Properties

Label 418.2.f.d.191.1
Level $418$
Weight $2$
Character 418.191
Analytic conductor $3.338$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [418,2,Mod(115,418)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(418, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("418.115");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 418 = 2 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 418.f (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.33774680449\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 191.1
Root \(0.809017 - 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 418.191
Dual form 418.2.f.d.267.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809017 - 0.587785i) q^{2} +(-0.618034 + 1.90211i) q^{3} +(0.309017 + 0.951057i) q^{4} +(0.500000 - 0.363271i) q^{5} +(1.61803 - 1.17557i) q^{6} +(0.572949 + 1.76336i) q^{7} +(0.309017 - 0.951057i) q^{8} +(-0.809017 - 0.587785i) q^{9} -0.618034 q^{10} +(0.309017 - 3.30220i) q^{11} -2.00000 q^{12} +(5.23607 + 3.80423i) q^{13} +(0.572949 - 1.76336i) q^{14} +(0.381966 + 1.17557i) q^{15} +(-0.809017 + 0.587785i) q^{16} +(-4.54508 + 3.30220i) q^{17} +(0.309017 + 0.951057i) q^{18} +(0.309017 - 0.951057i) q^{19} +(0.500000 + 0.363271i) q^{20} -3.70820 q^{21} +(-2.19098 + 2.48990i) q^{22} -1.14590 q^{23} +(1.61803 + 1.17557i) q^{24} +(-1.42705 + 4.39201i) q^{25} +(-2.00000 - 6.15537i) q^{26} +(-3.23607 + 2.35114i) q^{27} +(-1.50000 + 1.08981i) q^{28} +(0.472136 + 1.45309i) q^{29} +(0.381966 - 1.17557i) q^{30} +(-1.61803 - 1.17557i) q^{31} +1.00000 q^{32} +(6.09017 + 2.62866i) q^{33} +5.61803 q^{34} +(0.927051 + 0.673542i) q^{35} +(0.309017 - 0.951057i) q^{36} +(1.23607 + 3.80423i) q^{37} +(-0.809017 + 0.587785i) q^{38} +(-10.4721 + 7.60845i) q^{39} +(-0.190983 - 0.587785i) q^{40} +(-2.85410 + 8.78402i) q^{41} +(3.00000 + 2.17963i) q^{42} +2.09017 q^{43} +(3.23607 - 0.726543i) q^{44} -0.618034 q^{45} +(0.927051 + 0.673542i) q^{46} +(1.11803 - 3.44095i) q^{47} +(-0.618034 - 1.90211i) q^{48} +(2.88197 - 2.09387i) q^{49} +(3.73607 - 2.71441i) q^{50} +(-3.47214 - 10.6861i) q^{51} +(-2.00000 + 6.15537i) q^{52} +(7.47214 + 5.42882i) q^{53} +4.00000 q^{54} +(-1.04508 - 1.76336i) q^{55} +1.85410 q^{56} +(1.61803 + 1.17557i) q^{57} +(0.472136 - 1.45309i) q^{58} +(-3.85410 - 11.8617i) q^{59} +(-1.00000 + 0.726543i) q^{60} +(-8.54508 + 6.20837i) q^{61} +(0.618034 + 1.90211i) q^{62} +(0.572949 - 1.76336i) q^{63} +(-0.809017 - 0.587785i) q^{64} +4.00000 q^{65} +(-3.38197 - 5.70634i) q^{66} +7.23607 q^{67} +(-4.54508 - 3.30220i) q^{68} +(0.708204 - 2.17963i) q^{69} +(-0.354102 - 1.08981i) q^{70} +(10.4721 - 7.60845i) q^{71} +(-0.809017 + 0.587785i) q^{72} +(-4.32624 - 13.3148i) q^{73} +(1.23607 - 3.80423i) q^{74} +(-7.47214 - 5.42882i) q^{75} +1.00000 q^{76} +(6.00000 - 1.34708i) q^{77} +12.9443 q^{78} +(7.85410 + 5.70634i) q^{79} +(-0.190983 + 0.587785i) q^{80} +(-3.39919 - 10.4616i) q^{81} +(7.47214 - 5.42882i) q^{82} +(-8.73607 + 6.34712i) q^{83} +(-1.14590 - 3.52671i) q^{84} +(-1.07295 + 3.30220i) q^{85} +(-1.69098 - 1.22857i) q^{86} -3.05573 q^{87} +(-3.04508 - 1.31433i) q^{88} +6.76393 q^{89} +(0.500000 + 0.363271i) q^{90} +(-3.70820 + 11.4127i) q^{91} +(-0.354102 - 1.08981i) q^{92} +(3.23607 - 2.35114i) q^{93} +(-2.92705 + 2.12663i) q^{94} +(-0.190983 - 0.587785i) q^{95} +(-0.618034 + 1.90211i) q^{96} +(3.85410 + 2.80017i) q^{97} -3.56231 q^{98} +(-2.19098 + 2.48990i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} + 2 q^{3} - q^{4} + 2 q^{5} + 2 q^{6} + 9 q^{7} - q^{8} - q^{9} + 2 q^{10} - q^{11} - 8 q^{12} + 12 q^{13} + 9 q^{14} + 6 q^{15} - q^{16} - 7 q^{17} - q^{18} - q^{19} + 2 q^{20} + 12 q^{21}+ \cdots - 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/418\mathbb{Z}\right)^\times\).

\(n\) \(287\) \(343\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 0.587785i −0.572061 0.415627i
\(3\) −0.618034 + 1.90211i −0.356822 + 1.09819i 0.598123 + 0.801404i \(0.295913\pi\)
−0.954945 + 0.296781i \(0.904087\pi\)
\(4\) 0.309017 + 0.951057i 0.154508 + 0.475528i
\(5\) 0.500000 0.363271i 0.223607 0.162460i −0.470342 0.882484i \(-0.655869\pi\)
0.693949 + 0.720024i \(0.255869\pi\)
\(6\) 1.61803 1.17557i 0.660560 0.479925i
\(7\) 0.572949 + 1.76336i 0.216554 + 0.666486i 0.999040 + 0.0438167i \(0.0139517\pi\)
−0.782485 + 0.622669i \(0.786048\pi\)
\(8\) 0.309017 0.951057i 0.109254 0.336249i
\(9\) −0.809017 0.587785i −0.269672 0.195928i
\(10\) −0.618034 −0.195440
\(11\) 0.309017 3.30220i 0.0931721 0.995650i
\(12\) −2.00000 −0.577350
\(13\) 5.23607 + 3.80423i 1.45222 + 1.05510i 0.985305 + 0.170802i \(0.0546359\pi\)
0.466919 + 0.884300i \(0.345364\pi\)
\(14\) 0.572949 1.76336i 0.153127 0.471277i
\(15\) 0.381966 + 1.17557i 0.0986232 + 0.303531i
\(16\) −0.809017 + 0.587785i −0.202254 + 0.146946i
\(17\) −4.54508 + 3.30220i −1.10235 + 0.800901i −0.981441 0.191764i \(-0.938579\pi\)
−0.120904 + 0.992664i \(0.538579\pi\)
\(18\) 0.309017 + 0.951057i 0.0728360 + 0.224166i
\(19\) 0.309017 0.951057i 0.0708934 0.218187i
\(20\) 0.500000 + 0.363271i 0.111803 + 0.0812299i
\(21\) −3.70820 −0.809196
\(22\) −2.19098 + 2.48990i −0.467119 + 0.530848i
\(23\) −1.14590 −0.238936 −0.119468 0.992838i \(-0.538119\pi\)
−0.119468 + 0.992838i \(0.538119\pi\)
\(24\) 1.61803 + 1.17557i 0.330280 + 0.239962i
\(25\) −1.42705 + 4.39201i −0.285410 + 0.878402i
\(26\) −2.00000 6.15537i −0.392232 1.20717i
\(27\) −3.23607 + 2.35114i −0.622782 + 0.452477i
\(28\) −1.50000 + 1.08981i −0.283473 + 0.205955i
\(29\) 0.472136 + 1.45309i 0.0876734 + 0.269831i 0.985275 0.170976i \(-0.0546922\pi\)
−0.897602 + 0.440807i \(0.854692\pi\)
\(30\) 0.381966 1.17557i 0.0697371 0.214629i
\(31\) −1.61803 1.17557i −0.290607 0.211139i 0.432923 0.901431i \(-0.357482\pi\)
−0.723531 + 0.690292i \(0.757482\pi\)
\(32\) 1.00000 0.176777
\(33\) 6.09017 + 2.62866i 1.06016 + 0.457590i
\(34\) 5.61803 0.963485
\(35\) 0.927051 + 0.673542i 0.156700 + 0.113849i
\(36\) 0.309017 0.951057i 0.0515028 0.158509i
\(37\) 1.23607 + 3.80423i 0.203208 + 0.625411i 0.999782 + 0.0208697i \(0.00664352\pi\)
−0.796574 + 0.604541i \(0.793356\pi\)
\(38\) −0.809017 + 0.587785i −0.131240 + 0.0953514i
\(39\) −10.4721 + 7.60845i −1.67688 + 1.21833i
\(40\) −0.190983 0.587785i −0.0301971 0.0929370i
\(41\) −2.85410 + 8.78402i −0.445736 + 1.37183i 0.435939 + 0.899976i \(0.356416\pi\)
−0.881675 + 0.471858i \(0.843584\pi\)
\(42\) 3.00000 + 2.17963i 0.462910 + 0.336324i
\(43\) 2.09017 0.318748 0.159374 0.987218i \(-0.449052\pi\)
0.159374 + 0.987218i \(0.449052\pi\)
\(44\) 3.23607 0.726543i 0.487856 0.109530i
\(45\) −0.618034 −0.0921311
\(46\) 0.927051 + 0.673542i 0.136686 + 0.0993083i
\(47\) 1.11803 3.44095i 0.163082 0.501915i −0.835808 0.549022i \(-0.815000\pi\)
0.998890 + 0.0471073i \(0.0150003\pi\)
\(48\) −0.618034 1.90211i −0.0892055 0.274546i
\(49\) 2.88197 2.09387i 0.411709 0.299124i
\(50\) 3.73607 2.71441i 0.528360 0.383876i
\(51\) −3.47214 10.6861i −0.486196 1.49636i
\(52\) −2.00000 + 6.15537i −0.277350 + 0.853596i
\(53\) 7.47214 + 5.42882i 1.02638 + 0.745706i 0.967580 0.252564i \(-0.0812737\pi\)
0.0587965 + 0.998270i \(0.481274\pi\)
\(54\) 4.00000 0.544331
\(55\) −1.04508 1.76336i −0.140919 0.237771i
\(56\) 1.85410 0.247765
\(57\) 1.61803 + 1.17557i 0.214314 + 0.155708i
\(58\) 0.472136 1.45309i 0.0619945 0.190799i
\(59\) −3.85410 11.8617i −0.501761 1.54426i −0.806148 0.591714i \(-0.798451\pi\)
0.304387 0.952549i \(-0.401549\pi\)
\(60\) −1.00000 + 0.726543i −0.129099 + 0.0937962i
\(61\) −8.54508 + 6.20837i −1.09409 + 0.794900i −0.980085 0.198581i \(-0.936367\pi\)
