Properties

Label 416.4.a.g
Level $416$
Weight $4$
Character orbit 416.a
Self dual yes
Analytic conductor $24.545$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,4,Mod(1,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 416.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.5447945624\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.1847677.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 18x^{2} + 19x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{3} q^{3} + (\beta_{2} - 3) q^{5} + (\beta_{3} + \beta_1) q^{7} + ( - 3 \beta_{2} + 4) q^{9} + (4 \beta_{3} - 3 \beta_1) q^{11} - 13 q^{13} + (13 \beta_{3} - 2 \beta_1) q^{15} + ( - 5 \beta_{2} - 1) q^{17}+ \cdots + (154 \beta_{3} + 45 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 14 q^{5} + 22 q^{9} - 52 q^{13} + 6 q^{17} - 182 q^{21} - 74 q^{25} - 432 q^{29} - 364 q^{33} - 790 q^{37} - 388 q^{41} - 1208 q^{45} - 514 q^{49} - 932 q^{53} - 468 q^{57} - 1244 q^{61} + 182 q^{65}+ \cdots - 1128 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 18x^{2} + 19x - 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 4\nu - 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 10 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{3} - 3\nu^{2} - 37\nu + 19 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 4\beta_{2} + \beta _1 + 42 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{3} + 3\beta_{2} + 10\beta _1 + 31 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.295657
4.91115
−3.91115
0.704343
0 −7.85014 0 −13.2082 0 7.03277 0 34.6247 0
1.2 0 −1.83719 0 6.20824 0 19.4818 0 −23.6247 0
1.3 0 1.83719 0 6.20824 0 −19.4818 0 −23.6247 0
1.4 0 7.85014 0 −13.2082 0 −7.03277 0 34.6247 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(13\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 416.4.a.g 4
4.b odd 2 1 inner 416.4.a.g 4
8.b even 2 1 832.4.a.be 4
8.d odd 2 1 832.4.a.be 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
416.4.a.g 4 1.a even 1 1 trivial
416.4.a.g 4 4.b odd 2 1 inner
832.4.a.be 4 8.b even 2 1
832.4.a.be 4 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 65T_{3}^{2} + 208 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(416))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 65T^{2} + 208 \) Copy content Toggle raw display
$5$ \( (T^{2} + 7 T - 82)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} - 429 T^{2} + 18772 \) Copy content Toggle raw display
$11$ \( T^{4} - 3224 T^{2} + 2381392 \) Copy content Toggle raw display
$13$ \( (T + 13)^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} - 3 T - 2354)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} - 1144 T^{2} + 110032 \) Copy content Toggle raw display
$23$ \( T^{4} - 27456 T^{2} + 76890112 \) Copy content Toggle raw display
$29$ \( (T^{2} + 216 T + 10156)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} - 42692 T^{2} + 1139008 \) Copy content Toggle raw display
$37$ \( (T^{2} + 395 T + 23078)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 194 T + 9032)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 3537534208 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 2863704532 \) Copy content Toggle raw display
$53$ \( (T^{2} + 466 T - 81808)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 40832089168 \) Copy content Toggle raw display
$61$ \( (T^{2} + 622 T - 12232)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 359800746448 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 799203845908 \) Copy content Toggle raw display
$73$ \( (T^{2} - 268 T - 1001452)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 224156937472 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 426005951488 \) Copy content Toggle raw display
$89$ \( (T^{2} - 272 T + 16988)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 564 T - 2098028)^{2} \) Copy content Toggle raw display
show more
show less