Properties

Label 416.4.a.f
Level $416$
Weight $4$
Character orbit 416.a
Self dual yes
Analytic conductor $24.545$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,4,Mod(1,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 416.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.5447945624\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.24965.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 41x + 60 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + 1) q^{3} + ( - \beta_{2} + \beta_1 + 6) q^{5} + ( - \beta_{2} - 2 \beta_1 - 9) q^{7} + ( - \beta_{2} + \beta_1 + 9) q^{9} + ( - 2 \beta_1 - 32) q^{11} - 13 q^{13} + (11 \beta_{2} + 4 \beta_1 - 29) q^{15}+ \cdots + (14 \beta_{2} - 34 \beta_1 - 498) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 4 q^{3} + 16 q^{5} - 26 q^{7} + 25 q^{9} - 94 q^{11} - 39 q^{13} - 80 q^{15} - 176 q^{17} - 42 q^{19} - 134 q^{21} + 192 q^{23} + 143 q^{25} - 176 q^{27} + 270 q^{29} - 462 q^{31} - 124 q^{33} - 700 q^{35}+ \cdots - 1446 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 41x + 60 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} + \nu - 27 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 6\beta_{2} - \beta _1 + 53 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.48994
−6.59556
6.10562
0 −6.76338 0 15.7433 0 −5.19639 0 18.7433 0
1.2 0 4.30197 0 −11.4931 0 16.0803 0 −8.49309 0
1.3 0 6.46141 0 11.7498 0 −36.8839 0 14.7498 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 416.4.a.f yes 3
4.b odd 2 1 416.4.a.e 3
8.b even 2 1 832.4.a.ba 3
8.d odd 2 1 832.4.a.bd 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
416.4.a.e 3 4.b odd 2 1
416.4.a.f yes 3 1.a even 1 1 trivial
832.4.a.ba 3 8.b even 2 1
832.4.a.bd 3 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} - 4T_{3}^{2} - 45T_{3} + 188 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(416))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 4 T^{2} + \cdots + 188 \) Copy content Toggle raw display
$5$ \( T^{3} - 16 T^{2} + \cdots + 2126 \) Copy content Toggle raw display
$7$ \( T^{3} + 26 T^{2} + \cdots - 3082 \) Copy content Toggle raw display
$11$ \( T^{3} + 94 T^{2} + \cdots + 7080 \) Copy content Toggle raw display
$13$ \( (T + 13)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + 176 T^{2} + \cdots - 399142 \) Copy content Toggle raw display
$19$ \( T^{3} + 42 T^{2} + \cdots + 336312 \) Copy content Toggle raw display
$23$ \( T^{3} - 192 T^{2} + \cdots + 414720 \) Copy content Toggle raw display
$29$ \( T^{3} - 270 T^{2} + \cdots + 1047000 \) Copy content Toggle raw display
$31$ \( T^{3} + 462 T^{2} + \cdots - 842880 \) Copy content Toggle raw display
$37$ \( T^{3} + 416 T^{2} + \cdots - 27637826 \) Copy content Toggle raw display
$41$ \( T^{3} + 214 T^{2} + \cdots - 13672448 \) Copy content Toggle raw display
$43$ \( T^{3} - 160 T^{2} + \cdots + 17140424 \) Copy content Toggle raw display
$47$ \( T^{3} + 114 T^{2} + \cdots - 5926770 \) Copy content Toggle raw display
$53$ \( T^{3} - 558 T^{2} + \cdots + 1625760 \) Copy content Toggle raw display
$59$ \( T^{3} + 198 T^{2} + \cdots - 2425464 \) Copy content Toggle raw display
$61$ \( T^{3} - 334 T^{2} + \cdots + 12563968 \) Copy content Toggle raw display
$67$ \( T^{3} + 170 T^{2} + \cdots - 492552 \) Copy content Toggle raw display
$71$ \( T^{3} + 1774 T^{2} + \cdots + 136314162 \) Copy content Toggle raw display
$73$ \( T^{3} + 1386 T^{2} + \cdots + 82276760 \) Copy content Toggle raw display
$79$ \( T^{3} + 964 T^{2} + \cdots - 154301760 \) Copy content Toggle raw display
$83$ \( T^{3} + 1130 T^{2} + \cdots - 129894528 \) Copy content Toggle raw display
$89$ \( T^{3} + 498 T^{2} + \cdots - 39317064 \) Copy content Toggle raw display
$97$ \( T^{3} - 694 T^{2} + \cdots + 963864 \) Copy content Toggle raw display
show more
show less