−0.114001 + 0.993481i \(0.536367\pi\)
\(62\) 0.618034 + 1.90211i 0.0784904 + 0.241569i
\(63\) 0.572949 1.76336i 0.0721848 0.222162i
\(64\) −0.809017 0.587785i −0.101127 0.0734732i
\(65\) 4.00000 0.496139
\(66\) −3.38197 5.70634i −0.416291 0.702402i
\(67\) 7.23607 0.884026 0.442013 0.897009i \(-0.354264\pi\)
0.442013 + 0.897009i \(0.354264\pi\)
\(68\) −4.54508 3.30220i −0.551173 0.400450i
\(69\) 0.708204 2.17963i 0.0852577 0.262396i
\(70\) −0.354102 1.08981i −0.0423233 0.130258i
\(71\) 10.4721 7.60845i 1.24281 0.902957i 0.245031 0.969515i \(-0.421202\pi\)
0.997783 + 0.0665580i \(0.0212017\pi\)
\(72\) −0.809017 + 0.587785i −0.0953436 + 0.0692712i
\(73\) −4.32624 13.3148i −0.506348 1.55838i −0.798493 0.602004i \(-0.794369\pi\)
0.292145 0.956374i \(-0.405631\pi\)
\(74\) 1.23607 3.80423i 0.143690 0.442232i
\(75\) −7.47214 5.42882i −0.862808 0.626867i
\(76\) 1.00000 0.114708
\(77\) 6.00000 1.34708i 0.683763 0.153514i
\(78\) 12.9443 1.46565
\(79\) 7.85410 + 5.70634i 0.883656 + 0.642013i 0.934216 0.356708i \(-0.116101\pi\)
−0.0505605 + 0.998721i \(0.516101\pi\)
\(80\) −0.190983 + 0.587785i −0.0213525 + 0.0657164i
\(81\) −3.39919 10.4616i −0.377687 1.16240i
\(82\) 7.47214 5.42882i 0.825159 0.599513i
\(83\) −8.73607 + 6.34712i −0.958908 + 0.696687i −0.952897 0.303294i \(-0.901913\pi\)
−0.00601115 + 0.999982i \(0.501913\pi\)
\(84\) −1.14590 3.52671i −0.125028 0.384796i
\(85\) −1.07295 + 3.30220i −0.116378 + 0.358174i
\(86\) −1.69098 1.22857i −0.182343 0.132480i
\(87\) −3.05573 −0.327608
\(88\) −3.04508 1.31433i −0.324607 0.140108i
\(89\) 6.76393 0.716975 0.358488 0.933534i \(-0.383293\pi\)
0.358488 + 0.933534i \(0.383293\pi\)
\(90\) 0.500000 + 0.363271i 0.0527046 + 0.0382922i
\(91\) −3.70820 + 11.4127i −0.388725 + 1.19637i
\(92\) −0.354102 1.08981i −0.0369177 0.113621i
\(93\) 3.23607 2.35114i 0.335565 0.243802i
\(94\) −2.92705 + 2.12663i −0.301902 + 0.219345i
\(95\) −0.190983 0.587785i −0.0195944 0.0603055i
\(96\) −0.618034 + 1.90211i −0.0630778 + 0.194134i
\(97\) 3.85410 + 2.80017i 0.391325 + 0.284314i 0.765998 0.642843i \(-0.222245\pi\)
−0.374673 + 0.927157i \(0.622245\pi\)
\(98\) −3.56231 −0.359847
\(99\) −2.19098 + 2.48990i −0.220202 + 0.250244i
\(100\) −4.61803 −0.461803
\(101\) −4.50000 3.26944i −0.447767 0.325322i 0.340947 0.940083i \(-0.389252\pi\)
−0.788713 + 0.614761i \(0.789252\pi\)
\(102\) −3.47214 + 10.6861i −0.343793 + 1.05809i
\(103\) −2.85410 8.78402i −0.281223 0.865515i −0.987505 0.157585i \(-0.949629\pi\)
0.706282 0.707930i \(-0.250371\pi\)
\(104\) 5.23607 3.80423i 0.513439 0.373035i
\(105\) −1.85410 + 1.34708i −0.180942 + 0.131462i
\(106\) −2.85410 8.78402i −0.277215 0.853180i
\(107\) 1.85410 5.70634i 0.179243 0.551653i −0.820559 0.571562i \(-0.806338\pi\)
0.999802 + 0.0199092i \(0.00633772\pi\)
\(108\) −3.23607 2.35114i −0.311391 0.226239i
\(109\) −1.23607 −0.118394 −0.0591969 0.998246i \(-0.518854\pi\)
−0.0591969 + 0.998246i \(0.518854\pi\)
\(110\) −0.190983 + 2.04087i −0.0182095 + 0.194589i
\(111\) −8.00000 −0.759326
\(112\) −1.50000 1.08981i −0.141737 0.102978i
\(113\) 4.47214 13.7638i 0.420703 1.29479i −0.486346 0.873766i \(-0.661671\pi\)
0.907049 0.421025i \(-0.138329\pi\)
\(114\) −0.618034 1.90211i −0.0578842 0.178149i
\(115\) −0.572949 + 0.416272i −0.0534278 + 0.0388175i
\(116\) −1.23607 + 0.898056i −0.114766 + 0.0833824i
\(117\) −2.00000 6.15537i −0.184900 0.569064i
\(118\) −3.85410 + 11.8617i −0.354799 + 1.09196i
\(119\) −8.42705 6.12261i −0.772506 0.561259i
\(120\) 1.23607 0.112837
\(121\) −10.8090 2.04087i −0.982638 0.185534i
\(122\) 10.5623 0.956266
\(123\) −14.9443 10.8576i −1.34748 0.979001i
\(124\) 0.618034 1.90211i 0.0555011 0.170815i
\(125\) 1.83688 + 5.65334i 0.164296 + 0.505650i
\(126\) −1.50000 + 1.08981i −0.133631 + 0.0970883i
\(127\) −6.00000 + 4.35926i −0.532414 + 0.386821i −0.821260 0.570554i \(-0.806728\pi\)
0.288846 + 0.957376i \(0.406728\pi\)
\(128\) 0.309017 + 0.951057i 0.0273135 + 0.0840623i
\(129\) −1.29180 + 3.97574i −0.113736 + 0.350044i
\(130\) −3.23607 2.35114i −0.283822 0.206209i
\(131\) −0.909830 −0.0794922 −0.0397461 0.999210i \(-0.512655\pi\)
−0.0397461 + 0.999210i \(0.512655\pi\)
\(132\) −0.618034 + 6.60440i −0.0537930 + 0.574839i
\(133\) 1.85410 0.160771
\(134\) −5.85410 4.25325i −0.505717 0.367425i
\(135\) −0.763932 + 2.35114i −0.0657488 + 0.202354i
\(136\) 1.73607 + 5.34307i 0.148867 + 0.458164i
\(137\) 12.2082 8.86978i 1.04302 0.757796i 0.0721450 0.997394i \(-0.477016\pi\)
0.970872 + 0.239598i \(0.0770156\pi\)
\(138\) −1.85410 + 1.34708i −0.157832 + 0.114671i
\(139\) 1.64590 + 5.06555i 0.139603 + 0.429655i 0.996278 0.0862030i \(-0.0274734\pi\)
−0.856674 + 0.515858i \(0.827473\pi\)
\(140\) −0.354102 + 1.08981i −0.0299271 + 0.0921061i
\(141\) 5.85410 + 4.25325i 0.493004 + 0.358189i
\(142\) −12.9443 −1.08626
\(143\) 14.1803 16.1150i 1.18582 1.34760i
\(144\) 1.00000 0.0833333
\(145\) 0.763932 + 0.555029i 0.0634411 + 0.0460927i
\(146\) −4.32624 + 13.3148i −0.358042 + 1.10194i
\(147\) 2.20163 + 6.77591i 0.181587 + 0.558868i
\(148\) −3.23607 + 2.35114i −0.266003 + 0.193263i
\(149\) 16.5623 12.0332i 1.35684 0.985800i 0.358198 0.933646i \(-0.383391\pi\)
0.998639 0.0521541i \(-0.0166087\pi\)
\(150\) 2.85410 + 8.78402i 0.233036 + 0.717212i
\(151\) −0.0901699 + 0.277515i −0.00733793 + 0.0225838i −0.954658 0.297703i \(-0.903779\pi\)
0.947321 + 0.320287i \(0.103779\pi\)
\(152\) −0.809017 0.587785i −0.0656199 0.0476757i
\(153\) 5.61803 0.454191
\(154\) −5.64590 2.43690i −0.454959 0.196371i
\(155\) −1.23607 −0.0992834
\(156\) −10.4721 7.60845i −0.838442 0.609164i
\(157\) 2.37132 7.29818i 0.189252 0.582458i −0.810743 0.585402i \(-0.800937\pi\)
0.999996 + 0.00294327i \(0.000936872\pi\)
\(158\) −3.00000 9.23305i −0.238667 0.734542i
\(159\) −14.9443 + 10.8576i −1.18516 + 0.861068i
\(160\) 0.500000 0.363271i 0.0395285 0.0287191i
\(161\) −0.656541 2.02063i −0.0517427 0.159248i
\(162\) −3.39919 + 10.4616i −0.267065 + 0.821943i
\(163\) 13.2082 + 9.59632i 1.03455 + 0.751642i 0.969214 0.246222i \(-0.0791891\pi\)
0.0653328 + 0.997864i \(0.479189\pi\)
\(164\) −9.23607 −0.721216
\(165\) 4.00000 0.898056i 0.311400 0.0699136i
\(166\) 10.7984 0.838116
\(167\) 20.5623 + 14.9394i 1.59116 + 1.15604i 0.902264 + 0.431183i \(0.141904\pi\)
0.688895 + 0.724862i \(0.258096\pi\)
\(168\) −1.14590 + 3.52671i −0.0884080 + 0.272092i
\(169\) 8.92705 + 27.4746i 0.686696 + 2.11343i
\(170\) 2.80902 2.04087i 0.215442 0.156528i
\(171\) −0.809017 + 0.587785i −0.0618671 + 0.0449491i
\(172\) 0.645898 + 1.98787i 0.0492493 + 0.151574i
\(173\) −0.944272 + 2.90617i −0.0717917 + 0.220952i −0.980514 0.196449i \(-0.937059\pi\)
0.908722 + 0.417401i \(0.137059\pi\)
\(174\) 2.47214 + 1.79611i 0.187412 + 0.136163i
\(175\) −8.56231 −0.647249
\(176\) 1.69098 + 2.85317i 0.127463 + 0.215066i
\(177\) 24.9443 1.87493
\(178\) −5.47214 3.97574i −0.410154 0.297994i
\(179\) −6.23607 + 19.1926i −0.466106 + 1.43453i 0.391481 + 0.920186i \(0.371963\pi\)
−0.857587 + 0.514339i \(0.828037\pi\)
\(180\) −0.190983 0.587785i −0.0142350 0.0438109i
\(181\) 11.0902 8.05748i 0.824326 0.598908i −0.0936225 0.995608i \(-0.529845\pi\)
0.917948 + 0.396700i \(0.129845\pi\)
\(182\) 9.70820 7.05342i 0.719620 0.522834i
\(183\) −6.52786 20.0907i −0.482554 1.48515i
\(184\) −0.354102 + 1.08981i −0.0261047 + 0.0803421i
\(185\) 2.00000 + 1.45309i 0.147043 + 0.106833i
\(186\) −4.00000 −0.293294
\(187\) 9.50000 + 16.0292i 0.694709 + 1.17217i
\(188\) 3.61803 0.263872
\(189\) −6.00000 4.35926i −0.436436 0.317089i
\(190\) −0.190983 + 0.587785i −0.0138554 + 0.0426424i
