3 yes 12 13.7 odd 12
416.2.w.d.257.4 yes 12 52.7 even 12
832.2.w.j.257.3 12 104.59 even 12
832.2.w.j.257.4 12 104.85 odd 12
832.2.w.j.641.3 12 104.67 even 12
832.2.w.j.641.4 12 104.93 odd 12
5408.2.a.bm.1.3 6 4.3 odd 2
5408.2.a.bm.1.4 6 13.12 even 2
5408.2.a.bn.1.3 6 52.51 odd 2 inner
5408.2.a.bn.1.4 6 1.1 even 1 trivial