\(191\) −7.42705 22.8581i −0.537403 1.65395i −0.738400 0.674363i \(-0.764418\pi\)
0.200997 0.979592i \(-0.435582\pi\)
\(192\) 1.61803 1.17557i 0.116772 0.0848395i
\(193\) 17.0902 12.4167i 1.23018 0.893776i 0.233274 0.972411i \(-0.425056\pi\)
0.996903 + 0.0786349i \(0.0250561\pi\)
\(194\) −1.47214 4.53077i −0.105693 0.325290i
\(195\) −2.47214 + 7.60845i −0.177033 + 0.544853i
\(196\) 2.88197 + 2.09387i 0.205855 + 0.149562i
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 3.23607 0.726543i 0.229977 0.0516331i
\(199\) −5.56231 −0.394301 −0.197151 0.980373i \(-0.563169\pi\)
−0.197151 + 0.980373i \(0.563169\pi\)
\(200\) 3.73607 + 2.71441i 0.264180 + 0.191938i
\(201\) −4.47214 + 13.7638i −0.315440 + 0.970825i
\(202\) 1.71885 + 5.29007i 0.120938 + 0.372208i
\(203\) −2.29180 + 1.66509i −0.160853 + 0.116866i
\(204\) 9.09017 6.60440i 0.636439 0.462400i
\(205\) 1.76393 + 5.42882i 0.123198 + 0.379166i
\(206\) −2.85410 + 8.78402i −0.198855 + 0.612012i
\(207\) 0.927051 + 0.673542i 0.0644345 + 0.0468144i
\(208\) −6.47214 −0.448762
\(209\) −3.04508 1.31433i −0.210633 0.0909140i
\(210\) 2.29180 0.158149
\(211\) 9.23607 + 6.71040i 0.635837 + 0.461963i 0.858418 0.512952i \(-0.171448\pi\)
−0.222580 + 0.974914i \(0.571448\pi\)
\(212\) −2.85410 + 8.78402i −0.196021 + 0.603289i
\(213\) 8.00000 + 24.6215i 0.548151 + 1.68704i
\(214\) −4.85410 + 3.52671i −0.331820 + 0.241081i
\(215\) 1.04508 0.759299i 0.0712742 0.0517837i
\(216\) 1.23607 + 3.80423i 0.0841038 + 0.258845i
\(217\) 1.14590 3.52671i 0.0777886 0.239409i
\(218\) 1.00000 + 0.726543i 0.0677285 + 0.0492077i
\(219\) 28.0000 1.89206
\(220\) 1.35410 1.53884i 0.0912935 0.103749i
\(221\) −36.3607 −2.44588
\(222\) 6.47214 + 4.70228i 0.434381 + 0.315597i
\(223\) 1.14590 3.52671i 0.0767350 0.236166i −0.905330 0.424709i \(-0.860376\pi\)
0.982065 + 0.188543i \(0.0603764\pi\)
\(224\) 0.572949 + 1.76336i 0.0382818 + 0.117819i
\(225\) 3.73607 2.71441i 0.249071 0.180961i
\(226\) −11.7082 + 8.50651i −0.778818 + 0.565845i
\(227\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(228\) −0.618034 + 1.90211i −0.0409303 + 0.125971i
\(229\) −19.6353 14.2658i −1.29753 0.942714i −0.297606 0.954689i \(-0.596188\pi\)
−0.999928 + 0.0119751i \(0.996188\pi\)
\(230\) 0.708204 0.0466976
\(231\) −1.14590 + 12.2452i −0.0753946 + 0.805676i
\(232\) 1.52786 0.100309
\(233\) 15.2082 + 11.0494i 0.996323 + 0.723871i 0.961297 0.275516i \(-0.0888486\pi\)
0.0350260 + 0.999386i \(0.488849\pi\)
\(234\) −2.00000 + 6.15537i −0.130744 + 0.402389i
\(235\) −0.690983 2.12663i −0.0450748 0.138726i
\(236\) 10.0902 7.33094i 0.656814 0.477203i
\(237\) −15.7082 + 11.4127i −1.02036 + 0.741333i
\(238\) 3.21885 + 9.90659i 0.208647 + 0.642149i
\(239\) 0.826238 2.54290i 0.0534449 0.164486i −0.920771 0.390103i \(-0.872440\pi\)
0.974216 + 0.225616i \(0.0724395\pi\)
\(240\) −1.00000 0.726543i −0.0645497 0.0468981i
\(241\) 10.0000 0.644157 0.322078 0.946713i \(-0.395619\pi\)
0.322078 + 0.946713i \(0.395619\pi\)
\(242\) 7.54508 + 8.00448i 0.485016 + 0.514547i
\(243\) 10.0000 0.641500
\(244\) −8.54508 6.20837i −0.547043 0.397450i
\(245\) 0.680340 2.09387i 0.0434653 0.133773i
\(246\) 5.70820 + 17.5680i 0.363942 + 1.12010i
\(247\) 5.23607 3.80423i 0.333163 0.242057i
\(248\) −1.61803 + 1.17557i −0.102745 + 0.0746488i
\(249\) −6.67376 20.5397i −0.422932 1.30165i
\(250\) 1.83688 5.65334i 0.116175 0.357549i
\(251\) −8.78115 6.37988i −0.554261 0.402695i 0.275093 0.961418i \(-0.411291\pi\)
−0.829354 + 0.558723i \(0.811291\pi\)
\(252\) 1.85410 0.116797
\(253\) −0.354102 + 3.78398i −0.0222622 + 0.237897i
\(254\) 7.41641 0.465347
\(255\) −5.61803 4.08174i −0.351815 0.255609i
\(256\) 0.309017 0.951057i 0.0193136 0.0594410i
\(257\) −3.38197 10.4086i −0.210961 0.649272i −0.999416 0.0341788i \(-0.989118\pi\)
0.788454 0.615093i \(-0.210882\pi\)
\(258\) 3.38197 2.45714i 0.210552 0.152975i
\(259\) −6.00000 + 4.35926i −0.372822 + 0.270871i
\(260\) 1.23607 + 3.80423i 0.0766577 + 0.235928i
\(261\) 0.472136 1.45309i 0.0292245 0.0899437i
\(262\) 0.736068 + 0.534785i 0.0454744 + 0.0330391i
\(263\) 6.47214 0.399089 0.199544 0.979889i \(-0.436054\pi\)
0.199544 + 0.979889i \(0.436054\pi\)
\(264\) 4.38197 4.97980i 0.269691 0.306485i
\(265\) 5.70820 0.350652
\(266\) −1.50000 1.08981i −0.0919709 0.0668208i
\(267\) −4.18034 + 12.8658i −0.255833 + 0.787372i
\(268\) 2.23607 + 6.88191i 0.136590 + 0.420380i
\(269\) −15.0902 + 10.9637i −0.920064 + 0.668466i −0.943540 0.331259i \(-0.892527\pi\)
0.0234760 + 0.999724i \(0.492527\pi\)
\(270\) 2.00000 1.45309i 0.121716 0.0884319i
\(271\) −9.64590 29.6870i −0.585947 1.80336i −0.595435 0.803403i \(-0.703020\pi\)
0.00948887 0.999955i \(-0.496980\pi\)
\(272\) 1.73607 5.34307i 0.105265 0.323971i
\(273\) −19.4164 14.1068i −1.17513 0.853785i
\(274\) −15.0902 −0.911631
\(275\) 14.0623 + 6.06961i 0.847989 + 0.366011i
\(276\) 2.29180 0.137950
\(277\) 2.85410 + 2.07363i 0.171486 + 0.124592i 0.670218 0.742164i \(-0.266201\pi\)
−0.498732 + 0.866757i \(0.666201\pi\)
\(278\) 1.64590 5.06555i 0.0987144 0.303812i
\(279\) 0.618034 + 1.90211i 0.0370007 + 0.113877i
\(280\) 0.927051 0.673542i 0.0554019 0.0402518i
\(281\) −3.76393 + 2.73466i −0.224537 + 0.163136i −0.694367 0.719621i \(-0.744315\pi\)
0.469829 + 0.882757i \(0.344315\pi\)
\(282\) −2.23607 6.88191i −0.133156 0.409812i
\(283\) −2.95492 + 9.09429i −0.175651 + 0.540600i −0.999663 0.0259740i \(-0.991731\pi\)
0.824011 + 0.566574i \(0.191731\pi\)
\(284\) 10.4721 + 7.60845i 0.621407 + 0.451479i
\(285\) 1.23607 0.0732183
\(286\) −20.9443 + 4.70228i −1.23846 + 0.278052i
\(287\) −17.1246 −1.01083
\(288\) −0.809017 0.587785i −0.0476718 0.0346356i
\(289\) 4.50000 13.8496i 0.264706 0.814681i
\(290\) −0.291796 0.898056i −0.0171349 0.0527357i
\(291\) −7.70820 + 5.60034i −0.451863 + 0.328298i
\(292\) 11.3262 8.22899i 0.662818 0.481565i
\(293\) 0.201626 + 0.620541i 0.0117791 + 0.0362524i 0.956773 0.290835i \(-0.0939330\pi\)
−0.944994 + 0.327087i \(0.893933\pi\)
\(294\) 2.20163 6.77591i 0.128401 0.395179i
\(295\) −6.23607 4.53077i −0.363078 0.263792i
\(296\) 4.00000 0.232495
\(297\) 6.76393 + 11.4127i 0.392483 + 0.662231i
\(298\) −20.4721 −1.18592
\(299\) −6.00000 4.35926i −0.346989 0.252102i
\(300\) 2.85410 8.78402i 0.164782 0.507146i
\(301\) 1.19756 + 3.68571i 0.0690263 + 0.212441i
\(302\) 0.236068 0.171513i 0.0135842 0.00986949i
\(303\) 9.00000 6.53888i 0.517036 0.375649i
\(304\) 0.309017 + 0.951057i 0.0177233 + 0.0545468i
\(305\) −2.01722 + 6.20837i −0.115506 + 0.355490i
\(306\) −4.54508 3.30220i −0.259825 0.188774i
\(307\) −27.4164 −1.56474 −0.782369 0.622816i \(-0.785989\pi\)
−0.782369 + 0.622816i \(0.785989\pi\)
\(308\) 3.13525 + 5.29007i 0.178648 + 0.301430i
\(309\) 18.4721 1.05084
\(310\) 1.00000 + 0.726543i 0.0567962 + 0.0412648i
\(311\) −1.29837 + 3.99598i −0.0736240 + 0.226591i −0.981096 0.193521i \(-0.938009\pi\)
0.907472 + 0.420112i \(0.138009\pi\)
\(312\) 4.00000 + 12.3107i 0.226455 + 0.696958i
\(313\) 0.0729490 0.0530006i 0.00412332 0.00299577i −0.585722 0.810512i \(-0.699189\pi\)
0.589845 + 0.807516i \(0.299189\pi\)
\(314\) −6.20820 + 4.51052i −0.350349 + 0.254544i
\(315\) −0.354102 1.08981i −0.0199514 0.0614041i
\(316\) −3.00000 + 9.23305i −0.168763 + 0.519400i
\(317\) −1.76393 1.28157i −0.0990723 0.0719802i 0.537146 0.843489i \(-0.319502\pi\)
−0.636219 + 0.771509i \(0.719502\pi\)
\(318\) 18.4721 1.03587
\(319\) 4.94427 1.11006i 0.276826 0.0621513i
\(320\) −0.618034 −0.0345492
\(321\) 9.70820 + 7.05342i 0.541859 + 0.393684i
\(322\) −0.656541 + 2.02063i −0.0365876 + 0.112605i
\(323\) 1.73607 + 5.34307i 0.0965974 + 0.297296i
\(324\) 8.89919 6.46564i 0.494399 0.359202i
\(325\) −24.1803 + 17.5680i −1.34128 + 0.974500i
\(326\) −5.04508 15.5272i −0.279421 0.859971i
\(327\) 0.763932 2.35114i 0.0422455 0.130018i
\(328\) 7.47214 + 5.42882i 0.412580 + 0.299757i
\(329\) 6.70820 0.369835
\(330\) −3.76393 1.62460i −0.207198 0.0894312i
\(331\) −9.70820 −0.533611 −0.266806 0.963750i \(-0.585968\pi\)
−0.266806 + 0.963750i \(0.585968\pi\)
\(332\) −8.73607 6.34712i −0.479454 0.348344i
\(333\) 1.23607 3.80423i 0.0677361 0.208470i
\(334\) −7.85410 24.1724i −0.429757 1.32266i
\(335\) 3.61803 2.62866i 0.197674 0.143619i
\(336\) 3.00000 2.17963i 0.163663 0.118908i
\(337\) −5.27051 16.2210i −0.287103 0.883612i −0.985760 0.168156i \(-0.946219\pi\)
0.698657 0.715456i \(-0.253781\pi\)
\(338\) 8.92705 27.4746i 0.485568 1.49442i
\(339\) 23.4164 + 17.0130i 1.27180 + 0.924020i
\(340\) −3.47214 −0.188303
\(341\) −4.38197 + 4.97980i −0.237297 + 0.269671i
\(342\) 1.00000 0.0540738
\(343\) 15.8435 + 11.5109i 0.855466 + 0.621533i
\(344\) 0.645898 1.98787i 0.0348245 0.107179i
\(345\) −0.437694 1.34708i −0.0235647 0.0725246i
\(346\) 2.47214 1.79611i 0.132903 0.0965596i
\(347\) −6.92705 + 5.03280i −0.371864 + 0.270175i −0.757983 0.652274i \(-0.773815\pi\)
0.386120 + 0.922449i \(0.373815\pi\)
\(348\) −0.944272 2.90617i −0.0506183 0.155787i
\(349\) 6.48278 19.9519i 0.347015 1.06800i −0.613481 0.789710i \(-0.710231\pi\)
0.960496 0.278293i \(-0.0897688\pi\)
\(350\) 6.92705 + 5.03280i 0.370266 + 0.269014i
\(351\) −25.8885 −1.38183
\(352\) 0.309017 3.30220i 0.0164707 0.176008i
\(353\) 15.3820 0.818699 0.409350 0.912378i \(-0.365756\pi\)
0.409350 + 0.912378i \(0.365756\pi\)
\(354\) −20.1803 14.6619i −1.07257 0.779270i
\(355\) 2.47214 7.60845i 0.131207 0.403815i
\(356\) 2.09017 + 6.43288i 0.110779 + 0.340942i
\(357\) 16.8541 12.2452i 0.892014 0.648086i
\(358\) 16.3262 11.8617i 0.862868 0.626911i
\(359\) −1.88197 5.79210i −0.0993264 0.305695i 0.889031 0.457848i \(-0.151379\pi\)
−0.988357 + 0.152153i \(0.951379\pi\)
\(360\) −0.190983 + 0.587785i −0.0100657 + 0.0309790i
\(361\) −0.809017 0.587785i −0.0425798 0.0309361i
\(362\) −13.7082 −0.720487
\(363\) 10.5623 19.2986i 0.554377 1.01292i
\(364\) −12.0000 −0.628971
\(365\) −7.00000 5.08580i −0.366397 0.266203i
\(366\) −6.52786 + 20.0907i −0.341217 + 1.05016i
\(367\) −6.66312 20.5070i −0.347812 1.07046i −0.960061 0.279790i \(-0.909735\pi\)
0.612249 0.790665i \(-0.290265\pi\)
\(368\) 0.927051 0.673542i 0.0483259 0.0351108i
\(369\) 7.47214 5.42882i 0.388984 0.282613i
\(370\) −0.763932 2.35114i −0.0397149 0.122230i
\(371\) −5.29180 + 16.2865i −0.274736 + 0.845552i
\(372\) 3.23607 + 2.35114i 0.167782 + 0.121901i
\(373\) −30.3607 −1.57202 −0.786008 0.618216i \(-0.787856\pi\)
−0.786008 + 0.618216i \(0.787856\pi\)
\(374\) 1.73607 18.5519i 0.0897699 0.959294i
\(375\) −11.8885 −0.613922
\(376\) −2.92705 2.12663i −0.150951 0.109672i
\(377\) −3.05573 + 9.40456i −0.157378 + 0.484360i
\(378\) 2.29180 + 7.05342i 0.117877 + 0.362789i
\(379\) −1.00000 + 0.726543i −0.0513665 + 0.0373200i −0.613172 0.789949i \(-0.710107\pi\)
0.561806 + 0.827269i \(0.310107\pi\)
\(380\) 0.500000 0.363271i 0.0256495 0.0186354i
\(381\) −4.58359 14.1068i −0.234825 0.722716i
\(382\) −7.42705 + 22.8581i −0.380001 + 1.16952i
\(383\) −12.0902 8.78402i −0.617779 0.448843i 0.234366 0.972148i \(-0.424699\pi\)
−0.852145 + 0.523306i \(0.824699\pi\)
\(384\) −2.00000 −0.102062
\(385\) 2.51064 2.85317i 0.127954 0.145411i
\(386\) −21.1246 −1.07521
\(387\) −1.69098 1.22857i −0.0859575 0.0624518i
\(388\) −1.47214 + 4.53077i −0.0747364 + 0.230015i
\(389\) 4.02786 + 12.3965i 0.204221 + 0.628527i 0.999744 + 0.0226045i \(0.00719586\pi\)
−0.795524 + 0.605923i \(0.792804\pi\)
\(390\) 6.47214 4.70228i 0.327729 0.238109i
\(391\) 5.20820 3.78398i 0.263390 0.191364i
\(392\) −1.10081 3.38795i −0.0555995 0.171118i
\(393\) 0.562306 1.73060i 0.0283646 0.0872972i
\(394\) 14.5623 + 10.5801i 0.733638 + 0.533019i
\(395\) 6.00000 0.301893
\(396\) −3.04508 1.31433i −0.153021 0.0660475i
\(397\) 20.8541 1.04664 0.523319 0.852137i \(-0.324694\pi\)
0.523319 + 0.852137i \(0.324694\pi\)
\(398\) 4.50000 + 3.26944i 0.225565 + 0.163882i
\(399\) −1.14590 + 3.52671i −0.0573667 + 0.176556i
\(400\) −1.42705 4.39201i −0.0713525 0.219601i
\(401\) −10.0902 + 7.33094i −0.503879 + 0.366090i −0.810497 0.585743i \(-0.800803\pi\)
0.306618 + 0.951833i \(0.400803\pi\)
\(402\) 11.7082 8.50651i 0.583952 0.424266i
\(403\) −4.00000 12.3107i −0.199254 0.613241i
\(404\) 1.71885 5.29007i 0.0855158 0.263191i
\(405\) −5.50000 3.99598i −0.273297 0.198562i
\(406\) 2.83282 0.140590
\(407\) 12.9443 2.90617i 0.641624 0.144054i
\(408\) −11.2361 −0.556268
\(409\) 18.5623 + 13.4863i 0.917847 + 0.666855i 0.942987 0.332829i \(-0.108003\pi\)
−0.0251402 + 0.999684i \(0.508003\pi\)
\(410\) 1.76393 5.42882i 0.0871144 0.268111i
\(411\) 9.32624 + 28.7032i 0.460029 + 1.41582i
\(412\) 7.47214 5.42882i 0.368126 0.267459i
\(413\) 18.7082 13.5923i 0.920571 0.668834i
\(414\) −0.354102 1.08981i −0.0174032 0.0535614i
\(415\) −2.06231 + 6.34712i −0.101235 + 0.311568i
\(416\) 5.23607 + 3.80423i 0.256719 + 0.186518i
\(417\) −10.6525 −0.521654
\(418\) 1.69098 + 2.85317i 0.0827087 + 0.139553i
\(419\) 9.32624 0.455617 0.227808 0.973706i \(-0.426844\pi\)
0.227808 + 0.973706i \(0.426844\pi\)
\(420\) −1.85410 1.34708i −0.0904709 0.0657310i
\(421\) 8.65248 26.6296i 0.421696 1.29785i −0.484427 0.874832i \(-0.660972\pi\)
0.906123 0.423015i \(-0.139028\pi\)
\(422\) −3.52786 10.8576i −0.171734 0.528542i
\(423\) −2.92705 + 2.12663i −0.142318 + 0.103400i
\(424\) 7.47214 5.42882i 0.362879 0.263647i
\(425\) −8.01722 24.6745i −0.388892 1.19689i
\(426\) 8.00000 24.6215i 0.387601 1.19291i
\(427\) −15.8435 11.5109i −0.766719 0.557054i
\(428\) 6.00000 0.290021
\(429\) 21.8885 + 36.9322i 1.05679 + 1.78310i
\(430\) −1.29180 −0.0622959
\(431\) −29.0344 21.0948i −1.39854 1.01610i −0.994867 0.101195i \(-0.967733\pi\)
−0.403673 0.914903i \(-0.632267\pi\)
\(432\) 1.23607 3.80423i 0.0594703 0.183031i
\(433\) 1.70820 + 5.25731i 0.0820910 + 0.252650i 0.983675 0.179954i \(-0.0575948\pi\)
−0.901584 + 0.432604i \(0.857595\pi\)
\(434\) −3.00000 + 2.17963i −0.144005 + 0.104625i
\(435\) −1.52786 + 1.11006i −0.0732555 + 0.0532232i
\(436\) −0.381966 1.17557i −0.0182929 0.0562996i
\(437\) −0.354102 + 1.08981i −0.0169390 + 0.0521329i
\(438\) −22.6525 16.4580i −1.08238 0.786393i
\(439\) 23.1246 1.10368 0.551839 0.833951i \(-0.313926\pi\)
0.551839 + 0.833951i \(0.313926\pi\)
\(440\) −2.00000 + 0.449028i −0.0953463 + 0.0214066i
\(441\) −3.56231 −0.169634
\(442\) 29.4164 + 21.3723i 1.39920 + 1.01658i
\(443\) 4.39261 13.5191i 0.208699 0.642310i −0.790842 0.612020i \(-0.790357\pi\)
0.999541 0.0302896i \(-0.00964296\pi\)
\(444\) −2.47214 7.60845i −0.117322 0.361081i
\(445\) 3.38197 2.45714i 0.160321 0.116480i
\(446\) −3.00000 + 2.17963i −0.142054 + 0.103208i
\(447\) 12.6525 + 38.9403i 0.598442 + 1.84181i
\(448\) 0.572949 1.76336i 0.0270693 0.0833107i
\(449\) 6.61803 + 4.80828i 0.312324 + 0.226917i 0.732893 0.680344i \(-0.238169\pi\)
−0.420569 + 0.907261i \(0.638169\pi\)
\(450\) −4.61803 −0.217696
\(451\) 28.1246 + 12.1392i 1.32434 + 0.571614i
\(452\) 14.4721 0.680712
\(453\) −0.472136 0.343027i −0.0221829 0.0161168i
\(454\) 0 0
\(455\) 2.29180 + 7.05342i 0.107441 + 0.330670i
\(456\) 1.61803 1.17557i 0.0757714 0.0550511i
\(457\) 18.9164 13.7436i 0.884872 0.642897i −0.0496637 0.998766i \(-0.515815\pi\)
0.934536 + 0.355869i \(0.115815\pi\)
\(458\) 7.50000 + 23.0826i 0.350452 + 1.07858i
\(459\) 6.94427 21.3723i 0.324131 0.997572i
\(460\) −0.572949 0.416272i −0.0267139 0.0194088i
\(461\) 5.20163 0.242264 0.121132 0.992636i \(-0.461348\pi\)
0.121132 + 0.992636i \(0.461348\pi\)
\(462\) 8.12461 9.23305i 0.377991 0.429560i
\(463\) 2.79837 0.130051 0.0650257 0.997884i \(-0.479287\pi\)
0.0650257 + 0.997884i \(0.479287\pi\)
\(464\) −1.23607 0.898056i −0.0573830 0.0416912i
\(465\) 0.763932 2.35114i 0.0354265 0.109032i
\(466\) −5.80902 17.8783i −0.269098 0.828197i
\(467\) −25.1525 + 18.2743i −1.16392 + 0.845636i −0.990268 0.139172i \(-0.955556\pi\)
−0.173650 + 0.984808i \(0.555556\pi\)
\(468\) 5.23607 3.80423i 0.242037 0.175850i
\(469\) 4.14590 + 12.7598i 0.191440 + 0.589191i
\(470\) −0.690983 + 2.12663i −0.0318727 + 0.0980940i
\(471\) 12.4164 + 9.02105i 0.572118 + 0.415668i
\(472\) −12.4721 −0.574077
\(473\) 0.645898 6.90215i 0.0296984 0.317361i
\(474\) 19.4164 0.891825
\(475\) 3.73607 + 2.71441i 0.171423 + 0.124546i
\(476\) 3.21885 9.90659i 0.147536 0.454068i
\(477\) −2.85410 8.78402i −0.130680 0.402193i
\(478\) −2.16312 + 1.57160i −0.0989388 + 0.0718832i
\(479\) 8.16312 5.93085i 0.372982 0.270988i −0.385464 0.922723i \(-0.625959\pi\)
0.758447 + 0.651735i \(0.225959\pi\)
\(480\) 0.381966 + 1.17557i 0.0174343 + 0.0536572i
\(481\) −8.00000 + 24.6215i −0.364769 + 1.12264i
\(482\) −8.09017 5.87785i −0.368497 0.267729i
\(483\) 4.24922 0.193346
\(484\) −1.39919 10.9106i −0.0635994 0.495939i
\(485\) 2.94427 0.133693
\(486\) −8.09017 5.87785i −0.366978 0.266625i
\(487\) 3.09017 9.51057i 0.140029 0.430965i −0.856309 0.516463i \(-0.827248\pi\)
0.996338 + 0.0854984i \(0.0272483\pi\)
\(488\) 3.26393 + 10.0453i 0.147751 + 0.454732i
\(489\) −26.4164 + 19.1926i −1.19459 + 0.867921i
\(490\) −1.78115 + 1.29408i −0.0804643 + 0.0584607i
\(491\) −3.13525 9.64932i −0.141492 0.435468i 0.855051 0.518544i \(-0.173526\pi\)
−0.996543 + 0.0830758i \(0.973526\pi\)
\(492\) 5.70820 17.5680i 0.257346 0.792029i
\(493\) −6.94427 5.04531i −0.312754 0.227229i
\(494\) −6.47214 −0.291195
\(495\) −0.190983 + 2.04087i −0.00858405 + 0.0917303i
\(496\) 2.00000 0.0898027
\(497\) 19.4164 + 14.1068i 0.870945 + 0.632779i
\(498\) −6.67376 + 20.5397i −0.299058 + 0.920407i
\(499\) 5.42705 + 16.7027i 0.242948 + 0.747718i 0.995967 + 0.0897188i \(0.0285968\pi\)
−0.753019 + 0.657999i \(0.771403\pi\)
\(500\) −4.80902 + 3.49396i −0.215066 + 0.156254i
\(501\) −41.1246 + 29.8788i −1.83731 + 1.33489i
\(502\) 3.35410 + 10.3229i 0.149701 + 0.460732i
\(503\) −9.05573 + 27.8707i −0.403775 + 1.24269i 0.518139 + 0.855297i \(0.326625\pi\)
−0.921914 + 0.387395i \(0.873375\pi\)
\(504\) −1.50000 1.08981i −0.0668153 0.0485442i
\(505\) −3.43769 −0.152975
\(506\) 2.51064 2.85317i 0.111612 0.126839i
\(507\) −57.7771 −2.56597
\(508\) −6.00000 4.35926i −0.266207 0.193411i
\(509\) 6.27051 19.2986i 0.277935 0.855397i −0.710492 0.703705i \(-0.751528\pi\)
0.988428 0.151692i \(-0.0484723\pi\)
\(510\) 2.14590 + 6.60440i 0.0950220 + 0.292448i
\(511\) 21.0000 15.2574i 0.928985 0.674947i
\(512\) −0.809017 + 0.587785i −0.0357538 + 0.0259767i
\(513\) 1.23607 + 3.80423i 0.0545737 + 0.167961i
\(514\) −3.38197 + 10.4086i −0.149172 + 0.459105i
\(515\) −4.61803 3.35520i −0.203495 0.147848i
\(516\) −4.18034 −0.184029
\(517\) −11.0172 4.75528i −0.484537 0.209137i
\(518\) 7.41641 0.325858
\(519\) −4.94427 3.59222i −0.217029 0.157681i
\(520\) 1.23607 3.80423i 0.0542052 0.166826i
\(521\) 0.673762 + 2.07363i 0.0295181 + 0.0908472i 0.964730 0.263241i \(-0.0847913\pi\)
−0.935212 + 0.354088i \(0.884791\pi\)
\(522\) −1.23607 + 0.898056i −0.0541012 + 0.0393068i
\(523\) 23.5623 17.1190i 1.03031 0.748562i 0.0619375 0.998080i \(-0.480272\pi\)
0.968370 + 0.249518i \(0.0802721\pi\)
\(524\) −0.281153 0.865300i −0.0122822 0.0378008i
\(525\) 5.29180 16.2865i 0.230953 0.710800i
\(526\) −5.23607 3.80423i −0.228303 0.165872i
\(527\) 11.2361 0.489451
\(528\) −6.47214 + 1.45309i −0.281664 + 0.0632374i
\(529\) −21.6869 −0.942909
\(530\) −4.61803 3.35520i −0.200595 0.145740i
\(531\) −3.85410 + 11.8617i −0.167254 + 0.514754i
\(532\) 0.572949 + 1.76336i 0.0248405 + 0.0764512i
\(533\) −48.3607 + 35.1361i −2.09473 + 1.52191i
\(534\) 10.9443 7.95148i 0.473605 0.344094i
\(535\) −1.14590 3.52671i −0.0495415 0.152473i
\(536\) 2.23607 6.88191i 0.0965834 0.297253i
\(537\) −32.6525 23.7234i −1.40906 1.02374i
\(538\) 18.6525 0.804165
\(539\) −6.02380 10.1639i −0.259463 0.437789i
\(540\) −2.47214 −0.106384
\(541\) −21.9615 15.9560i −0.944198 0.686000i 0.00522926 0.999986i \(-0.498335\pi\)
−0.949428 + 0.313986i \(0.898335\pi\)
\(542\) −9.64590 + 29.6870i −0.414327 + 1.27517i
\(543\) 8.47214 + 26.0746i 0.363574 + 1.11897i
\(544\) −4.54508 + 3.30220i −0.194869 + 0.141581i
\(545\) −0.618034 + 0.449028i −0.0264737 + 0.0192342i
\(546\) 7.41641 + 22.8254i 0.317393 + 0.976835i
\(547\) 1.94427 5.98385i 0.0831311 0.255851i −0.900848 0.434134i \(-0.857054\pi\)
0.983979 + 0.178283i \(0.0570543\pi\)
\(548\) 12.2082 + 8.86978i 0.521509 + 0.378898i
\(549\) 10.5623 0.450788
\(550\) −7.80902 13.1760i −0.332978 0.561828i
\(551\) 1.52786 0.0650892
\(552\) −1.85410 1.34708i −0.0789158 0.0573357i
\(553\) −5.56231 + 17.1190i −0.236533 + 0.727975i
\(554\) −1.09017 3.35520i −0.0463169 0.142549i
\(555\) −4.00000 + 2.90617i −0.169791 + 0.123360i
\(556\) −4.30902 + 3.13068i −0.182743 + 0.132771i
\(557\) 10.9549 + 33.7158i 0.464175 + 1.42858i 0.860018 + 0.510264i \(0.170452\pi\)
−0.395843 + 0.918318i \(0.629548\pi\)
\(558\) 0.618034 1.90211i 0.0261635 0.0805229i
\(559\) 10.9443 + 7.95148i 0.462893 + 0.336312i
\(560\) −1.14590 −0.0484230
\(561\) −36.3607 + 8.16348i −1.53515 + 0.344662i
\(562\) 4.65248 0.196253
\(563\) 7.85410 + 5.70634i 0.331011 + 0.240494i 0.740859 0.671660i \(-0.234418\pi\)
−0.409849 + 0.912154i \(0.634418\pi\)
\(564\) −2.23607 + 6.88191i −0.0941554 + 0.289781i
\(565\) −2.76393 8.50651i −0.116279 0.357871i
\(566\) 7.73607 5.62058i 0.325171 0.236251i
\(567\) 16.5000 11.9880i 0.692935 0.503447i
\(568\) −4.00000 12.3107i −0.167836 0.516547i
\(569\) −5.14590 + 15.8374i −0.215727 + 0.663940i 0.783374 + 0.621551i \(0.213497\pi\)
−0.999101 + 0.0423895i \(0.986503\pi\)
\(570\) −1.00000 0.726543i −0.0418854 0.0304315i
\(571\) 6.14590 0.257198 0.128599 0.991697i \(-0.458952\pi\)
0.128599 + 0.991697i \(0.458952\pi\)
\(572\) 19.7082 + 8.50651i 0.824041 + 0.355675i
\(573\) 48.0689 2.00811
\(574\) 13.8541 + 10.0656i 0.578259 + 0.420130i
\(575\) 1.63525 5.03280i 0.0681948 0.209882i
\(576\) 0.309017 + 0.951057i 0.0128757 + 0.0396274i
\(577\) −10.0902 + 7.33094i −0.420059 + 0.305191i −0.777662 0.628683i \(-0.783594\pi\)
0.357602 + 0.933874i \(0.383594\pi\)
\(578\) −11.7812 + 8.55951i −0.490031 + 0.356029i
\(579\) 13.0557 + 40.1814i 0.542578 + 1.66988i
\(580\) −0.291796 + 0.898056i −0.0121162 + 0.0372897i
\(581\) −16.1976 11.7682i −0.671988 0.488228i
\(582\) 9.52786 0.394943
\(583\) 20.2361 22.9969i 0.838092 0.952433i
\(584\) −14.0000 −0.579324
\(585\) −3.23607 2.35114i −0.133795 0.0972077i
\(586\) 0.201626 0.620541i 0.00832910 0.0256343i
\(587\) 8.94427 + 27.5276i 0.369170 + 1.13619i 0.947329 + 0.320263i \(0.103771\pi\)
−0.578159 + 0.815924i \(0.696229\pi\)
\(588\) −5.76393 + 4.18774i −0.237701 + 0.172700i
\(589\) −1.61803 + 1.17557i −0.0666699 + 0.0484385i
\(590\) 2.38197 + 7.33094i 0.0980640 + 0.301810i
\(591\) 11.1246 34.2380i 0.457605 1.40836i
\(592\) −3.23607 2.35114i −0.133002 0.0966313i
\(593\) −44.4508 −1.82538 −0.912689 0.408655i \(-0.865998\pi\)
−0.912689 + 0.408655i \(0.865998\pi\)
\(594\) 1.23607 13.2088i 0.0507165 0.541963i
\(595\) −6.43769 −0.263920
\(596\) 16.5623 + 12.0332i 0.678418 + 0.492900i
\(597\) 3.43769 10.5801i 0.140695 0.433016i
\(598\) 2.29180 + 7.05342i 0.0937185 + 0.288436i
\(599\) −12.6180 + 9.16754i −0.515559 + 0.374575i −0.814928 0.579562i \(-0.803224\pi\)
0.299369 + 0.954137i \(0.403224\pi\)
\(600\) −7.47214 + 5.42882i −0.305049 + 0.221631i
\(601\) 9.79837 + 30.1563i 0.399684 + 1.23010i 0.925253 + 0.379350i \(0.123852\pi\)
−0.525569 + 0.850751i \(0.676148\pi\)
\(602\) 1.19756 3.68571i 0.0488089 0.150218i
\(603\) −5.85410 4.25325i −0.238397 0.173206i
\(604\) −0.291796 −0.0118730
\(605\) −6.14590 + 2.90617i −0.249866 + 0.118153i
\(606\) −11.1246 −0.451906
\(607\) −20.1803 14.6619i −0.819095 0.595107i 0.0973583 0.995249i \(-0.468961\pi\)
−0.916453 + 0.400142i \(0.868961\pi\)
\(608\) 0.309017 0.951057i 0.0125323 0.0385704i
\(609\) −1.75078 5.38834i −0.0709450 0.218346i
\(610\) 5.28115 3.83698i 0.213828 0.155355i
\(611\) 18.9443 13.7638i 0.766403 0.556825i
\(612\) 1.73607 + 5.34307i 0.0701764 + 0.215981i
\(613\) −2.38854 + 7.35118i −0.0964724 + 0.296911i −0.987635 0.156773i \(-0.949891\pi\)
0.891162 + 0.453685i \(0.149891\pi\)
\(614\) 22.1803 + 16.1150i 0.895126 + 0.650347i
\(615\) −11.4164 −0.460354
\(616\) 0.572949 6.12261i 0.0230848 0.246687i
\(617\) 42.7214 1.71990 0.859949 0.510381i \(-0.170495\pi\)
0.859949 + 0.510381i \(0.170495\pi\)
\(618\) −14.9443 10.8576i −0.601147 0.436759i
\(619\) 3.88197 11.9475i 0.156029 0.480209i −0.842234 0.539112i \(-0.818760\pi\)
0.998264 + 0.0589025i \(0.0187601\pi\)
\(620\) −0.381966 1.17557i −0.0153401 0.0472120i
\(621\) 3.70820 2.69417i 0.148805 0.108113i
\(622\) 3.39919 2.46965i 0.136295 0.0990241i
\(623\) 3.87539 + 11.9272i 0.155264 + 0.477854i
\(624\) 4.00000 12.3107i 0.160128 0.492824i
\(625\) −15.7082 11.4127i −0.628328 0.456507i
\(626\) −0.0901699 −0.00360392
\(627\) 4.38197 4.97980i 0.174999 0.198874i
\(628\) 7.67376 0.306216
\(629\) −18.1803 13.2088i −0.724898 0.526669i
\(630\) −0.354102 + 1.08981i −0.0141078 + 0.0434192i
\(631\) −7.52786 23.1684i −0.299680 0.922319i −0.981609 0.190901i \(-0.938859\pi\)
0.681930 0.731418i \(-0.261141\pi\)
\(632\) 7.85410 5.70634i 0.312419 0.226986i
\(633\) −18.4721 + 13.4208i −0.734201 + 0.533429i
\(634\) 0.673762 + 2.07363i 0.0267585 + 0.0823542i
\(635\) −1.41641 + 4.35926i −0.0562084 + 0.172992i
\(636\) −14.9443 10.8576i −0.592579 0.430534i
\(637\) 23.0557 0.913501
\(638\) −4.65248 2.00811i −0.184193 0.0795020i
\(639\) −12.9443 −0.512067
\(640\) 0.500000 + 0.363271i 0.0197642 + 0.0143596i
\(641\) 6.58359 20.2622i 0.260036 0.800309i −0.732759 0.680488i \(-0.761768\pi\)
0.992795 0.119821i \(-0.0382322\pi\)
\(642\) −3.70820 11.4127i −0.146351 0.450422i
\(643\) −16.9271 + 12.2982i −0.667538 + 0.484995i −0.869200 0.494461i \(-0.835366\pi\)
0.201662 + 0.979455i \(0.435366\pi\)
\(644\) 1.71885 1.24882i 0.0677321 0.0492102i
\(645\) 0.798374 + 2.45714i 0.0314359 + 0.0967499i
\(646\) 1.73607 5.34307i 0.0683047 0.210220i
\(647\) 9.70820 + 7.05342i 0.381669 + 0.277299i 0.762033 0.647538i \(-0.224201\pi\)
−0.380364 + 0.924837i \(0.624201\pi\)
\(648\) −11.0000 −0.432121
\(649\) −40.3607 + 9.06154i −1.58430 + 0.355696i
\(650\) 29.8885 1.17233
\(651\) 6.00000 + 4.35926i 0.235159 + 0.170853i
\(652\) −5.04508 + 15.5272i −0.197581 + 0.608091i
\(653\) −0.500000 1.53884i −0.0195665 0.0602195i 0.940797 0.338972i \(-0.110079\pi\)
−0.960363 + 0.278752i \(0.910079\pi\)
\(654\) −2.00000 + 1.45309i −0.0782062 + 0.0568201i
\(655\) −0.454915 + 0.330515i −0.0177750 + 0.0129143i
\(656\) −2.85410 8.78402i −0.111434 0.342958i
\(657\) −4.32624 + 13.3148i −0.168783 + 0.519459i
\(658\) −5.42705 3.94298i −0.211568 0.153713i
\(659\) 20.2918 0.790456 0.395228 0.918583i \(-0.370666\pi\)
0.395228 + 0.918583i \(0.370666\pi\)
\(660\) 2.09017 + 3.52671i 0.0813598 + 0.137277i
\(661\) 19.5967 0.762225 0.381113 0.924529i \(-0.375541\pi\)
0.381113 + 0.924529i \(0.375541\pi\)
\(662\) 7.85410 + 5.70634i 0.305258 + 0.221783i
\(663\) 22.4721 69.1621i 0.872745 2.68603i
\(664\) 3.33688 + 10.2699i 0.129496 + 0.398548i
\(665\) 0.927051 0.673542i 0.0359495 0.0261188i
\(666\) −3.23607 + 2.35114i −0.125395 + 0.0911049i
\(667\) −0.541020 1.66509i −0.0209484 0.0644724i
\(668\) −7.85410 + 24.1724i −0.303884 + 0.935260i
\(669\) 6.00000 + 4.35926i 0.231973 + 0.168539i
\(670\) −4.47214 −0.172774
\(671\) 17.8607 + 30.1360i 0.689504 + 1.16339i
\(672\) −3.70820 −0.143047
\(673\) 36.4164 + 26.4581i 1.40375 + 1.01988i 0.994194 + 0.107598i \(0.0343160\pi\)
0.409555 + 0.912285i \(0.365684\pi\)
\(674\) −5.27051 + 16.2210i −0.203012 + 0.624808i
\(675\) −5.70820 17.5680i −0.219709 0.676194i
\(676\) −23.3713 + 16.9803i −0.898897 + 0.653087i
\(677\) −27.2705 + 19.8132i −1.04809 + 0.761483i −0.971848 0.235607i \(-0.924292\pi\)
−0.0762424 + 0.997089i \(0.524292\pi\)
\(678\) −8.94427 27.5276i −0.343503 1.05719i
\(679\) −2.72949 + 8.40051i −0.104748 + 0.322382i
\(680\) 2.80902 + 2.04087i 0.107721 + 0.0782638i
\(681\) 0 0
\(682\) 6.47214 1.45309i 0.247831 0.0556415i
\(683\) −20.0689 −0.767914 −0.383957 0.923351i \(-0.625439\pi\)
−0.383957 + 0.923351i \(0.625439\pi\)
\(684\) −0.809017 0.587785i −0.0309335 0.0224745i
\(685\) 2.88197 8.86978i 0.110114 0.338897i
\(686\) −6.05166 18.6251i −0.231054 0.711110i
\(687\) 39.2705 28.5317i 1.49826 1.08855i
\(688\) −1.69098 + 1.22857i −0.0644681 + 0.0468388i
\(689\) 18.4721 + 56.8514i 0.703732 + 2.16587i
\(690\) −0.437694 + 1.34708i −0.0166627 + 0.0512826i
\(691\) 16.4443 + 11.9475i 0.625570 + 0.454503i 0.854863 0.518855i \(-0.173641\pi\)
−0.229293 + 0.973357i \(0.573641\pi\)
\(692\) −3.05573 −0.116161
\(693\) −5.64590 2.43690i −0.214470 0.0925701i
\(694\) 8.56231 0.325021
\(695\) 2.66312 + 1.93487i 0.101018 + 0.0733938i
\(696\) −0.944272 + 2.90617i −0.0357925 + 0.110158i
\(697\) −16.0344 49.3489i −0.607348 1.86922i
\(698\) −16.9721 + 12.3310i −0.642405 + 0.466734i
\(699\) −30.4164 + 22.0988i −1.15045 + 0.835854i
\(700\) −2.64590 8.14324i −0.100006 0.307785i
\(701\) 4.55573 14.0211i 0.172067 0.529569i −0.827420 0.561584i \(-0.810192\pi\)
0.999487 + 0.0320145i \(0.0101923\pi\)
\(702\) 20.9443 + 15.2169i 0.790491 + 0.574325i
\(703\) 4.00000 0.150863
\(704\) −2.19098 + 2.48990i −0.0825758 + 0.0938416i
\(705\) 4.47214 0.168430
\(706\) −12.4443 9.04129i −0.468346 0.340274i
\(707\) 3.18692 9.80832i 0.119856 0.368880i
\(708\) 7.70820 + 23.7234i 0.289692 + 0.891580i
\(709\) −4.20820 + 3.05744i −0.158042 + 0.114825i −0.663996 0.747736i \(-0.731141\pi\)
0.505953 + 0.862561i \(0.331141\pi\)
\(710\) −6.47214 + 4.70228i −0.242895 + 0.176473i
\(711\) −3.00000 9.23305i −0.112509 0.346266i
\(712\) 2.09017 6.43288i 0.0783324 0.241082i
\(713\) 1.85410 + 1.34708i 0.0694367 + 0.0504487i
\(714\) −20.8328 −0.779649
\(715\) 1.23607 13.2088i 0.0462263 0.493981i
\(716\) −20.1803 −0.754175
\(717\) 4.32624 + 3.14320i 0.161566 + 0.117385i
\(718\) −1.88197 + 5.79210i −0.0702343 + 0.216159i
\(719\) −6.28115 19.3314i −0.234247 0.720940i −0.997220 0.0745091i \(-0.976261\pi\)
0.762973 0.646431i \(-0.223739\pi\)
\(720\) 0.500000 0.363271i 0.0186339 0.0135383i
\(721\) 13.8541 10.0656i 0.515954 0.374862i
\(722\) 0.309017 + 0.951057i 0.0115004 + 0.0353947i
\(723\) −6.18034 + 19.0211i −0.229849 + 0.707403i
\(724\) 11.0902 + 8.05748i 0.412163 + 0.299454i
\(725\) −7.05573 −0.262043
\(726\) −19.8885 + 9.40456i −0.738133 + 0.349036i
\(727\) 18.8541 0.699260 0.349630 0.936888i \(-0.386307\pi\)
0.349630 + 0.936888i \(0.386307\pi\)
\(728\) 9.70820 + 7.05342i 0.359810 + 0.261417i
\(729\) 4.01722 12.3637i 0.148786 0.457916i
\(730\) 2.67376 + 8.22899i 0.0989604 + 0.304569i
\(731\) −9.50000 + 6.90215i −0.351370 + 0.255285i
\(732\) 17.0902 12.4167i 0.631671 0.458936i
\(733\) 13.6976 + 42.1568i 0.505931 + 1.55710i 0.799200 + 0.601065i \(0.205257\pi\)
−0.293269 + 0.956030i \(0.594743\pi\)
\(734\) −6.66312 + 20.5070i −0.245940 + 0.756926i
\(735\) 3.56231 + 2.58817i 0.131398 + 0.0954660i
\(736\) −1.14590 −0.0422384
\(737\) 2.23607 23.8949i 0.0823666 0.880181i
\(738\) −9.23607 −0.339984
\(739\) 35.1525 + 25.5398i 1.29310 + 0.939496i 0.999863 0.0165428i \(-0.00526598\pi\)
0.293242 + 0.956038i \(0.405266\pi\)
\(740\) −0.763932 + 2.35114i −0.0280827 + 0.0864297i
\(741\) 4.00000 + 12.3107i 0.146944 + 0.452246i
\(742\) 13.8541 10.0656i 0.508600 0.369520i
\(743\) −23.1803 + 16.8415i −0.850404 + 0.617855i −0.925257 0.379340i \(-0.876151\pi\)
0.0748533 + 0.997195i \(0.476151\pi\)
\(744\) −1.23607 3.80423i −0.0453165 0.139470i
\(745\) 3.90983 12.0332i 0.143245 0.440863i
\(746\) 24.5623 + 17.8456i 0.899290 + 0.653372i
\(747\) 10.7984 0.395092
\(748\) −12.3090 + 13.9883i −0.450062 + 0.511464i
\(749\) 11.1246 0.406484
\(750\) 9.61803 + 6.98791i 0.351201 + 0.255162i
\(751\) −11.5623 + 35.5851i −0.421915 + 1.29852i 0.484003 + 0.875066i \(0.339182\pi\)
−0.905918 + 0.423453i \(0.860818\pi\)
\(752\) 1.11803 + 3.44095i 0.0407705 + 0.125479i
\(753\) 17.5623 12.7598i 0.640006 0.464992i
\(754\) 8.00000 5.81234i 0.291343 0.211673i
\(755\) 0.0557281 + 0.171513i 0.00202815 + 0.00624201i
\(756\) 2.29180 7.05342i 0.0833518 0.256531i
\(757\) −1.14590 0.832544i −0.0416484 0.0302593i 0.566766 0.823879i \(-0.308194\pi\)
−0.608415 + 0.793619i \(0.708194\pi\)
\(758\) 1.23607 0.0448960
\(759\) −6.97871 3.01217i −0.253311 0.109335i
\(760\) −0.618034 −0.0224184
\(761\) −41.5066 30.1563i −1.50461 1.09316i −0.968499 0.249019i \(-0.919892\pi\)
−0.536114 0.844146i \(-0.680108\pi\)
\(762\) −4.58359 + 14.1068i −0.166046 + 0.511037i
\(763\) −0.708204 2.17963i −0.0256387 0.0789078i
\(764\) 19.4443 14.1271i 0.703469 0.511100i
\(765\) 2.80902 2.04087i 0.101560 0.0737878i
\(766\) 4.61803 + 14.2128i 0.166856 + 0.513531i
\(767\) 24.9443 76.7706i 0.900685 2.77202i
\(768\) 1.61803 + 1.17557i 0.0583858 + 0.0424197i
\(769\) 34.5066 1.24434 0.622170 0.782883i \(-0.286251\pi\)
0.622170 + 0.782883i \(0.286251\pi\)
\(770\) −3.70820 + 0.832544i −0.133634 + 0.0300028i
\(771\) 21.8885 0.788297
\(772\) 17.0902 + 12.4167i 0.615089 + 0.446888i
\(773\) −10.3820 + 31.9524i −0.373413 + 1.14925i 0.571129 + 0.820860i \(0.306505\pi\)
−0.944543 + 0.328388i \(0.893495\pi\)
\(774\) 0.645898 + 1.98787i 0.0232163 + 0.0714525i
\(775\) 7.47214 5.42882i 0.268407 0.195009i
\(776\) 3.85410 2.80017i 0.138354 0.100520i
\(777\) −4.58359 14.1068i −0.164435 0.506080i
\(778\) 4.02786 12.3965i 0.144406 0.444436i
\(779\) 7.47214 + 5.42882i 0.267717 + 0.194508i
\(780\) −8.00000 −0.286446
\(781\) −21.8885 36.9322i −0.783234 1.32154i
\(782\) −6.43769 −0.230211
\(783\) −4.94427 3.59222i −0.176694 0.128376i
\(784\) −1.10081 + 3.38795i −0.0393148 + 0.120998i
\(785\) −1.46556 4.51052i −0.0523080 0.160988i
\(786\) −1.47214 + 1.06957i −0.0525094 + 0.0381503i
\(787\) 34.7426 25.2420i 1.23844 0.899780i 0.240948 0.970538i \(-0.422542\pi\)
0.997494 + 0.0707575i \(0.0225417\pi\)
\(788\) −5.56231 17.1190i −0.198149 0.609840i
\(789\) −4.00000 + 12.3107i −0.142404 + 0.438274i
\(790\) −4.85410 3.52671i −0.172701 0.125475i
\(791\) 26.8328 0.954065
\(792\) 1.69098 + 2.85317i 0.0600865 + 0.101383i
\(793\) −68.3607 −2.42756
\(794\) −16.8713 12.2577i −0.598741 0.435011i
\(795\) −3.52786 + 10.8576i −0.125120 + 0.385081i
\(796\) −1.71885 5.29007i −0.0609229 0.187501i
\(797\) 43.5066 31.6094i 1.54108 1.11966i 0.591429 0.806357i \(-0.298564\pi\)
0.949653 0.313305i \(-0.101436\pi\)
\(798\) 3.00000 2.17963i 0.106199 0.0771580i
\(799\) 6.28115 + 19.3314i 0.222211 + 0.683896i
\(800\) −1.42705 + 4.39201i −0.0504539 + 0.155281i
\(801\) −5.47214 3.97574i −0.193348 0.140476i
\(802\) 12.4721 0.440406
\(803\) −45.3050 + 10.1716i −1.59878 + 0.358948i
\(804\) −14.4721 −0.510393
\(805\) −1.06231 0.771810i −0.0374414 0.0272027i
\(806\) −4.00000 + 12.3107i −0.140894 + 0.433627i
\(807\) −11.5279 35.4791i −0.405800 1.24892i
\(808\) −4.50000 + 3.26944i −0.158309 + 0.115019i
\(809\) −4.50000 + 3.26944i −0.158212 + 0.114947i −0.664074 0.747666i \(-0.731174\pi\)
0.505863 + 0.862614i \(0.331174\pi\)
\(810\) 2.10081 + 6.46564i 0.0738150 + 0.227179i
\(811\) −12.4377 + 38.2793i −0.436747 + 1.34417i 0.454540 + 0.890726i \(0.349804\pi\)
−0.891286 + 0.453441i \(0.850196\pi\)
\(812\) −2.29180 1.66509i −0.0804263 0.0584331i
\(813\) 62.4296 2.18950
\(814\) −12.1803 5.25731i −0.426921 0.184269i
\(815\) 10.0902 0.353443
\(816\) 9.09017 + 6.60440i 0.318220 + 0.231200i
\(817\) 0.645898 1.98787i 0.0225971 0.0695468i
\(818\) −7.09017 21.8213i −0.247902 0.762964i
\(819\) 9.70820 7.05342i 0.339232 0.246467i
\(820\) −4.61803 + 3.35520i −0.161269 + 0.117169i
\(821\) 1.20820 + 3.71847i 0.0421666 + 0.129775i 0.969924 0.243409i \(-0.0782658\pi\)
−0.927757 + 0.373185i \(0.878266\pi\)
\(822\) 9.32624 28.7032i 0.325290 1.00114i
\(823\) −11.2082 8.14324i −0.390693 0.283855i 0.375046 0.927006i \(-0.377627\pi\)
−0.765740 + 0.643151i \(0.777627\pi\)
\(824\) −9.23607 −0.321754
\(825\) −20.2361 + 22.9969i −0.704529 + 0.800648i
\(826\) −23.1246 −0.804608
\(827\) −22.8541 16.6045i −0.794715 0.577394i 0.114644 0.993407i \(-0.463427\pi\)
−0.909359 + 0.416012i \(0.863427\pi\)
\(828\) −0.354102 + 1.08981i −0.0123059 + 0.0378736i
\(829\) −5.81966 17.9111i −0.202125 0.622077i −0.999819 0.0190149i \(-0.993947\pi\)
0.797694 0.603062i \(-0.206053\pi\)
\(830\) 5.39919 3.92274i 0.187409 0.136160i
\(831\) −5.70820 + 4.14725i −0.198015 + 0.143867i
\(832\) −2.00000 6.15537i −0.0693375 0.213399i
\(833\) −6.18441 + 19.0336i −0.214277 + 0.659477i
\(834\) 8.61803 + 6.26137i 0.298418 + 0.216813i
\(835\) 15.7082 0.543605
\(836\) 0.309017 3.30220i 0.0106876 0.114209i
\(837\) 8.00000 0.276520
\(838\) −7.54508 5.48183i −0.260641 0.189367i
\(839\) −7.47214 + 22.9969i −0.257967 + 0.793940i 0.735264 + 0.677781i \(0.237058\pi\)
−0.993231 + 0.116159i \(0.962942\pi\)
\(840\) 0.708204 + 2.17963i 0.0244354 + 0.0752043i
\(841\) 21.5729 15.6737i 0.743895 0.540471i
\(842\) −22.6525 + 16.4580i −0.780656 + 0.567180i
\(843\) −2.87539 8.84953i −0.0990336 0.304794i
\(844\) −3.52786 + 10.8576i −0.121434 + 0.373736i
\(845\) 14.4443 + 10.4944i 0.496898 + 0.361018i
\(846\) 3.61803 0.124391
\(847\) −2.59424 20.2295i −0.0891390 0.695092i
\(848\) −9.23607 −0.317168
\(849\) −15.4721 11.2412i −0.531002 0.385796i
\(850\) −8.01722 + 24.6745i −0.274988 + 0.846327i
\(851\) −1.41641 4.35926i −0.0485538 0.149433i
\(852\) −20.9443 + 15.2169i −0.717539 + 0.521323i
\(853\) 3.45492 2.51014i 0.118294 0.0859456i −0.527065 0.849825i \(-0.676708\pi\)
0.645359 + 0.763879i \(0.276708\pi\)
\(854\) 6.05166 + 18.6251i 0.207084 + 0.637338i
\(855\) −0.190983 + 0.587785i −0.00653148 + 0.0201018i
\(856\) −4.85410 3.52671i −0.165910 0.120541i
\(857\) −19.0132 −0.649477 −0.324739 0.945804i \(-0.605276\pi\)
−0.324739 + 0.945804i \(0.605276\pi\)
\(858\) 4.00000 42.7445i 0.136558 1.45927i
\(859\) 33.6869 1.14938 0.574691 0.818370i \(-0.305122\pi\)
0.574691 + 0.818370i \(0.305122\pi\)
\(860\) 1.04508 + 0.759299i 0.0356371 + 0.0258919i
\(861\) 10.5836 32.5729i 0.360688 1.11008i
\(862\) 11.0902 + 34.1320i 0.377733 + 1.16254i
\(863\) −38.9787 + 28.3197i −1.32685 + 0.964014i −0.327031 + 0.945013i \(0.606048\pi\)
−0.999819 + 0.0190001i \(0.993952\pi\)
\(864\) −3.23607 + 2.35114i −0.110093 + 0.0799874i
\(865\) 0.583592 + 1.79611i 0.0198427 + 0.0610696i
\(866\) 1.70820 5.25731i 0.0580471 0.178651i
\(867\) 23.5623 + 17.1190i 0.800218 + 0.581392i
\(868\) 3.70820 0.125865
\(869\) 21.2705 24.1724i 0.721553 0.819994i
\(870\) 1.88854 0.0640276
\(871\) 37.8885 + 27.5276i 1.28380 + 0.932738i
\(872\) −0.381966 + 1.17557i −0.0129350 + 0.0398098i
\(873\) −1.47214 4.53077i −0.0498243 0.153343i
\(874\) 0.927051 0.673542i 0.0313580 0.0227829i
\(875\) −8.91641 + 6.47815i −0.301430 + 0.219001i
\(876\) 8.65248 + 26.6296i 0.292340 + 0.899730i
\(877\) −4.50658 + 13.8698i −0.152176 + 0.468351i −0.997864 0.0653278i \(-0.979191\pi\)
0.845688 + 0.533678i \(0.179191\pi\)
\(878\) −18.7082 13.5923i −0.631371 0.458718i
\(879\) −1.30495 −0.0440149
\(880\) 1.88197 + 0.812299i 0.0634411 + 0.0273826i
\(881\) 25.4164 0.856301 0.428150 0.903708i \(-0.359165\pi\)
0.428150 + 0.903708i \(0.359165\pi\)
\(882\) 2.88197 + 2.09387i 0.0970408 + 0.0705043i
\(883\) −7.53851 + 23.2011i −0.253691 + 0.780781i 0.740394 + 0.672173i \(0.234639\pi\)
−0.994085 + 0.108607i \(0.965361\pi\)
\(884\) −11.2361 34.5811i −0.377910 1.16309i
\(885\) 12.4721 9.06154i 0.419246 0.304600i
\(886\) −11.5000 + 8.35524i −0.386350 + 0.280700i
\(887\) 3.74265 + 11.5187i 0.125666 + 0.386759i 0.994022 0.109182i \(-0.0348231\pi\)
−0.868356 + 0.495941i \(0.834823\pi\)
\(888\) −2.47214 + 7.60845i −0.0829595 + 0.255323i
\(889\) −11.1246 8.08250i −0.373108 0.271078i
\(890\) −4.18034 −0.140125
\(891\) −35.5967 + 7.99197i −1.19254 + 0.267741i
\(892\) 3.70820 0.124160
\(893\) −2.92705 2.12663i −0.0979500 0.0711649i
\(894\) 12.6525 38.9403i 0.423162 1.30236i
\(895\) 3.85410 + 11.8617i 0.128828 + 0.396493i
\(896\) −1.50000 + 1.08981i −0.0501115 + 0.0364081i
\(897\) 12.0000 8.71851i 0.400668 0.291103i
\(898\) −2.52786 7.77997i −0.0843559 0.259621i
\(899\) 0.944272 2.90617i 0.0314932 0.0969262i
\(900\) 3.73607 + 2.71441i 0.124536 + 0.0904804i
\(901\) −51.8885 −1.72866
\(902\) −15.6180 26.3521i −0.520024 0.877428i
\(903\) −7.75078 −0.257930
\(904\) −11.7082 8.50651i −0.389409 0.282922i
\(905\) 2.61803 8.05748i 0.0870264 0.267840i
\(906\) 0.180340 + 0.555029i 0.00599139 + 0.0184396i
\(907\) 24.9443 18.1231i 0.828261 0.601767i −0.0908058 0.995869i \(-0.528944\pi\)
0.919067 + 0.394102i \(0.128944\pi\)
\(908\) 0 0
\(909\) 1.71885 + 5.29007i 0.0570106 + 0.175460i
\(910\) 2.29180 7.05342i 0.0759723 0.233819i
\(911\) −10.8541 7.88597i −0.359612 0.261274i 0.393278 0.919420i \(-0.371341\pi\)
−0.752890 + 0.658146i \(0.771341\pi\)
\(912\) −2.00000 −0.0662266
\(913\) 18.2599 + 30.8096i 0.604313 + 1.01965i
\(914\) −23.3820 −0.773407
\(915\) −10.5623 7.67396i −0.349179 0.253693i
\(916\) 7.50000 23.0826i 0.247807 0.762671i
\(917\) −0.521286 1.60435i −0.0172144 0.0529804i
\(918\) −18.1803 + 13.2088i −0.600041 + 0.435955i
\(919\) 23.2082 16.8617i 0.765568 0.556218i −0.135045 0.990839i \(-0.543118\pi\)
0.900613 + 0.434622i \(0.143118\pi\)
\(920\) 0.218847 + 0.673542i 0.00721517 + 0.0222060i
\(921\) 16.9443 52.1491i 0.558333 1.71837i
\(922\) −4.20820 3.05744i −0.138590 0.100691i
\(923\) 83.7771 2.75756
\(924\) −12.0000 + 2.69417i −0.394771 + 0.0886316i
\(925\) −18.4721 −0.607360
\(926\) −2.26393 1.64484i −0.0743974 0.0540529i
\(927\) −2.85410 + 8.78402i −0.0937410 + 0.288505i
\(928\) 0.472136 + 1.45309i 0.0154986 + 0.0476999i
\(929\) −39.0517 + 28.3727i −1.28124 + 0.930878i −0.999590 0.0286383i \(-0.990883\pi\)
−0.281654 + 0.959516i \(0.590883\pi\)
\(930\) −2.00000 + 1.45309i −0.0655826 + 0.0476485i
\(931\) −1.10081 3.38795i −0.0360777 0.111036i
\(932\) −5.80902 + 17.8783i −0.190281 + 0.585624i
\(933\) −6.79837 4.93931i −0.222569 0.161706i
\(934\) 31.0902 1.01730
\(935\) 10.5729 + 4.56352i 0.345772 + 0.149243i
\(936\) −6.47214 −0.211548
\(937\) −45.9615 33.3930i −1.50150 1.09090i −0.969781 0.243978i \(-0.921547\pi\)
−0.531716 0.846923i \(-0.678453\pi\)
\(938\) 4.14590 12.7598i 0.135368 0.416621i
\(939\) 0.0557281 + 0.171513i 0.00181862 + 0.00559713i
\(940\) 1.80902 1.31433i 0.0590036 0.0428686i
\(941\) −7.23607 + 5.25731i −0.235889 + 0.171383i −0.699450 0.714682i \(-0.746572\pi\)
0.463561 + 0.886065i \(0.346572\pi\)
\(942\) −4.74265 14.5964i −0.154524 0.475575i
\(943\) 3.27051 10.0656i 0.106502 0.327781i
\(944\) 10.0902 + 7.33094i 0.328407 + 0.238602i
\(945\) −4.58359 −0.149104
\(946\) −4.57953 + 5.20431i −0.148893 + 0.169207i
\(947\) −37.9230 −1.23233 −0.616166 0.787617i \(-0.711315\pi\)
−0.616166 + 0.787617i \(0.711315\pi\)
\(948\) −15.7082 11.4127i −0.510179 0.370667i
\(949\) 28.0000 86.1751i 0.908918 2.79736i
\(950\) −1.42705 4.39201i −0.0462996 0.142496i
\(951\) 3.52786 2.56314i 0.114399 0.0831156i
\(952\) −8.42705 + 6.12261i −0.273122 + 0.198435i
\(953\) 15.3820 + 47.3408i 0.498271 + 1.53352i 0.811797 + 0.583940i \(0.198490\pi\)
−0.313526 + 0.949580i \(0.601510\pi\)
\(954\) −2.85410 + 8.78402i −0.0924050 + 0.284393i
\(955\) −12.0172 8.73102i −0.388868 0.282529i
\(956\) 2.67376 0.0864756
\(957\) −0.944272 + 10.0906i −0.0305240 + 0.326183i
\(958\) −10.0902 −0.325999
\(959\) 22.6353 + 16.4455i 0.730931 + 0.531052i
\(960\) 0.381966 1.17557i 0.0123279 0.0379414i
\(961\) −8.34346 25.6785i −0.269144 0.828340i
\(962\) 20.9443 15.2169i 0.675270 0.490613i
\(963\) −4.85410 + 3.52671i −0.156421 + 0.113647i
\(964\) 3.09017 + 9.51057i 0.0995277 + 0.306315i
\(965\) 4.03444 12.4167i 0.129873 0.399709i
\(966\) −3.43769 2.49763i −0.110606 0.0803600i
\(967\) −58.2705 −1.87385 −0.936927 0.349526i \(-0.886343\pi\)
−0.936927 + 0.349526i \(0.886343\pi\)
\(968\) −5.28115 + 9.64932i −0.169743 + 0.310141i
\(969\) −11.2361 −0.360955
\(970\) −2.38197 1.73060i −0.0764803 0.0555662i
\(971\) −10.6180 + 32.6789i −0.340749 + 1.04872i 0.623071 + 0.782165i \(0.285885\pi\)
−0.963820 + 0.266552i \(0.914115\pi\)
\(972\) 3.09017 + 9.51057i 0.0991172 + 0.305052i
\(973\) −7.98936 + 5.80461i −0.256127 + 0.186087i
\(974\) −8.09017 + 5.87785i −0.259226 + 0.188339i
\(975\) −18.4721 56.8514i −0.591582 1.82070i
\(976\) 3.26393 10.0453i 0.104476 0.321544i
\(977\) −7.14590 5.19180i −0.228618 0.166100i 0.467580 0.883951i \(-0.345126\pi\)
−0.696197 + 0.717851i \(0.745126\pi\)
\(978\) 32.6525 1.04411
\(979\) 2.09017 22.3358i 0.0668021 0.713857i
\(980\) 2.20163 0.0703284
\(981\) 1.00000 + 0.726543i 0.0319275 + 0.0231967i
\(982\) −3.13525 + 9.64932i −0.100050 + 0.307922i
\(983\) −17.9656 55.2923i −0.573012 1.76355i −0.642850 0.765992i \(-0.722248\pi\)
0.0698376 0.997558i \(-0.477752\pi\)
\(984\) −14.9443 + 10.8576i −0.476406 + 0.346129i
\(985\) −9.00000 + 6.53888i −0.286764 + 0.208346i
\(986\) 2.65248 + 8.16348i 0.0844720 + 0.259978i
\(987\) −4.14590 + 12.7598i −0.131965 + 0.406148i
\(988\) 5.23607 + 3.80423i 0.166582 + 0.121029i
\(989\) −2.39512 −0.0761604
\(990\) 1.35410 1.53884i 0.0430362 0.0489076i
\(991\) −26.3607 −0.837375 −0.418687 0.908130i \(-0.637510\pi\)
−0.418687 + 0.908130i \(0.637510\pi\)
\(992\) −1.61803 1.17557i −0.0513726 0.0373244i
\(993\) 6.00000 18.4661i 0.190404 0.586004i
\(994\) −7.41641 22.8254i −0.235234 0.723976i
\(995\) −2.78115 + 2.02063i −0.0881685 + 0.0640581i
\(996\) 17.4721 12.6942i 0.553626 0.402233i
\(997\) −6.57295 20.2295i −0.208167 0.640673i −0.999568 0.0293760i \(-0.990648\pi\)
0.791401 0.611297i \(-0.209352\pi\)
\(998\) 5.42705 16.7027i 0.171790 0.528716i
\(999\) −12.9443 9.40456i −0.409539 0.297547i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 418.2.f.d.191.1 4
11.3 even 5 inner 418.2.f.d.267.1 yes 4
11.5 even 5 4598.2.a.bb.1.1 2
11.6 odd 10 4598.2.a.t.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
418.2.f.d.191.1 4 1.1 even 1 trivial
418.2.f.d.267.1 yes 4 11.3 even 5 inner
4598.2.a.t.1.1 2 11.6 odd 10
4598.2.a.bb.1.1 2 11.5 even 5